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ON THE SPECTRA OF GENERALIZED

FIBONACCI AND FIBONACCI–LIKE OPERATORS

IVAN SLAPNIČAR

(Communicated by H. Radjavi)

Abstract. We analyze the spectra of generalized Fibonacci and Fibonacci-like operators in Ba-
nach space l1 . Some of the results have application in population dynamics.

1. Introduction and preliminaries

Let l1 denote the Banach space of all real sequences x
def= (x1,x2,x3, · · ·) such that

‖x‖1
def= ∑ |xk| < ∞ . Let H : l1 → l1 be a linear operator on l1 . The resolvent set of H ,

ρ(H) is the set of all complex numbers λ such that the operator λ I−H has a bounded
inverse, where I : l1 → l1 is the identity operator. The set σ(H) def= C \ ρ(H) is the
spectrum of H . The spectrum is further subdivided into three mutually disjoint parts,
the point spectrum σp(H) , the continuous spectrum σc(H) and the residual spectrum
σr(H) . The point spectrum is the set of all λ ∈ C such that λ I−H has no inverse. As
in the finite dimensional case, such λ are also called eigenvalues and the corresponding
non-zero vectors x ∈ l1 , such that (λ I−H)x = 0 are called eigenvectors. The continu-
ous spectrum is the set of all λ not in ρ(H) or σp(H) for which the range of λ I−H is
dense in l1 . The residual spectrum is the set of all λ in σ(H) which are not in σp(H)
or σc(H) . The spectral radius of H is

rσ (H) def= sup
λ∈σ(H)

|λ |. (1)

The operator H has a matrix representation H in the standard basis eik
def= δik , where

δik is the Kronecker symbol.
We shall also use two standard results: first, if the operator H is bounded or

closed and has a matrix representation H , then the transpose matrix Ht is the matrix
representation of the operator Ht : l∞ → l∞ and (see e.g. [5], [1, Corollary II.5.3] or [2,
Theorems 3.2 and 3.3])

σp(Ht) ⊆ σp(H)∪σr(H), σr(H) ⊆ σp(Ht). (2)
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50 I. SLAPNIČAR

Second, if H is bounded, then (see for example [5, (3-5)])

rσ (H) = lim
k→∞

‖Hk‖1/k
1 . (3)

Our aim is to classify spectra of two classes of generalized Fibonacci and Fibonacci-
like operators. For the first class of operators their spectral radii are expressed in terms
of largest real positive roots of certain polynomials and the coefficients of their powers
behave like generalized Fibonacci sequences, as we shall see in section 2.

The second class of operators, which also has applications in mathematical biol-
ogy, is analyzed in a similar manner in section 3.

2. Generalized Fibonacci operators

Let the linear operator Fn : l1 → l1 be defined by

(x1,x2,x3, · · ·) →
(

∞

∑
k=n+1

xk,x1,x2,x3, · · ·
)

, n = 1,2,3, . . . (4)

Each Fn is bounded and its matrix representation in the standard basis is

Fn =

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 1 1 1 1 · · ·
1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
...

...
. . .

...
...

...
...

...
... · · ·

0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(5)

Following the analysis of the spectrum of F1 by Halberg [2], the spectrum of Fn

is classified in several steps which are summarized as follows:

1. first, by solving the equation

(λ I−Fn)x = 0, x �= 0, (6)

we show that the point spectrum is

σp(Fn) = {λ ∈ C : λ n+1−λ n−1 = 0, |λ | > 1}, (7)

2. second, by solving the equation

(λ I−Fn)x = y, x �= 0, (8)

we compute the inverse (λ I −Fn)−1 and show that the resolvent set consists of
all λ such that |λ | > 1 which are not in σp(Fn) , that is,

ρ(Fn) = {λ ∈ C : |λ | > 1, λ n+1−λ n−1 �= 0}, (9)
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3. third, we analyze the transposed operator Ft
n and show that

σp(Ft
n) = {λ ∈ C : |λ | � 1, λ �= 1}, (10)

which, together with (2), implies that the residual spectrum of Fn is

σr(Fn) = {λ ∈ C : |λ | � 1, λ �= 1}. (11)

4. Finally, since the spectrum of Fn is closed, is also contains the point λ = 1.
Since this point is neither in the point spectrum nor in the residual spectrum, it
must be in the continuous spectrum, that is

σc(Fn) = {1}. (12)

We proceed with the detailed analysis of each step.
Step 1. The equation (6) can be written as

0 = λx1 − xn+1− xn+2− xn+3−·· · ,
x1 = λx2,

x2 = λx3,

... (13)

xk = λxk+1,

...

Since λ = 0 implies x = 0, zero is not an element of σp(Fn) . If λ �= 0, by applying
(13) recursively, we have

xk+1 =
1
λ

xk =
1
λ 2 xk−1 =

1
λ 3 xk−2 = · · · = 1

λ k x1, k � 1. (14)

Thus

x = x1

(
1 1

λ
1
λ 2 · · · 1

λ k · · ·
)t

(15)

and

‖x‖1 = |x1|∑ 1
|λ |k . (16)

If |λ | � 1, then ‖x‖1 = ∞ , so x /∈ l1 . If |λ | > 1, then ‖x‖1 = |x1| |λ |/(|λ | − 1) .
Inserting (14) into the first equality of (13) gives

0 = λx1− xn+1− xn+2− xn+3−·· ·
= λ x1− 1

λ n x1− 1
λ n+1 x1− 1

λ n+2 x1 −·· ·
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= x1

[
λ − 1

λ n

(
1+

1
λ

+
1
λ 2 +

1
λ 3 + · · ·

)]

= x1

(
λ − 1

λ n

1

1− 1
λ

)

= x1
λ n+1−λ n−1
λ n−1(λ −1)

.

Since x1 �= 0, we conclude that σp(Fn) consists of those roots of the polynomial

pn+1(λ ) def= λ n+1−λ n−1 (17)

for which |λ | > 1, as stated in (7).1
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Figure 1. The point spectra σp(Fn) for various values of n.

Since pn+1(1) = −1 < 0 and p′n+1(λ ) > 0 for λ ∈ R,λ � 1, that is, pn+1 is
strictly increasing for λ > 1, we conclude that Fn has exactly one real eigenvalue
larger than one. Let us denote this eigenvalue by λmax(Fn) . By Ostrovsky’s theorem [3,
Theorem 1.1.4, p. 3], λmax(Fn) is the unique positive root of pn+1(λ ) and the absolute
values of all other roots are strictly smaller. Consequently, all other eigenvalues of Fn

are in absolute value strictly smaller than λmax(Fn) which, in turn, implies

rσ (Fn) = λmax(Fn). (18)

1These roots are the eigenvalues and the vectors x defined by (15) are the corresponding eigenvectors.
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Figure 1 shows σp(Fn) for various values of n .
Step 2. The equation (8) can be written as

y1 = λx1 − xn+1− xn+2− xn+3−·· · ,
x2 =

1
λ

(x1 + y2),

x3 =
1
λ

(x2 + y3), (19)

...

xk+1 =
1
λ

(xk + yk+1),

...

By setting

u =
∞

∑
k=n+1

xk, v =
∞

∑
k=n+1

yk,

and using (19), we have

u =
1
λ

xn +
1
λ

u+
1
λ

v, y1 = λx1−u.

After rearranging, we have

u =
1

λ −1
(xn + v).

Thus,

y1 = λx1− 1
λ −1

(xn + v). (20)

By recursively applying (19), we have

x2 =
1
λ

(x1 + y2),

x3 =
1
λ

(x2 + y3) =
1
λ 2 x1 +

1
λ 2 y2 +

1
λ

y3,

...

xk+1 =
1
λ

(xk + yk+1) =
1
λ k x1 +

1
λ k y2 +

1
λ k−1 y3 +

1
λ k−2 y4 + · · ·+ 1

λ
yk+1, (21)

...

Inserting xn into (20) gives

y1 = λ x1− 1
λ −1

(
1

λ n−1 x1 +
1

λ n−1 y2 +
1

λ n−2 y3 + · · ·+ 1
λ

yn + v

)
,
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and solving for x1 gives

x1 =
1

λ n+1−λ n−1

(
λ n−1(λ −1)y1 + y2 +λ y3 +λ 2 y4 + · · ·+λ n−2 yn +λ n−1 v

)
.

By inserting this into (21) we have

x = (λ I−Fn)−1y =
1

λ n+1−λ n−1
(A+B)y,

where the matrix representations of A and B are given by2

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λ −1)λ n−1 1 λ λ 2 λ 3 · · · λ n−2 λ n−1 λ n−1 · · ·
(λ −1)λ n−2 1

λ 1 λ λ 2 · · · λ n−3 λ n−2 λ n−2 · · ·
...

...
...

...
...

...
...

...
... · · ·

(λ −1)λ 1
λ n−2

1
λ n−3

1
λ n−4 · · · 1

λ 1 λ λ · · ·
(λ −1) 1

λ n−1
1

λ n−2
1

λ n−3 · · · 1
λ 2

1
λ 1 1 · · ·

(λ −1) 1
λ

1
λ n

1
λ n−1

1
λ n−2 · · · 1

λ 3
1
λ 2

1
λ

1
λ · · ·

...
...

...
...

...
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 1

λ 0 0 0 · · ·
0 1

λ 2
1
λ 0 0 · · ·

0 1
λ 3

1
λ 2

1
λ 0 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. Obviously, for |λ | > 1 we have ‖A‖1 < ∞ and ‖B‖1 < ∞ . Thus, for
|λ |> 1 and λ not being the root of λ n+1−λ n−1, the operator λ I−Fn has a bounded
inverse, so the resolvent set of Fn is given by (9).

Step 3. The point spectrum of the transposed operator Ft
n consists of all λ ∈ R

such that

(λ I−Ft
n)x = 0, x �= 0, ‖x‖∞ < ∞.

This is equivalent to

x2 = λ x1,

x3 = λ x2 = λ 2 x1,

...

2Next row of A is obtained by dividing the previous row by λ .
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xn+1 = λ xn = λ n x1,

xn+2 = λ xn+1− x1 = (λ n+1−1)x1,

xn+3 = λ xn+2− x1 = (λ n+2−λ −1)x1,

...

xk = (λ k−1−λ k−n−2−λ k−n−3−·· ·−λ −1)x1,

...

Therefore,

xk =
(
λ k−1− λ k−n−1−1

λ −1

)
x1.

For |λ | � 1, λ �= 1 we have

|xk| <
(

1+
2

|λ −1|
)
|x1|,

which implies ‖x‖∞ <∞ . For λ = 1 we have

x2 = x1,

x3 = x1,

...

xn+1 = x1,

xn+2 = 0,

xn+3 = −x1,

xn+4 = −2x1,

...

xk = −(k−n−2)x1,

...

so ‖x‖∞ = ∞ . We conclude that the point spectrum of Ft
n is given by (10). This, in

turn, implies (11) and (12) as described before.

2.1. Relationship to generalized Fibonacci sequences

In this section we describe the relationship between operators Fn and generalized
Fibonacci sequences. A generalized Fibonacci sequence { f (n)} is defined by

f (n)
1 = 1, f (n)

2 = 1, · · · , f (n)
n+1 = 1, f (n)

k = f (n)
k−1 + f (n)

k−n−1, k > n+1. (22)

For n = 1 this definition yields the classical Fibonacci sequence

f1 = 1, f2 = 1, fk = fk−1 + fk−2, k > 2. (23)
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By induction we can prove that the k -th power of the matrix Fn from (5) for k > n has
the form

Fk
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (n)
k−n f (n)

k−n+1 f (n)
k−n+2 · · · f (n)

k−1 f (n)
k f (n)

k f (n)
k · · ·

f (n)
k−n−1 f (n)

k−n f (n)
k−n+1 · · · f (n)

k−2 f (n)
k−1 f (n)

k−1 f (n)
k−1 · · ·

...
...

...
...

...
...

...
... · · ·

f (n)
1 f (n)

2 f (n)
3 · · · f (n)

n f (n)
n+1 f (n)

n+1 f (n)
n+1 · · ·

0 1 1 · · · 1 1 1 1 · · ·
0 0 1 · · · 1 1 1 1 · · ·
...

...
...

...
...

...
...

... · · ·
0 0 0 · · · 0 1 1 1 · · ·
1 0 0 · · · 0 0 0 0 · · ·
0 1 0 · · · 0 0 0 0 · · ·
0 0 1 · · · 0 0 0 0 · · ·
...

...
...

. . .
...

...
...

... · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We conclude that

‖Fk
n ‖1 = 1+

k

∑
i=1

f (n)
i . (24)

By applying (22) to the terms in parentheses we have

2
k

∑
i=1

f (n)
i = f (n)

1 + · · ·+ f (n)
n +

(
f (n)
n+1 + f (n)

n+2 + · · ·+ f (n)
k−1

)
+ f (n)

k

+
(
f (n)
1 + f (n)

2 + · · ·+ f (n)
k−n−1

)
+ f (n)

k−n + f (n)
k−n+1 + · · ·+ f (n)

k

= f (n)
1 + f (n)

2 + · · ·+ f (n)
n + f (n)

n+2 + · · ·+ f (n)
k

+ f (n)
k + f (n)

k−n + f (n)
k−n+1 + · · ·+ f (n)

k

=
k

∑
i=1

f (n)
i − f (n)

n+1 + f (n)
k−n + f (n)

k−n+1 + · · ·+ f (n)
k + f (n)

k .

From this, by applying (22) again recursively, we obtain

k

∑
i=1

f (n)
i = f (n)

k−n + f (n)
k−n+1 + · · ·+ f (n)

k + f (n)
k −1

= f (n)
k−n+1 + · · ·+ f (n)

k + f (n)
k+1−1

= f (n)
k−n+2 + · · ·+ f (n)

k+1 + f (n)
k+2−1

...

= f (n)
k+n+1−1.
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Inserting this into (24) gives

‖Fk
n ‖1 = f (n)

k+n+1 (25)

and from (18) it follows that

lim
k→∞

(
f (n)
k+n+1

)1/k = λmax(Fn).

Also, by using standard techniques in analyzing linear recurrence relations with con-
stant coefficients, we can prove that for all i, j 3

lim
k→∞

[Fk
n]i, j

[Fk
n]i+1, j

≡ lim
m→∞

f (n)
m+1

f (n)
m

= λmax(Fn).

For example, by setting n = 1 we have for the Fibonacci sequence (23)

lim
k→∞

( fk+2)1/k = rσ (F1) =
1+

√
5

2
,

lim
k→∞

fk+1

fk
=

1+
√

5
2

.

3. Fibonacci-like operators

Now we would like to consider the family of linear operators Γn : l1 → l1 defined
by

(x1,x2,x3, · · ·) →
(
ρ

∞

∑
k=n+1

(k−n)xk,x1,x2,x3, · · ·
)

, n = 1,2,3, . . . (26)

for some real positive ρ . The domain of Γn is

Dom Γn =

{
x ∈ l1 :

∣∣∣∣∣
∞

∑
k=n+1

(k−n)xk

∣∣∣∣∣< ∞

}
,

and its matrix representation in the standard basis is

ΓΓΓΓn =

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 ρ 2ρ 3ρ 4ρ 5ρ · · ·
1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
...

...
. . .

...
...

...
...

...
... · · ·

0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(27)

However, the operator Γn is not closed as illustrated by the following example.

3The proof is derived using the fact that f (n)
l has the form f (n)

l =α λ l
max(Fn)+∑n

i=1αiλ l
i , where λmax(Fn)

and λi are the roots of the characteristic polynomial (17), and |λmax(Fn)| > |λi| .
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EXAMPLE 1. Let us define the sequence {x(m)} of vectors in l1 by

m+n−1︷ ︸︸ ︷
x(m) =

(
0 · · · 0

1
m

0 · · ·
)t

.

Then
x(m) → (

0 0 · · ·)t ,
while

ΓΓΓΓn x(m) =
(
ρ 0 · · · 0 1

m 0 · · ·)t → (
ρ 0 0 · · ·)t .

Although the point spectrum of Γn is defined and can be computed in a standard
manner (see later), the resolvent set of Γn is empty, which makes the analysis of Γn

less interesting. Instead, we shall consider the family of operators Gn : l1 → l1 formally
defined by

Gn = DnΓnD
−1
n ,

where

Dn = diag
( n︷ ︸︸ ︷
1, · · · ,1,ρ ,2ρ ,3ρ ,4ρ , · · ·).

That is, for n ∈ N the operator Gn is defined by

(x1,x2,x3, · · ·) →
(

∞

∑
k=n+1

xk,x1,x2, · · · ,xn−1,ρ xn,2xn+1,
3
2

xn+2,
4
3

xn+3,
5
4

xn+4, · · ·
)

,

and its matrix representation in the standard basis is

Gn =

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 1 1 1 1 · · ·
1 0 · · · 0 0 0 0 0 0 · · ·
0 1 · · · 0 0 0 0 0 0 · · ·
...

...
. . .

...
...

...
...

...
... · · ·

0 0 · · · ρ 0 0 0 0 0 · · ·
0 0 · · · 0 2 0 0 0 0 · · ·
0 0 · · · 0 0 3

2 0 0 0 · · ·
0 0 · · · 0 0 0 4

3 0 0 · · ·
0 0 · · · 0 0 0 0 5

4 0 · · ·
...

...
...

...
...

...
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(28)

Let us define the polynomial qn+1(λ ) by

qn+1(λ ) = λ n+1−2λ n +λ n−1−ρ . (29)

Similarly as in section 2, the spectrum of Gn is classified in four steps as follows:
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1. first, by solving the equation

(λ I−Gn)x = 0, x �= 0, (30)

we show that the point spectrum is

σp(Gn) = {λ ∈ C : qn+1(λ ) = 0, |λ | > 1}, n � 2. (31)

2. second, by solving the equation

(λ I−Gn)x = y, x �= 0, (32)

we can compute the inverse (λ I−Gn)−1 and show that the resolvent set consists
of all λ such that |λ | > 1 which are not in σp(Gn) ,

ρ(Gn) = {λ ∈ C : |λ | > 1, λ /∈ σp(Gn)}, (33)

3. third, by analyzing the transposed operator Gt
n we can show that

σp(Gt
n) = {λ ∈ C : |λ | � 1, λ �= 1}, (34)

which, together with (2), implies that the residual spectrum of Gn is

σr(Gn) = {λ ∈ C : |λ | � 1, λ �= 1}. (35)

4. Finally, since the spectrum of Gn is closed, is also contains the point λ = 1.
Since this point is neither in the point spectrum nor in the residual spectrum, it
must be in the continuous spectrum, that is

σc(Gn) = {1}. (36)

The proofs are similar to the ones from section 2, but more tedious. We present only
the proof of Step 1 which is also relevant for the application described in Example 2.4

Step 1. The equation (30) can be written as

0 = λx1− xn+1− xn+2− xn+3−·· · , (37)

xk = λxk+1, k = 1, · · · ,n−1,

ρ xn = λ xn+1,

k−n+1
k−n

xk = λ xk+1, k = n+1,n+2, · · ·.

Since λ = 0 implies x = 0, zero is not an element of σp(Gn) . If λ �= 0, by applying
(37) recursively, we obtain

xk =
1

λ k−1 x1, k = 2,3, · · · ,n,

xk = ρ
k−n
λ k−1 x1, k = n+1,n+2, · · ·. (38)

4Details of the omitted proofs of Steps 2 and 3 can be obtained from the author.
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This, in turn, implies

x = x1
(
1 1

λ
1
λ 2 · · · 1

λ n−1
ρ
λ n

2ρ
λ n+1

3ρ
λ n+2 · · · (k−n)ρ

λ k−1 · · · )t ,
so that

‖x‖1 = |x1|
(

1− ( 1
λ )n

1− 1
λ

+
ρ
λ n (1+

2
λ

+
3
λ 2 + · · ·)

)
.

If |λ | � 1, then ‖x‖1 = ∞ , so x /∈ l1 . If |λ | > 1, then, by using differentiation of the
geometric series, we have

‖x‖1 = |x1|
(

λ n−1
λ n−1(λ −1)

+
ρ
λ n

λ 2

(λ −1)2

)
< ∞,

thus, x ∈ l1 . By inserting (38) into the first equality of (37) and using differentiation of
the geometric series we have

0 = λ x1−ρ
(

1
λ n x1 +

2
λ n+1 x1 +

3
λ n+2 x1 + · · ·

)

= x1

[
λ − ρ

λ n

(
1+

2
λ

+
3
λ 2 +

4
λ 3 + · · ·

)]

= x1

(
λ − ρ

λ n

1

(1− 1
λ )2

)
.

Finally, solving this equation with x1 �= 0 gives (31).
We shall now prove that σp(Gn) consists of λmax(Gn) , a unique simple real eigen-

value larger than one and all other eigenvalues have modulus smaller than λmax(Gn) .
This also implies

rσ (Gn) = λmax(Gn). (39)

The proof is based on the ideas from the proof of [3, Theorem 1.1.4, pp. 3-4]. Indeed,
if n = 1 then the roots of q2(λ ) are 1±√ρ and the statement holds. For n � 2 we
have

qn+1(λ ) = λ n−1(λ −1)2−ρ , (40)

q′n+1(λ ) = λ n−2[(n+1)λ 2−2nλ +(n−1)]. (41)

Since qn+1(1) =−ρ < 0 and q′n+1(λ ) > 0 for λ ∈R,λ > 1, that is, qn+1(λ ) is strictly
increasing for λ > 1, we conclude that qn+1(λ ) has exactly one real root larger than
one or, equivalently, that Gn has exactly one real eigenvalue larger than one. Let us
denote this eigenvalue by λmax(Gn) . Let z �= λmax(Gn) be some other real or complex
eigenvalue of Gn and let ζ = |z| > 1. Since z is also the root of qn+1(λ ) , the relation
(40) implies

zn−1(z−1)2 = ρ ,

which, in turn, implies
|z|n−1|z−1|2 = ρ . (42)
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Since ζ > 1, this implies
ζ n−1(ζ −1)2 � ρ ,

or
qn+1(ζ ) = ζ n−1(ζ −1)2−ρ � 0. (43)

Since qn+1(λ ) is strictly increasing for λ > 1, and qn+1(λmax(Gn)) = 0, we conclude
that ζ � λmax(Gn) and that the equality in (43) holds only if ζ = λmax(Gn) . But, the
equality in (43) and (42) imply

|z−1|= ζ −1,

that is, z ∈ R and z = ±ζ = ±λmax(Gn) . The choice z = −λmax(Gn) is impossible
since qn+1(−λmax(Gn)) �= 0, and the second choice contradicts the assumption z �=
λmax(Gn) . Therefore, ζ < λmax(Gn) as desired.

REMARK 1. Although the above analysis is sufficient for our purposes, by in-
specting the polynomial qn+1(λ ) and its derivative from (40) and (41), respectively,
we can establish further facts about its roots. From (41) we see that the derivative
q′n+1(λ ) has exactly two real positive simple roots λ1 = n−1

n+1 and λ2 = 1 and, if n > 2,

also the root λ0 = 0. If n > 3 then λ0 is multiple. Let ρ0 = 4λ n−1
1 /(n+ 1)2 . The

number of real roots of qn+1(λ ) in the open interval (0,λmax(Gn)) is governed by ρ
as follows: if ρ > ρ0 , then there are no such roots, if ρ = ρ0 there is exactly one root
equal to λ1 and if ρ < ρ0 there are exactly two roots, one smaller and one larger than
λ1 . Finally, if n is odd, then qn+1(λ ) also has a simple negative real root. As we have
already proved, λmax(Gn) is the root with strictly maximal absolute value.

REMARK 2. It is easy to see that the point spectrum of Γn from (26) and (27) is
equal to the point spectrum of Gn .

EXAMPLE 2. The lesion forming plant pathogen potato late blight (phytophthora
infestans) grows radially on a leaf with a constant daily rate. The latency period for
a lesion to become infectious is five days, and the sporulating area is infectious for
one day. In [4] the epidemic spread of such pathogen is modeled with the infinite
dimensional Leslie matrix of the form of Γ5 as defined in (27). Further, the upper
bound for the speed of invasion in computed via minimization of the largest eigenvalue
λmax(Γ5(s)) . From Remark 2 it follows that this eigenvalue is the largest unique posi-
tive root of q6(λ ) from (29). Here the parameter ρ has the form ρ(s) = const×M(s)
where M(s) is some moment-generating function (for example, M(s) = exp(σ2s2/2)
for the Gaussian kernel or M(s) = 1/(1−σ2s2) for the Laplace kernel). Here Γ5(s)
appears naturally due to the fact that the considered pathogen has a latency period of
five days. It is interesting that λmax(Γ5(s)) can be computed analytically:

λmax(Γ5) =
1
3

+
21/3

3
(
2+27

√ρ +
√

108
√ρ +729ρ

)1/3

+

(
2+27

√ρ +
√

108
√ρ +729ρ

)1/3

3 ·21/3
.
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The speed of invasion is bounded by

v∗ = min
0<s<ŝ

1
s

ln [λmax(Γ5(s))] ,

where ŝ is the maximum s for which M(s) is defined. For details about a rather com-
plex derivation of this model we refer the reader to [4].
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