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Abstract. An inverse nodal problem consists in reconstructing this operator from the given ze-
ros of their eigenfunctions. In this work, we are concerned with the inverse nodal problem of
the Sturm-Liouville operator with eigenparameter dependent boundary conditions on a finite in-
terval. We prove uniqueness theorems: a dense subset of nodal points uniquely determine the
parameters of the boundary conditions and the potential function of the Sturm-Liouville equa-
tion; and provide a constructive procedure for the solution of the inverse nodal problems.

1. Introduction

Inverse spectral problems consist in recovering operators from their spectral char-
acteristics. Such problems play an important role in mathematics and have many ap-
plications in natural sciences (see, for example, [9, 18, 20, 22, 28, 29]). In 1988,
the inverse nodal problem was posed and solved for Sturm-Liouville problems by
J. R. McLaughlin [21], who showed that knowledge of a dense subset of nodal points
of the eigenfunctions alone can determine the potential function of the Sturm-Liouville
problem up to a constant. Some numerical schemes were provided by O. H. Hald and
J. R. McLaughlin [11] for the reconstruction of the potential. This is the so-called in-
verse nodal problem. From the physical point of view this corresponds to finding, e.g.,
the density of a string or a beam from the zero-amplitude positions of their eigenvibra-
tions. Later, some remarkable results of inverse nodal problems of the Sturm-Liouville
operators were obtained (for example, refer to [2, 3, 4, 5, 8, 11, 13, 14, 15, 16, 21, 23,
24, 25, 27, 30]).

For the Sturm-Liouville operator with eigenparameter dependent boundary condi-
tions, C. T. Fulton [10] and J. Walter [26] gave extensive bibliographies of work in this
area: Fulton also discussed various physical applications of the Sturm-Liouville oper-
ator of this class. In 1996, P. J. Browne and B. D. Sleeman [2] extended inverse nodal
results of Hald and Mclaughlin concerning the inverse problem for the regular Sturm-
Liouville problem on a finite interval to the case in which the boundary conditions are
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eigenparameter dependent. Nowadays there are only a number of papers devoted to in-
verse nodal problems for the Sturm-Liouville operator with eigenparameter dependent
boundary conditions [2].

In this work, we consider the regular differential equation

−y′′(x)+q(x)y(x) = λy(x), x ∈ (0,1), (1.1)

where q(x) is a real-valued, absolutely continuous function on (0,1) and a boundary-
value problem

y(0)cosα− y′(0)sinα = 0, y′(1) = Θ(λ )y(1), (1.2)

where α ∈ [0,π) and Θ(λ ) = Θ1(λ )
Θ2(λ ) is a rational function, Θ1(λ ) and Θ2(λ ) are

relatively prime polynomials with real coefficients and no common zeros. In addi-
tion, if deg(Θ2(λ )) � deg(Θ1(λ )) then we set m = deg(Θ2(λ )) and assume that
Θ2(λ ) is monic and Θ1(λ ) = Amλm + · · ·+ A0 where Am ∈ R (it may be zero), and
if deg(Θ2(λ )) < deg(Θ1(λ )) then we set m = deg(Θ1(λ )) and assume that Θ1(λ ) is
monic and Θ2(λ ) = Am−1λm−1 + · · ·+A0 where Am−1 ∈ R (it may be zero).

If the boundary conditions (1.2) do not contain the eigenvalue parameter λ , then
the solution of the inverse nodal problem is given [4, 5, 11, 14, 15, 16, 21, 27] and
other works. P. J. Browne and B. D. Sleeman [2] considered the inverse nodal prob-
lem of the problem (1.1) with the parameter boundary conditions y′(0)− hy(0) = 0
and (aλ + b)y(1) = (cλ + d)y′(1) , where ad − bc > 0 and c �= 0. Here there is an
interesting problem: in the study of vibrating systems, the most natural experiment for
finding the nodal positions is to excite the vibrating system at a natural frequency and
take measurements of the positions which are the zeros (or nodes) of the eigenfunc-
tions. Suppose we are given nodal information about the eigenfunctions arising from a
problem such as (1.1) and (1.2). To what extent does this determine the potential q(x)
and the boundary conditions (1.2)? Inverse nodal problems for the problem (1.1) and
(1.2) are not studied yet.

Asymptotics and oscillation results for the Sturm-Liouville problem (1.1) and (1.2)
was given [1]. In this work, firstly, we derive a detailed asymptotic formula for the nodal
points; secondly, we prove the uniqueness theorem and provide an algorithm for solv-
ing the inverese nodal problem; finally, we also show connections of these problems
with inverse spectral problems of the Sturm-Liouville operator with an eigenparameter
dependent boundary condition. We note that the obtained results are natural general-
izations of the well-known results on inverse nodal problems for the Sturm-Liouville
operators which were studied in [2, 21] and other works.

2. Main results

Let φ(x,λ ) be the solution of (1.1) satisfying the following initial conditions

φ(0,λ ) = sinα, φ ′(0,λ ) = cosα.

Then the spectra of the boundary-value problem (1.1) and (1.2) are the zero-sequences

{λ (i)
n }∞n=0 of the entire function

Φ(λ ) =Θ1(λ )φ(1,λ )−Θ2(λ )φ ′(1,λ ).
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The spectra {λ (i)
n }n�0 of the problem (1.1) and (1.2) is bounded from below and dis-

crete. In particular, for large n all eigenvalues are algebraically simple and real. The

spectra {λ (i)
n }n�0 of the problem (1.1) and (1.2) are given asymptotically for n → ∞

by (see [1])

λ (i)
n = (n−mi)2π2 + ci +o

(
1
n

)
, (2.1)

where

(mi, ci) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
m, 2cotα−2Am +

∫ 1
0 q(t)dt

)
(i = 1);(

m− 1
2 , −2Am +

∫ 1
0 q(t)dt

)
(i = 2);(

m− 1
2 , 2cotα+2Am−1 +

∫ 1
0 q(t)dt

)
(i = 3);(

m−1, 2Am−1 +
∫ 1
0 q(t)dt

)
(i = 4),

and
i = 1 stands for the case α �= 0, deg(Θ1(λ )) � deg(Θ2(λ )) = m ;
i = 2 stands for the case α = 0, deg(Θ1(λ )) � deg(Θ2(λ )) = m ;
i = 3 stands for the case α �= 0, m = deg(Θ1(λ )) > deg(Θ2(λ )) ;
i = 4 stands for the case α = 0, m = deg(Θ1(λ )) > deg(Θ2(λ )) .
Let φ(x,λ (i)

n ) be the eigenfunction corresponding to the eigenvalue λ (i)
n of the

Sturm-Liouville operator (1.1) and (1.2). For sufficiently large n we get φ(x,λ (i)
n ) has

exactly n−m+1 nodal points in (0,1) for deg(Θ2(λ ))< deg(Θ1(λ )) and limλ→∞Θ(λ )
= +∞ , or n−m nodal points in (0,1) for other cases [1]. Suppose x(i) j

n is the jth nodal

point of the eigenfunction φ(x,λ (i)
n ) in (0,1) . In other words, φ(x(i) j

n ,λ (i)
n ) = 0. Let

I(i) j
n = (x(i) j

n ,x(i) j+1
n ) , and the nodal length l(i) j

n by

l(i) j
n

de f
= x(i) j+1

n − x(i) j
n .

We also define the function jn(x) to be the largest index j such that 0 � x(i) j
n � x .

Denote X (i) de f
= {x(i) j

n } . X (i) is called the set of nodal points of the Sturm-Liouville
operator (1.1) and (1.2).

We consider the following inverse nodal problem.

PROBLEM. Fix i ∈ {1,2,3,4} . From given nodal points set X (i) or its subset

X (i)
0 which is dense in (0,1) , how to find the boundary condition parameter α , some

quantities for Θ(λ ) and the potential q(x)?
The main theorems are the following.

THEOREM 2.1. Fix x ∈ [0,π ] and i ∈ {1,2,3,4} . Let {x(i) j
n } ⊂ X (i) be chosen

such that
lim
n→∞

x(i) j
n = x.

Then the following finite limits exist and the corresponding equalities hold.
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(a) In the case i = 1,3 :

limn→∞ n

(
x(i) j
n − j− 1

2
n

)
de f
= fi(x),

limn→∞(n−mi)2

(
x(i) j
n − j− 1

2
n−mi

)
de f
= gi(x),

(2.2)

and

fi(x) = mix,

gi(x) = − ci
2π2 x+ 1

π2

[
cotα + 1

2

∫ x
0 q(t)dt

]
.

(2.3)

(b) In the case i = 2,4 :

limn→∞ n
(
x(i) j
n − j

n

)
de f
= fi(x),

limn→∞(n−mi)2
(
x(i) j
n − j

n−mi

)
de f
= gi(x),

(2.4)

and

fi(x) = mix,

gi(x) = − ci
2π2 x+ 1

2π2

∫ x
0 q(t)dt.

(2.5)

Here

mi =

⎧⎪⎪⎨⎪⎪⎩
m (i = 1);

m− 1
2 (i = 2,3);

m−1 (i = 4).

Let us now formulate a uniqueness theorem and provide a constructive procedure
for the solution of the inverse nodal problem.

Define q
de f
=

∫ 1
0 q(x)dx .

THEOREM 2.2. Fix i ∈ {1,2,3,4} . Let X (i)
0 ⊂ X (i) be a subset of nodal points

which is dense in (0,1) . Then, the specification of X (i)
0 uniquely determines the po-

tential q(x)− q in (0,1) , and the parameters m, α , Am−1 and Am of the boundary
conditions. The potential q(x)− q, and the numbers m, α , Am−1 and Am can be
constructed via the following algorithm:

(1) for each x ∈ [0,1] choose a sequence {x(i) j
n } ⊂ X (i)

0 such that x(i) j
n → x as

n → ∞;

(2) find the functions fi(x) , gi(x) via (2.2)-(2.5) and in turn, calculate
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(a) In the case i = 1,3 :

m =

{
f1(1) (i = 1)

f3(1)+ 1
2 (i = 3);

cotα = π2gi(0);

Am = π2g1(1), Am−1 = −π2g3(1);

q(x)−q =

{
2π2 d

dxg1(x)−2cotα−2Am (i = 1);

2π2 d
dxg3(x)−2cotα +2Am−1 (i = 3).

(2.6)

(b) In the case i = 2,4 :

m =

{
f2(1)+ 1

2 (i = 2)

f4(1)−1 (i = 4);

Am = π2g2(1), Am−1 = −π2g4(1);

q(x)−q =

{
2π2 d

dx g2(x)−2Am (i = 2);

2π2 d
dx g4(x)+2Am−1 (i = 4).

(2.7)

Using only the nodal data, we can reconstruct the potential. Our reconstruction
formulae are direct and automatically implies the uniqueness of this inverse problem
(1.1) and (1.2).

Finally we give the following incomplete inverse spectral problem. Suppose that
q(x) is known on a part of the interval, namely, for x ∈ (b,1) . The inverse problem
is to construct q(x) for x ∈ (0,b) from a part of the spectrum of the boundary value
problem.

We denote the boundary-value problem (1.1) and (1.2) by B=B(q,α,Θ(λ )) . To-
gether with B we consider a boundary value problem B̃ = B(q̃, α̃,Θ(λ )) of the same
form:

−y′′(x)+ q̃(x)y(x) = λy(x), x ∈ (0,1), (2.8)

with the boundary conditions

y(0)cosα̃− y′(0)sin α̃ = 0, y′(1) = Θ(λ )y(1), (2.9)

where q̃(x) is a real-valued, absolutely continuous function on (0,1) and α̃ ∈ [0,π) .
We agree that if a certain symbol δ denotes an object related to B , then δ̃ will denote
an analogous object related to B̃ .

THEOREM 2.3. Fix b∈ (0, 1
2 ) and i ∈ {1,2,3,4} . Let q(x) = q̃(x) a.e. on (b,1) .

Let Λ ⊂ N be a subset of positive integer numbers, and let Ω de f
= {λ (i)

n }n∈Λ be a part
of the spectrum of the boundary-value problem (1.1) and (1.2), and the system of the

functions

{
cos

(
2
√
λ (i)

n x

)}
n∈Λ

is complete in L2(0,b) . If Ω = Ω̃ , then q(x) = q̃(x)

a.e. on (0,1) and α = α̃ .
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Let us go on to the investigation of an incomplete inverse nodal problem when

nodal points are given only on a part of the interval (0,1) . For X (i)
0 ⊂ X (i) , we denote

Λ
X(i)

0

de f
= {m(n) : ∃ j,x(i) j

m(n) ∈ X (i)
0 } , where m(n) is a sequence of natural numbers. The

set X (i)
0 is called twin if together with each of its point x(i) j

n , the set X (i)
0 contains at

least one of adjacent nodal x(i) j−1
n or/and x(i) j+1

n .

THEOREM 2.4. Fix b ∈ (0, 1
2 ) and i ∈ {1,2,3,4} . Let X (i)

0 ⊂ X (i)⋂(b,1) be a
dense on (b,1) twin subset of nodal points, m(n) ∈ Λ

X(i)
0

, and the functions

{
cos

(
2

√
λ (i)

m(n)−qx

)}

is complete in L2(0,b) . If X (i)
0 = X̃ (i)

0 and q = q̃ , then q(x) = q̃(x) a.e. on (0,1) and
α = α̃ .

THEOREM 2.5. Fix b ∈ (0, 1
2 ) and i ∈ {1,2,3,4} . Let X (i)

0 ⊂ X (i)⋂(b,1) be a
dense on (b,1) twin subset of nodal points and m(n) be a sequence of natural numbers
such that

m(n) =
n
σ

(1+ εn), 0 < σ � 1, εn → 0. (2.10)

If X (i)
0 = X̃ (i)

0 , and q = q̃ and σ > 2b, then q(x) = q̃(x) a.e. on (0,1) and α = α̃ .

3. Proofs

By [1], for large n eigenfunctions corresponding to the eigenvalue λ (i)
n have

n−m zeroes in the case of deg(Θ1(λ )) � deg(Θ2(λ )) = m and for the case m =
deg(Θ1(λ )) > deg(Θ2(λ )) , the number of zeroes is n−m+1 if limλ→∞Θ(λ ) = +∞
and n−m if limλ→∞Θ(λ ) = −∞ . Here we give asymptotic formulas of the nodal
points for the Sturm-Liouville operator (1.1) and (1.2).

LEMMA 3.1. For sufficiently large n, the asymptotic formulas of the nodal points

for the eigenfunction φ
(
x,λ (i)

n

)
of the Sturm-Liouville operator (1.1) and (1.2) are the

following:
(a) In the case i = 1,3 :

x(i) j
n = j− 1

2
n−mi

− ( j− 1
2 )ci

2(n−mi)3π2 + cotα+ 1
2
∫ x

(i) j
n

0 q(t)dt
(n−mi)2π2 +O

(
1
n3

)
, n → ∞ (3.1)

with

j =
{

1,2, · · · ,n−m for i = 1 and i = 3 with limλ→∞Θ(λ ) = −∞,
1,2, · · · ,n−m+1 for i = 3 with limλ→∞Θ(λ ) = +∞;
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(b) In the case i = 2,4 :

x(i) j
n = j

n−mi
− jci

2(n−mi)3π2 +
∫ x

(i) j
n

0 q(t)dt
2(n−mi)2π2 +O

(
1
n3

)
, n → ∞ (3.2)

with

j =
{

1,2, · · · ,n−m for i = 2 and i = 4 with limλ→∞Θ(λ ) = −∞,
1,2, · · · ,n−m+1 for i = 4 with limλ→∞Θ(λ ) = +∞,

uniformly with respect to j .

Proof. The eigenfunction φ
(
x,λ (i)

n

)
has the following asymptotic formula for

n → ∞ uniformly in x [1, 14]:

φ
(
x,λ (i)

n

)
= sinα cos

(√
λ (i)

n x

)
+

cosα + 1
2 sinα

∫ x
0 q(t)dt√

λ (i)
n

sin

(√
λ (i)

n x

)
+O

(
1
n2

)
(3.3)

for α �= 0 (i.e. i = 1,3), and for α = 0 (i.e. i = 2,4):

φ
(
x,λ (i)

n

)
=

sin

(√
λ (i)

n x

)
√
λ (i)

n

−
∫ x
0 q(t)dt

2λ (i)
n

cos

(√
λ (i)

n x

)
+O

(
1
n3

)
. (3.4)

For i = 1 and large n eigenfunctions corresponding to the eigenvalue λ (1)
n have n−m

zeroes in (0,1) and for i = 3, the number of zeroes is n−m+1 if limλ→∞Θ(λ ) = +∞
and n−m if limλ→∞Θ(λ ) = −∞ . Therefore, zeroes may be labeled in a natural order;

denote x(i) j
n as the jth zero of the φ

(
x,λ (i)

n

)
.

Then, for i = 1,3, from

0 = φ
(
x(i) j
n ,λ (i)

n

)
= sinα cos

(√
λ (i)

n x(i) j
n

)
+

cosα + 1
2 sinα

∫ x(i) j
n

0 q(t)dt√
λ (i)

n

sin

(√
λ (i)

n x(i) j
n

)
+O

(
1
n2

)
,

we obtain

cot

(√
λ (i)

n x(i) j
n

)
= −cotα + 1

2

∫ x(i) j
n

0 q(t)dt√
λ (i)

n

+O

(
1
n2

)
. (3.5)

Using Taylor’s expansions for the arctangent, we obtain the following asymptotic for-
mula for nodal points as n → ∞ uniformly in j :√

λ (i)
n x(i) j

n =
(

j− 1
2

)
π +

cotα + 1
2

∫ x(i) j
n

0 q(t)dt√
λ (i)

n

+O

(
1
n2

)
,
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which implies

x(i) j
n =

( j− 1
2 )π√
λ (i)

n

+
cotα + 1

2

∫ x
(i) j
n

0 q(t)dt

λ (i)
n

+O

(
1
n3

)
. (3.6)

From (2.1), we get the following asymptotic formulae

1√
λ (i)

n

=
1

(n−mi)π
− ci

2n3π3 +o

(
1
n4

)
,

1

λ (i)
n

=
1

(n−mi)2π2 −
ci

n4π4 +o

(
1
n5

)
. (3.7)

Substituting (3.7) into (3.6) we have,

x(i) j
n = j− 1

2
n−mi

− ( j− 1
2 )ci

2(n−mi)3π2 + cotα+ 1
2
∫ x

(i) j
n

0 q(t)dt
(n−mi)2π2 +O

(
1
n3

)
, n → ∞.

For i = 2 and large n eigenfunctions corresponding to the eigenvalue λ (2)
n have

n−m zeroes in (0,1) and for i = 4, the number of zeroes is n−m+1 if limλ→∞Θ(λ )=
+∞ and n−m if limλ→∞Θ(λ ) = −∞ . Therefore, zeroes may be labeled in a natural

order; denote x(i) j
n as the jth zero of the φ

(
x,λ (i)

n

)
.

For i = 2,4, from

0 = φ
(
x(i) j
n ,λ (i)

n

)
=

sin

(√
λ (i)

n x

)
√
λ (i)

n

−
∫ x
0 q(t)dt

2λ (i)
n

cos

(√
λ (i)

n x

)
+O

(
1
n3

)
,

we obtain

tan

(√
λ (i)

n x(i) j
n

)
=

∫ x
(i) j
n

0 q(t)dt

2
√
λ (i)

n

+O

(
1
n2

)
. (3.8)

Using Taylor’s expansions for the arctangent, we obtain the following asymptotic for-
mula for nodal points as n → ∞ uniformly in j :

√
λ (i)

n x(i) j
n = jπ +

∫ x
(i) j
n

0 q(t)dt

2
√
λ (i)

n

+O

(
1
n2

)
,

which implies

x(i) j
n =

jπ√
λ (i)

n

+
∫ x(i) j

n
0 q(t)dt

2λ (i)
n

+O

(
1
n3

)
. (3.9)
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From (3.7), we get

x(i) j
n = j

n−mi
− jci

2(n−mi)3π2 +
∫ x

(i) j
n

0 q(t)dt
2(n−mi)2π2 +O

(
1
n3

)
, n → ∞.

The proof of theorem is finished. �

In the above results, the estimate is independent of j . As a result,

l(i) j
n

de f
= x(i) j+1

n − x(i) j
n =

1
n

+o

(
1
n

)
. (3.10)

COROLLARY 3.2. From Lemma 3.1 it follows that the sets X (i) = {x(i) j
n } is dense

in [0,1] .

Now we can give the proofs of the theorems in this work.

Proof of Theorem 2.1. Using the asymptotic expansions (3.1) and (3.2) for nodal

points and the fact that limn→∞ x(i) j
n = x , we get

lim
n→∞

j− 1
2

n−mi
= x, lim

n→∞

j
n−mi

= x.

Moreover, we obtain

lim
n→∞

n

(
x(i) j
n − j− 1

2

n

)
= lim

n→∞
n

[
j− 1

2

n−mi
− j− 1

2

n
+O

(
1
n2

)]

= lim
n→∞

[
( j− 1

2)mi

n−mi
+O(

1
n
)

]
= mix = fi(x),

lim
n→∞

(n−mi)2

[
x(i) j
n − j− 1

2

n−mi

]

= lim
n→∞

(n−mi)2

⎡⎣ j− 1
2

n−mi
− ( j− 1

2 )ci

2(n−mi)3π2 +
cotα+ 1

2

∫ x(i) j
n

0 q(t)dt

(n−mi)2π2 − j− 1
2

n−mi
+O

(
1
n3

)⎤⎦
= lim

n→∞

⎡⎣− ( j− 1
2 )ci

2(n−mi)π2 +
cotα + 1

2

∫ x
(i) j
n

0 q(t)dt

π2

⎤⎦+O

(
1
n

)

= − cix
2π2 +

cotα+ 1
2

∫ x
0 q(t)dt

π2 = gi(x)
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for the case i = 1,3, and

lim
n→∞

n

(
x(i) j
n − j

n

)
= lim

n→∞
n

[
j

n−mi
− j

n
+O

(
1
n2

)]
= lim

n→∞

[
jmi

n−mi
+O(

1
n
)
]

= mix = fi(x),

lim
n→∞

(n−mi)2[x(i) j
n − j

n−mi
]

= lim
n→∞

(n−mi)2

⎡⎣ j
n−mi

− jci

2(n−mi)3π2 +
∫ x(i) j

n
0 q(t)dt

2(n−mi)2π2 −
j

n−mi
+O

(
1
n3

)⎤⎦
= lim

n→∞

⎡⎣− jci

2(n−mi)π2 +
∫ x

(i) j
n

0 q(t)dt

2π2

⎤⎦+O

(
1
n

)

= − cix
2π2 +

∫ x
0 q(t)dt
2π2 = gi(x)

for the case i = 2,4. �

Proof of Theorem 2.2. Now for i ∈ {1,2,3,4} and given a nodal subset X (i)
0 , by

Theorem 2.1 we can build up the reconstruction formulae.
Formulae (2.6) and (2.7) can be derived from (2.3) and (2.5) stepwise. We obtain

the following procedure.
For the case i = 1,3:
Step 1. Take x = 1, we obtain

m =

{
f1(1) (i = 1);

f3(1)+ 1
2 (i = 3).

Step 2. Take x = 0, it follows cotα = π2gi(0) .
Step 3. Take x = 1, then it yields Am = π2g1(1), Am−1 = −π2g3(1) .
Step 4. By taking derivatives we obtain

q(x)−q =

{
2π2 d

dxg1(x)−2cotα−2Am (i = 1);

2π2 d
dxg3(x)−2cotα +2Am−1 (i = 3);

For the i = 2,4:
Step 1. Take x = 1, we obtain

m =

{
f2(1)+ 1

2 (i = 2);

f4(1)−1 (i = 4).
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Step 2. Take x = 1, then it yields Am = π2g2(1), Am−1 = −π2g4(1) .
Step 4. By taking derivatives we obtain

q(x)−q =

{
2π2 d

dx g2(x)−2Am (i = 2);

2π2 d
dx g4(x)+2Am−1 (i = 4).

Thus these formulae are constructed. Since each nodal data only determine a set of
reconstruction formulae which only depend on nodal data, the uniqueness holds obvi-
ously. �

Proof of Theorem 2.3. We now proceed with the proof of theorem in the case
αα̃ �= 0. The other cases are treated similarly.

Since

−φ ′′(x,λ )+q(x)φ(x,λ ) = λφ(x,λ ), −φ̃ ′′(x,λ )+ q̃(x)φ̃ (x,λ ) = λ φ̃(x,λ ),

φ(0,λ ) = φ̃ (0,λ ) = 1, φ ′(0,λ ) = cotα, φ̃ ′(0,λ ) = cot α̃,

from the boundary conditions (1.2) it follows that∫ 1

0
Q(x)φ(x,λ )φ̃ (x,λ )dx = φ ′(1,λ )φ̃(1,λ )−φ(1,λ )φ̃ ′(1,λ )− (cotα− cot α̃),

(3.11)
where Q(x) = q(x)− q̃(x) . Using (3.11), the boundary conditions (1.2) and q(x) = q̃(x)
a.e. on (b,1) we obtain∫ b

0
Q(x)φ(x,λ (i)

n )φ̃ (x,λ (i)
n )dx+(cotα− cotα̃) = 0, λ (i)

n ∈Ω. (3.12)

Since φ(x,λ ) is the solution of the equation (1.1) satisfying the initial conditions
φ(0,λ ) = 1 and φ ′(0,λ ) = cotα , there exists a bounded function K(x, t) (indepen-
dent of λ ) such that [12]

φ(x,λ )φ̃ (x,λ ) =
1
2

+
1
2

cos(2kx)+
1
2

∫ x

0
K(x, t)cos(2kt)dt, (3.13)

where k =
√
λ . Substituting (3.13) into (3.12), we calculate

(cotα− cotα̃)+
1
2

∫ b

0
Q(x)dx = 0 (3.14)

and ∫ b

0
[Q(x)+

∫ b

x
K(x,t)Q(t)dt]cos

(
2

√
λ (i)

n x

)
dx = 0, λ (i)

n ∈Ω; (3.15)

consequently, by the completeness of the system

{
cos

(
2
√
λ (i)

n x

)}
n∈Λ

in L2(0,b) , it

yields

Q(x)+
∫ b

x
K(x,t)Q(t)dt = 0 a.e. on (0,b). (3.16)
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But this homogeneous Volterra integral equation has only the trivial solution it follows
that Q(x) = 0 a.e. on (0,b) , i.e., q(x) = q̃(x) for almost all x ∈ [0,b] . From (3.14) the
equality α = α̃ becomes obvious. �

To prove Theorem 2.4 we need a Lemma.

LEMMA 3.3. [5, 27] Fix i , n and j . Let x(i) j
n = x̃(i) j

n , x(i) j+1
n = x̃(i) j+1

n , and let

q(x)−q = q̃(x)− q̃ a.e. on (x(i) j
n ,x(i) j+1

n ) . Then λ (i)
n −q = λ̃ (i)

n − q̃ .

Proof. Fix i , n and j . On the interval (x(i) j
n ,x(i) j+1

n ) we consider two the Dirichlet
boundary value problems

−y′′(x)+ [q(x)−q]y(x) = [λ −q]y(x) (3.17)

with the boundary conditions

y(x(i) j
n ) = y(x(i) j+1

n ) = 0

and
−y′′(x)+

[
q̃(x)− q̃

]
y(x) =

[
λ̃n− q̃

]
y(x) (3.18)

with the boundary conditions

y(x(i) j
n ) = y(x(i) j+1

n ) = 0.

The function yn(x) = φ
(
x,λ (i)

n

)
is an eigenfunction for the problem (3.17) with the

eigenvalue λ (i)
n −q . Since φ

(
x,λ (i)

n

)
has no zeros x ∈ (x(i) j

n ,x(i) j+1
n ) , the Sturm oscil-

lation theorem implies that λ (i)
n − q is the first eigenvalue for the problem (3.17), and

φ
(
x,λ (i)

n

)
is the first eigenfunction for the problem (3.17) with the potential q(x)−q .

Similarly, λ̃ (i)
n − q̃ is the first eigenvalue for the problem (3.18), and φ̃

(
x, λ̃ (i)

n

)
is the

first eigenfunction for the problem (3.18) with the potential q̃(x)− q̃ . Since q(x)−q =
q̃(x)− q̃ a.e. on (x(i) j

n ,x(i) j+1
n ) , therefore, λ (i)

n −q = λ̃ (i)
n − q̃ . �

Proof of Theorem 2.4. Since X (i)
0 = X̃ (i)

0 , from Theorem 2.1 it follows that fi(x) =
f̃i(x) and gi(x) = g̃i(x) for x ∈ (b,1) . Using (2.6) and (2.7) we obtain q(x) = q̃(x) on

(b,1) . By Lemma 3.3, λ (i)
m(n) = λ̃ (i)

m(n) for m(n) ∈ Λ
X

(i)
0

. Thus, from (2.1), the equality

α = α̃ holds. Applying Theorem 2.3 we conclude that q(x) = q̃(x) a.e. on (0,1) . �

Proof of Theorem 2.5. We now proceed with the proof of theorem in the case
αα̃ �= 0. The other cases are treated similarly.

First, since X (i)
0 ⊂ X (i)⋂(b,1) is a dense on (b,1) twin subset of nodal points

and X (i)
0 = X̃ (i)

0 , by Theorem 2.2 we obtain q(x) = q̃(x) on (b,1) . By Lemma 3.3,

λ (i)
m(n) = λ̃ (i)

m(n) for m(n) ∈ Λ
X(i)

0
. Thus, from (2.1), the equality α = α̃ holds.
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Since

−φ ′′(x,λ )+q(x)φ(x,λ ) = λφ(x,λ ), −φ̃ ′′(x,λ )+ q̃(x)φ̃ (x,λ ) = λ φ̃(x,λ ),

φ(0,λ ) = φ̃ (0,λ ) = 1, φ ′(0,λ ) = φ̃ ′(0,λ ) = cotα,

from the boundary conditions (1.2) and q(x) = q̃(x) on (b,1) it follows that

G(k)=
∫ b
0 Q(x)φ(x,λ )φ̃ (x,λ )dx=φ ′(1,λ )φ̃ (1,λ )−φ(1,λ )φ̃ ′(1,λ ), (3.19)

where k =
√
λ and Q(x) = q(x)− q̃(x) . Using (3.19) we obtain

G(s(i)m(n)) = 0, s(i)m(n) =
√
λ (i)

m(n). (3.20)

Next, we will show that G(k) = 0 on the whole k -plane.
From (3.13) we see that the entire function G(k) is a function of exponential type

� 2b . One has

|G(k)| � Ce2br|sinθ | (3.21)

for some positive constant C , k =
√
λ = reiθ , |ℑ√λ | = r|sinθ | and θ = arg

√
λ .

Define an indicator of the function G(k) by

h(θ ) = limsup
r→∞

ln |G(reiθ )|
r

. (3.22)

From (3.21) and (3.22) one obtains the following estimate

h(θ ) � 2b|sinθ |. (3.23)

It is known [17] that for any entire function G(k) of exponential type, not identically
zero, one has

liminf
r→∞

n(r)
r

� 1
2π

∫ 2π

0
h(θ )dθ , (3.24)

where n(r) is the number of zeros of G(k) in the disk |k| � r . By (3.23),

1
2π

∫ 2π

0
h(θ )dθ � b

π

∫ 2π

0
|sinθ |dθ =

4b
π

. (3.25)

From the assumption and the known asymptotic expression (2.1) of the eigenvalues

λ (i)
n , for the number of zeros of G(k) in the disk |k| � r we have the estimate

n(r) � 2 ∑
nπ
σ (1+o(1))<r

1 =
2σr
π

[1+o(1)], r → ∞. (3.26)
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Since σ > 2b , we get

lim
n→∞

n(r)
r

� 2σ
π

>
4b
π

� 1
2π

∫ 2π

0
h(θ )dθ . (3.27)

The inequalities (3.24) and (3.27) imply that G(k) ≡ 0 on the whole k -plane.
Repeating the proof of Theorem 2.3, we have q(x) = q̃(x) for almost all x ∈

[0,b] . �
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