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Abstract. For any n×n matrix A , we use the joint higher rank numerical range, Λk(A, . . . ,Am) ,
to define the higher rank numerical hull of A . We characterize the higher rank numerical hulls
of Hermitian matrices. Also, the higher rank numerical hulls of unitary matrices are studied.

1. Introduction and preliminaries

The higher rank numerical range was introduced by Choi, Kribs and Zyczkowski,
in connection to the construction of quantum error correction code in the study of quan-
tum information theory [1]. In quantum computing, information is stored in qubits
(quantum bits). Mathematically, the state of a qubit is represented by a 2×2 rank one
Hermitian matrix Q satisfying Q2 = Q . A state of N-qubits Q1, . . . ,QN is represented
by their tensor products in Mn with n = 2N .

Let Mn,k(C) be the set of n× k complex matrices (Mn(C) := Mn,n(C)) and let
Un(C) be the set of n× n unitary matrices. Motivated by the study of convergence
of iterative methods in solving linear systems (e.g., see [8]), researchers studied the
polynomial numerical hull of order m of a matrix A ∈ Mn(C) , which is defined and
denoted by

Vm(A) = {ξ ∈ C : |p(ξ )| � ‖p(A)‖ for all p(z) ∈ Pm[C]},

where Pm[C] is the set of complex polynomials with degree at most m . The joint
numerical range of (A1,A2, . . . ,Am) ∈ Mn(C)×·· ·×Mn(C) is denoted by

W (A1,A2, . . . ,Am) = {(x∗A1x,x
∗A2x, . . . ,x

∗Amx) : x ∈ Cn,x∗x = 1}.

By the result in [5]

Vm(A) =
{
ζ ∈ C : (ζ ,ζ 2, . . . ,ζm) ∈ conv

(
W (A,A2, . . . ,Am)

)}
,

where conv(X) denotes the convex hull of X ⊆ Cm . Throughout the paper k,m and n
are considered as natural numbers and Ik is the k× k identity matrix.
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Let k � 1. The rank-k numerical range (see [1]) and the rank-k spectrum of a
matrix A ∈ Mn(C) are denoted by Λk(A) , and σk(A) respectively, as follows:

Λk(A) = {λ ∈ C : ∃X ∈ Mn,k,X
∗AX = λ Ik, X∗X = Ik}, (1)

σk(A) = {λ ∈ C : dim(ker(λ In−A)) � k}. (2)

In the following we state some properties:

(i) σk(A) ⊆ Λk(A) ⊆ Λk−1(A) ⊆ ·· · ⊆ Λ1(A) = W (A), k � 2.

(ii) Λk(αA+β I) = αΛk(A)+β for all α,β ∈ C .

(iii) The higher rank numerical range is convex [9].

(iv) Rank-k numerical range of every n× n complex matrix is non-empty if k <
n/3+ 1. Also, if k � n/3+ 1, an n× n complex matrix is given for which the
rank-k numerical range is empty [6, Theorems 1, 2].

(v) Rank-k numerical range of every n× n normal matrix is a convex polygon de-
termined by the eigenvalues [7, Corollary 2.4].

Let A = (A1, . . . ,Am) be an m− tuple of n×n complex matrices. For 1 � k � n ,
the joint rank-k numerical range of A is denoted by:

Λk(A) = {(λ1, . . . ,λm) : ∃X ∈ Mn,k, X∗AiX = λiIk, 1 � i � m and X∗X = Ik}. (3)

In the next section, we use the joint higher rank numerical range to define the
higher rank numerical hulls of matrices. Also, we characterize the higher rank numer-
ical hulls of Hermitian matrices. The higher rank numerical hulls of unitary matrices
are studied.

2. Higher rank numerical hull

In this section we are going to introduce the notion of higher rank numerical hull
of order m for a matrix A ∈ Mn(C).

DEFINITION 1. Let A∈Mn(C) . The rank-k numerical hull of order m , is defined
and denoted by

Xm
k (A) = {λ ∈ C : (λ ,λ 2, . . . ,λm) ∈ conv

(
Λk(A,A2, . . . ,Am)

)}, (4)

where Λk(A,A2, . . . ,Am) is the joint rank-k numerical range of (A,A2, . . . ,Am).

By Greenbaum’s results (see (1)) and the convexity result duo to Woerdeman, it is
clear that rank-1 numerical hull of order m is the polynomial numerical hull of order m
and the rank-k numerical hull of order 1 is the rank-k numerical range. Now, we state
some observations which will be used frequently:
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LEMMA 2.1. Let A ∈ Mn(C). Then

i) σk(A) ⊆ Xm
k (A) ⊆ Xm

k−1(A) ⊆ Xm
1 (A) = Vm(A), k � 2.

ii) σk(A) ⊆ Xm
k (A) ⊆ Xm−1

k (A) ⊆ X1
k (A) = Λk(A), m � 2.

iii) Xm
k (A− μI) = Xm

k (A)− μ

Let A∈ Mn(C) . Since X1
k (A) = Λk(A) and Xm

1 (A) =Vm(A) , it is enough to study
Xk

m(A) for k,m � 2.

REMARK 1. Assume that A ∈ Mn(C), and Λk(A,A2, . . . ,Am) is convex. Then

Xm
k (A) = {λ ∈ C : ∃X ∈ Mn,k, X∗AiX = λ iIk, 1 � i � m and X∗X = Ik}. (5)

Let A∈Mn(C) be idempotent and let m � 2. It is clear that Λk(A,A2, . . . ,Am) is convex
and hence by (5), Xm

k (A) ⊆ {λ ∈C : λ = λ i, 1 � i � m} = {0,1} .

The following Theorem characterizes the rank-k numerical hull of order m for
Hermitian matrices.

THEOREM 2.2. Let H ∈ Mn(C) be a Hermitian matrix and let m � 2. Then
Xm

k (H) = σk(H) .

Proof. Let λ ∈Xm
k (H). By applying [9] to A = H+ iH2 , it is clear that Λk(H,H2)

is convex. Hence (λ ,λ 2) ∈Λk(H,H2) . Then, there exists a unitary matrix U such that

U∗HU =
(
λ Ik B
B∗ D

)
and U∗H2U =

(
λ 2Ik E
E∗ F

)
. Thus, BB∗ = 0 and hence B = 0.

Therefore, λ ∈ σk(H). The converse is trivial. �
By replacing k = 1 in Theorem 2.2, we obtain the following Corollary, (see [5]).

COROLLARY 2.3. Let H be a Hermitian matrix and let m � 2 . Then Vm(H) =
σ(H).

In the following, we study the relationship between Xm
k (A) and two sets Vm(A)

and Λk(A).

PROPOSITION 2.4. Let A ∈ Mn(C). Then Xm
k (A) ⊆ Vm(A)∩Λk(A). Moreover,

Vm(A) ⊆ Xm
k (Ik ⊗A).

Proof. By Lemma 2.1 (i) and (ii), Xm
k (A)⊆Vm(A)∩Λk(A). Let λ ∈Vm(A). Then

there exists unit vectors xi ∈ Cn, and positive ti, i = 1, . . . , l such that ∑l
i=1 ti = 1 and

λ s = ∑l
i=1 tix∗i Asxi, s = 1, . . . ,m. Define Xi := Ik ⊗ xi . Direct computation shows that

∑l
i=1 tiX∗

i (Ik ⊗ A)sXi = λ sIk, s = 1, . . . ,m. Hence (λ ,λ 2, . . . ,λm) ∈ Conv(Λk(Ik ⊗ A,
Ik ⊗A2, . . . , Ik ⊗Am)) . Therefore, Vm(A) ⊆ Xm

k (Ik ⊗A). �
If A is a scalar matrix, then it is trivial that Xm

k (A)=Vm(A)∩Λk(A). But in general
Xm

k (A) may or may not be equal to Vm(A)∩Λk(A) . See the following examples.
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EXAMPLE 1. Let A = diag(0,1,−1, i,−i) . We know that 0 ∈ V 2(A) , (see[3]).
Also, by [7, Corollary 2.4], Λ2(A) = {0} . Then V 2(A)∩Λ2(A) = {0}. Let X∗ =(

0 0.5 0.5 0.5 0.5
1 0 0 0 0

)
. Direct computation shows that 0 ∈ X2

2 (A) . Thus X2
2 (A) =

V 2(A)∩Λ2(A).

EXAMPLE 2. Let A =
(

2I2 J
J 5I2

)
, where J =

(
0 0
0 1

)
. Since A is Hermitian,

by Theorem 2.2, X2
2 (A) = σ2(A) = /0 . But, it is clear that 2 ∈ V 2(A)∩Λ2(A). Hence

X2
2 (A)�V 2(A)∩Λ2(A).

Now, we characterize Xm
k (U)∩σ(U) , for unitary matrices. First, we need the

following:

PROPOSITION 2.5. Let A∈Mn(C) be a normal matrix such that σ(A)= ext(W (A)) ,
where W (A) is the numerical range of A and ext(S) is the set of all extreme points of
S . Then Xm

k (A)∩σ(A) = σk(A) .

Proof. Since Λk(A) = X1
k (A) ⊇ Xm

k (A),m � 1, it is enough to show that Λk(A)∩
σ(A) = σk(A) . Assume σ(A) = {λ1,λ2, . . . ,λn} . By [7, Corollary 2.4], we know that

Λk(A) =
⋂

1� j1<···< jn−k+1�n

conv
({λ j1 , . . . ,λ jn−k+1}

)
.

Let λ ∈ σ(A)∩Λk(A) . Since σ(A) ⊆ ext (conv({λ1, . . . ,λn})) , the algebraic multi-
plicity of λ is greater than or equal to k . Also, we know that, for normal matrices, the
algebraic and geometric multiplicities are the same. Therefore, Λk(A)∩σ(A)⊆ σk(A) .
The converse is trivial. �

COROLLARY 2.6. Let U ∈ Un(C) . Then Xm
k (U)∩σ(U) = σk(U) .

The following example shows that Proposition 2.5 doesn’t hold if there exists an
eigenvalue which is not an extreme point.

EXAMPLE 3. Let A = diag(0,1,ei2π/3,ei4π/3) and let X∗ =
(

0
√

3/3
√

3/3
√

3/3
1 0 0 0

)
.

Direct computation shows that X∗AX = X∗A2X = 0I2 , and hence 0∈σ(A)∩X2
2 (A) but

0 /∈ σ2(A).

Let H be a Hermitian matrix and let m � 2. By Theorem 2.2, we know that
Xm

k (H) = σk(H) . The following Proposition shows that this relation may happen for
non Hermitian matrices.

PROPOSITION 2.7. Suppose A ∈ Mn(C) is a normal matrix such that σ(A) lies
in a semi-circle. If m � 2 , then Xm

k (A) = σk(A) .
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Proof. There exists a complex number α such that αA is a unitary matrix. With-
out loss of generality, we replace αA by A . Let m � 2. By [4, Theorem 2.8.], Vm(A) =
σ(A) , and by Proposition 2.5, Λk(A)∩σ(A)=σk(A) . Since σk(A)⊆Xm

k (A)⊆Vm(A)∩
Λk(A) = σk(A), we obtain that Xm

k (A) = σk(A) . �
The following definition helps us to study Xm

k (U) for unitary matrices U ∈U2k(C) .

DEFINITION 2. Let A ∈ Mn(C) . The rank-(k1,k2 ) numerical range of A , (k1 +
k2 = n), is defined and denoted by

Λ(k1,k2)(A) =
{

(λ ,μ) ∈C2 : ∃U ∈ Un, U∗AU =
(
λ Ik1 ∗
∗ μIk2

)}
. (6)

Let U ∈ Un(C) be a unitary matrix with distinct eigenvalues. By [2, Theorem
4.7], we know that Λ(k1,k2)(U) = /0 , for k1 �= k2. Now, we assume k1 = k2 .

THEOREM 2.8. Let U ∈ U2k(C) and let (λ ,μ) ∈ Λk(U,U2) . Thus
(i) If μ = λ 2 , then λ ∈ σk(U).
(ii) If μ �= λ 2 , then

(
λ ,λeiθ) ∈ Λ(k,k)(U), where 0 � θ � 2π .

Proof. Assume that (λ ,μ) ∈ Λk(U,U2) . Thus, there exists a unitary matrix V

such that V ∗UV =
(
λ Ik B
C D

)
and V ∗U2V =

(
μIk B′
C′ D′

)
. Since V ∗UV is a unitary

matrix, we obtain that

C∗C = BB∗ = (1−|λ |2)Ik, λB+C∗D = 0, and BC = (μ−λ 2)Ik. (7)

It is readily seen that BC = CB and |BC| = |B||C|, where |B| = (B∗B)1/2.
(i) Let μ = λ 2. By (7), BC = 0, and hence B =C = 0. Thus, |λ |= 1 and λ ∈ σk(U) .
(ii) Let μ �= λ 2. Then |λ | < 1. By using (7), we obtain that λBC +C∗CD = λ (μ −
λ 2)Ik +(1− |λ |2)D = 0. Thus, D = λ (λ 2−μ)

1−|λ |2 Ik . If λ = 0, then B and C are unitary

matrices and hence (0,0)∈Λ(k,k)(U) . If λ �= 0, then by using (7), B = μ−λ 2

1−|λ |2C
∗. Also,

we know that |μ−λ 2|Ik = |BC|= |B||C|= (
√

1−|λ |2Ik)2 , so, |μ−λ 2|
1−|λ |2 = 1. Thus there

exists 0 � θ < 2π such that D = λeiθ Ik and hence
(
λ ,λeiθ) ∈ Λ(k,k)(U). �

THEOREM 2.9. Let U ∈U2k(C) be a unitary matrix with distinct eigenvalues and
let m,k � 2 . Then Xm

k (U) = /0 .

Proof. Let (λ ,μ)∈Λk(U,U2) . Since σk(U)= /0, by Theorem 2.8 (i), |λ | �= 1 and
μ �= λ 2. Also by [2, Theorem4.7], and our assumption, Λk(U)= {λ} is a singleton. By

Theorem 2.8 (ii), λ (λ 2−μ)
1−|λ |2 = λ . Assume that λ �= 0. Thus μ = λ 2(2|λ |2−1)

|λ |2 , and hence

Λk(U,U2) =
{(

λ , λ
2(2|λ |2−1)

|λ |2
)}

. Since |λ | �= 1, we obtain that Xm
k (U) = /0, m,k � 2.

Now, assume that λ = 0. By the same manner as in the proof of Theorem 2.8, we
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obtain that BC = μIk is unitary matrix. Then |μ | = 1 and Λk(U,U2) = {(0,μ)} is a
singleton. This means that Xm

k (U) = /0, m,k � 2. �

COROLLARY 2.10. Let Dn = diag(1,wn, . . . ,wn−1
n ) , where wn = ei2π/n and let

m,k � 2 . Then Xm
k (D2k) = /0 .

REMARK 2. By using [2, Theorem 4.7] and [7, Theorem 2.2], we know that
X1

k (D2k) = {0} .
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