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Abstract. The authors introduce a new type of matrix splitting generalizing the notion of B -
splitting and study its relationships with nonnegativity of the Moore-Penrose inverse and the
group inverse.

1. Introduction

A real n× n matrix A is called monotone (or a matrix of “monotone kind”) if
Ax � 0 ⇒ x � 0. Here, y � 0 for (y1,y2, ...,yn)T = y ∈ Rn means that yi � 0 for all
i = 1,2, ...,n . This notion was introduced by Collatz, who showed that A is monotone if
and only if A−1 exists and A−1 � 0, where the latter denotes that all the entries of A−1

are nonnegative. The book by Collatz [7] has details of how monotone matrices arise
naturally in the study of finite difference approximation methods for certain elliptic
partial differential equations. The problem of characterizing monotone (also referred to
as inverse positive) matrices has been extensively dealt with in the literature. Motivated
by Collatz’s result, Mangasarian [11] extended the concept of monotone matrices to the
rectangular case, and proved that a rectangular matrix is monotone if and only if it has
a nonnegative left inverse. The books by Berman and Plemmons [5], and Varga [18]
give an excellent account of many of these characterizations. The former also presents
several extensions to generalized inverses.

Much effort also has been devoted to characterizing inverse positive matrices in
terms of the so-called splittings of the matrix concerned. For a real n× n matrix A , a
decomposition A = U −V is called a splitting if U is invertible. Associated with the
splitting, one is interested in the convergence of the iterative method xk+1 =U−1Vxk +
U−1b, k = 0,1,2, · · · for numerically solving the linear system of equations Ax = b, b∈
Rm . It is well known that this iterative scheme converges to a solution of Ax = b if and
only if spectral radius of U−1V is strictly less than 1, for any initial vector x0 . Standard
iterative methods like the Jacobi, Gauss-Seidel and successive over-relaxation methods
arise from different choices of U and V . Below, we briefly review the most important
types of splittings which have been studied in the literature. Schröder [17] and Varga
[18] proposed the notion of a regular splitting as follows: A =U −V is called a regular
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splitting if U is invertible, U−1 � 0 and V � 0. For any regular splitting A = U −V ,
they demonstrated that A is inverse positive if and only if U−1V has spectral radius
strictly less than one. Ortega and Rheinboldt [14] proposed the notion of a weak regular
splitting: A = U −V is called a weak regular splitting if U is invertible, U−1 � 0 and
U−1V � 0. They show that in fact, for any weak regular splitting A = U −V , A is
inverse positive if and only if U−1V has spectral radius strictly less than one. In both
the cases, the iterative method arising from the splitting converges to a solution of the
system Ax = b , for any initial vector x0 . It is noteworthy to point out the fact that the
three methods mentioned above belong to either of the two types of splittings defined
here. We refer to the book by Varga for the precise details.

More recently, Peris [15] studied what are called positive splittings. Specifically,
a splitting A =U −V is known as a positive splitting if U � 0 and V � 0. He came up
with the following characterization: An invertible matrix A has a nonnegative inverse if
and only if for any positive splitting A =U−V , there exist a vector x > 0 (meaning that
all the components are positive) and a scalar μ ∈ [0,1) such that Vx = μUx . He also
gave a characterization of inverse positivity in terms of a subclass of positive splittings,
namely B-splittings. In what follows, we say that A = U −V is a B-splitting of A if
U is invertible, VU−1 � 0, and Ux � 0, Ax � 0 ⇒ x � 0 for all x ∈ Rn . In a result
most pertinent to the present work, Peris showed that if A is inverse positive, then
there exists a B-splitting A = U −V with VU−1 having spectral radius strictly less
than one. In this connection, let us point out that Weber ([19] and [20]) generalized
the work of Peris for bounded linear operators over certain ordered Banach spaces.
Generalizations of inverse positivity to nonnegativity of the Moore-Penrose inverse and
their relationships to the concept of proper splittings were studied mainly by Berman,
Plemmons and Neumann ([2], [3] and [5]). We defer the discussion on proper splittings
and nonnegative Moore-Penrose inverses to the section on main results. Analogous to
the nonsingular case, proper splittings lead to the iteration scheme: xk+1 = U†Vxk +
U†b, k = 0,1,2, · · · . It is shown in [3] that for a proper splitting, the spectral radius of
U†V is strictly less than 1 if and only if the above scheme converges to A†b , the least
squares solution of minimum norm of the system Ax = b .

The objective of this work is to show how Peris’ results can be extended to the
case of the Moore-Penrose inverse and the group inverse. Our approach here has been
inspired and guided mainly by the aforementioned recent work of Weber, [20]. We has-
ten to add that while Weber studied the infinite dimensional situation, our frame work is
the finite dimensional real Euclidean space. We believe that the results presented here
should lead to a similar theory in the infinite dimensional case, too. The organization
of this paper is as follows. In Section 2, we fix our notation and discuss preliminary
notions and results that will be used in the sequel. Section 3 presents the main results
for the Moore-Penrose inverse. In Section 4, the corresponding group inverse results
are stated. Closing remarks in the final Section propose three problems of interest for
future work. A preliminary report of the results presented here appears in [13].
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2. Preliminaries

Let Rn denote the n dimensional real Euclidean space and Rn
+ denote the nonneg-

ative orthant in Rn . Let int(Rn
+) denote the set of all interior points of Rn

+ . For a matrix
A ∈ Rm×n , the set of all m× n matrices of reals, we denote the range space, the null
space and the transpose of A by R(A), N(A) and AT , respectively. Let K,L be com-
plementary subspaces of Rn , i.e., K⊕L = Rn . Then PK,L denotes the (not necessarily
orthogonal) projection of Rn onto K along L . So we have P2

K,L = PK,L, R(PK,L) = K
and N(PK,L) = L . If in addition K ⊥ L , PK,L will be replaced by PK . In such case, we
also have PT

K = PK . For A ∈ Rm×n , A � 0 means all the entries of A are nonnegative.
For A,B ∈ Rm×n , A � B denotes that B−A � 0. The spectral radius of A ∈ Rn×n ,
denoted by ρ(A) is defined by ρ(A) = max

1�i�n
|λi| where λ1,λ2, · · · ,λn are the eigenval-

ues of A . A factorization A = BC of A ∈ Rm×n is called a full-rank factorization if
B ∈ Rm×r and C ∈ Rr×n with rank B = rank C = rank A = r .

The Moore-Penrose inverse of matrix A ∈ Rm×n , denoted by A† is the unique
solution of the equations: A = AXA , X = XAX , (AX)T = AX and (XA)T = XA . The
group inverse of a matrix A ∈ Rn×n , denoted by A# (if it exists), is the unique matrix
X satisfying A = AXA , X = XAX and AX = XA . If A is nonsingular, then of course,
we have A−1 = A† = A# . Next, we collect some well known properties of A† and A#

([1]) which will be frequently used in this paper: R(AT ) = R(A†) ; N(AT ) = N(A†) ;
AA† = PR(A); A†A = PR(AT ) ; R(A) = R(A#) ; N(A) = N(A#) ; AA# = PR(A),N(A) . In

particular, if x ∈ R(AT ) then x = A†Ax and if x ∈ R(A) then x = A#Ax .
Next, we list certain results to be used in the sequel. The first result is well known,

for instance refer to [1].

LEMMA 2.1. Let A ∈ Rm×n and b ∈ Rm . The system Ax = b has a solution if
and only if AA†b = b. In that case, the general solution is given by x = A†b + z for
some z ∈ N(A) .

The next result characterizes the “reverse order law” for the Moore-Penrose in-
verse.

THEOREM 2.2. (Theorem 1, [8]) Let X and Y be arbitrary matrices such that
XY is defined. Then (XY )† =Y †X† if and only if X†XYYT XT =YYT XT and YY †XT XY
= XTXY .

The following results are finite dimensional versions of corresponding results which
hold in Banach spaces.

THEOREM 2.3. (Theorem 3.16, [18]) Let X ∈ Rn×n and X � 0 . Then ρ(X) < 1

if and only if (I−X)−1 exists and (I−X)−1 =
∞

∑
k=0

Xk � 0 .

THEOREM 2.4. (Theorem 25.4, [9]) Suppose that C,B ∈ Rn×n with C � B, B−1

exists, and B−1 � 0 . Then C−1 exists and C−1 � 0 if and only if CRn
+ ∩ int(Rn

+) �= φ .
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3. Main Results

In this section we present our main results (Theorem 3.8 and Theorem 3.10). Let
A ∈ Rm×n . A decomposition A = U −V is called a proper splitting of A [3] if R(A) =
R(U) and N(A) = N(U) . The following theorem is similar to the corresponding result
(Theorem 1) in [3]. It collects some of the properties of a proper splitting.

THEOREM 3.1. Let A = U −V be a proper splitting. Then
(a) AA† = UU† ; A†A = U†U.
(b) A = (I−VU†)U .
(c) I−VU† is invertible.
(d) A† = U†(I−VU†)−1.

Proof.
(a) AA† = PR(A) = PR(U) = UU† . The second identity is similar.
(b) Since N(A) = N(U) , it follows that N(A) ⊆ N(V ) , that is R(VT ) ⊆ R(AT ) =

R(UT ) . Hence U†UVT = VT so that V = VU†U and so A = U −V = U −VU†U =
(I−VU†)U .

(c) Let (I −VU†)x = 0. Then x = VU†x ∈ R(V ) ⊆ R(A) = R(U) . So x = UU†x
and hence x =VU†x = (U−A)U†x =UU†x−AU†x = x−AU†x . So, AU†x = 0. Thus,
U†x ∈ N(A) = N(U) and so x = UU†x = 0. Hence I−VU† is invertible.

(d) Set X = I−VU† , Y = U . Then A = XY , X† = X−1 and Y † = U† . We have
R(XTXY ) = R((I −VU†)T (I −VU†)U) = R((I −VU†)T A) = R(A− (U†)TVT A) ⊆
R(A)= R(U) and so YY †XT XY = XTXY . Also, since X†X = I , we have X†XYYT XT =
YYT XT . By Theorem 2.2, we have A† = U†(I−VU†)−1 . �

It is known that [2] any A ∈ Rm×n of rank r has a full-rank factorization of the
form

A = P

(
I
C

)
A11

(
I B

)
Q,

where A11 and I are of order r× r , P and Q are permutation matrices of order m
and n , C ∈ R(m−r)×r and B ∈ Rr×(n−r) . The next result shows how to construct proper
splittings using the factorization as above.

THEOREM 3.2. (Theorem 1, [2]) Let A be factorized as above. Then A =U −V

is a proper splitting if and only if U = P

(
I
C

)
M11

(
I B

)
Q, where M11 is a nonsingu-

lar matrix of order r× r .

Using this theorem, we next derive a simpler method of constructing a proper
splitting. This result is not new. However, we have not found a proof in the literature.

THEOREM 3.3. Let A ∈ Rm×n and A = FG be a full-rank factorization. Then
the splitting A = U −V is proper if and only if U = FSG (and V = U −A) for some
nonsingular S . In this case ρ(VU†) = ρ(I−S−1) .
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Proof. Necessity. From Theorem 3.2, we have U = FSG where F = P

(
I
C

)
,

G =A11
(
I B

)
Q and S =M11A

−1
11 is nonsingular. The fact that U† = G†S−1F† is easily

verified. Now VU† = (U −A)G†S−1F† = (FSG−FG)G†S−1F† = FF† −FS−1F† =
F(I−S−1)F† . To prove ρ(VU†) = ρ(I−S−1) , it is enough to show that VU† and I−
S−1 have the same nonzero eigenvalues. Let λ be any nonzero eigenvalue of VU† and
x be a corresponding eigenvector. Then F(I−S−1)F†x =VU†x = λx . Pre-multiplying
by F† and using the fact F†F = I , we have (I−S−1)w = λw where F†x = w �= 0. (If
F†x = 0, then x∈ N(F†) = N(AT ) . Also x∈ R(V )⊆ R(A) . So x = 0, a contradiction).
Thus λ is an eigenvalue of I−S−1 . On the other hand, let μ be a nonzero eigenvalue
of I−S−1 and y be a corresponding eigenvector. Then (I−S−1)y = μy so that F†Fy−
S−1F†Fy = μF†Fy . If Fy = 0, then pre-multiplying (I − S−1)y = μy by F , we get
FS−1y = 0 yielding 0 = S−1y = F†FS−1y , so that y = 0, a contradiction. Thus z =
Fy �= 0. We then have μF†z = μF†Fy = μy = (I − S−1)F†z. Thus VU†z = F(I −
S−1)F†z = μFF†z = μFF†Fy = μz . Thus VU† and I − S−1 have the same nonzero
eigenvalues. It now follows that ρ(VU†) = ρ(I−S−1) .

Sufficiency. For a full-rank factorization A = FG , let U = FSG for some nonsin-
gular S and V = U −A . We must show that the splitting A = U −V is proper, i.e.,
R(A) = R(U) and N(A) = N(U) . Let x ∈ N(A) . Then Ax = 0 so that FGx = 0. We
then have Gx = 0, since F is of full-column rank. We then have Ux = FSGx = 0,
showing that N(A) ⊆ N(U) . Retracing the above steps and using the invertibility of
S , it follows that N(U) ⊆ N(A) . If A = FG is a full-rank factorization of A , then
AT = GT FT is a full-rank factorization of AT . The fact that N(AT ) = N(UT ) now
follows similarly. This, in turn means that R(A) = R(U) . �

The next result is similar to a well known theorem of Berman and Plemmons
(Theorem 3, [3]) and is included for ready reference and completeness.

THEOREM 3.4. Let A ∈ Rm×n and A = U −V be a proper splitting of A. If
U† � 0, VU† � 0 and ρ(VU†) < 1 , then A† � 0 .

Proof. Let U† � 0, VU† � 0 and ρ(VU†) < 1. The existence of (I −VU†)−1

is guaranteed by A = U −V being a proper splitting or by invoking the condition

ρ(VU†) < 1. The latter also ensures that the representation (I−VU†)−1 =
∞

∑
j=0

(VU†) j

holds. As VU† � 0, it follows that (I−VU†)−1 � 0. The proof is complete by recalling
that A† = U†(I−VU†)−1 � 0. �

REMARK 3.5. It can be also shown that if A = U −V is a proper splitting of A
with U† � 0, VU† � 0 and A† � 0, then ρ(VU†) < 1. This is similar in spirit to
the nonsingular case mentioned in the introduction. We propose a definition for the
splitting as above. A splitting is called a weak pseudo regular splitting if it is a proper
splitting such that U† � 0 and VU† � 0. We can now say that if A has a weak pseudo
regular splitting A = U −V , then ρ(VU†) < 1 if and only if A† � 0.
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At this juncture, we would like to draw the attention of the reader to the works of
Climent et. al. [6] and Yimin Wei et. al. [21] & [22]. In the first article the authors
discuss the nonnegativity of the Moore-Penrose inverse of full-column rank matrices,
under the assumption of the existence of a proper splitting. In the next two, the authors
study splittings more general than proper splittings and also consider nonnegativity of
generalized inverses satisfying certain specific properties.

The notion of B-splitting, due to Peris, was mentioned in the introduction. We
propose an extension called B† -splitting, in what follows. This splitting is also different
from the weak pseudo regular splitting.

DEFINITION 3.6. A proper splitting A = U −V of A is called a B† -splitting if it
satisfies the following conditions:

(i) U � 0,
(ii) V � 0,
(iii) VU† � 0, and
(iv) Ax,Ux ∈ Rm

+ +N(AT ) and x ∈ R(AT ) ⇒ x � 0.

The next example shows a matrix allowing a B† -splitting, but not a B-splitting.

EXAMPLE 3.7. The matrix A =
(

1 1
1 1

)
does not allow a B-splitting. However,

by taking U = 2A and V = A , we obtain a B† -splitting.

The class of matrices having all entries 1 always have a B† -splitting. Clearly, any
B-splitting is a B† -splitting.

Berman and Plemmons (Theorem 3, [4]) have shown the following equivalence.
Let A ∈ Rm×n . Then A† � 0 if and only if Ax ∈ Rm

+ + N(AT ) and x ∈ R(AT ) ⇒
x � 0. In the first main result of this article given next, we provide other equivalences,
including one involving a B† -splitting.

THEOREM 3.8. Let A ∈ Rm×n . Consider the following statements.
(a) A† � 0 .
(b) Ax ∈ Rm

+ +N(AT ) and x ∈ R(AT ) ⇒ x � 0 .
(c) Rm

+ ⊆ ARn
+ +N(AT ) .

(d) There exists x0 ∈ Rn
+ and z0 ∈ N(AT ) such that Ax0 + z0 ∈ int(Rm

+) .
Then we have (a) ⇔ (b) ⇒ (c) ⇒ (d).
Suppose that A has a B† -splitting. Then each of the above is equivalent to the

following:
(e) ρ(VU†) < 1 .

Proof. (a) ⇔ (b): This is the result of Berman and Plemmons mentioned above.
(b) ⇒ (c): Let p ∈ Rm

+ and q = A†p . Then by Lemma 2.1, p = Aq + r , r ∈
N(AT ) so that Aq = p− r ∈ Rm

+ + N(AT ) . Also q ∈ R(AT ) . Hence q ∈ Rn
+ and so

p ∈ ARn
+ +N(AT ).

(c) ⇒ (d): Let u0 ∈ int(Rm
+) . Then there exist x0 ∈ Rn

+ and z0 ∈ N(AT ) such that
u0 = Ax0 + z0 . Thus Ax0 + z0 ∈ int(Rm

+) .
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(d) ⇒ (e): Since A = U −V is a B† -splitting, we have U � 0, V � 0, VU† � 0,
R(A) = R(U) and N(A) = N(U) (Condition (iv) will not be used in the proof). So
I −VU† � I . Set C = I −VU† and B = I . Then C � B , B−1 exists and B−1 � 0.
We show that there exists a vector w0 ∈ Rm

+ such that Cw0 ∈ int(Rm
+) . It would then

follow from Theorem 2.4 that C−1 exists and C−1 � 0. By (d), there exists x0 ∈ Rn
+

and z0 ∈ N(AT ) such that Ax0 + z0 ∈ int(Rm
+) . Set w0 = Ux0 + z0 . Then w0 = (A+

V )x0 + z0 = Ax0 + z0 +Vx0. Since V � 0 and x0 ∈ Rn
+ , we have Vx0 ∈ Rm

+ . Also
Ax0 +z0 ∈Rm

+ . Thus w0 ∈Rm
+ . Further, Cw0 = (I−VU†)w0 = (I−VU†)(Ux0 +z0) =

(I −VU†)Ux0 +(I−VU†)z0 = Ax0 + z0 ∈ int(Rm
+) , where we have used the fact that

z0 ∈ N(AT ) = N(UT ) = N(U†) . Thus (I −VU†)−1 = C−1 � 0. By Theorem 2.3, it
now follows that ρ(VU†) < 1.

(e) ⇒ (b): Suppose that Ax ∈ Rm
+ + N(AT ) . We demonstrate that Ux ∈ Rm

+ +
N(AT ) . It would then follow from condition (iv) of a B† -splitting, that x � 0. Let Ax =
p+q , where p ∈ Rm

+ and q ∈ N(AT ) . Then Ux = (I−VU†)−1Ax = (I−VU†)−1(p+
q) = r + s , where r = (I −VU†)−1p and s = (I −VU†)−1q. Since ρ(VU†) < 1 and
VU† � 0, it follows from Theorem2.3, that I−VU† is invertible and that (I−VU†)−1 �
0. Thus r ∈ Rm

+ . Also, q ∈ N(AT ) = N(A†) yields 0 = A†q =U†(I−VU†)−1q =U†s,
showing that s ∈ N(UT ) = N(AT ) . Hence Ux ∈ Rm

+ + N(AT ) , as was required to
prove. �

We obtain Peris’ result as a particular case. For a vector y ∈ Rm , y > 0 denotes
y ∈ int(Rm

+) .

COROLLARY 3.9. (Theorem 4, [15]) Let A be a square matrix such that A =U−
V is a B-splitting. Then the following conditions are equivalent:

(a) A is positively invertible.
(b) ρ(VU−1) < 1.
(c) There exists some x � 0 such that Ax > 0 .

Presently, it is not known if all matrices possess B† -splittings. However, we are
able to prove its existence for a class of matrices satisfying certain conditions. This is
given below.

THEOREM 3.10. Suppose that A† � 0 and R(A)∩ int(Rm
+) �= φ . Further, let

A†A � 0 . Then A possesses a B† -splitting A = U −V such that ρ(VU†) < 1 .

Proof. Let 0 �= p ∈ R(A)∩ int(Rm
+) and q ∈ int(Rn

+) . Set E = pqT ∈ Rm×n . For
α > 0, define W = 1

α+qT A†p
EA† . Then W ∈Rm×m and W � 0. Note that R(W )⊆R(A)

and R(WT ) ⊆ R(A) . Let λ �= 0 satisfy Wu = λu . Then 1
α+qT A†p

pqTA†u = λu . So

λu = β p with β = qT A†u
α+qT A† p

. Thus β = βqT A† p
λ (α+qT A†p) and so 0 < λ = qT A†p

α+qT A†p
< 1. Thus

ρ(W ) < 1. By Theorem 2.3, (I −W)−1 exists and (I −W )−1 =
∞

∑
k=0

Wk � 0. Using

induction, it can be shown that Wk+1 = λ kW , k � 1. Also (I−W)−1A = A+ 1
1−λWA =

A+ 1
α EA†A . Now, we choose α such that 1

α � η > max|ai j| , where A = (ai j) . Then
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−A � ηE . Post-multiplying by A†A � 0, we then have ηEA†A � −AA†A = −A and
(I−W)−1A = A+ 1

αEA†A � A+ηEA†A � 0. Now set U = (I−W)−1A and V =WU .
Then U = A+ 1

α EA†A = A+ 1
αEPR(AT ) . So U � 0 and V � 0. Let x0 ∈ R(U) ; x0 =

Uy0 . Then (I −W)x0 = Ay0 . Since R(W ) ⊆ R(A) , so we have x0 ∈ R(A) , and then
R(U) ⊆ R(A) . Also, rank A = rank U since (I −W )−1A = U . Hence R(A) = R(U) .
Also, (I−W )−1A =U implies that N(A) = N(U) . Thus, A = (I−W )U =U −WU =
U −V is a positive proper splitting. Also, R(WT ) ⊆ R(A) = R(U) so that UU†WT =
WT . So W = WUU† = VU† � 0. As we have noted earlier, A† � 0 is equivalent to
the statement: Ax ∈ Rm

+ +N(AT ),x ∈ R(AT ) ⇒ x � 0. Thus, even without the extra
assumption Ux ∈ Rm

+ +N(AT ) , the last condition of a B† -splitting is satisfied. Finally,
by Theorem 3.8, since A = U −V is a B† -splitting, it follows that ρ(VU†) < 1. �

The next two examples show that the converse of Theorem 3.10 is not true.

EXAMPLE 3.11. Let A =

⎛
⎝ 2 −1 0

−1 2 0
0 0 0

⎞
⎠ . Then A† � 0. Set U =

⎛
⎝2 0 0

0 2 0
0 0 0

⎞
⎠ and

V =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ . Thus A = U −V is a B† -splitting. We have A†A � 0 but R(A)∩

int(R3
+) = φ .

EXAMPLE 3.12. Let A =
(

1 −1 2
1 2 −1

)
. Then A† � 0. Set U =

(
2 0 2
2 2 0

)
and

V =
(

1 1 0
1 0 1

)
. Thus A = U −V is a B† -splitting. We have R(A)∩ int(R2

+) �= φ but

A†A � 0.

COROLLARY 3.13. (Theorem 5, [15]) A square matrix A is positively invertible
if and only if A allows a B-splitting A = U −V with ρ(VU−1) < 1 .

Proof. If A−1 � 0, then the hypotheses of Theorem 3.10 trivially hold. The con-
clusion now follows. Conversely, if A allows a B-splitting, then it trivially allows a
B† -splitting. The conclusion that A−1 � 0 now follows from Theorem 3.8. �

4. The group inverse analogue

In this section, we collect results for the group inverse, analogous to the case of
the Moore-Penrose inverse. Since all the proofs are almost verbatim, we simply state
these results.

THEOREM 4.1. Let A = U −V be a proper splitting of A ∈ Rn×n . Suppose that
A# exists. Then

(a) U# exists.
(b) AA# = UU# = U#U .
(c) A = (I−VU#)U .



ON SPLITTINGS OF MATRICES AND NONNEGATIVE GENERALIZED INVERSES 93

(d) I−VU# is invertible.
(e) A# = U#(I−VU#)−1.

THEOREM 4.2. Let A∈Rn×n . Suppose that A# exists and A =U−V be a proper
splitting of A. If U# � 0, VU# � 0 and ρ(VU#) < 1 , then A# � 0 .

DEFINITION 4.3. A proper splitting of A = U −V is called a B# -splitting if it
satisfies the following conditions:

(i) U � 0,
(ii) V � 0,
(iii) U# exists and VU# � 0, and
(iv) Ax,Ux ∈ Rn

+ +N(A) and x ∈ R(A) ⇒ x � 0.

THEOREM 4.4. Let A ∈ Rn×n . Consider the following statements.
(a) A# exists and A# � 0 .
(b) Ax ∈ Rn

+ +N(A) and x ∈ R(A) ⇒ x � 0 .
(c) Rn

+ ⊆ ARn
+ +N(A) .

(d) There exists x ∈ Rn
+ and z ∈ N(A) such that Ax+ z ∈ int(Rn

+) .
Then we have (a) ⇔ (b) ⇒ (c) ⇒ (d).
Suppose that A has a B# -splitting. Then each of the above is equivalent to the

following:
(e) ρ(VU#) < 1 .

THEOREM 4.5. Suppose that A# exists, A# � 0 and R(A)∩int(Rn
+) �= φ . Further,

let A#A � 0 . Then A possesses a B# -splitting A = U −V such that ρ(VU#) < 1 .

5. Concluding Remarks

Let us recall from the discussion in the introduction that the most frequently
used iterative methods such as the Jacobi, the Gauss-Seidel and the successive over-
relaxation are particular instances of regular splitting or weak regular splittings. Hence
those methods provide standard examples of existence of these splittings. However, as
the class of splittings gets smaller, like the positive splittings, one needs to demonstrate
the existence of these specific splittings, typically under the assumption of inverse posi-
tivity of the matrix concerned. Peris’ result mentioned in the introduction is an example
of this situation. One of our main results (Theorem 3.10) is another instance of such a
demonstration. This result, to the best of our knowledge, appears to be rather uncom-
mon of its kind (in the singular case) in so far as splittings with certain nonnegativity
restrictions are concerned. Seemingly, there are only two other similar results in the
literature. One result is that of Plemmons (Theorem 4, [16]), where however, the ex-
istence of the specific splitting is trivial. The second instance wherein the existence of
the splitting concerned is nontrivial, was given by Meyer and Plemmons (Theorem 2,
[12]). Let us also point out the historical relevance of this second result. It leads to
the definition of what are called MP-matrices in the literature (apparently named after
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the authors of the cited paper). In this background, let us mention that the following
interesting problem with regard to Theorem 3.4 (and Remark 3.5) appears to be open:

PROBLEM 1. Let A ∈ Rm×n with A† � 0. Does there exist a nontrivial weak
pseudo regular splitting for A?

We conclude by posing two other questions, one of them on the existence, again
in the context of a splitting. First, we prove the following result (Theorem 5.1), more
general than the result proved in [10] (Theorem 3.5). The present proof uses only the
Perron-Frobenius theorem and is much simpler.

THEOREM 5.1. Let A ∈ Rm×n with 0 �= A† � 0 . If A = U −V is a splitting with
U � 0 , V � 0 and R(U)⊆ R(A) , then there exist 0 �= x ∈ Rn

+∩R(AT ), μ ∈ [0,1) such
that Vx = μUx.

Proof. Let A = U −V be a splitting with U � 0 and R(U) ⊆ R(A) . As A† � 0
and U � 0, so A†U � 0. By the Perron-Frobenius theorem, we have A†Ux = λx with
λ > 0 and x ∈ Rn

+ . Clearly, x ∈ R(AT ) . Pre-multiplying by A , we get AA†Ux =
λAx = λUx−λVx . Since R(U)⊆ R(A) , so AA†Ux = PR(A)Ux =Ux and then we have

Vx = λ−1
λ Ux . Thus Vx = μUx with μ = λ−1

λ ∈ [0,1) . If λ < 1, then Vx � 0. Since
V � 0 and x � 0, this means that Vx = 0. Consequently Ux = 0 so that Ax = 0. But
x ∈ R(AT ). So x = 0, a contradiction. Hence λ � 1. �

Our second question is whether the converse of Theorem 5.1 is true:

PROBLEM 2. Suppose that, whenever A =U−V is a splitting with U � 0, V � 0
and R(U) ⊆ R(A) , there exist 0 �= x ∈ Rn

+ ∩R(AT ), μ ∈ [0,1) such that Vx = μUx .
Does it follow that A† � 0?

Our final question asks whether there is a counter part for Theorem 3.10.

PROBLEM 3. Let A ∈ Rm×n with A† � 0. Does there exist a splitting of A =
U −V with U � 0, V � 0 and R(U) ⊆ R(A)?

If a splitting of A = U −V with U � 0, V � 0 and R(U) ⊆ R(A) exists, then the
existence of 0 �= x � 0, μ ∈ [0,1) such that Vx = μUx is, of course, guaranteed by
Theorem 5.1.

We conclude this article with a few remarks on the numerical implementation of
B† -splitting. Let us point out that B† -splitting has not been shown to exist for all
matrices. We have shown its existence only for a class of matrices (Theorem 3.5).
While this is clearly a disadvantage, we would like to point out that this situation is
similar to the case of a weak pseudo regular splitting, as mentioned in the first paragraph
of this section. However, for this class of matrices for which a B† -splitting exists, the
constructive proof shows that one could choose such a splitting with the additional
provision that the spectral radius of VU† is as small as we wish. This is a definite
numerical merit. A comparison of numerical implementation of random examples of
large linear systems employing B† -splitting and a proper splitting (Theorem 3.3) shows
that the number of iterations in arriving at an approximate solution are almost the same.
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[17] JOHANN SCHRÖDER, Operator Inequalities, Academic Press, New York, 1980.
[18] RICHARD S. VARGA, Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.
[19] MARTIN WEBER, On the positiveness of the inverse operator, Math. Nachr. 163 (1993), 145–149,

Erratum. Math. Nachr. 171 (1995), 325–326.
[20] MARTIN WEBER, On positive invertibility of operators and their decompositions, Math. Nachr. 282

(2009), 1478–1487.
[21] YIMIN WEI, XIEZHANG LI, HEBING WU, On the perturbation and subproper splittings for the

generalized inverse A(2)
T,S of rectangular matrix A , J. Comput. Appl. Math. 137 (2001), 317–329.

[22] YIMIN WEI, XIEZHANG LI, HEBING WU, Subproper and regular splittings for restricted rectangular
linear system, Appl. Math. Comput. 136 (2003), 535–547.

(Received July 9, 2010) Debasisha Mishra
Department of Mathematics

Indian Institute of Technology Madras
Chennai – 600 036, India

e-mail: kapamath@gmail.com

K.C. Sivakumar
Department of Mathematics

Indian Institute of Technology Madras
Chennai – 600 036, India

e-mail: kcskumar@iitm.ac.in

Operators and Matrices
www.ele-math.com
oam@ele-math.com


