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PARTIALLY HYPER INVARIANT SUBSPACES

SLAVIŠA DJORDJEVIC, ROBIN HARTE AND DAVID LARSON

(Communicated by N.-C. Wong)

Abstract. Between invariance and hyperinvariance are at least two other kinds of partially hy-
perinvariant subspace.

Introduction

An invariant subspace Y for a linear operator T on a vector space X is a linear
subspace Y ⊆ X for which

T (Y ) ⊆ Y : (0.1)

when X is a Banach space and T is bounded we usually want Y = cl Y . Generally if
T : X → X with T (Y ) ⊆ Y ⊆ X we shall write

TY : Y → Y, T ′
Y : X/Y → X/Y (0.2)

for the induced restriction and quotient operators; thus (a little formally), writing JY :
Y → X and KY : X → X/Y for the canonical injection and quotient,

KY JY = 0; T JY = JY TY ; KY T = T ′
Y KY . (0.3)

Barnes [1] calls the pair (TY ,T ′
Y ) a “diagonal” for T .

Among the invariant subspaces can be distinguished the hyperinvariant subspaces,
which are invariant under everything in the commutant of the operator we first thought
of. In this note we observe that there are at least two other kinds of “partial hyper
invariance”, lying strictly between invariance and hyperinvariance.

We begin, in §1, by recalling the “three space property” that goes with an invariant
subspace: invertibility, and possibly other kinds of non singularity, for an operator, its
restriction and the induced quotient, are mutually constrained in a specific way. In §2
we see that “spectral invariance”, where the spectrum of the restriction and the quo-
tient are disjoint, means that the subspace is both “reducing”, the range of a commuting
projection, and “hyperinvariant”, invariant under everything that commutes with the op-
erator. In §3 we meet “holomorphic” and “comm-square” invariant subspaces, and in §4
provide the rather simple examples which show that four kinds of invariance are indeed
distinct. In §5 we note that for reducing subspaces three of these kinds of invariance co-
incide, in §6 we look at the role of “platforms” in classifying the Jordan decomposition
of nilpotent operators, and in §7 we look at a sort of converse to Lomonosov’s lemma,
for partially hyperinvariant subspaces.
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1. Invariant subspaces

Recall ([1]; [4] Theorems 3.11.1, 3.11.2)

THEOREM 1. If T (Y ) ⊆ Y ⊆ X then, of the three sets

σ(T ); σ(TY ); σ(T ′
Y ),

each is contained in the union of the other two.

Proof. Here we write

σ(T ) = {λ ∈ C : T −λ I is not invertible} = π(T )∪π ′(T ). (1.1)

where
π(T ) = {λ ∈ C : T −λ I is not one one},
π ′(T ) = {λ ∈ C : T −λ I is not onto}. (1.2)

The verification of our “three space property” breaks down into simple observations
about one-one and onto: notice

TY ,T ′
Y one one =⇒ T one one =⇒ TY one one; (1.3)

TY ,T ′
Y onto =⇒ T onto =⇒ T ′

Y onto; (1.4)

T one one,TY onto =⇒ T ′
Y one one; (1.5)

T onto,T ′
Y one one =⇒ TY onto. (1.6)

The verification of (1.3)–(1.6) is very simple: observe

TY one one ⇐⇒ T−1(0)∩Y = O; TY onto ⇐⇒ Y ⊆ T (Y ); (1.7)

T ′
Y one one ⇐⇒ Y ⊆ T−1(Y ); T ′

Y onto ⇐⇒ X ⊆ Y +T (X) � (1.8)

We remark also, combining (1.3)–(1.6), that as noticed by Barnes ([1] Proposi-
tion 4)

TY , T ′
Y invertible⇐⇒ T invertible and (TY onto or T ′

Y one one). (1.9)

2. Spectrally invariant subspaces

From (1.3)–(1.6) it follows

σ(T ) ⊆ σ(TY )∪σ(T ′
Y ) ⊆ σ(T )∪

(
σ(TY )∩σ(T ′

Y )
)
; (2.1)

thus sufficient for
σ(T ) = σ(TY )∪σ(T ′

Y ) (2.2)

is that the restriction and quotient spectra are disjoint:

σ(TY )∩σ(T ′
Y ) = /0. (2.3)

If the condition (2.3) holds we shall call the closed invariant subspace Y ⊆ X spec-
trally invariant, at least when T ∈ B(X) is bounded. A spectrally invariant subspace is
actually a reducing subspace:
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THEOREM 2. If Y ⊆ X is spectrally invariant for T ∈ B(X) then

Y = P(X) (2.4)

with P = P2 ∈ B(X) commuting with T .

Proof. With the help of the functional calculus ([4] Definition 9.7.1) we can define

P = f (T ) =
1

2π i

∮
σ(T)

f (z)(zI −T)−1dz ∈ B(X) : (2.5)

specifically, with K = σ(TY ) and K′ = σ(T ′
Y ) , we take f = χK the characteristic func-

tion, so also I−P = χK′(T ) . By (2.2) and (1.8) it follows

λ 
∈ σ(T ) =⇒ (T −λ I)−1(Y ) ⊆ Y, (2.6)

and hence, by the Cauchy integral (2.5),

P(Y ) ⊆Y. (2.7)

Also by (2.2) and (2.5)
PY = IY , (2.8)

giving
Y ⊆ P(Y ) ⊆ P(X). (2.9)

To see finally that P(X) ⊆ Y we claim that there is implication

P(X) = X =⇒ Y = X : (2.10)

for argue

σ(T ) = σ(TY ) =⇒ σ(T ′
Y ) = /0 =⇒ X/Y = {0} =⇒ Y = X . (2.11)

More generally, with Z = P(X) , apply (2.10) with TZ : P(X) → P(X) in place of T :
X → X �

The simply invariant condition is not necessary for the existence of the projec-
tion P , and weaker versions of (2.3) are sufficient [6],[8] for P to be in the double
commutant of T . The equivalence (1.9) translates ([1] Proposition 4) as equality

σ(TY )∪σ(T ′
Y ) = σ(T )∪

(
π ′(TY )∩π(T ′

Y )
)
. (2.12)

3. Hyperinvariant subspaces

Recall Y = cl Y ⊆ X is hyperinvariant under T ∈ B(X) provided

comm(T )Y ⊆ Y, (3.1)
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where if K ⊆ B(X) we write

comm(K) = {S ∈ B(X) : T ∈ K =⇒ ST = TS}; (3.2)

we identify T ∈ B(X) with the singleton K = {T} , and write comm2(T ) for comm(K)
with K = comm(T ) . There are at least two other conditions of interest:

DEFINITION 1. We shall say that Y ⊆ X is comm-square invariant under T ∈
B(X) iff

comm2(T )Y ⊆ Y, (3.3)

and holomorphically invariant under T ∈ B(X) provided

Holo(T )Y ⊆ Y. (3.4)

Evidently
(2.3) =⇒ (3.1) =⇒ (3.3) =⇒ (3.4) =⇒ (0.1). (3.5)

The first implication is Theorem 2, while the remaining three are obvious. Here of
course S ∈ Holo(T ) means S = f (T ) with f ∈ Holo(K) with K = σ(T ) , as in (2.5).

Holomorphic invariance (3.4) is equivalent to the “inverse invariance” of (2.6):
look at the Cauchy integral. Since the projection P of (2.5) associated with a sim-
ply invariant subspace is in the double commutant of T the subspace P(X) , and its
complement P−1(0) , are actually hyperinvariant for T . We might remark that Barnes’
observation ([1] Proposition 4) actually shows that there is equality (2.2) whenever
Y ⊆ X is holomorphically invariant for T : indeed necessary and sufficient for (3.4) is
the inclusion

π(T ′
Y ) ⊆ σ(T ).

In general however none of the four implications of (3.5) is reversible: to see this recall
the forward and backward shifts u , v , and the standard weight w , on E = �p with
p = 2 or more generally, given by

(ux)1 = 0,(ux)n+1 = xn; (vx)n = xn+1; (wx)n = (1/n)xn. (3.6)

The spectrum of each of the shifts is the closed unit disc D, as is the “onto” spectrum
of the forward shift:

π ′(v) = ∂D ⊆ D = σ(v) = σ(u) = π ′(u). (3.7)

The eigenvalues of the backward shift are given by the open disc:

π(u) = /0; π(v) = int D; (3.8)

if |λ | < 1 then 1− λu is invertible and v− λ = v(1− λu) , giving one dimensional
eigenspaces

(v−λ )−1(0) = (1−λu)−1v−1(0) = (1−λu)−1(1−uv)(E). (3.9)

Notice also ([2]; [10] Theorem 3.2)

comm(u) = Holo(u); comm(v) = Holo(v); comm(w) = Holo(w). (3.10)
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4. Block triangles

Three formally similar examples serve to distinguish between four kinds of invari-
ant subspace:

EXAMPLE 1. Invariant does not imply holomorphically invariant.

Indeed, if we set

U =
(

u 1−uv
0 v

)
, V =

(
v 0

1−uv u

)
, P =

(
1 0
0 0

)
, (4.1)

then Y = P(X) = E ⊕O ⊆ X is invariant under U but not its inverse V =U−1 .
Note that U and V are in effect the bilateral shifts: VU = I =UV . This shows that

the implication (3.4)=⇒(0.1) does not reverse. We can also show that the implication
(3.1)=⇒(3.3) does not reverse:

EXAMPLE 2. Comm-square invariant does not imply hyperinvariant.

Here, with

u =
(

u 0
0 u

)
, v =

(
v 0
0 v

)
, Q =

(
0 1
0 0

)
, (4.2)

we have uP−Pu = vP−Pv = uQ−Qu = vQ−Qv = O 
= PQ−QP and hence (cf.
(3.10))

P ∈ comm(v)\ comm2(v); P ∈ comm(u)\ comm2(u). (4.3)

Also the subspace Y = P(X) is (3.10) comm-square invariant under v , u and P but
not Q .

We remark also that if either T = u or T = v and Y = P(X) then there is equality
(2.2) without disjointness (2.3). More delicately the implication (3.3)=⇒(3.4) does not
reverse:

EXAMPLE 3. Holomorphically invariant does not imply comm-square invariant.

This time (cf. [6]), with

T =
(

u 0
0 1−u

)
, S =

(
v 0
0 1− v

)
: (4.4)

we have (cf. [6]; [10] Theorem 4.23)

P ∈ comm2(S)\Holo(S); P ∈ comm2(T )\Holo(T ). (4.5)

Indeed since the spectra of v and v− 1 are not disjoint the operator P cannot be a
holomorphic function of S ; on the other hand(

a m
n b

)
∈ comm(S) =⇒ m(1− v)− vm = (1− v)n−nv = 0 =⇒ m = n = 0. (4.6)

To check this note that whenever x ∈ B(E) satisfies x = vx+ xv then

(1− v)x(1−unvn) = 0 (n ∈ N) =⇒ x = xuv = xu2v2 = xu3v3 = . . . =⇒ x = 0.
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The operators S and T each show that not everything in the double commutant of an
operator need be a holomorphic function of it: to find a subspace Y ⊆ X = E⊕E which
is invariant under the operator S but not the operator P we follow an idea of Warren
Wogen, and focus on an eigenvalue λ ∈C common to both v and 1−v . If 0 < |λ |< 1
and |λ ′| = |1−λ |< 1 then by (3.9) the two dimensional subspace

W = (S−λ I)−1(0) =
(

(v−λ )−1(0)
(1− v−λ )−1(0)

)
=

(
(1−λu)−1(1−uv)E
(1−λ ′u)−1(1−uv)E

)
(4.7)

is (hyper)invariant under S , and therefore also invariant under P . However, as noticed
by Wogen, the one dimensional subspace

Y =
(

(1−λu)−1 0
0 (1−λ ′u)−1

)(
1−uv
1−uv

)
E (4.8)

is (holomorphically) invariant under S but not invariant under P .

5. Reduction

When the invariant subspace Y = P(X) is the range of a projection P = P2 : X →
X , then ([10] Theorem 0.1,0.2; [4] Theorem 2.5.3)

TY ⊆ Y ⇐⇒ TP = PTP; (5.1)

P ∈ comm(T ) =⇒ comm2(T )Y ⊆ Y ; (5.2)

P ∈ comm2(T ) =⇒ comm(T )Y ⊆ Y. (5.3)

Neither of the implications (5.2) or (5.3) are reversible: it is easy to alter the null space
of P without changing its range. For “reducing” subspaces however, in which both the
range and the null space are invariant, three kinds of invariance coalesce:

THEOREM 3. If P = P2 ∈ B(X) and T ∈ B(X) then

P(X), P−1(0) invariant ⇐⇒ P ∈ comm(T )

=⇒ P(X), P−1(0) comm-square invariant
(5.4)

and
P ∈ comm2(T ) ⇐⇒ P(X), P−1(0) hyperinvariant (5.5)

Proof. The first implication of (5.4), both ways, follows from (5.1) applied to both
P and I−P , and then implies the second, and also implies (5.5) �

The spectrally invariant condition is genuinely stronger than hyperinvariant:

EXAMPLE 4. Hyperinvariant and reducing do not together imply spectrally in-
variant.
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Indeed the subspace W of (4.7) is hyperinvariant, and also reducing, but not spec-
trally invariant, under S . Alternatively, with R = v⊕wu , R−1(0) is hyperinvariant, but
not simply invariant, under R .

EXAMPLE 5. Neither of hyperinvariant nor reducing implies the other.

The subspace P(X) = E ⊕O of Example 2 is not only comm-square invariant but
also reducing, and not hyperinvariant, for each of the operators u and v. The same
subspace P(X) is also hyperinvariant, but not reducing, for the operator Q of (4.2).
Alternatively for the standard weight w of (3.6) with p = ∞ . the closure of its range is
c0 , therefore ([4] Theorem 5.10.2) uncomplemented, and necessarily hyperinvariant.

We offer a curious characterization of invariance under a projection, which was
involved in an unsuccessful attempt to uncover the subspace of Example 3:

THEOREM 5. If P = P2 ∈ B(X) and Y ⊆ X then the following are equivalent:

PY ⊆ Y ; (5.6)

(I−P)Y ⊆ Y ; (5.7)

Y ⊆ (Y∩PX)+ (Y∩P−10). (5.8)

Proof. The equivalence of (5.6) and (5.7) is clear. If (5.8) holds then

PY ⊆ P(Y∩PX)+P(Y∩P−10) = P(Y∩PX) ⊆ Y

and similarly (I−P)Y ⊆ Y . Conversely if both (5.6) and (5.7) hold then

Y = (P+(I−P))Y ⊆ PY +(I−P)Y ⊆ (Y∩PY )+ (Y∩P−10) �

6. Jordan

Observe that if T : X → X has an invariant subspace giving an onto restriction and
a one-one quotient then it is self exact:

TY onto ,T ′
Y one one =⇒ T sel f exact , (6.1)

in the sense [H2] that
T−1(0) ⊆ T (X) : (6.2)

simply observe (cf [Mü] Theorem 14.21)

T−1(0) ⊆ T−1(Y ) ⊆ Y ⊆ T (Y ) ⊆ T (X) .

Since the assumptions about the restriction and the quotient are transmitted to all powers
Tn it follows that, further,

TY onto ,T ′
Y one one =⇒ T hyperexact , (6.3)
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in the sense [H2] that for arbitrary m,n ∈ N

T−n(0) ⊆ Tm(X) . (6.4)

For example the condition (6.4) distinguishes those “zero jump” Fredholm operators
whose nullity is continuous at the origin. When the restriction TY is self exact we shall
call the subspace Y ⊆ X a subplatform [HHC] Definition 1):

DEFINITION 2. A subplatform for T : X → X is a subspace for which

T−1(0)∩Y ⊆ T (Y ) ⊆ Y , (6.5)

and a platform is a maximal subplatform. A coplatform for the subplatform Y ⊆ X is a
subspace Y ′ ⊆ X for which

T (Y ′) ⊆ Y ′ ; Y∩Y ′ = O ; Y +Y ′ = X , (6.6)

compatible provided
Y ′ ⊆ T−1(0) . (6.7)

Zorn’s condition is easily checked for subplatforms, and O = {0} is always a sub-
platform. Platforms can be harnessed in a classification of nilpotent operators ([HHC]
Theorems 2,3):

THEOREM 6. If T : X → X is strictly nilpotent, in the sense that

T 2 = 0 , (6.8)

and if Y ⊆ X is a subplatform for T then for arbitrary x ∈ X \Y there is implication

Tx 
∈ Y =⇒ Y +Cx+CTx is a subplatform for T =⇒ x 
∈ Y +T−1(0) . (6.9)

A subplatform Y for strictly nilpotent T has coplatforms, compatible iff Y is a plat-
form.

Theorem 6 shows that a strictly nilpotent operator T = T1 ⊕T0 is the direct sum
of a self exact operator T1 and a zero operator T0 ; more generally if Tn+1 = 0 then the
same argument shows that

T = T1 ⊕T0 with T−1
1 (0) ⊆ Tn(X1) , Tn

0 = 0 . (6.10)

7. Lomonosov

Suppose Y ⊆ X is a (closed) subspace, with corresponding quotient X/Y , and
consider maps U : X/Y → Y : then, with S = JYUKY : X → X ,

TY ⊆ Y =⇒ STS = 0. (6.1)
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This is clear from (0.3):

STS = JYUKY TJYUKY = JYUKYJY TYUKY = 0.

Naturally (6.1) is rather trivial if either Y = O or Y = X . Lomonosov’s Lemma ([10]
Lemma 8.22) says that if a subalgebra A ⊆ B(X) has no non trivial (closed) invariant
subspaces and if 0 
= K ∈ K(X) ⊆ B(X) is a non trivial compact operator then

∃R ∈ A : (I +RK)−1(0) 
= {0}. (6.2)

This applies, if T ∈ B(X) , to each of the algebras

Alg(T ); Holo(T ); comm2(T ); comm(T ). (6.3)

Garimella, Hrynkiv and Sourour ([3] Theorem 2.2) have a sort of converse to this:

THEOREM 7. If A ⊆ B(X) has a non trivial invariant subspace Y and if T ∈ A
satisfies

0 
∈ cvx σ(T ), (6.4)

then there is S ∈ B(X) for which

dim(ST +TS)(X) = 1 (6.5)

and
R ∈ A =⇒ I +RS ∈ B(X)−1. (6.6)

Proof. By a little cosmetic surgery [3] we can arrange that the spectrum of T lies
in the left half plane,

σ(T ) ⊆ {Re(z) < 1},
which ([10] Theorem 0.8) implies the same for the spectrum of the restriction TY and
the quotient T ′

Y , which in turn means that the multiplications LTY and −RT ′
Y

have dis-
joint spectra. Now some joint spectral theory ([10] Theorem 0.12; [4] Theorem 11.6.5)
guarantees that the mapping

U → TYU +UT ′
Y (BL(X/Y,Y ) → BL(X/Y,Y )

is invertible. Thus if V ∈ BL(X/Y,Y ) is arbitrary then there is U ∈ BL(X/Y,Y ) for
which V = TYU +UT ′

Y , and provided Y is non trivial we can, using the Hahn-Banach
theorem, arrange that V is of rank 1 : now we take

S = JYUKY . (6.7)

Evidently ST +TS = JYVKY is of rank 1, giving (6.5), while by (6.1)

R ∈ A =⇒ (RS)2 = 0, (6.8)

giving invertibility (6.6) �
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Conversely ([3] Theorem 2.3) the conditions (6.5) and (6.6) guarantee that T ∈
B(X) has a non trivial invariant subspace: remark that

S =
∫ ∞

t=0
etT (ST +TS)etT dt (6.9)

is compact. Thus if T ∈ A without a non trivial invariant subspace then (6.2) will apply,
contradicting (6.6).
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