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STRONG COMMUTATIVITY PRESERVING

MAPS ON TRIANGULAR RINGS

XIAOFEI QI AND JINCHUAN HOU

(Communicated by N.-C. Wong)

Abstract. Let U = Tri(A ,M ,B) be a triangular ring. It is shown, under some mild assump-
tion, that every surjective strong commutativity preserving map Φ : U →U (i.e. [Φ(T ),Φ(S)]=
[T,S] for all T,S ∈ U ) is of the form Φ(T ) = ZT + f (T ) , where Z is in Z (U ) , the center
of U , Z2 = I and f is a map from U into Z (U ) . As an application, a characterization of
general surjective maps that preserve the strong commutativity on the nest algebras of Banach
space operators is given.

1. Introduction

Let R be a ring. Then R is a Lie ring under the Lie product [A,B] = AB−BA.
Recall that a map Φ from R into itself preserves commutativity if, for any A,B ∈
R , [Φ(A),Φ(B)] = 0 whenever [A,B] = 0. The problem of characterizing linear (or
additive) maps preserving commutativity had been studied intensively on various rings
and algebras (ref, for eg., [3, 5, 7] and the references therein).

In [1], Bell and Daif gave the conception of strong commutativity preserving maps.
A map Φ is strong commutativity preserving on R if [Φ(T ),Φ(S)] = [T,S] for all
T,S ∈ R . Note that a strong commutativity preserving map must be commutativity
preserving, but the inverse is not true generally. Bell and Daif [1] proved that R must
be commutative if R is a prime ring and R admits a derivation or a non-identity
endomorphism which is strong commutativity preserving on a right ideal of R . Brešar
and Miers in [4] proved that every additive map that is strong commutativity preserving
on a semiprime ring R is of the form A �→ λA + μ(A) , where λ ∈ C , the extended
centroid of R , λ 2 = 1 and μ : R → C is an additive map. Recently, Lin and Liu in
[9] obtained a similar result on a noncentral Lie ideal of a prime ring.

In recent years, more and more mathematicians are interested in discussing the
general preserver problems (see [8, 10, 11, 14, 15]). Šemrl in [15] gave a characteriza-
tion of general commutativity preserving maps on matrix algebras Mn(C) . Let X be
a Banach space over F with dimension at least 2, where F is C or R in the infinite
dimensional case and F is C in the finite dimensional case. Let Φ : B(X) → B(X)
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be a surjective map. Dolinar, Du, Hou and Legiša in [8] proved that, if Φ satisfies
Lat[Φ(A),Φ(B)] = Lat[A,B] (LatA denotes the lattice of all invariant subspaces under
A), then there exist two maps φ ,ψ : B(X) → F such that Φ(A) = φ(A)A+ψ(A)I for
every A ∈ B(X) , where φ(A) �= 0 if A is not a scalar operator. It is obvious that
strong commutativity preserving maps must preserve the lattice of Lie product. Hence,
by the result in [8] above one can obtain easily a characterization of general surjective
strong commutativity preserving maps on B(X) . More generally, Qi and Hou in [12]
proved that every surjective map on a prime ring R with a nontrivial idempotent that
preserves the strong commutativity has the form Φ(A) = αA + f (A) for all A ∈ R ,
where α ∈ {1,−1} and f is a map from R into its center.

The purpose of this paper is to continue studying this topic and to give a char-
acterization of general surjective strong commutativity preserving maps on triangular
rings.

Similar to the definition of triangular algebras (see [6]), one can introduce a con-
ception of triangular rings. Let A and B be unital rings, and M be a (A ,B)-
bimodule, which is faithful as a left A -module and also as a right B -module, that is,
for any A ∈ A and B ∈ B , AM = MB = {0} imply A = 0 and B = 0, respectively.
The ring

U = Tri(A ,M ,B) =
{(

A M
0 B

)
: A ∈ A ,M ∈ M ,B ∈ B

}

under the usual matrix operations will be called a triangular ring. It is easily checked
that the center Z (U ) of U coincides with the set{(

A 0
0 B

)
∈ U : A ∈ Z (A ),B ∈ Z (B) and AM = MB for all M ∈ M

}
.

We call the idempotent element P =
(

IA 0
0 0

)
the standard idempotent in the triangular

ring U . Let Q = I−P =
(

0 0
0 IB

)
, where I , IA and IB are units of U , A and B ,

respectively. In addition, M is said to be loyal if, for any A ∈ A , B ∈ B , AMB = 0
implies A = 0 or B = 0 (see [2]). Obviously, each loyal (A,B)-bimodule M is faithful
as a left A-module and also as a right B-module.

Let A and B be unital rings with A or B noncommutative, and M a loyal
(A ,B)-bimodule. Let U = Tri(A ,M ,B) be the triangular ring and P the standard
idempotent of it. Assume that Φ : U → U is a surjective map. In this paper, we
prove that, if U satisfies PZ (U )P = Z (PU P) and QZ (U )Q = Z (QU Q) , then
Φ is strong commutativity preserving if and only if there exist some nonzero element
Z ∈ Z (U ) with Z2 = I and a map f : U → Z (U ) such that Φ(T ) = ZT + f (T )
for all T ∈ U (Theorem 2.1). By using of this result, we give a characterization of
nonlinear surjective strong commutativity preserving maps on nest algebras of Banach
space operators. Let N be a nontrivial nest on a real or complex Banach space X
of dimension � 3. Assume that N has a nontrivial complemented element. Let Φ :
AlgN → AlgN be a nonlinear surjective map. We show that Φ preserves the strong
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commutativity if and only if there exists a nonlinear functional f of AlgN such that
Φ(T ) = T + f (T )I for all T ∈ AlgN or Φ(T ) = −T + f (T )I for all T ∈ AlgN
(Theorems 2.2–2.3).

2. Main results and proofs

In this section, we consider the question of characterizing general strong commu-
tativity preserving maps on triangular rings. The following is our main result.

THEOREM 2.1. Let A and B be unital rings with A or B noncommutative,
and M a loyal (A ,B)-bimodule. Let U = Tri(A ,M ,B) be the triangular ring and
P the standard idempotent of it. Assume that U satisfies PZ (U )P = Z (PU P) and
QZ (U )Q = Z (QU Q) . Then a surjective map Φ : U → U is strong commutativity
preserving if and only if there exist a map f : U → Z (U ) and a nonzero element
Z ∈ Z (U ) with Z2 = I such that Φ(T ) = ZT + f (T ) for all T ∈ U .

As an application of Theorem 2.1, we get a characterization of nonlinear surjective
maps that preserve the strong commutativity on nest algebras.

Recall that a nest N on a Banach space X is a collection of closed (under norm
topology) subspaces of X containing {0} and X , which is a chain under the inclusion
relation, and is closed under the formation of arbitrary closed linear span (denote by

∨
)

and intersection (denote by
∧

). The nest algebra associated to the nest N , denoted by
AlgN , is the weakly closed operator algebra consisting of all operators that leave N
invariant, i.e.,

AlgN = {T ∈ B(X) : TN ⊆ N for all N ∈ N }.
When N �= {0,X}, we say that N is non-trivial. If X is a Hilbert space, then ev-
ery N ∈ N corresponds to a projection PN satisfying PN = P∗

N = P2
N and N = PN(X) .

However, it is not always the case for general Banach space nests there are idempotent
operators PN ∈ B(X) such that PN(X) = N because N ∈ N may be not comple-
mented. Note that, AlgN = B(X) if the nest N is trivial. Since B(X) is prime and
the general surjective maps that preserve the strong commutativity on prime rings were
characterized in [12], we always assume that the nests are nontrivial in this paper.

THEOREM 2.2. Let X be an infinite dimensional Banach space over the real or
complex field F . Let N be a nest on X which contains a nontrivial element comple-
mented in X . Let Φ : AlgN → AlgN be a surjective map. Then Φ preserves the
strong commutativity if and only if there exist a map f : AlgN → F and a nonzero
scalar λ with λ ∈ {−1,1} such that Φ(T ) = λT + f (T )I for all T ∈ AlgN .

Proof. By the assumption on the nest, there is a non-trivial element N1 ∈N such
that N1 is complemented in X . Thus, there exists an idempotent operator E with
ran(E) = N1 ∈N . It is clear that E ∈AlgN . Now, by the proof of [13, Theorem 2.2],
AlgN is a triangular algebra with standard idempotent E and meets all hypotheses of
Theorem 2.1. Note that Z (AlgN ) = FI . Therefore, Φ preserves the strong commu-
tativity if and only if it is of the form Φ(T ) = λT + f (T )I for all T ∈ AlgN , where
λ is a scalar with λ 2 = 1 and f is a general functional. �
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We remark that, if X is a Hilbert space, then the assumption in Theorem 2.2 that
there exists a non-trivial complemented element in N is superfluous.

For the case that X is finite dimensional, it is clear that every nest algebra on X is
isomorphic to an upper triangular block matrix algebra. Let Mn(F) denote the algebra
of all n× n matrices over F . Recall that an upper triangular block matrix algebra
T = T (n1,n2, . . . ,nk) is a subalgebra of Mn(F) consisting of all n× n matrices of
the form

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1k

0 A22 · · · A2k
...

...
. . .

...
0 0 · · · Akk

⎞
⎟⎟⎟⎠ ,

where {n1,n2, · · ·,nk} is a finite sequence of positive integers satisfying 0 < ni < n for
each i = 1,2, . . . ,k , n1 +n2 + · · ·+nk = n and Ai j ∈Mni×n j(F) , the space of all ni×n j

matrices over F .
For the upper triangular block matrix algebra, we have

THEOREM 2.3. Let F be the real or complex field and n be a positive integer
greater than 2. Let T = T (n1,n2, . . . ,nk) ⊆ Mn(F) be an upper triangular block
matrix algebra and Φ : T → T be a surjective map. Then Φ preserves the strong
commutativity if and only if there exist a map f : T → F and a nonzero scalar λ with
λ ∈ {−1,1} such that Φ(T ) = λT + f (T )I for all T ∈ T .

Now, let us start the proof of Theorem 2.1.
As every map of the form T → ZT + f (T ) preserves the strong commutativity,

where Z is a central element with Z2 = I and f is a map into the center, to prove
Theorem 2.1, we need only check the “only if” part. We will do this by checking
several lemmas.

In the sequel, we always assume that Φ : U → U is a surjective map that pre-
serves the strong commutativity and A is noncommutative (for the case that B is
noncommutative, the proof is similar).

LEMMA 2.4. Φ(Z (U )) = Z (U ) .

Proof. Let Z be an arbitrary element in Z (U ) . Then for any T ∈ U , we have
[Φ(Z),Φ(T )] = [Z,T ] = 0, which implies that Φ(Z) ∈ Z (U ) since Φ is surjective.
Hence Φ(Z (U )) ⊆ Z (U ) . On the other hand, there is some T ∈ U such that
Φ(T ) = Z as Φ is surjective. Then we have [T,S] = [Z,Φ(S)] = 0 for all S∈U , which
entails that T ∈ Z (U ) . Hence Z (U ) ⊆Φ(Z (U )) , completing the proof. �

LEMMA 2.5. For any T,S∈U , there exists an element ZT,S ∈Z (U ) depending
on T,S such that Φ(T +S) = Φ(T )+Φ(S)+ZT,S .

Proof. For any T,S,R ∈ U , we have

[Φ(T +S)−Φ(T)−Φ(S),Φ(R)]
= [Φ(T +S),Φ(R)]− [Φ(T),Φ(R)]− [Φ(S),Φ(R)]
= [T +S,R]− [T,R]− [S,R]= 0.
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By the surjectivity of Φ and the above equation, we obtain that ZT,S = Φ(T + S)−
Φ(T )−Φ(S) ∈ Z (U ) . �

LEMMA 2.6. There exist a nonzero element Z ∈ Z (U ) and an element Z′ ∈
Z (U ) such that Φ(P) = ZP+Z′.

Proof. For any T ∈ U , it is easy to check that [P, [P, [P,T ]]] = [P,T ] . So we have
[P, [P, [Φ(P),Φ(T )]]] = [Φ(P),Φ(T )] . It follows from the surjectivity of Φ that

[P, [P, [Φ(P),T ]]] = [Φ(P),T ] for all T ∈ U .

Thus we obtain that,

PΦ(P)T −PTΦ(P)−2PΦ(P)TP+2PTΦ(P)P
+Φ(P)TP−TΦ(P)P = Φ(P)T −TΦ(P) (1)

holds for all T ∈ U . Taking T = QSQ in Eq. (1), one gets PΦ(P)QSQ =Φ(P)QSQ−
QSQΦ(P) , that is, QΦ(P)QSQ = QSQΦ(P)Q holds for all S ∈ U . This implies that

QΦ(P)Q =
(

0 0
0 ZB

)
for some ZB ∈ Z (B). (2)

Similarly, letting T = PSP in Eq. (1), we get

PΦ(P)P =
(

ZA 0
0 0

)
for some ZA ∈ Z (A ). (3)

For ZB ∈ Z (B) , by the assumption on Z (U ) that QZ (U )Q = Z (QU Q) , there

exists Z1 =
(

Z′
A 0
0 Z′

B

)
∈Z (U ) such that QZ1Q =

(
0 0
0 ZB

)
. It follows that Z′

B = ZB .

Thus Z1 =
(

Z′
A 0
0 ZB

)
∈ Z (U ) and

Φ(P) =
(

ZA −Z′
A 0

0 0

)
+Z1 +PΦ(P)Q.

Note that, by Lemma 2.4 and Lemma 2.5, Φ(I) ∈ Z (U ) and Φ(I)−Φ(P)−Φ(Q) ∈
Z (U ) . So there exists an element Z0 ∈ Z (U ) such that

Φ(Q) = Z0−
(

Z′
A −ZA 0

0 0

)
−PΦ(P)Q. (4)

On the other hand, it is easily seen that [Q, [Q,T ]] = [Q,T ] for all T ∈ U . It
follows that [Q, [Φ(Q),Φ(T )]] = [Φ(Q),Φ(T )] , and so

[Q, [Φ(Q),S]] = [Φ(Q),S] for all S ∈ U .
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Replacing S by PSP+QSQ in the above equation, we get

PΦ(Q)PSP−PSPΦ(Q)P+QΦ(Q)QSQ
+2PΦ(Q)QSQ−2PSPΦ(Q)Q−QSQΦ(Q)Q= 0.

Combining the equation with Eq. (4), we obtain PSPΦ(P)Q = PΦ(P)QSQ . So

SPΦ(P)Q = (PSP+PSQ+QSQ)PΦ(P)Q = PSPΦ(P)Q
= PΦ(P)QSQ = PΦ(P)Q(PSP+PSQ+QSQ)
= PΦ(P)QS

holds for all S∈U , which implies that PΦ(P)Q∈Z (U ) . This forces that PΦ(P)Q =
0. So

Φ(P) =
(

ZA −Z′
A 0

0 0

)
+Z1.

For ZA−Z′
A ∈Z (A ) , by the assumption on Z (U ) that PZ (U )P =Z (PU P) , there

must exist Z2 =
(

Z′′
A 0
0 Z′′

B

)
∈ Z (U ) such that PZ2P =

(
ZA −Z′

A 0
0 0

)
. So ZA −Z′

A =

Z′′
A . Now let Z = Z2 and Z′ = Z1 . We obtain

Φ(P) =
(

ZA −Z′
A 0

0 0

)
+Z1 =

(
Z′′

A 0
0 Z′′

B

)
P+Z′ = ZP+Z′.

Finally, we still need to prove that Z �= 0. If, on the contrary, Z = 0, then
Φ(P) = Z′ . By Lemma 2.4, we get P ∈ Z (U ) , which is impossible. The proof is
complete. �

LEMMA 2.7. Let Z be the element as in Lemma 2.6. The following statements
are true.

(1) Z2 = I .
(2) For any T ∈ U , there exists ZPTQ ∈ Z (U ) such that

Φ(PTQ) = ZPTQ+ZPTQ.

(3) For any T ∈ U , there exists ZPTP ∈ Z (U ) such that

Φ(PTP) = ZPTP+ZPTP.

(4) For any T ∈ U , there exists ZQTQ ∈ Z (U ) such that

Φ(QTQ) = ZQTQ+ZQTQ.

Proof. Take any T ∈ U . We will prove the lemma by three steps.
Step 1. Z2 = I and there exists ZPTP ∈Z (U ) such that Φ(PTP)=ZPTP+ZPTP ,

that is, the statements (1) and (3) hold.
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Since [Φ(P),Φ(PTP)] = [P,PTP] = 0, by Lemma 2.6, we get

ZPΦ(PTP)Q = 0. (5)

Taking any S ∈ U , by the surjectivity of Φ , there exists some element X ∈ U
such that Φ(X) = PSQ . Then we have [Φ(P),PSQ] = [Φ(P),Φ(X)] = [P,X ] . By
Lemma 2.6, we get

ZPSQ = PXP+PXQ−PXP = PXQ. (6)

Note that [Φ(PTP),PSQ] = [Φ(PTP),Φ(X)] = [PTP,X ] , that is,

PΦ(PTP)PSQ−PSQΦ(PTP)Q = PTPXP+PTPXQ−PXPTP. (7)

Combining Eq. (7) with Eq. (6), we get

PΦ(PTP)PSQ−PSQΦ(PTP)Q−ZPTPSQ = PTPXP−PXPTP,

which implies that PΦ(PTP)PSQ−PSQΦ(PTP)Q−ZPTPSQ = 0, that is,

(PΦ(PTP)P−ZPTP)PSQ = PSQ(QΦ(PTP)Q) for all S ∈ U . (8)

Now let us prove that there exist ZPTP(A) ∈ Z (A ) and ZPTP(B) ∈ Z (B) such
that

PΦ(PTP)P−ZPTP =
(

ZPTP(A) 0
0 0

)
and QΦ(PTP)Q =

(
0 0
0 ZPTP(B)

)
.

In fact, let PΦ(PTP)P−ZPTP =
(

A0 0
0 0

)
, PSQ =

(
0 M
0 0

)
and QΦ(PTP)Q =

(
0 0
0 B0

)
.

By a direct matrix computation and using Eq. (8), we get

A0M = MB0 for all M ∈ M . (9)

Thus, for any A ∈ A , we have

(AA0−A0A)M = AA0M−A0(AM) = AMB0−AMB0 = 0.

Since M is loyal, M is a faithful left A -module. Hence, the above equation im-
plies A0 ∈ Z (A ) . Write A0 = ZPTP(A) . By the assumption PZ (U )P = Z (PU P) ,

there exists Z1 =
(

ZA 0
0 ZB

)
∈ Z (U ) such that PZ1P =

(
ZPTP(A) 0

0 0

)
, and so ZA =

ZPTP(A) . Since

(
ZPTP(A) 0

0 ZB

)
∈ Z (U ) , we have

ZPTP(A)M = MZB for all M ∈ M . (10)

This, together with Eq. (9), yields MZB = MB0 . Note that M is also a faithful right
B -module. It follows that ZB = B0 . So we can take ZPTP(B) = ZB = B0 .
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By Eq. (10), it is clear that ZPTP =
(

ZPTP(A) 0
0 ZPTP(B)

)
∈ Z (U ) . Hence we

achieve that
Φ(PTP) = ZPTP+ZPTP +PΦ(PTP)Q. (11)

Finally, we show that Z2 = I and PΦ(PTP)Q = 0. Indeed, for any PTP,PSP ∈
PU P , since Φ preserves the strong commutativity, we have

[PTP,PSP] = [Φ(PTP),Φ(PSP)] = [ZPTP+PΦ(PTP)Q,ZPSP+PΦ(PSP)Q]
= Z2[PTP,PSP]+ZPTPΦ(PSP)Q−ZPSPΦ(PTP)Q,

which implies that
(Z2 − I)[PTP,PSP] = 0. (12)

Since A is noncommutative, there exist T0,S0 ∈U such that [PT0P,PS0P] �= 0. Write

U0 = [PT0P,PS0P] =
(

A′
0 0

0 0

)
and Z2 − I =

(
Z′

A 0
0 Z′

B

)
. If Z2 − I �= 0, then Z′

A �=

0. By Eq. (12), we have

(
Z′

A 0
0 Z′

B

)(
A′

0 0
0 0

)
=
(

Z′
AA′

0 0
0 0

)
= 0. Hence Z′

AA′
0 = 0.

For nonzero Z′
A , by the assumption PZ (U )P = Z (PU P) , there exists a nonzero

Z′′ =
(

Z′′
A 0
0 Z′′

B

)
∈ Z (U ) such that PZ′′P =

(
Z′

A 0
0 0

)
. So Z′

A = Z′′
A . It follows that

Z′
AM = Z′′

AM = MZ′′
B for all M ∈ M . Then we get

0 = Z′
AA′

0M = A′
0Z

′
AM = A′

0MZ′′
B.

Since Z′′
B �= 0, we must have A′

0 = 0 as M is loyal. Thus U0 = 0, a contradiction.
Therefore, Z2 = I . It follows from Eq. (5) that PΦ(PTP)Q = 0. Thus, by Eq. (11), we
have Φ(PTP) = ZPTP+ZPTP . So the statements (1) and (3) are true.

Step 2. There exists ZQTQ ∈ Z (U ) such that Φ(QTQ) = ZQTQ+ZQTQ , that is,
the statement (4) holds.

By a similar argument to that of Step 1, one can easily check that Step 2 is true.
Step 3. There exists ZPTQ ∈ Z (U ) such that Φ(PTQ) = ZPTQ+ZPTQ , that is,

the statement (2) holds.
For any PSP ∈ PU P , by Step 1, we have

[PSP,PTQ] = [Φ(PSP),Φ(PTQ)] = [ZPSP,Φ(PTQ)] = [PSP,ZΦ(PTQ)],

that is, [PSP,ZΦ(PTQ)−PTQ] = 0. Since S is arbitrary, it follows that

ZΦ(PTQ)−PTQ =
(

Z′
PTQ(A) 0

0 BPTQ

)
(13)

for some Z′
PTQ(A) ∈ Z (A ) and BPTQ ∈ B .

Similarly, by Step 2, one can prove that

ZΦ(PTQ)−PTQ =
(

APTQ 0
0 Z′

PTQ(B)

)
(14)
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for some APTQ ∈ A and Z′
PTQ(B) ∈ Z (B) . Comparing Eq. (13) with Eq. (14), and

noting that Z2 = I , one gets

Φ(PTQ) = ZPTQ+
(

Z′′
PTQ(A) 0

0 Z′′
PTQ(B)

)
,

where Z′′
PTQ(A) ∈ Z (A ) and Z′′

PTQ(B) ∈ Z (B) . For Z′′
PTQ(A) , by the assumption

PZ (U )P= Z (PU P) , there exists a nonzero ZPTQ =
(

ZPTQ(A) 0
0 ZPTQ(B)

)
∈Z (U )

such that PZPTQP =
(

Z′′
PTQ(A) 0

0 0

)
, which implies that Z′′

PTQ(A) = ZPTQ(A) . So

Φ(PTQ) = ZPTQ+ZPTQ +
(

0 0
0 fB(PTQ)

)
, (15)

where fB(PTQ) = Z′′
PTQ(B)−ZPTQ(B) . To complete the proof of the step, we have to

show that fB(PTQ) = 0.

In fact, for any PTQ,PSQ∈PU P , write PTQ =
(

0 MT

0 0

)
and PSQ=

(
0 MS

0 0

)
.

By Eq. (15), we have

0 = [PSQ,PTQ] = [Φ(PSQ),Φ(PTQ)] =
(

0 MS fB(PTQ)−MT fB(PSQ)
0 0

)
,

and so
MS fB(PTQ)−MT fB(PSQ) = 0 for all MS, MT ∈ M . (16)

By Eq. (16), to prove fB(PTQ) = 0 is equivalent to show the following assertion.

ASSERTION. Let f : M → B be any map satisfying M1 f (M2)−M2 f (M1) = 0
for all M1, M2 ∈ M . If A is noncommutative and M is a loyal (A,B)-bimodule,
then f (M) = 0 for all M ∈ M .

Taking any A1,A2 ∈ A , by assumption, we get

A1A2M1 f (M2) = A1M2 f (A2M1) = A2M1 f (A1M2)
= A2A1M2 f (M1) = A2A1M1 f (M2).

That is, (A1A2 −A2A1)M1 f (M2) = 0 for all M1 ∈ M . Since A is noncommutative,
there exist two elements A1 and A2 such that A1A2 −A2A1 �= 0. It follows from the
loyalty of M that f (M2) = 0. Since M2 is arbitrary, the assertion is true.

Therefore, the statement (2) is true. �

LEMMA 2.8. There exists a map f : U → Z (U ) such that Φ(T ) = ZT + f (T )
for all T ∈ U , here Z is the element as in Lemma 2.6. Therefore, the “only if” part of
the theorem is true.

Proof. By Lemma 2.7(1), we have Z2 = I . Now, for any T ∈ U , by Lemma 2.7,
we get

Φ(PTP)+Φ(PTQ)+Φ(QTQ)
= ZPTP+ZPTP +ZPTQ+ZPTQ +ZQTQ+ZQTQ

= ZT +(ZPTP +ZPTQ +ZQTQ).
(17)
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On the other hand, by Lemma 2.5, there exists ZT ∈ Z (U ) such that

Φ(T )− (Φ(PTP)+Φ(PTQ)+Φ(QTQ))
= Φ(PTP+PTQ+QTQ)−Φ(PTP)−Φ(PTQ)−Φ(QTQ) = ZT .

(18)

Define a map f : U →Z (U ) by f (T ) = ZPTP +ZPTQ +ZQTQ +ZT for each T ∈U .
Then by Eqs.(17)-(18), we get Φ(T ) = ZT + f (T ) , completing the proof. �

REMARK 2.9. Before concluding the paper, we remark that the condition of The-
orem 2.1 that A or B is noncommutative can not be deleted simply. To see this we
give two counterexamples here.

A most simple example is 2× 2 upper triangular matrix algebras. Let T =
T (1,1) be the 2× 2 upper triangular matrix algebra. It is clear that A = B = C

is commutative and that the center Z (T ) = FI . For any λ ,γ ∈ F with λ �= 0, let
Φ : T → T be the bijective linear map defined by

Φ(
(

a11 a12

0 a22

)
) =

(
λa11 + γa12

1
λ a12

0 λa22

)
= λ

(
a11 a12

0 a22

)
+
(
γa12 ( 1

λ −λ )a12

0 0

)
.

It is easily checked that Φ preserves the strong commutativity. However, Φ is not of
the form stated in Theorem 2.1.

A more complicated example is the following. Let A = B = {Mφ : φ ∈L∞[0,1]}⊂
B(L2[0,1]) and M = B(L2[0,1]) . Here Mφ denotes the operator defined by Mφ ξ =
φξ for any ξ ∈ L2[0,1] and B(L2[0,1]) denotes the algebra of all bounded linear op-
erators acting on L2[0,1] . Let λ ∈ F be a nonzero scalar such that λ−1 �= λ . Let
Φ : Tri(A ,M ,B) → Tri(A ,M ,B) be the bijective linear map defined by

Φ
((

Mφ W
0 Mψ

))
=
(
λMφ λ−1W

0 λMψ

)
.

Note that [(
λMφ1 λ

−1W1

0 λMψ1

)
,

(
λMφ2 λ

−1W2

0 λMψ2

)]

=
(

0 Mφ1W2 +W1Mψ2 −Mφ2W1−W2Mψ1

0 0

)

=
[(

Mφ1 W1

0 Mψ1

)
,

(
Mφ2 W2

0 Mψ2

)]

holds for any Mφi ∈ A , Mψi ∈ B and Wi ∈ M , i = 1,2. Therefore Φ preserves the
strong commutativity. We’ll check that Φ is not of the form in Theorem 2.1. It is clear
that the center

Z = Z (Tri(A ,M ,B)) =
{(

Mμ 0
0 Mμ

)
: μ ∈ F

}
= FI.
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If Φ has the form in Theorem 2.1, then there exist a μ0 ∈ F and a map h : A ×M ×
B → F such that(

λMφ λ−1W
0 λMψ

)

=
(

Mμ0 0
0 Mμ0

)(
Mφ W
0 Mψ

)
+

(
Mh(Mφ ,W,Mψ ) 0

0 Mh(Mφ ,W,Mψ )

)

=

(
Mμ0Mφ +Mh(Mφ ,W,Mψ ) Mμ0W

0 Mμ0Mψ +Mh(Mφ ,W,Mψ )

)
.

It follows that μ0 = λ−1 and (λ − λ−1)Mφ = (λ − λ−1)Mψ holds for all φ ,ψ ∈
L∞[0,1] , which is impossible.
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[15] P. ŠEMRL, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged), 71 (2005), 781–819.

(Received October 12, 2010) Xiaofei Qi
Department of Mathematics

Shanxi University
Taiyuan 030006

P. R. China
e-mail: qixf1980@126.com

Jinchuan Hou
Department of Mathematics

Taiyuan University of Technology
Taiyuan 030024

P. R. China
and

Department of Mathematics
Shanxi University

Taiyuan 030006
P. R. China

e-mail: jinchuanhou@yahoo.com.cn

Operators and Matrices
www.ele-math.com
oam@ele-math.com


