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Abstract. An n -by-n sign pattern A is said to be potentially power-positive if there exists some
A ∈ Q(A ) such that A is power-positive, i.e., Ak > 0 for some positive integer k . Catral, Hog-
ben, Olesky and van den Driessche [Sign patterns that require or allow power-positivity, Elec-
tron. J. Linear Algebra, 19 (2010), 121-128] investigated the sign patterns that require or allow
power-positivity. It has been shown that an n -by-n sign pattern A is potentially power-positive
if and only if either A or −A is potentially eventually positive. But as the identification of suf-
ficient and necessary conditions for potentially eventually positive sign patterns remains open,
the characterization of potentially power-positive sign patterns is still open. In this paper, we
introduce the minimal potentially power-positive sign patterns to classify the potentially power-
positive sign patterns. Some properties of minimal potentially power-positive sign patterns are
presented. It is shown that for an n -by-n sign pattern A with at most n+ 1 negative entries,
A is minimal potentially power-positive if and only if either A or −A is minimal potentially
eventually positive. Finally, we classify the minimal potentially power-positive sign patterns of
order n � 3 .

1. Introduction

In qualitative and combinatorial matrix theory, a methodology based on the signs
of the entries of a matrix is often quite useful in study of some properties of matrices.
A sign pattern is a matrix A = [ai j] with entries in {+,−,0} . For a real matrix B ,
sgn(B) is the sign pattern whose entries are the signs of the corresponding entries in
B . For an n -by-n sign pattern A , the qualitative class of A , denoted by Q(A ) , is
defined as

Q(A ) = {B = [bi j] ∈ Mn(R)| sgn(bi j) = ai j, for all i , j}.

A subpattern of an n -by-n sign pattern A = [ai j] is an n -by-n sign pattern B = [bi j]
such that bi j = 0 whenever ai j = 0; if, in addition, B �= A , then B is a proper
subpattern of A . A permutation pattern is a square sign pattern matrix with exactly
one entry in each row and column equal to + , and the remaining entries equal to 0. A
product of the form PTA P , where P is a permutation pattern and A is a sign pattern
matrix of the same order as P , is called a permutation similarity. Two sign patterns
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A and B are equivalent if A = PTBP , or A = PTBT P, where P is a permutation
pattern and PT is the transpose of P . A pattern A is reducible if there is a permutation
matrix P such that

PTA P =
(

A11 0
A21 A22

)
,

where A11 and A22 are square matrices of order at least one. A pattern is irreducible
if it is not reducible. For a sign pattern A , we define the positive part of A to be
A + = [a+

i j ] and the negative part of A to be A − = [a−i j ] , where

a+
i j =

{
+ if ai j = +,

0 if ai j = 0 or −,
and a−i j =

{
− if ai j = −,

0 if ai j = 0 or +.

For a real matrix, the positive part and the negative part are defined similarly.
We now introduce some graph theoretical concepts (see, for example, [2, 4, 9,

11]), since graph theoretical methods are often useful in the study of sign patterns.
The signed digraph of an n -by-n sign pattern A = [ai j] , denoted by Γ(A ) , is

the digraph with a vertex set {1,2, · · · ,n} where (i, j) is an arc (bearing ai j as its sign)
if and only if ai j �= 0. A (directed) simple cycle of length k is a sequence of k arcs
(i1, i2),(i2, i3), · · · ,(ik, i1) such that the vertices i1, · · · , ik are distinct.

A digraph D = (V,E) is primitive if it is strongly connected and the greatest com-
mon divisor of the lengths of its cycles is 1. It is well known that a digraph D = (V,E)
is primitive if and only if there exists a natural number k such that for all Vi ∈ V ,
Vj ∈V , there is a walk of length k from Vi to Vj . A sign pattern A is primitive if its
signed digraph Γ(A ) is primitive.

We say that a sign pattern A requires a property P referring to real matrices
if every real matrix A ∈ Q(A ) has the property P and that A allows P or A is
potentially P if there exists at least one A ∈ Q(A ) that has the property P .

In the last few years, there has been an increasing interest in requiring or allowing
problems of sign patterns; see, e.g., [1, 5-8, 10]. In [6], Ellison, Hogben and Tsat-
someros studied the sign patterns that require eventual positivity or require eventual
nonnegativity. Sign patterns that allow eventual positivity have been studied in [1]. Sev-
eral necessary or sufficient conditions for an n -by-n sign pattern to be potentially even-
tually positive have been established. A characterization of potentially power-positive
sign patterns was given in [5] by Catral, Hogben, Olesky and van den Driessche. It
has been shown that the sign pattern A is potentially power-positive if and only if A
or −A is potentially eventually positive. However, since the identification of suffi-
cient and necessary conditions for an n -by-n sign pattern to allow eventual positivity
remains open, the characterization of potentially power-positive sign patterns is also
open.

In this paper, we consider the minimal potentially power-positive sign patterns.
This paper is organized as follows: Definitions and notations are given in the end of
Section 1. In Section 2, some properties of minimal potentially power-positive sign
patterns are presented. For an n -by-n sign pattern A with at most n + 1 negative
entries, it can be shown that A is minimal potentially power-positive if and only if
either A or −A is minimal potentially eventually positive. Furthermore, for n � 3,
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it can be shown that the condition that A has at most n + 1 negative entries can be
removed. In Section 3, we classify the minimal potentially power-positive sign patterns
of order n � 3. Conclusions and some open questions are given in Section 4.

In order to state our results clearly, we need the following definitions.

DEFINITION 1.1. [6, 12] An n -by-n real matrix A is said to be eventually posi-
tive if there exists a positive integer k0 such that Ak > 0 for all k � k0 .

DEFINITION 1.2. [3, 5] An n -by-n real matrix A is said to be power-positive if
there exists a positive integer k such that Ak > 0.

DEFINITION 1.3. [1] An n -by-n sign pattern A is said to be potentially even-
tually positive (PEP) if there exists some A ∈ Q(A ) that is eventually positive.

DEFINITION 1.4. [5] An n -by-n sign pattern A is said to be potentially power-
positive (PPP) if there exists some A ∈ Q(A ) that is power-positive.

Next, we consider the minimal PEP and PPP sign patterns.

DEFINITION 1.5. An n -by-n sign pattern A is said to be minimal potentially
eventually positive (MPEP) if A is PEP and no proper subpattern of A is PEP.

DEFINITION 1.6. An n -by-n sign pattern A is said to be minimal potentially
power-positive (MPPP) if A is PPP and no proper subpattern of A is PPP.

2. Some properties of MPPP sign patterns

We begin this section by quoting some fundamental results which were stated
respectively in [1] and [5].

LEMMA 2.1. [1, Theorem 2.1] Let A be an n-by-n sign pattern. If the signed
digraph Γ(A +) of its positive part is primitive, then A is PEP.

LEMMA 2.2. [5, Theorem 3.1] The n-by-n sign pattern A is PPP if and only if
either A or −A is PEP.

For an n -by-n sign pattern A , identification of the sufficient and necessary con-
dition for A to be PEP is open. So, Lemma 2.2 does not characterize the PPP sign
patterns. The following lemma provides two sufficient conditions for an n -by-n sign
pattern A to be PPP.

LEMMA 2.3. [5, Theorem 3.2] If Γ(A +) or Γ(A −) is primitive, then A is
potentially power-positive.

The following example illustrates that the sufficient condition in Lemma 2.3 is not
a necessary condition for an n -by-n sign pattern A to be PPP.

EXAMPLE 2.4. The 3-by-3 sign pattern

A =

⎛
⎝+ − 0

+ 0 −
− + +

⎞
⎠
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is PPP, but neither Γ(A+) nor Γ(A−) is primitive. And the pattern

B =

⎛
⎝+ − 0

+ − −
− + +

⎞
⎠

is PPP with Γ(B−) primitive and Γ(B+) imprimitive.

Proof. A is PEP by Example 2.2 in [1] and is PPP by Lemma 2.2. A+ is re-
ducible, so Γ(A+) is not primitive. Since the greatest common divisor of lengths of
cycles in Γ(A−) is not 1, Γ(A−) is not primitive. A is a subpattern of B , hence, it
follows that B is also PEP and PPP. But the greatest common divisor of lengths of cy-
cles in Γ(B−) is 1 and Γ(B−) is strongly connected, so Γ(B−) is primitive. The fact
that Γ(B+) is not primitive follows from that Γ(B+) is not strongly connected. �

Next, we turn our attention to necessary conditions for MPPP sign patters.

THEOREM 2.5. Let A be an n-by-n sign pattern with n � 2 . If A is MPPP,
then the following statements hold:

(1) A is irreducible;
(2) Each row of A has at lest one nonzero;
(3) Each column of A has at lest one nonzero;
(4) The number of nonzero entries of A is not less than n+1 .

Proof. Assume that A is reducible. Then there exists a permutation pattern P

such that PTA P =
(

A11 0
A21 A22

)
with A11 and A22 being square. It follows that neither

PT AP nor −PTAP is PEP. Thus A is not PPP, which is a contradiction.
(2) and (3) follow readily from (1).
By Lemma 2.2 above and Corollary 4.5 in [1], The minimum number of nonzero

entries of A is not less than n+1. �
Next we consider some properties of MPPP sign patterns and some connections

between the MPPP sign patterns and MPEP sign patterns. The following result is obvi-
ous and we omit its proof here.

PROPOSITION 2.6. Let A be an n-by-n sign pattern. Then the following state-
ments are equivalent:

(1) A is MPPP;
(2) −A is MPPP;
(3) A T is MPPP;
(4) PTA P is MPPP, where P is an n-by-n permutation pattern.

THEOREM 2.7. Let A be an n-by-n (n � 2) sign pattern with at most n + 1
nonzero entries. Then A is PPP if and only if A is MPPP.

Proof. It is sufficient to show the necessity. If A is PPP and not MPPP, then there
exists a proper subpattern B such that B is PPP and has at most n nonzero entries.
So Theorem 2.5 is contradicted. Hence, A is MPPP. �
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EXAMPLE 2.8. The sign pattern

A =

⎛
⎝+ − 0

+ 0 −
− + +

⎞
⎠

is MPPP.

Proof. Example 2.4 shows that A is PPP. Next we show that A is the minimal
PPP. Let A be a PPP subpattern of A and let Ai j denote the (i, j) entry of A . We
complete this proof by showing that Ai j �= 0 for all i and j such that the (i, j) entry of
A is nonzero. If A11 = 0, then neither A nor −A is PEP by Theorem 6.4 in [1]. So A

is not PPP, which is a contradiction. Hence, A11 �= 0. A21 �= 0, A32 �= 0 and A33 �= 0
can be shown similarly. If A12 = 0 or A23 = 0, then A is reducible. By Theorem 2.5,
A is not PPP. So, A21 �= 0 and A32 �= 0. If A31 = 0, then A is a subpattern of the
following sign pattern

A
∗ =

⎛
⎝+ − 0

+ 0 −
0 + +

⎞
⎠

We note that neither A
∗ nor −A

∗ is PEP by Theorem 5.2 in [1]. Hence, A
∗ is not PPP.

It follows that no proper subpattern of A is PPP and A is MPPP. �
Next we establish some connections between the MPPP sign patterns and MPEP

sign patterns.

THEOREM 2.9. Let A be an n-by-n sign pattern. If A is MPPP, then either A
or −A is MPEP.

Proof. If A is MPPP, then either A or −A is PEP by Lemma 2.2. We complete
this proof by discussing the following two cases.

Case 1. If A is PEP, we claim that A must be MPEP. Assume that there exists a
PEP proper subpattern B of A . By Lemma 2.2, B is also PPP. Then the assumption
that A is MPPP is contradicted.

Case 2. If −A is PEP, we claim that −A must be MPEP. If there exists a PEP
proper subpattern B of −A . By Lemma 2.2, B is also PPP. We claim that −B
is PPP for Bk > 0 implies (−B)2k > 0 for some real matrix B ∈ Q(B) . We obtain
that −A is not MPPP. It follows that A is not MPPP by Proposition 2.6. This is a
contradiction. Thus, −A must be MPEP. �

THEOREM 2.10. Let A be an n-by-n sign pattern. If both A and −A are
MPEP, then A is MPPP.

Proof. Since A is MPEP, A is PPP. Assume that A is not MPPP. Then there
exists a proper subpattern B of A such that B is PPP. By Lemma 2.2 and the as-
sumption that A is MPEP, −B is PEP and PPP. Hence, −A is not MPPP since −B
is a proper subpattern of −A , which is a contradiction. So A is MPPP. �
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We doubt whether there exists a sign pattern A such that both A and −A are
MPEP. It is apparent from Section 3 that the order of such a sign pattern (if any) is
greater than 3.

THEOREM 2.11. Let A be an n-by-n sign pattern. If A contains at most n+1
negative entries, then A is MPPP if and only if either A or −A is MPEP.

Proof. The necessity is shown by Theorem 2.9. For the sufficiency, without loss
of generality assume that A is MPEP. Then A is PPP. Suppose A is not MPPP. Then
there exists a proper subpattern B of A such that B is PPP. Then −B is PEP for
A is MPEP. It is a contradiction for −B contains at most n positive entries. So A is
MPPP. �

3. Classification of MPPP sign patterns of order n � 3

In this section, we use results stated in Section 2 to classify the n -by-n MPPP sign
patterns of order n � 3. Following [1], we use the notation ? to denote one of 0,+,− ,
� to denote one of 0, − , and ⊕ to denote one of 0, + .

PROPOSITION 3.1. Let A be a 1-by-1 sign pattern, then the following statements
are equivalent:

(1) A is PPP;
(2) A = [+] or [−];
(3) A is MPPP.

Proof. Proposition 3.1 can be verified directly. �

THEOREM 3.2. Let A be a 2-by-2 sign pattern. Then A is MPPP if and only if
A is equivalent to (

+ +
+ 0

)
or

(− −
− 0

)
.

Proof. By Lemma 2.3, (
+ +
+ 0

)
and

(− −
− 0

)

are PPP. Since each of the above two sign patterns contains 3 nonzero entries,(
+ +
+ 0

)
and

(− −
− 0

)

are MPPP by Theorem 2.7. Conversely, suppose that a 2-by-2 sign pattern A is PPP.
Then A must contain at least 3 nonzero entries. Up to equivalence,

A =
(∗ ∗
∗ ?

)
and

(∗ ?
∗ ∗

)
,
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where ∗ denotes nonzero entries. By Lemma 2.2 above and Theorem 5.2 in [1], we
obtain that A is equivalent to (

+ +
+ ?

)
or

(− −
− ?

)
.

Since A is MPPP, the entry denoted by ? must be 0. It follows that A is equivalent to(
+ +
+ 0

)
or

(− −
− 0

)
. �

LEMMA 3.3. The 3-by-3 sign patterns A1 , A2 , A3 , A4 and A5 are MPPP,
where

A1 =

⎛
⎝+ + 0

+ 0 +
0 + 0

⎞
⎠ ,A2 =

⎛
⎝+ + +

+ 0 0
+ 0 0

⎞
⎠ ,A3 =

⎛
⎝ 0 + 0

+ 0 +
+ 0 0

⎞
⎠ ,

A4 =

⎛
⎝+ + 0

0 0 +
+ 0 0

⎞
⎠ ,A5 =

⎛
⎝+ − 0

+ 0 −
− + +

⎞
⎠ .

Proof. Example 2.8 indicates that A5 is MPPP. Note that a nonnegative sign pat-
tern is PPP if and only if it is primitive. Clearly, A1 , A2 , A3 and A4 are nonnegative
and primitive. Hence, they are PPP. It is easily observed that no proper subpattern of
A1 , A2 , A3 or A4 is primitive. Thus, A1 , A2 , A3 and A4 are MPPP. �

THEOREM 3.4. Let A be a 3-by-3 sign pattern. Then A is MPPP if and only
if either A or −A is equivalent to one of A1 , A2 , A3 , A4 and A5 as defined in
Lemma 3.3.

Proof. We show the sufficiency first. If A is equivalent to one of A1 , A2 , A3 ,
A4 and A5 , then A is MPPP by Lemma 3.3. If A is equivalent to one of −A1 , −A2 ,
−A3 , −A4 and −A5 , then −A is MPPP. It follows that A is MPPP by Proposition
2.6.

We next show the necessity. If A is MPPP, then either A or −A is MPEP by
Theorem 2.9. Without loss of generality we assume that A is MPEP. The A is PEP
and no proper subpattern is PEP. By Theorem 6.4 in [1], either the positive part of A
is primitive or A is equivalent to a sign pattern of the form

U =

⎛
⎝+ − �

+ ? −
− + +

⎞
⎠ .

We complete this proof by discussing the following two cases.
Case 1. Suppose that Γ(A +) is primitive. For the minimality, Γ(A +) must

contain one 3-cycle and one 1-cycle or one 2-cycle, or two 2-cycles and one 1-cycle.
If Γ(A +) contains one 3-cycle and one 1-cycle, then A + is equivalent to A4 . Since
A is minimal PPP and A4 is MPPP by Lemma 3.3, without loss of generality, let
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A = A + . Then A is equivalent to A4 . Similarly, if Γ(A +) contains one 3-cycle
and one 2-cycle, then A is equivalent to A3 . If Γ(A +) contains two 2-cycles and one
1-cycle, then A is equivalent to A1 or A2 , up to equivalence.

Case 2. Suppose that A is equivalent to a sign pattern of the form U . Then A5

is a proper subpattern of U . The fact that A is equivalent to A5 follows from that A5

is MPPP by Lemma 3.3. �
The following two results follow readily from Theorem 3.4.

COROLLARY 3.5. Let A be a 3-by-3 sign pattern such that neither Γ(A +) nor
Γ(A −) are primitive. Then A is MPPP if and only if A is equivalent to

A =

⎛
⎝+ − 0

+ 0 −
− + +

⎞
⎠ , or its negation

⎛
⎝− + 0

− 0 +
+ − −

⎞
⎠ .

COROLLARY 3.6. Let A be an n-by-n sign pattern with n � 3 . Then A is
MPPP if and only if either A or −A is MPEP.

It is easily verified that up to equivalence, the only 2-by-2 MPEP sign pattern is(
+ +
+ 0

)
and the 3-by-3 MPEP sign patterns are the sign patterns displayed in Lemma

3.3. It follows that for n � 3, there is no n -by-n MPEP sign pattern A such that −A
is also MPEP.

4. Concluding remarks

We have explored the connections between MPPP sign patterns and MPEP sign
patterns in this paper. Some properties of MPPP sign patterns have been established.
We also classified the MPPP sign patterns of order n � 3. It is shown that there are only
two 2-by-2 MPPP sign patterns and ten 3-by-3 MPPP sign patterns, up to equivalence.
However, identification of the sufficient and necessary conditions for an n -by-n sign
pattern (n � 4) to be MPPP is still open. We conjecture that every n -by-n MPPP sign
pattern contains at least n− 1 entries equal to 0. Also open is the existence of MPEP
sign patterns A such that −A is also MPEP.
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