SAMUEL MULTIPLICITIES AND BROWDER SPECTRUM OF OPERATOR MATRICES

Shifang Zhang and Junde Wu

(Communicated by L. Rodman)

Abstract

In this paper, we first point out that the necessity of Theorem 4 in [8] does not hold under the given condition and present a revised version with a little modification. Then we show that the definitions of some classes of semi-Fredholm operators, which use the language of algebra and first introduced by X. Fang in [8], are equivalent to that of some well-known operator classes. For example, the concept of shift-like semi-Fredholm operator on Hilbert space coincide with that of upper semi-Browder operator. For applications of Samuel multiplicities we characterize the sets of $\bigcap_{C \in B(K, H)} \sigma_{a b}\left(M_{C}\right), \bigcap_{C \in B(K, H)} \sigma_{s b}\left(M_{C}\right)$ and $\bigcap_{C \in B(K, H)} \sigma_{b}\left(M_{C}\right)$, respectively, where $M_{C}=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$ denotes a 2-by-2 upper triangular operator matrix acting on the Hilbert space $H \oplus K$.

1. Introduction

Throughout this paper, let H and K be separable infinite dimensional complex Hilbert spaces and $B(H, K)$ the set of all bounded linear operators from H into K, when $H=K$, we write $B(H, H)$ as $B(H)$. For $A \in B(H), B \in B(K)$ and $C \in B(K, H)$, we have $M_{C}=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right) \in B(H \oplus K)$. For $T \in B(H, K)$, let $R(T)$ and $N(T)$ denote the range and kernel of T, respectively, and denote $\alpha(T)=\operatorname{dim} N(T), \beta(T)=$ $\operatorname{dim} K / R(T)$. If $T \in B(H)$, the ascent $\operatorname{asc}(T)$ of T is defined to be the smallest nonnegative integer k which satisfies that $N\left(T^{k}\right)=N\left(T^{k+1}\right)$. If such k does not exist, then the ascent of T is defined as infinity. Similarly, the descent $\operatorname{des}(T)$ of T is defined as the smallest nonnegative integer k for which $R\left(T^{k}\right)=R\left(T^{k+1}\right)$ holds. If such k does not exist, then $\operatorname{des}(T)$ is defined as infinity, too. If the ascent and the descent of T are finite, then they are equal (see [3]). For $T \in B(H)$, if $R(T)$ is closed and $\alpha(T)<\infty$, then T is said to be a upper semi-Fredholm operator, if $\beta(T)<\infty$, which implies that $R(T)$ is closed, then T is said to be a lower semi-Fredholm operator. If $T \in B(H)$ is either upper or lower semi-Fredholm operator, then T is said to be a semi-Fredholm operator. If both $\alpha(T)<\infty$ and $\beta(T)<\infty$, then T is said to be a Fredholm operator. For a semi-Fredholm operator T, its index ind (T) is defined by ind $(T)=\alpha(T)-\beta(T)$.

[^0]In this paper, the sets of invertible operators, left invertible operators and right invertible operators on H are denoted by $G(H), G_{l}(H)$ and $G_{r}(H)$, respectively, the sets of all Fredholm operators, upper semi-Fredholm operators and lower semi-Fredholm operators on H are denoted by $\Phi(H), \Phi_{+}(H)$ and $\Phi_{-}(H)$, respectively, the sets of all Browder operators, upper semi-Browder operators and lower semi-Browder operators on H are defined, respectively, by

$$
\begin{aligned}
& \Phi_{b}(H):=\{T \in \Phi(H): \operatorname{asc}(T)=\operatorname{des}(T)<\infty\} \\
& \Phi_{a b}(H):=\left\{T \in \Phi_{+}(H): \operatorname{asc}(T)<\infty\right\} \\
& \Phi_{s b}(H):=\left\{T \in \Phi_{-}(H): \operatorname{des}(T)<\infty\right\}
\end{aligned}
$$

Moreover, for $T \in B(H)$, we introduce its corresponding spectra as following [19]:
the spectrum: $\sigma(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin G(H)\}$,
the left spectrum: $\sigma_{l}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin G_{l}(H)\right\}$,
the right spectrum: $\sigma_{r}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin G_{r}(H)\right\}$,
the essential spectrum: $\sigma_{e}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi(H)\}$,
the upper semi-Fredholm spectrum: $\sigma_{S F+}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{+}(X)\right\}$,
the lower semi-Fredholm spectrum: $\sigma_{S F-}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{-}(X)\right\}$,
the Browder spectrum: $\sigma_{b}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{b}(H)\right\}$,
the upper semi-Browder spectrum: $\sigma_{a b}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{a b}(X)\right\}$,
the lower semi-Browder spectrum: $\sigma_{s b}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{s b}(X)\right\}$.
For a semi-Fredholm operator $T \in B(H)$, its shift Samuel multiplicity s_mul (T) and backward shift Samuel multiplicity b.s_mul (T) are defined ([5-8]), respectively, by

$$
\begin{aligned}
\operatorname{s_ mul}(T) & =\lim _{k \rightarrow \infty} \frac{\beta\left(T^{k}\right)}{k}, \\
\text { b.s_mul }(T) & =\lim _{k \rightarrow \infty} \frac{\alpha\left(T^{k}\right)}{k} .
\end{aligned}
$$

Moreover, it has been proved that $s _m u l(T)$, b.s. $\operatorname{mul}(T) \in\{0,1,2, \ldots, \infty\}$ and $\operatorname{ind}(T)$ $=b . s . _\operatorname{mul}(T)-\operatorname{s_ mul}(T)$. These two invariants refine the Fredholm index and can be regarded as the stabilized dimension of the kernel and cokernel [8].

DEFInITION 1.1. ([8]) A semi-Fredholm operator $T \in B(H)$ is called a pure shift semi-Fredholm operator if T has the form $T=U^{n} P$, where $n \in \mathbf{N}$ or $n=\infty, U$ is the unilateral shift, and P is a positive invertible operator. Analogously, T is called a pure backward shift semi-Fredholm operator if its adjoint T^{*} is a pure shift semi-Fredholm operator. Here U^{∞} denotes the direct sum of countably (infinite) many copies of U.

Definition 1.2. ([8]) A semi-Fredholm operator $T \in B(H)$ is called a shift-like semi-Fredholm operator if b.s. $\operatorname{mul}(T)=0 ; T$ is called a shift semi-Fredholm operator if $N(T)=0$. Analogous concepts for backward shifts can also be defined. T is called a stationary semi-Fredholm operator if b.s. $\operatorname{mul}(T)=0$ and $\operatorname{s_ mul}(T)=0$.

It follows from Definition 1.1 that T is a shift semi-Fredholm operator iff T is a left invertible operator, and that T is a backward shift semi-Fredholm operator iff T is a right invertible operator.

In ([8], Theorem 4 and Corollary 18), Fang gave the following 4×4 uppertriangular representation theorem: An operator $T \in B(H)$ is semi-Fredholm iff T can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4}$,

$$
T=\left(\begin{array}{cccc}
T_{1} & * & * & * \\
0 & T_{2} & * & * \\
0 & 0 & T_{3} & * \\
0 & 0 & 0 & T_{4}
\end{array}\right)
$$

where $\operatorname{dim} H_{4}<\infty, T_{1}$ is a pure backward shift semi-Fredholm operator, T_{2} is invertible, T_{3} is a pure shift semi-Fredholm operator, T_{4} is a finite nilpotent operator. Moreover, $\operatorname{ind}\left(T_{1}\right)=b . s . _m u l(T)$ and $\operatorname{ind}\left(T_{3}\right)=-\operatorname{s_ mul}(T)$.

The following example shows that the representation theorem is not accurate.
EXAMPLE 1.3. Let H be the direct sum of countably many copies of $\ell^{2}:=\ell^{2}(\mathbf{N})$, that is, the elements of H are the sequences $\left\{x_{j}\right\}_{j=1}^{\infty}$ with $x_{j} \in \ell^{2}$ and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{2}<\infty$. Let V be the unilateral shift on ℓ^{2}, i.e.,

$$
V: \ell^{2} \rightarrow \ell^{2}, \quad\left\{z_{1}, z_{2}, \ldots\right\} \mapsto\left\{0, z_{1}, z_{2}, \ldots\right\}
$$

and the operators T_{1} and T_{3} be defined by

$$
T_{1}: H \rightarrow H, \quad\left\{x_{1}, x_{2}, \ldots\right\} \mapsto\left\{V^{*} x_{1}, V^{*} x_{2}, \ldots\right\}
$$

and

$$
T_{3}: H \rightarrow H, \quad\left\{x_{1}, x_{2}, \ldots\right\} \mapsto\left\{V x_{1}, V x_{2}, \ldots\right\}
$$

Now, we consider the operator

$$
T=\left(\begin{array}{ll}
T_{1} & 0 \\
0 & T_{3}
\end{array}\right): H \oplus H \rightarrow H \oplus H
$$

Note that T_{1} is a pure backward shift semi-Fredholm operator, T_{3} is a pure shift semiFredholm operator, so T satisfies the conditions of Fang's 4×4 triangular representation theorem, but, since $\alpha\left(T_{1}\right)=\alpha(T)=\beta(T)=\operatorname{dim}\left(H / R\left(T_{3}\right)\right)=\infty$, so T is not a semi-Fredholm operator.

Now, we can prove the following improved 4×4 upper-triangular representation theorem:

THEOREM 1.4. An operator $T \in B(H)$ is semi-Fredholm iff T can be decomposed into the following form with respect to some orthogonal decomposition $H=$ $H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4}$,

$$
T=\left(\begin{array}{cccc}
T_{1} & * & * & * \\
0 & T_{2} & * & * \\
0 & 0 & T_{3} & * \\
0 & 0 & 0 & T_{4}
\end{array}\right)
$$

where $\operatorname{dim} H_{4}<\infty, T_{1}$ is a pure backward shift semi-Fredholm operator, T_{2} is invertible, T_{3} is a pure shift semi-Fredholm operator and $\min \left\{\operatorname{ind}\left(T_{1}\right),-\operatorname{ind}\left(T_{3}\right)\right\}<\infty, T_{4}$ is a finite nilpotent operator. Moreover,
(1) ind $\left(T_{1}\right)=b . s . _m u l(T)$, ind $\left(T_{3}\right)=-\operatorname{s_ mul}(T)$;
(2) ind $(T)=+\infty$ iff ind $\left(T_{1}\right)=+\infty$;
(3) ind $(T)=-\infty$ iff ind $\left(T_{3}\right)=-\infty$;
(4) ind (T) is finite iff both of ind $\left(T_{1}\right)$ and ind $\left(T_{3}\right)$ are finite.

Theorem 1.4 can be described as 3×3 triangular representation form which may be more convenient for the study of operator theory, that is,

THEOREM 1.5. An operator $T \in B(H)$ is semi-Fredholm if and only if T can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2} \oplus H_{3}$

$$
T=\left(\begin{array}{ccc}
T_{1} & T_{12} & T_{13} \\
0 & T_{2} & T_{23} \\
0 & 0 & T_{3}
\end{array}\right): H_{1} \oplus H_{2} \oplus H_{3} \rightarrow H_{1} \oplus H_{2} \oplus H_{3}
$$

where $\operatorname{dim} H_{3}<\infty, T_{1}$ is a right invertible operator, T_{3} is a finite, nilpotent operator, T_{2} is a left invertible operator, and $\min \left\{\operatorname{ind}\left(T_{1}\right),-\operatorname{ind}\left(T_{2}\right)\right\}<\infty$. Moreover, ind $\left(T_{1}\right)=$ $\alpha\left(T_{1}\right)=b . s . _\operatorname{mul}(T)$, ind $\left(T_{2}\right)=-\beta\left(T_{2}\right)=-\operatorname{s_ mul}(T)$ and ind $(T)=\alpha\left(T_{1}\right)-\beta\left(T_{2}\right)$.

The next lemma is useful for the proofs of our results below, especially in Section 2.

Lemma 1.6. [19] Let $A \in B(H), B \in B(K)$ and $C \in B(K, H)$.
(1) If $A \in \Phi_{b}(H)$, then $B \in \Phi_{a b}(K)$ iff $M_{C} \in \Phi_{a b}(H \oplus K)$ for some $C \in B(K, H)$.
(2) If $M_{C} \in \Phi_{a b}(H \oplus K)$ for some $C \in B(K, H)$, then $A \in \Phi_{a b}(H)$.
(3) If $A \in \Phi_{a b}(H)$ and $B \in \Phi_{a b}(K)$, then $M_{C} \in \Phi_{a b}(H \oplus K)$ for any $C \in B(K, H)$.
(4) If $B \in \Phi_{b}(K)$, then $A \in \Phi_{a b}(H)$ iff $M_{C} \in \Phi_{a b}(H \oplus K)$ for some $C \in B(K, H)$; $\left.A \in \Phi_{s b}(H)\right)$ iff $M_{C} \in \Phi_{s b}(H \oplus K)$ for some $C \in B(K, H)$.
(5) If $M_{C} \in \Phi_{b}(H \oplus K)$ for some $C \in B(K, H)$, then $A \in \Phi_{a b}(H)$ and $B \in \Phi_{s b}(K)$.
(6) If two of A, B and M_{C} are Browder, then so is the third.

Proposition 1.7. Let $T \in B(H)$. Then T is upper semi-Browder iff T can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2}$,

$$
T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
0 & T_{2}
\end{array}\right)
$$

where $\operatorname{dim}\left(H_{1}\right)<\infty, T_{1}$ is nilpotent, T_{2} is left invertible, and $\beta\left(T_{2}\right)=$ s_mul $(T)=$ - ind (T).

Proof. Necessity. Suppose that T is upper semi-Browder. Then we can assume $p=\operatorname{asc}(T)<\infty$. Let $H_{1}=N\left(T^{p}\right)$. Note that T is upper semi-Fredholm, so $\operatorname{dim} H_{1}<$ ∞. Let $H=H_{1} \oplus H_{1}^{\perp}$, we have

$$
T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
0 & T_{2}
\end{array}\right): H_{1} \oplus H_{1}^{\perp} \rightarrow H_{1} \oplus H_{1}^{\perp}
$$

That T_{1} is nilpotent is clear. Moreover, since the fact that $\operatorname{dim} H_{1}<\infty \operatorname{implies} T_{1} \in$ $\Phi_{b}\left(H_{1}\right)$, it follows from Lemma 1.6 (1) that $T_{2} \in \Phi_{a b}\left(H_{1}^{\perp}\right)$. A direct calculation shows that T_{2} is injective, thus, T_{2} is left invertible. From Theorem 1.5, it is clear that $\beta\left(T_{2}\right)=$ $s _m u l(T)=\operatorname{ind}\left(T_{2}\right)$.

Sufficiency follows from Lemma 1.6 immediately.
Proposition 1.8. Let $T \in B(H)$. Then T is lower semi-Browder iff T can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2}$,

$$
T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
0 & T_{2}
\end{array}\right)
$$

where $\operatorname{dim}\left(H_{2}\right)<\infty, T_{1}$ is right invertible, T_{2} is nilpotent, and $\alpha\left(T_{1}\right)=$ b.s..mul $(T)=$ $\operatorname{ind}(T)$.

Proof. Necessity. If T is lower semi-Browder, then we can assume $p=\operatorname{des}(T)<$ ∞. Denote $H_{1}=R\left(T^{p}\right)$ and $H_{2}=H_{1}^{\perp}$. Note that T^{p} is lower semi-Browder, so $\operatorname{dim} H_{2}<\infty$. Let $H=H_{1} \oplus H_{2}$, we have

$$
T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
0 & T_{2}
\end{array}\right): H_{1} \oplus H_{2} \rightarrow H_{1} \oplus H_{2}
$$

That T_{1} is surjective and $T_{2}^{P}=0$ is evident. Note that $\operatorname{dim} H_{2}<\infty \operatorname{implies} T_{2} \in$ $\Phi_{b}\left(H_{2}\right)$, it follows from Lemma 1.6 that $T_{1} \in \Phi_{s b}\left(H_{1}\right)$, and so T_{1} is right invertible. From Theorem 1.5, we have $\alpha\left(T_{1}\right)=\operatorname{ind}\left(T_{1}\right)=$ b.s. $\operatorname{mul}(T)$.

Sufficiency follows from Lemma 1.6.
Combining Theorem 1.5, Propositions 1.7 and 1.8, we have the following theorem immediately.

Theorem 1.9. Let $T \in B(H)$. Then
(1) T is a shift-like semi-Fredholm operator iff T is an upper semi-Browder operator.
(2) T is a backward shift-like semi-Fredholm operator iff T is a lower semi-Browder operator.
(3) T is a stationary semi-Fredholm operator iff T is a Browder operator.

2. Applications of Samuel multiplicities

In ([8-12]), Fang studied Samuel multiplicities and presented some applications. In this section, by using Samuel multiplicities, we characterize the sets $\bigcap_{C \in B(K, H)} \sigma_{a b}\left(M_{C}\right)$, $\bigcap_{C \in B(K, H)} \sigma_{s b}\left(M_{C}\right)$ and $\bigcap_{C \in B(K, H)} \sigma_{b}\left(M_{C}\right)$ completely, where $M_{C}=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$ is a 2×2 upper triangular operator matrix defined on $H \oplus K$. For the study advances of 2×2 upper triangular operator matrix, see ([1-4], [13-19]).

First, note that if $T \in B(H)$, then T is bounded below iff T is left invertible, thus, Theorem 1 of [14] can be rewritten as follows:

Proposition 2.1. [14]. For any given $A \in B(H)$ and $B \in B(K), M_{C}$ is left invertible for some $C \in B(K, H)$ iff A is left invertible and

$$
\left\{\begin{array}{cc}
a(B) \leqslant \beta(A) & \text { if } R(B) \text { is closed } \\
\beta(A)=\infty & \text { if } R(B) \text { is not closed. }
\end{array}\right.
$$

Proposition 2.2. [4] For any given $A \in B(H)$ and $B \in B(K)$,

$$
\begin{equation*}
\bigcap_{C \in B(K, H)} \sigma\left(M_{C}\right)=\sigma_{l}(A) \cup \sigma_{r}(B) \cup\{\lambda \in \mathbb{C}: \alpha(B-\lambda) \neq \beta(A-\lambda)\} \tag{1}
\end{equation*}
$$

One of the main results in this section is:
THEOREM 2.3. For any given $A \in B(H)$ and $B \in B(K), M_{C} \in \Phi_{a b}(H \oplus K)$ for some $C \in B(K, H)$ iff $A \in \Phi_{a b}(H)$ and

$$
\begin{cases}\operatorname{s_ mul}(A)=\infty & \text { if } B \notin \Phi_{+}(K), \\ b . s . \operatorname{mul}(B) \leqslant \operatorname{s_ mul}(A) & \text { if } B \in \Phi_{+}(K) .\end{cases}
$$

Proof. We first claim that if $B \notin \Phi_{+}(K)$, then

$$
\begin{equation*}
M_{C} \in \Phi_{a b}(H \oplus K) \text { for some } C \in B(K, H) \Leftrightarrow A \in \Phi_{a b}(H) \text { and } s _m u l(A)=\infty . \tag{2}
\end{equation*}
$$

To do this, suppose $M_{C} \in \Phi_{a b}(H \oplus K)$. Then from Lemma 1.6 we have $A \in \Phi_{a b}(H)$. If $s _$mul $(A)<\infty$, then $A \in \Phi(H)$, since ind $(A)=\alpha(A)-\beta(A)=b . s . _m u l(A)-s _m u l(A)$. Hence it is easy to show that $B \in \Phi_{+}(K)$, which is in a contradiction. Thus, $s _m u l(A)=$ ∞.

Conversely, suppose that $A \in \Phi_{a b}(H)$ and $\operatorname{s_ mul}(A)=\infty$, which implies $\beta(A)=$ ∞. It follows from Proposition 1.7 that A can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2}$

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right)
$$

where $\operatorname{dim}\left(H_{1}\right)<\infty, A_{1}$ is nilpotent, and A_{2} is a left invertible operator. Noting that $\beta(A)=\infty$, we have $\beta\left(A_{2}\right)=\infty$. Hence it follows from Lemma 2.1 that there exists
some $C_{0} \in B\left(K, H_{2}\right)$ such that $\left(\begin{array}{cc}A_{2} & C_{0} \\ 0 & B\end{array}\right)$ is left invertible. Now consider operator

$$
M_{C}=\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right)=\left(\begin{array}{ccc}
A_{1} & A_{12} & 0 \\
0 & A_{2} & C_{0} \\
0 & 0 & B
\end{array}\right)
$$

where $C=\binom{0}{C_{0}} \in B(K, H)$. By Lemma 1.6, it is easy to check that $M_{C} \in \Phi_{a b}(H \oplus$ $K)$.

Next, We claim that if $B \in \Phi_{+}(K)$, then
$M_{C} \in \Phi_{a b}(H \oplus K)$ for some $C \in B(K, H) \Leftrightarrow A \in \Phi_{a b}(H)$ and $b . s . _m u l(B) \leqslant \operatorname{s} \operatorname{mul}(A)$.
To this end, suppose $M_{C} \in \Phi_{a b}(H \oplus K)$, which implies $A \in \Phi_{a b}(H)$. By Proposition 1.8, we have that A can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2}$

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right)
$$

where $\operatorname{dim}\left(H_{1}\right)<\infty, A_{1}$ is nilpotent, A_{2} is a left invertible operator, and $\beta\left(A_{2}\right)=$ $s_{-} m u l(A)$. Since the assumption that $B \in \Phi_{+}(K)$, using Theorem 1.5 , we know that B can be decomposed into the following form with respect to some orthogonal decomposition $K=K_{1} \oplus K_{2} \oplus K_{3}$

$$
B=\left(\begin{array}{ccc}
B_{1} & * & * \\
0 & B_{2} & * \\
0 & 0 & B_{3}
\end{array}\right)
$$

where $\operatorname{dim} K_{3}<\infty, B_{1}$ is a right invertible operator, B_{2} is a left invertible operator, B_{3} is a finite, nilpotent operator, and the parts marked by $*$ can be any operators. Moreover, ind $\left(B_{1}\right)=\alpha\left(B_{1}\right)=$ b.s. $\operatorname{mul}(B), \quad \operatorname{ind}\left(B_{2}\right)=-\beta\left(B_{2}\right)=-\operatorname{s_ mul}\left(B_{1}\right)$ and ind $(B)=\alpha\left(B_{1}\right)-\beta\left(B_{2}\right)$. Therefore, M_{C} can be rewritten as the following form

$$
M_{C}=\left(\begin{array}{ccccc}
A_{1} & A_{12} & C_{11} & C_{12} & C_{13} \\
0 & A_{2} & C_{21} & C_{32} & C_{23} \\
0 & 0 & B_{1} & * & * \\
0 & 0 & 0 & B_{2} & * \\
0 & 0 & 0 & 0 & B_{3}
\end{array}\right): H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2} \oplus K_{3} \rightarrow H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2} \oplus K_{3} .
$$

Noting that $\operatorname{dim}\left(H_{1}\right)<\infty$ and $\operatorname{dim}\left(K_{3}\right)<\infty$, we have $A_{1} \in \Phi_{b}\left(H_{1}\right)$ and $B_{3} \in \Phi_{b}\left(K_{3}\right)$. Consequently, Lemma 1.6 leads to

$$
\left(\begin{array}{ccc}
A_{2} & C_{21} & C_{32} \\
0 & B_{1} & * \\
0 & 0 & B_{2}
\end{array}\right) \in \Phi_{a b}\left(H_{2} \oplus K_{1} \oplus K_{2}\right)
$$

which implies

$$
\left(\begin{array}{cc}
A_{2} & C_{21} \\
0 & B_{1}
\end{array}\right) \in \Phi_{a b}\left(H_{2} \oplus K_{1}\right) .
$$

Now we shall prove that

$$
\beta\left(A_{2}\right) \geqslant \alpha\left(B_{1}\right)
$$

If $\beta\left(A_{2}\right)=\infty$, the above inequality obviously holds. On the other hand, if $\beta\left(A_{2}\right)<\infty$, then $A_{2} \in \Phi\left(H_{2}\right)$, and hence $B_{1} \in \Phi_{+}\left(K_{1}\right)$. Thus,

$$
0 \geqslant \operatorname{ind}\left(\left(\begin{array}{cc}
A_{2} & C_{21} \\
0 & B_{1}
\end{array}\right)\right)=\operatorname{ind}\left(A_{2}\right)+\operatorname{ind}\left(B_{1}\right)=-\beta\left(A_{2}\right)+\alpha\left(B_{1}\right)
$$

that is,

$$
\alpha\left(B_{1}\right) \leqslant \beta\left(A_{2}\right)
$$

Therefore,

$$
\text { b.s.ımul }(B) \leqslant \operatorname{s_ mul}(A) .
$$

Conversely, suppose $A \in \Phi_{a b}(H), B \in \Phi_{+}(K)$ and $b . s . _m u l(B) \leqslant s _m u l(A)$. Similar to the above arguments, we have

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right): H_{1} \oplus H_{2} \mapsto H_{1} \oplus H_{2}
$$

and

$$
B=\left(\begin{array}{ccc}
B_{1} & * & * \\
0 & B_{2} & * \\
0 & 0 & B_{3}
\end{array}\right): K_{1} \oplus K_{2} \oplus K_{3} \mapsto K_{1} \oplus K_{2} \oplus K_{3}
$$

where $\operatorname{dim}\left(H_{1}\right)<\infty, A_{1}$ is nilpotent, A_{2} is a left invertible operator; $\operatorname{dim} K_{3}<\infty$, B_{1} is a right invertible operator, B_{2} is a left invertible operator, B_{3} is a finite, nilpotent operator, and the parts marked by $*$ can be any operators. Moreover, $\beta\left(A_{2}\right)=\operatorname{s_ mul}(A)$ and $\alpha\left(B_{1}\right)=$ b.s. $\operatorname{mul}(B)$. Since the assumption that b.s. $\operatorname{mul}(B) \leqslant s _m u l(A)$, we have $\alpha\left(B_{1}\right) \leqslant \beta\left(A_{2}\right)$. It follows from Lemma 2.1 that there exists a left invertible operator $\widetilde{C} \in B\left(K_{1}, H_{2}\right)$ such that

$$
\left(\begin{array}{cc}
A_{2} & \widetilde{C} \\
0 & B_{1}
\end{array}\right) \in B\left(H_{2} \oplus K_{1}\right) \text { is left invertible. }
$$

Consider operator

$$
\begin{aligned}
M_{C} & =\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right): H \oplus K \rightarrow H \oplus K \\
& =\left(\begin{array}{ccccc}
A_{1} & A_{12} & 0 & 0 & 0 \\
0 & A_{2} & \widetilde{C} & 0 & 0 \\
0 & 0 & B_{1} & * & * \\
0 & 0 & 0 & B_{2} & * \\
0 & 0 & 0 & 0 & B_{3}
\end{array}\right): H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2} \oplus K_{3} \rightarrow H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2} \oplus K_{3},
\end{aligned}
$$

where $C=\left(\begin{array}{ccc}0 & 0 & 0 \\ \widetilde{C} & 0 & 0\end{array}\right) \in B\left(K_{1} \oplus K_{2} \oplus K_{3}, H_{1} \oplus H_{2}\right)$. Using Lemma 1.6 , it is easy to see that $M_{C} \in \Phi_{a b}(H \oplus K)$.

By duality, we have

THEOREM 2.4. For any given $A \in B(H)$ and $B \in B(K), M_{C} \in \Phi_{s b}(H \oplus K)$ for some $C \in B(K, H)$ iff $B \in \Phi_{s b}(K)$ and

$$
\begin{cases}\text { b.s. } _\operatorname{mul}(B)=\infty & \text { if } A \notin \Phi_{-}(H) \\ \text { b.s. } \operatorname{mul}(B) \geqslant \operatorname{s_ mul}(A) & \text { if } A \in \Phi_{-}(H)\end{cases}
$$

From Theorems 2.3 and 2.4, we obtain the following two corollaries, concerning perturbations of the upper semi-Browder spectrum and lower semi-Browder spectrum, respectively.

Corollary 2.5. For any given $A \in B(H)$ and $B \in B(K)$, we have

$$
\bigcap_{C \in B(K, H)} \sigma_{a b}\left(M_{C}\right)=\sigma_{a b}(A) \cup\left\{\lambda \in \mathbb{C}: \lambda \in \sigma_{S F+}(B) \text { and s._mul }(A-\lambda)<\infty\right\} \cup
$$

$$
\left\{\lambda \in \Phi(A) \cap \Phi_{+}(B): \text { b.s. } \operatorname{mul}(B-\lambda)>\text { s. } \operatorname{mul}(A-\lambda)\right\} .
$$

Corollary 2.6. For any given $A \in B(H)$ and $B \in B(K)$, we have

$$
\left\{\lambda \in \Phi(B) \cap \Phi_{-}(A): \text { b.s._mul }(B-\lambda)<s . _m u l(A-\lambda)\right\} .
$$

THEOREM 2.7. For any given $A \in B(H)$ and $B \in B(K)$, the following statements are equivalent:
(1) $M_{C} \in \Phi_{b}(H \oplus K)$ for some $C \in B(K, H)$;
(2) $A \in \Phi_{a b}(H), B \in \Phi_{s b}(K)$ and b.s.ımul $(B)=\operatorname{s_ mul}(A)$;

$$
\begin{equation*}
A \in \Phi_{a b}(H), B \in \Phi_{s b}(K) \text { and } \alpha(A)+\alpha(B)=\beta(A)+\beta(B) \tag{3}
\end{equation*}
$$

Proof. (1) \Rightarrow (2). Suppose that $M_{C} \in \Phi_{b}(H \oplus K)$. Then from Lemma 1.6, we have $A \in \Phi_{a b}(H)$ and $B \in \Phi_{s b}(K)$. Using Propositions 1.7 and 1.8, we have

$$
M_{C}=\left(\begin{array}{cccc}
A_{1} & A_{12} & C_{11} & C_{12} \\
0 & A_{2} & C_{21} & C_{32} \\
0 & 0 & B_{1} & B_{12} \\
0 & 0 & 0 & B_{2}
\end{array}\right): H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2} \rightarrow H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2}
$$

where $\operatorname{dim}\left(H_{1}\right)<\infty, A_{1}$ is nilpotent, A_{2} is a left invertible operator, $\operatorname{dim} K_{2}<\infty, B_{1}$ is a right invertible operator, B_{2} is a finite, nilpotent operator. Moreover,

$$
\left.\beta\left(A_{2}\right)=\operatorname{s._ mul}(A) \text { and } \alpha\left(B_{1}\right)=b . s .\right\lrcorner m u l(B) .
$$

In addition, it follows from Lemma 1.6 that

$$
\left(\begin{array}{cc}
A_{2} & C_{21} \\
0 & B_{1}
\end{array}\right) \in \Phi_{b}\left(H_{2} \oplus K_{1}\right)
$$

Note the well-known fact that if $M_{C} \in \Phi(H \oplus K)$, then $A \in \Phi(H)$ if and only if $B \in$ $\Phi(K)$. Thus, if $\beta\left(A_{2}\right)=\infty$, then $B_{1} \notin \Phi\left(K_{1}\right)$, and so $\beta\left(A_{2}\right)=\alpha\left(B_{1}\right)=\infty$ since that B_{1} is right invertible. Otherwise, if $\beta\left(A_{2}\right)<\infty$, then both A_{2} and B_{1} are Fredholm. Consequently,

$$
0=\operatorname{ind}\left(\left(\begin{array}{cc}
A_{2} & C_{21} \\
0 & B_{1}
\end{array}\right)\right)=\operatorname{ind}\left(A_{2}\right)+\operatorname{ind}\left(B_{1}\right)=-\beta\left(A_{2}\right)+\alpha\left(B_{1}\right)
$$

that is, $\beta\left(A_{2}\right)=\alpha\left(B_{1}\right)$. Therefore, $s . _m u l(A)=$ b.s. $\operatorname{mul}(B)$.
$(2) \Rightarrow(1)$. Suppose that $A \in \Phi_{a b}(H), B \in \Phi_{s b}(K)$ and that $s . _m u l(A)=b . s . _m u l(B)$. Then from Proposition 1.7 we have that A can be decomposed into the following form with respect to some orthogonal decomposition $H=H_{1} \oplus H_{2}$

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right)
$$

where and $\operatorname{dim}\left(H_{1}\right)<\infty, A_{1}$ is nilpotent, and A_{2} is a left invertible operator. By Proposition 1.8, B $\in B(K)$ can be decomposed into the following form with respect to some orthogonal decomposition $K=K_{1} \oplus K_{2}$

$$
B=\left(\begin{array}{cc}
B_{1} & B_{12} \\
0 & B_{2}
\end{array}\right)
$$

where $\operatorname{dim}\left(K_{2}\right)<\infty, B_{1}$ is a right invertible operator, and B_{2} is nilpotent. Moreover, s. $\operatorname{mul}(A)=\beta\left(A_{2}\right)$ and b.s. $_\operatorname{mul}(B)=\alpha\left(B_{1}\right)$. Since the assumption that $s . _\operatorname{mul}(A)=$ b.s. $\operatorname{mul}(B), \alpha\left(B_{1}\right)=\beta\left(A_{2}\right)$. Thus, we conclude from Theorem 1.5 that there exists some operator $C_{12} \in B\left(K_{1}, H_{2}\right)$ such that $\left(\begin{array}{cc}A_{2} & C_{21} \\ 0 & B_{1}\end{array}\right)$ is invertible. Define $C \in B(K, H)$ as follows:

$$
C=\left(\begin{array}{cc}
0 & 0 \\
C_{12} & 0
\end{array}\right)
$$

By Lemma 1.6, it no hard to prove that $M_{C} \in \Phi_{b}(H \oplus K)$.
(2) is equal to (3). For this, it is sufficient to prove that if
$A \in \Phi_{a b}(H)$ and $B \in \Phi_{s b}(K)$, then

$$
\alpha(A)+\alpha(B)=\beta(A)+\beta(B) \text { if and only if } b . s . _m u l(B)=s _m u l(A),
$$

which follows from Propositions 1.7 and 1.8 immediately. This completes the proof.
In [1], Cao has proved the equivalence of (1) and (3) of Theorem 2.7 by a different method, which seems to be more complicated.

The next corollary immediately follows from Theorem 2.7.
Corollary 2.8.. For any given $A \in B(H)$ and $B \in B(K)$, we have

$$
\begin{aligned}
& \bigcap_{C \in G(K, H)} \sigma_{b}\left(M_{C}\right) \\
= & \sigma_{a b}(A) \cup \sigma_{s b}(B) \cup\left\{\lambda \in \Phi_{a b}(A) \cap \Phi_{s b}(B): b . s . _m u l(B-\lambda) \neq s_{-} \operatorname{mul}(A-\lambda)\right\} \\
= & \sigma_{a b}(A) \cup \sigma_{s b}(B) \cup\{\lambda \in \mathbb{C}: \alpha(A-\lambda)+\alpha(B-\lambda) \neq \beta(A-\lambda)+\beta(B-\lambda)\} .
\end{aligned}
$$

Acknowledgement. The authors wish to express their thanks to the referees and L. Rodman for valuable comments and suggestions.

REFERENCES

[1] X. H. CaO, Browder spectra for upper triangular operator matrices, J. Math. Anal. Appl. 342 (2008), 477-484.
[2] X. L. Chen, S. F. Zhang, H. J. Zhong, On the filling in holes problem of operator matrices, Linear Algebra Appl. 430 (2009), 558-563.
[3] D. S. Djordjević, Perturbations of spectra of operator matrices, J. Operator Theory 48 (2002), 467-486.
[4] H. K. DU, J. Pan, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761-766.
[5] J. EsChMEIER, Samuel multiplicity and Fredholm theory, Math. Ann. 339 (2007), 21-35.
[6] J. Eschmeier, On the Hilbert-Samuel multiplicy of Fredholm tuples, Indiana Univ. Math. J. 56 (2007), 1463-1477.
[7] J. ESCHMEIER, Samuel multiplicity for several commuting operators, J. Operator Theory 60 (2008), 399-414.
[8] X. FANG, Samuel multiplicity and the structure of semi-Fredholm operators, Adv. Math. 1862 (2004), 411-437.
[9] X. FAng, Hilbert polynomials and Arveson's curvature invariant, J. Funct. Anal. 198, 2 (2003), 445464.
[10] X. FANG, Invariant subspaces of the Dirichlet space and commutative algebra, J. Reine Angew. Math. 569 (2004), 189-211.
[11] X. Fang, The Fredholm index of quotient Hilbert modules, Math. Res. Lett. 12 (2005), 911-920.
[12] X. Fang, The Fredholm index of a pair of commuting operators, Geom. Funct. Anal. 16 (2006), 367-402.
[13] J. K. HAN, H. Y. LEE, W. Y. LEE, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119-123.
[14] I. S. HWANG, W. Y. LEE, The boundedness below of 2×2 upper triangular operator matrices, Integr. Equ. Oper. Theory 39 (2001), 267-276.
[15] W. Y. LEE, Weyl's theorem for operator matrices, Integr. equ. oper. theory 32 (1998), 319-331.
[16] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2000), 131-138.
[17] S. F. Zhang, H. J. Zhong, Q. F. Jiang, Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl. 429 (2008), 2067-2075.
[18] S. F. Zhang, Z. Y. WU, H. J. Zhong, Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl. 433 (2010), 653-661.
[19] S. F. Zhang, H. J. Zhong, J. D. Wu, Spectra of Upper-triangular Operator Matrices, Acta Math. Sci. (in Chinese) 54 (2011), 41-60.

Fujian Normal University

[^0]: Mathematics subject classification (2010): Primary 47A10, Secondary 47A53.
 Keywords and phrases: Samuel multiplicities, operator matrices, upper semi-Browder operator, upper semi-Browder spectrum, Browder operator, Browder spectrum.

 This work is supported by the NSF of China (Grant Nos. 10771034 and 10771191).

