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Abstract. In this paper, we first point out that the necessity of Theorem 4 in [8] does not hold
under the given condition and present a revised version with a little modification. Then we show
that the definitions of some classes of semi-Fredholm operators, which use the language of al-
gebra and first introduced by X. Fang in [8], are equivalent to that of some well-known operator
classes. For example, the concept of shift-like semi-Fredholm operator on Hilbert space coincide
with that of upper semi-Browder operator. For applications of Samuel multiplicities we charac-
terize the sets of

⋂
C∈B(K,H)σab(MC),

⋂
C∈B(K,H)σsb(MC) and

⋂
C∈B(K,H)σb(MC), respectively,

where MC =
(

A C
0 B

)
denotes a 2-by-2 upper triangular operator matrix acting on the Hilbert

space H ⊕K .

1. Introduction

Throughout this paper, let H and K be separable infinite dimensional complex
Hilbert spaces and B(H,K) the set of all bounded linear operators from H into K ,
when H = K , we write B(H,H) as B(H) . For A∈ B(H) , B∈ B(K) and C ∈ B(K,H) ,

we have MC =
(

A C
0 B

)
∈ B(H ⊕K) . For T ∈ B(H,K) , let R(T ) and N(T ) de-

note the range and kernel of T , respectively, and denote α(T ) = dimN(T ) , β (T ) =
dimK/R(T ) . If T ∈ B(H) , the ascent asc(T ) of T is defined to be the smallest non-
negative integer k which satisfies that N(Tk) = N(Tk+1) . If such k does not exist, then
the ascent of T is defined as infinity. Similarly, the descent des(T ) of T is defined as
the smallest nonnegative integer k for which R(Tk) = R(Tk+1) holds. If such k does
not exist, then des(T ) is defined as infinity, too. If the ascent and the descent of T are
finite, then they are equal (see [3]). For T ∈ B(H) , if R(T ) is closed and α(T ) < ∞ ,
then T is said to be a upper semi-Fredholm operator, if β (T ) < ∞ , which implies that
R(T ) is closed, then T is said to be a lower semi-Fredholm operator. If T ∈ B(H) is
either upper or lower semi-Fredholm operator, then T is said to be a semi-Fredholm op-
erator. If both α(T ) <∞ and β (T ) <∞ , then T is said to be a Fredholm operator. For
a semi-Fredholm operator T , its index ind (T ) is defined by ind (T ) = α(T )−β (T ).
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In this paper, the sets of invertible operators, left invertible operators and right in-
vertible operators on H are denoted by G(H),Gl(H) and Gr(H) , respectively, the sets
of all Fredholm operators, upper semi-Fredholm operators and lower semi-Fredholm
operators on H are denoted by Φ(H) , Φ+(H) and Φ−(H) , respectively, the sets of all
Browder operators, upper semi-Browder operators and lower semi-Browder operators
on H are defined, respectively, by

Φb(H) := {T ∈Φ(H) : asc(T ) = des(T ) < ∞},
Φab(H) := {T ∈Φ+(H) : asc(T ) < ∞},
Φsb(H) := {T ∈Φ−(H) : des(T ) < ∞}.

Moreover, for T ∈ B(H) , we introduce its corresponding spectra as following [19]:

the spectrum: σ(T ) = {λ ∈ C : T −λ I �∈ G(H)} ,
the left spectrum: σl(T ) = {λ ∈ C : T −λ I �∈ Gl(H)} ,
the right spectrum: σr(T ) = {λ ∈ C : T −λ I �∈ Gr(H)} ,
the essential spectrum: σe(T ) = {λ ∈ C : T −λ I �∈Φ(H)} ,
the upper semi-Fredholm spectrum: σSF+(T ) = {λ ∈ C : T −λ I �∈Φ+(X)},
the lower semi-Fredholm spectrum: σSF−(T ) = {λ ∈ C : T −λ I �∈Φ−(X)},
the Browder spectrum: σb(T ) = {λ ∈ C : T −λ I �∈Φb(H)},
the upper semi-Browder spectrum: σab(T ) = {λ ∈ C : T −λ I �∈Φab(X)},
the lower semi-Browder spectrum: σsb(T ) = {λ ∈ C : T −λ I �∈Φsb(X)}.
For a semi-Fredholm operator T ∈ B(H) , its shift Samuel multiplicity s mul(T )

and backward shift Samuel multiplicity b.s mul(T ) are defined ([5-8]), respectively, by

s mul(T ) = lim
k→∞

β (Tk)
k

,

b.s mul(T ) = lim
k→∞

α(Tk)
k

.

Moreover, it has been proved that s mul(T ),b.s. mul(T )∈{0,1,2, . . . ,∞} and ind(T )
= b.s. mul(T )− s mul(T ) . These two invariants refine the Fredholm index and can be
regarded as the stabilized dimension of the kernel and cokernel [8].

DEFINITION 1.1. ([8]) A semi-Fredholm operator T ∈ B(H) is called a pure shift
semi-Fredholm operator if T has the form T = UnP , where n ∈ N or n = ∞ , U is the
unilateral shift, and P is a positive invertible operator. Analogously, T is called a pure
backward shift semi-Fredholm operator if its adjoint T ∗ is a pure shift semi-Fredholm
operator. Here U∞ denotes the direct sum of countably (infinite) many copies of U .

DEFINITION 1.2. ([8]) A semi-Fredholm operator T ∈ B(H) is called a shift-like
semi-Fredholm operator if b.s. mul(T ) = 0; T is called a shift semi-Fredholm operator
if N(T ) = 0. Analogous concepts for backward shifts can also be defined. T is called
a stationary semi-Fredholm operator if b.s. mul(T ) = 0 and s mul(T ) = 0.
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It follows from Definition 1.1 that T is a shift semi-Fredholm operator iff T is a
left invertible operator, and that T is a backward shift semi-Fredholm operator iff T is
a right invertible operator.

In ([8], Theorem 4 and Corollary 18), Fang gave the following 4× 4 upper-
triangular representation theorem: An operator T ∈ B(H) is semi-Fredholm iff T can
be decomposed into the following form with respect to some orthogonal decomposition
H = H1⊕H2⊕H3⊕H4,

T =

⎛
⎜⎜⎝

T1 ∗ ∗ ∗
0 T2 ∗ ∗
0 0 T3 ∗
0 0 0 T4

⎞
⎟⎟⎠ ,

where dimH4 < ∞ , T1 is a pure backward shift semi-Fredholm operator, T2 is in-
vertible, T3 is a pure shift semi-Fredholm operator, T4 is a finite nilpotent operator.
Moreover, ind(T1) = b.s. mul(T ) and ind(T3) = −s mul(T ) .

The following example shows that the representation theorem is not accurate.

EXAMPLE 1.3. Let H be the direct sum of countably many copies of �2 := �2(N) ,
that is, the elements of H are the sequences {x j}∞j=1 with x j ∈ �2 and ∑∞

j=1 ‖x j‖2 <∞ .

Let V be the unilateral shift on �2 , i.e.,

V : �2 → �2, {z1,z2, . . .} �→ {0,z1,z2, . . .},
and the operators T1 and T3 be defined by

T1 : H → H, {x1,x2, . . .} �→ {V ∗x1,V
∗x2, . . .}

and
T3 : H → H, {x1,x2, . . .} �→ {Vx1,Vx2, . . .}.

Now, we consider the operator

T =
(

T1 0
0 T3

)
: H ⊕H → H⊕H.

Note that T1 is a pure backward shift semi-Fredholm operator, T3 is a pure shift semi-
Fredholm operator, so T satisfies the conditions of Fang’s 4×4 triangular representa-
tion theorem, but, since α(T1) = α(T ) = β (T ) = dim(H/R(T3)) = ∞ , so T is not a
semi-Fredholm operator.

Now, we can prove the following improved 4×4 upper-triangular representation
theorem:

THEOREM 1.4. An operator T ∈ B(H) is semi-Fredholm iff T can be decom-
posed into the following form with respect to some orthogonal decomposition H =
H1⊕H2⊕H3⊕H4 ,

T =

⎛
⎜⎜⎝

T1 ∗ ∗ ∗
0 T2 ∗ ∗
0 0 T3 ∗
0 0 0 T4

⎞
⎟⎟⎠ ,
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where dimH4 < ∞ , T1 is a pure backward shift semi-Fredholm operator, T2 is invert-
ible, T3 is a pure shift semi-Fredholm operator and min{ind (T1),−ind (T3)} < ∞, T4

is a finite nilpotent operator. Moreover,

(1) ind (T1) = b.s. mul(T ) , ind (T3) = −s mul(T );

(2) ind (T ) = +∞ iff ind (T1) = +∞;

(3) ind (T ) = −∞ iff ind (T3) = −∞;

(4) ind (T ) is finite iff both of ind (T1) and ind (T3) are finite.

Theorem 1.4 can be described as 3×3 triangular representation form which may
be more convenient for the study of operator theory, that is,

THEOREM 1.5. An operator T ∈ B(H) is semi-Fredholm if and only if T can
be decomposed into the following form with respect to some orthogonal decomposition
H = H1⊕H2⊕H3

T =

⎛
⎝T1 T12 T13

0 T2 T23

0 0 T3

⎞
⎠ : H1⊕H2⊕H3 → H1 ⊕H2⊕H3,

where dimH3 <∞ , T1 is a right invertible operator, T3 is a finite, nilpotent operator, T2

is a left invertible operator, and min{ind (T1),−ind (T2)} < ∞. Moreover, ind (T1) =
α(T1) = b.s. mul(T ) , ind (T2) = −β (T2) = −s mul(T ) and ind (T ) = α(T1)−β (T2) .

The next lemma is useful for the proofs of our results below, especially in Sec-
tion 2.

LEMMA 1.6. [19] Let A ∈ B(H) , B ∈ B(K) and C ∈ B(K,H) .

(1) If A ∈Φb(H) , then B ∈Φab(K) iff MC ∈Φab(H⊕K) for some C ∈ B(K,H) .

(2) If MC ∈Φab(H⊕K) for some C ∈ B(K,H) , then A ∈Φab(H) .

(3) If A ∈Φab(H) and B ∈Φab(K) , then MC ∈Φab(H ⊕K) for any C ∈ B(K,H) .

(4) If B ∈Φb(K) , then A ∈Φab(H) iff MC ∈Φab(H⊕K) for some C ∈ B(K,H);
A ∈Φsb(H)) iff MC ∈Φsb(H⊕K) for some C ∈ B(K,H) .

(5) If MC ∈Φb(H ⊕K) for some C ∈ B(K,H) , then A ∈Φab(H) and B ∈Φsb(K) .

(6) If two of A, B and MC are Browder, then so is the third.

PROPOSITION 1.7. Let T ∈ B(H) . Then T is upper semi-Browder iff T can be
decomposed into the following form with respect to some orthogonal decomposition
H = H1⊕H2 ,

T =
(

T1 T12

0 T2

)
,
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where dim(H1) < ∞ , T1 is nilpotent, T2 is left invertible, and β (T2) = s mul(T ) =
− ind (T ) .

Proof. Necessity. Suppose that T is upper semi-Browder. Then we can assume
p = asc(T ) < ∞ . Let H1 = N(T p) . Note that T is upper semi-Fredholm, so dimH1 <
∞ . Let H = H1⊕H⊥

1 , we have

T =
(

T1 T12

0 T2

)
: H1⊕H⊥

1 → H1⊕H⊥
1 .

That T1 is nilpotent is clear. Moreover, since the fact that dimH1 < ∞ implies T1 ∈
Φb(H1) , it follows from Lemma 1.6 (1) that T2 ∈Φab(H⊥

1 ) . A direct calculation shows
that T2 is injective, thus, T2 is left invertible. From Theorem 1.5, it is clear that β (T2) =
s mul(T ) = ind(T2) .

Sufficiency follows from Lemma 1.6 immediately. �

PROPOSITION 1.8. Let T ∈ B(H) . Then T is lower semi-Browder iff T can be
decomposed into the following form with respect to some orthogonal decomposition
H = H1⊕H2,

T =
(

T1 T12

0 T2

)
,

where dim(H2) <∞ , T1 is right invertible, T2 is nilpotent, and α(T1) = b.s. mul(T ) =
ind(T ) .

Proof. Necessity. If T is lower semi-Browder, then we can assume p = des(T ) <
∞ . Denote H1 = R(T p) and H2 = H⊥

1 . Note that T p is lower semi-Browder, so
dimH2 < ∞ . Let H = H1⊕H2 , we have

T =
(

T1 T12

0 T2

)
: H1⊕H2 → H1⊕H2.

That T1 is surjective and TP
2 = 0 is evident. Note that dimH2 < ∞ implies T2 ∈

Φb(H2) , it follows from Lemma 1.6 that T1 ∈ Φsb(H1), and so T1 is right invertible.
From Theorem 1.5, we have α(T1) = ind(T1) = b.s. mul(T ) .

Sufficiency follows from Lemma 1.6. �
Combining Theorem 1.5, Propositions 1.7 and 1.8, we have the following theorem

immediately.

THEOREM 1.9. Let T ∈ B(H) . Then

(1) T is a shift-like semi-Fredholm operator iff T is an upper semi-Browder opera-
tor.

(2) T is a backward shift-like semi-Fredholm operator iff T is a lower semi-Browder
operator.

(3) T is a stationary semi-Fredholm operator iff T is a Browder operator.
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2. Applications of Samuel multiplicities

In ([8-12]), Fang studied Samuel multiplicities and presented some applications.
In this section, by using Samuel multiplicities, we characterize the sets

⋂
C∈B(K,H)σab(MC) ,⋂

C∈B(K,H)σsb(MC) and
⋂

C∈B(K,H)σb(MC) completely, where MC =
(

A C
0 B

)
is a 2×2

upper triangular operator matrix defined on H ⊕K . For the study advances of 2× 2
upper triangular operator matrix, see ([1-4], [13-19]).

First, note that if T ∈ B(H) , then T is bounded below iff T is left invertible, thus,
Theorem 1 of [14] can be rewritten as follows:

PROPOSITION 2.1. [14]. For any given A ∈ B(H) and B ∈ B(K) , MC is left
invertible for some C ∈ B(K,H) iff A is left invertible and{

a(B) � β (A) if R(B) is closed,
β (A) = ∞ if R(B) is not closed.

PROPOSITION 2.2. [4] For any given A ∈ B(H) and B ∈ B(K) ,
⋂

C∈B(K,H)

σ(MC) = σl(A)∪σr(B)∪{λ ∈ C : α(B−λ ) �= β (A−λ )}. (1)

One of the main results in this section is:

THEOREM 2.3. For any given A ∈ B(H) and B ∈ B(K) , MC ∈Φab(H ⊕K) for
some C ∈ B(K,H) iff A ∈Φab(H) and{

s mul(A) = ∞ if B �∈Φ+(K),
b.s. mul(B) � s mul(A) if B ∈Φ+(K).

Proof. We first claim that if B �∈Φ+(K) , then

MC ∈Φab(H⊕K) for some C ∈ B(K,H) ⇔ A ∈Φab(H) and s mul(A) = ∞. (2)

To do this, suppose MC ∈Φab(H⊕K) . Then from Lemma 1.6 we have A∈Φab(H) . If
s mul(A)<∞, then A∈Φ(H) , since ind(A)=α(A)−β (A)= b.s. mul(A)−s mul(A) .
Hence it is easy to show that B∈Φ+(K) , which is in a contradiction. Thus, s mul(A) =
∞.

Conversely, suppose that A ∈ Φab(H) and s mul(A) = ∞, which implies β (A) =
∞. It follows from Proposition 1.7 that A can be decomposed into the following form
with respect to some orthogonal decomposition H = H1⊕H2

A =
(

A1 A12

0 A2

)
,

where dim(H1) < ∞ , A1 is nilpotent, and A2 is a left invertible operator. Noting that
β (A) = ∞ , we have β (A2) = ∞. Hence it follows from Lemma 2.1 that there exists
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some C0 ∈ B(K,H2) such that

(
A2 C0

0 B

)
is left invertible. Now consider operator

MC =
(

A C
0 B

)
=

⎛
⎝A1 A12 0

0 A2 C0

0 0 B

⎞
⎠ ,

where C =
(

0
C0

)
∈ B(K,H). By Lemma 1.6, it is easy to check that MC ∈ Φab(H ⊕

K).
Next, We claim that if B ∈Φ+(K) , then

MC ∈Φab(H⊕K) for some C ∈ B(K,H) ⇔ A ∈Φab(H) and b.s. mul(B) � s mul(A).
(3)

To this end, suppose MC ∈ Φab(H ⊕K) , which implies A ∈ Φab(H) . By Proposition
1.8, we have that A can be decomposed into the following form with respect to some
orthogonal decomposition H = H1 ⊕H2

A =
(

A1 A12

0 A2

)
,

where dim(H1) < ∞ , A1 is nilpotent, A2 is a left invertible operator, and β (A2) =
s mul(A) . Since the assumption that B ∈Φ+(K) , using Theorem 1.5, we know that B
can be decomposed into the following form with respect to some orthogonal decompo-
sition K = K1⊕K2⊕K3

B =

⎛
⎝B1 ∗ ∗

0 B2 ∗
0 0 B3

⎞
⎠ ,

where dimK3 < ∞ , B1 is a right invertible operator, B2 is a left invertible operator,
B3 is a finite, nilpotent operator, and the parts marked by ∗ can be any operators.
Moreover, ind(B1) = α(B1) = b.s. mul(B) , ind(B2) = −β (B2) = −s mul(B1) and
ind(B) = α(B1)−β (B2) . Therefore, MC can be rewritten as the following form

MC =

⎛
⎜⎜⎜⎜⎝

A1 A12 C11 C12 C13

0 A2 C21 C32 C23

0 0 B1 ∗ ∗
0 0 0 B2 ∗
0 0 0 0 B3

⎞
⎟⎟⎟⎟⎠ : H1⊕H2⊕K1⊕K2⊕K3 → H1 ⊕H2⊕K1⊕K2⊕K3.

Noting that dim(H1) <∞ and dim(K3) < ∞ , we have A1 ∈Φb(H1) and B3 ∈Φb(K3) .
Consequently, Lemma 1.6 leads to⎛

⎝A2 C21 C32

0 B1 ∗
0 0 B2

⎞
⎠ ∈Φab(H2 ⊕K1⊕K2),

which implies (
A2 C21

0 B1

)
∈Φab(H2⊕K1).
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Now we shall prove that
β (A2) � α(B1).

If β (A2) = ∞ , the above inequality obviously holds. On the other hand, if β (A2) < ∞ ,
then A2 ∈Φ(H2) , and hence B1 ∈Φ+(K1) . Thus,

0 � ind

((
A2 C21

0 B1

))
= ind(A2)+ ind(B1) = −β (A2)+α(B1),

that is,
α(B1) � β (A2).

Therefore,
b.s. mul(B) � s mul(A).

Conversely, suppose A∈Φab(H) , B∈Φ+(K) and b.s. mul(B) � s mul(A) . Sim-
ilar to the above arguments, we have

A =
(

A1 A12

0 A2

)
: H1⊕H2 �→ H1⊕H2

and

B =

⎛
⎝B1 ∗ ∗

0 B2 ∗
0 0 B3

⎞
⎠ : K1 ⊕K2⊕K3 �→ K1 ⊕K2⊕K3,

where dim(H1) < ∞ , A1 is nilpotent, A2 is a left invertible operator; dimK3 < ∞ ,
B1 is a right invertible operator, B2 is a left invertible operator, B3 is a finite, nilpotent
operator, and the parts marked by ∗ can be any operators. Moreover, β (A2) = s mul(A)
and α(B1) = b.s. mul(B) . Since the assumption that b.s. mul(B) � s mul(A) , we have
α(B1) � β (A2) . It follows from Lemma 2.1 that there exists a left invertible operator
C̃ ∈ B(K1,H2) such that(

A2 C̃
0 B1

)
∈ B(H2⊕K1) is left invertible.

Consider operator

MC =
(

A C
0 B

)
: H ⊕K → H ⊕K

=

⎛
⎜⎜⎜⎜⎝

A1 A12 0 0 0
0 A2 C̃ 0 0
0 0 B1 ∗ ∗
0 0 0 B2 ∗
0 0 0 0 B3

⎞
⎟⎟⎟⎟⎠ : H1⊕H2⊕K1⊕K2⊕K3 → H1⊕H2⊕K1⊕K2⊕K3,

where C =
(

0 0 0
C̃ 0 0

)
∈ B(K1 ⊕K2⊕K3,H1⊕H2). Using Lemma 1.6 , it is easy to see

that MC ∈Φab(H⊕K). �

By duality, we have
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THEOREM 2.4. For any given A ∈ B(H) and B ∈ B(K) , MC ∈Φsb(H ⊕K) for
some C ∈ B(K,H) iff B ∈Φsb(K) and{

b.s. mul(B) = ∞ if A �∈Φ−(H)
b.s. mul(B) � s mul(A) if A ∈Φ−(H)

From Theorems 2.3 and 2.4, we obtain the following two corollaries, concerning
perturbations of the upper semi-Browder spectrum and lower semi-Browder spectrum,
respectively.

COROLLARY 2.5. For any given A ∈ B(H) and B ∈ B(K) , we have⋂
C∈B(K,H)

σab(MC) = σab(A)∪{λ ∈ C : λ ∈ σSF+(B) and s. mul(A−λ ) < ∞}∪

{λ ∈Φ(A)∩Φ+(B) : b.s. mul(B−λ ) > s. mul(A−λ )}.

COROLLARY 2.6. For any given A ∈ B(H) and B ∈ B(K) , we have⋂
C∈B(K,H)

σsb(MC) = σsb(B)∪{λ ∈ C : λ ∈ σSF−(A)andb.s. mul(B−λ ) < ∞}∪

{λ ∈Φ(B)∩Φ−(A) : b.s. mul(B−λ ) < s. mul(A−λ )}.

THEOREM 2.7. For any given A ∈ B(H) and B ∈ B(K) , the following statements
are equivalent:

(1) MC ∈Φb(H⊕K) for some C ∈ B(K,H);

(2) A ∈Φab(H) , B ∈Φsb(K) and b.s. mul(B) = s mul(A);

(3) A ∈Φab(H) , B ∈Φsb(K) and α(A)+α(B) = β (A)+β (B) .

Proof. (1) ⇒ (2) . Suppose that MC ∈ Φb(H ⊕K) . Then from Lemma 1.6, we
have A ∈Φab(H) and B ∈Φsb(K) . Using Propositions 1.7 and 1.8, we have

MC =

⎛
⎜⎜⎝

A1 A12 C11 C12

0 A2 C21 C32

0 0 B1 B12

0 0 0 B2

⎞
⎟⎟⎠ : H1⊕H2⊕K1⊕K2 → H1⊕H2⊕K1⊕K2,

where dim(H1) < ∞ , A1 is nilpotent, A2 is a left invertible operator, dimK2 < ∞ , B1

is a right invertible operator, B2 is a finite, nilpotent operator. Moreover,

β (A2) = s. mul(A) and α(B1) = b.s. mul(B).

In addition, it follows from Lemma 1.6 that(
A2 C21

0 B1

)
∈Φb(H2 ⊕K1).



178 S. ZHANG AND J. WU

Note the well-known fact that if MC ∈ Φ(H ⊕K) , then A ∈ Φ(H) if and only if B ∈
Φ(K) . Thus, if β (A2) = ∞ , then B1 �∈ Φ(K1) , and so β (A2) = α(B1) = ∞ since that
B1 is right invertible. Otherwise, if β (A2) < ∞ , then both A2 and B1 are Fredholm.
Consequently,

0 = ind(
(

A2 C21

0 B1

)
) = ind(A2)+ ind(B1) = −β (A2)+α(B1),

that is, β (A2) = α(B1). Therefore, s. mul(A) = b.s. mul(B).
(2)⇒ (1) . Suppose that A∈Φab(H) , B∈Φsb(K) and that s. mul(A)= b.s. mul(B).

Then from Proposition 1.7 we have that A can be decomposed into the following form
with respect to some orthogonal decomposition H = H1⊕H2

A =
(

A1 A12

0 A2

)
,

where and dim(H1) < ∞ , A1 is nilpotent, and A2 is a left invertible operator. By
Proposition 1.8, B ∈ B(K) can be decomposed into the following form with respect to
some orthogonal decomposition K = K1⊕K2

B =
(

B1 B12

0 B2

)
,

where dim(K2) < ∞ , B1 is a right invertible operator, and B2 is nilpotent. Moreover,
s. mul(A) = β (A2) and b.s. mul(B) = α(B1) . Since the assumption that s. mul(A) =
b.s. mul(B) , α(B1) = β (A2) . Thus, we conclude from Theorem 1.5 that there exists

some operator C12 ∈ B(K1,H2) such that

(
A2 C21

0 B1

)
is invertible. Define C ∈ B(K,H)

as follows:

C =
(

0 0
C12 0

)
.

By Lemma 1.6, it no hard to prove that MC ∈Φb(H ⊕K) .
(2) is equal to (3) . For this, it is sufficient to prove that if
A ∈Φab(H) and B ∈Φsb(K) , then

α(A)+α(B) = β (A)+β (B) if and only if b.s. mul(B) = s mul(A),

which follows from Propositions 1.7 and 1.8 immediately. This completes the proof. �

In [1], Cao has proved the equivalence of (1) and (3) of Theorem 2.7 by a differ-
ent method, which seems to be more complicated.

The next corollary immediately follows from Theorem 2.7.

COROLLARY 2.8.. For any given A ∈ B(H) and B ∈ B(K) , we have⋂
C∈G(K,H)

σb(MC)

= σab(A)∪σsb(B)∪{λ ∈Φab(A)∩Φsb(B) : b.s. mul(B−λ ) �= s mul(A−λ )}
= σab(A)∪σsb(B)∪{λ ∈ C : α(A−λ )+α(B−λ ) �= β (A−λ )+β (B−λ )}.
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