
Operators
and

Matrices
Volume 6, Number 1 (2012), 181–192

WHEN DOES THE MOORE–PENROSE INVERSE FLIP?
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(Communicated by P. Šemrl)

Abstract. In this paper, we give necessary and sufficient conditions for the matrix

[
a 0
b d

]
, over

a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the
four cases where the zero element can stand. In particular, we study the case where the Moore-
Penrose inverse of the matrix flips.

1. Introduction

Let R be a regular *-ring with 1, that is, for all a ∈ R there exist a− such that
aa−a = a , and with an involutory anti-isomorphism (·)∗ on R , such that (a∗)∗ =
a, (a+b)∗ = a∗+b∗ and (ab)∗ = b∗a∗ .

It is well known [9, Lemma 4], that if the involution on R satisfies the one term
star-cancellation law

SC1 : a∗a = 0 ⇒ a = 0, (1)

then the Moore-Penrose inverse a† can be defined. It is the unique solution to the four
equations

(i) axa = a, (ii) xax = x, (iii) (ax)∗ = ax, (iv) (xa)∗ = xa. (2)

We say x is a 1-3 inverse of a if it satisfies equations (i) and (iii) above, and y is a 1-4
inverse of a if it satisfies equations (i) and (iv) above. From the well known result due
to Urquhart (cf. [1, page 48]), if x and y are a 1-3 and 1-4 inverse of a , respectively,
then a† = yax .

We note that regular rings that satisfy SC1 are exactly those for which all of its
elements are Moore-Penrose invertible. Such a ring is said to be a ∗ -regular ring. We
use R2×2 to denote the ring of 2×2 matrices over R .

A matrix M =
[

a c
b d

]
with coefficients in R is said to be of (i, j,0) type if the

(i, j) entry (M)i j of M is zero.
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In this note we will be interested in the questions of when the matrix

[
a 0
b d

]
has a

Moore-Penrose inverse of (i, j,0) type, for i, j ∈ {1,2} . In particular, we will address

to the case when this inverse has the “flipped” form

[∗ ∗
0 ∗

]
. We will repeatedly use

Cline’s results ([3] and [4]) in order to express the Moore-Penrose inverse of a semi-
orthogonal sum and of a column matrix. The expressions derived are simpler when
compared with [7].

We only consider the special involution on R2×2 of the form

[
a c
b d

]∗
=

[
a∗ b∗
c∗ d∗

]
.

2. Existence of the Moore-Penrose inverse

Consider the matrix M =
[

a 0
b d

]
. In order to guarantee the existence and to be

able to give a formula of M† , we assume the following extra conditions on the regular
R :

1. SC2 : a∗a+b∗b = 0 ⇒ a = 0 = b (two term star-cancellation)

2. for each a ∈ R , there is c ∈ R such that 1+a∗a = c∗c = cc∗ (square root axiom)

We note the following consequences:

(i) 1+a∗a is a unit for all a ∈ R , that is, R has the symmetry property (see [2, page
9]). Indeed, if R is regular and satisfies SC2 then it also satisfies SC1 , which in
turn implies all its elements are Moore-Penrose invertible. Let u = 1+ a∗a . If
ux = 0, then x∗x+(ax)∗(ax) = 0 and hence, using condition SC2 , x = 0. Thus
u is not a divisor of 0. But u(1− u†u) = 0 and hence 1− u†u = 0. Likewise
1−uu† = 0 and u is a unit.

(ii) Since 1+a∗a = cc∗ = c∗c is a unit, then the square root c must be a unit as well.

(iii) 1+a∗a+b∗b = c∗c+b∗b = c∗[1+(bc−1)∗(bc−1)]c , which is again a unit.

(iv) If R satisfies SC2 and is regular, then every 2× 2 matrix over R is Moore-
Penrose invertible. This follows from the facts that

(a) SC2 holds in R if and only if SC1 holds in R2×2 .

(b) R is regular if and only if the ring R2×2 is regular.

(v) The previous item shows that the regularity of the involutory ring R together with
SC2 is sufficient to garantee the existence of A† , for any 2×2 matrix A over R ,
with respect to the special involution in R2×2 induced by the involution on R .
In the remainder of this paper we will give an expression for the Moore-Penrose
inverse of a 2×2 matrix over R , and for this we will need the symmetry of R2×2 .



WHEN DOES THE MOORE-PENROSE INVERSE FLIP? 183

We note that symmetry of R2×2 does not follow from R being regular and sat-
isfying SC2 . Indeed, set R = Z7 which is a field and thus regular. The invo-
lution we take is the identity map. The squares are {0,1,2,4} . It is clear that

x2 + y2 = 0 ⇒ x = 0 = y . That is, SC2 holds. Now, let M =
[

2 0
3 0

]
. Then

M∗M = MT M =
[

2 3
0 0

][
2 0
3 0

]
=

[
6 0
0 0

]
. Hence I2 +M∗M =

[
0 0
0 1

]
, which is

not invertible.

(vi) In a regular symmetric ring, idempotents e have a Moore-Penrose inverse via
e† = e∗[1+(e− e∗)(e∗ − e)]−1 . Indeed, setting u = 1+(e− e∗)(e∗ − e) , then u
and ee∗ commute, and so do u−1 and ee∗ , u and e∗e commute, and so do u−1

and e∗e , and also u−1ee∗ee = e = ee∗eu−1 . Since e(e∗u−1) and (u−1e∗)e are
symmetric, and e(e∗u−1)e = u−1ee∗e = e = ee∗eu−1 = e(u−1e∗)e , then e∗u−1

is a 1-3 inverse of e and u−1e∗ is a 1-4 inverse of e , which lead to e† =
(u−1e∗)e(e∗u−1) = u−1e∗ee∗u−1 = e∗u−1 .

As such the orthogonal projections PaR and PRa can be defined as p = (aa−)(aa−)†

and q = (a−a)†(a−a) . It then follows that the Moore-Penrose inverse a† = qa−p
exists and the SC1 property follows.

2.1. The Moore-Penrose inverse of a sum

We recall that if ca∗ = 0, then a+c has a Moore-Penrose inverse, which takes the
form

(a+ c)† = (1+ y∗)(1+ yy∗)−1s+u†, (3)

where

u = (1−aa†)c
s = a†(1− cu†)
y = a†c(1−u†u) = sc.

Indeed, and since 1−y∗y(1+y∗y)−1 = (1+y∗y)−1 , (1+y∗y)−1 and 1−u†u commute,
y(1−u†u) = y , and (1+ yy∗)−1 = 1− y(1+ y∗y)−1y∗ , then, using [4, Theorem 2],

(a+ c)† = a†−a†cu†−a†c(1−u†u)(1+ y∗y)−1c∗a†∗a†(1− cu†)+u† +

+(1−u†u)(1+ y∗y)−1c∗a†∗a†(1− cu†)

= s− y(1+ y∗y)−1c∗a†∗s+u† +(1−u†u)(1+ y∗y)−1c∗a†∗s

= s− y(1+ y∗y)−1(1−u†u)c∗a†∗s+u† +(1−u†u)(1− y∗y(1+ y∗y)−1)c∗a†∗s

= s− y(1+ y∗y)−1y∗s+u† + y∗s+ y∗y(1+ y∗y)−1c∗a†∗s
= u† +(1− y(1+ y∗y)−1y∗)s+ y∗(1− y(1+ y∗y)−1y∗)s
= u† +(1+ yy∗)−1s+ y∗(1+ yy∗)−1s

= (1+ y∗)(1+ yy∗)−1s+u†
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Moreover, we also have, from [3, Theorem 2] (also from [7, Lemma 2]),

[
a
b

]†

= [ξa∗,ξb∗] and

[
a
b

]† [
a
b

]
= a†a+ v†v, (4)

where ξ = (a∗a+b∗b)† and v = b(1−a†a) . We may re-express the former element as

ξ = tμ−1t∗ +(v∗v)†, (5)

in which
t = (1− v†b)a†, x = (1− vv†)ba† = bt, μ = 1+ x∗x. (6)

Indeed, from [4, Theorem 1],

ξ = (a∗a+b∗b)† = t�t∗ + v†(v∗)†,

where
� = 1− ((1− vv†)ba†)∗k(ba†)

and
k = (1+(1− vv†)ba†((1− vv†)ba†)∗)−1 = (1+ xx∗)−1.

Since (1− vv†)k = k(1− vv†) = (1− vv†)k(1− vv†) ,

� = 1− (ba†)∗(1− vv†)k(1− vv†)ba†

= 1− ((1− vv†)ba†)∗k(1− vv†)ba†

= 1− x∗(1+ xx∗)−1x

= (1+ x∗x)−1 = μ−1

Lastly, v†(v∗)† = (v∗v)† by [5, Lemma 5], or simply by checking the Penrose equations
(2).

2.2. The lower triangular case

Consider the 2×2 triangular matrix M =
[

a 0
b d

]
. We may split M as

M =
[

0 0
0 d

]
+

[
a 0
b 0

]
= A +C ,

where CA ∗ = 0. In order to apply (3) to this semi-orthogonal splitting, we need to
show that I +A∗A is invertible for any matrix A ∈ R2×2 . This we now undertake.

The key fact is the following factorization. If α is a unit then

[
α β ∗
β δ

]
=

[
1 0

βα−1 1

][
α 0
0 z

][
1 α−1β ∗
0 1

]
, (7)



WHEN DOES THE MOORE-PENROSE INVERSE FLIP? 185

where z is the Schur complement z = δ − βα−1β ∗ . Now consider the matrix A =

[a,b] =
[

a1 b1

a2 b2

]
. Then

I +A∗A =
[

1+a∗a a∗b
b∗a 1+b∗b

]
. (8)

and its Schur complement becomes

z = 1+b∗b− (b∗a)(1+a∗a)−1a∗b
= 1+b∗[I2−a(1+a∗a)−1a∗]b
= 1+b∗[I2 +aa∗]−1b,

since (I2 +aa∗)−1 = I2−a(1+a∗a)−1a∗ .

We now turn to the matrix

G = I +aa∗

=
[

1+a1a∗1 a1a∗2
a2a∗1 1+a2a∗2

]

=
[

1 0
βα−1 1

][
α 0
0 ζ

][
1 α−1β ∗
0 1

]
,

where α = 1+a1a∗1 is a unit, β = a2a∗1 and the Schur complement ζ takes the form

ζ = 1+a2a
∗
2−a2a

∗
1(1+a1a

∗
1)

−1a1a
∗
2

= 1+a2(1−a∗1(1+a1a
∗
1)

−1a1)a∗2
= 1+a2(1+a∗1a1)−1a∗2,

since (1+a∗1a1)−1 = 1−a∗1(1+a1a∗1)
−1a1 .

By using the square root axiom, we may set 1 + a1a∗1 = ee∗ and therefore e is
a unit. Consequentely, there exists f such that (1 + a1a∗1)

−1 = f f ∗ and hence ζ =
1+ (a2 f )(a2 f )∗ . Again ζ is a unit, and by the square root axiom, ζ = hh∗ , which
leads to ζ−1 = gg∗ , for some g .

Substituting into z now gives

z = 1+b∗ (I +aa∗)−1 b

= 1+b∗
[

1 −α−1β ∗
0 1

][
α−1 0
0 ζ−1

][
1 0

−βα−1 1

]
b

= 1+
[
b∗1 w∗ ][

f f ∗ 0
0 gg∗

][
b1

w

]

= 1+b∗1 f f ∗b1 +w∗gg∗w,

where w = b2−βα−1b1 , and therefore z is a unit. Thus R2×2 is again symmetric.
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We now may apply (3) to our matrix M , giving

M† = U † +(I +Y ∗)(I +Y Y ∗)−1S, (9)

where

U = (I−A A †)C =
[

a 0
B 0

]
,

with B = (1−dd†)b , and
Y = A †C (I−U †U ).

We next compute U † =
[
ξa∗ ξB∗
0 0

]
in which

ξ = (a∗a+B∗B)† = tμ−1t∗ +(v∗v)†,

v = B(1−a†a), t = (1− v†B)a†,

μ = I + x∗x, and

x = (I− vv†)Ba† = Bt.

By combining these, and by using the equalities in (4), we arrive at

U †U =
[

a†a+ v†v 0
0 0

]

and

Y =
[

0 0
0 d†

][
a 0
b 0

][
1−a†a− v†v 0

0 1

]
=

[
0 0
f 0

]
,

where
f = d†b(1−a†a− v†v).

Likewise,

S = A † −A †CU †

=
[

0 0
0 d†

]
−

[
0 0
0 d†

][
a 0
b 0

][
ξa∗ ξB∗
0 0

]

=
[

0 0
−d†bξa∗ d†−d†bξB∗

]
.

We then compute

(I +Y ∗)(I +Y Y ∗)−1 =
[

1 f ∗(1+ f f ∗)−1

0 (1+ f f ∗)−1

]
,

followed by

(I +Y ∗)(I +Y Y ∗)−1S =
[

1 f ∗(1+ f f ∗)−1

0 (1+ f f ∗)−1

][
0 0

−d†bξa∗ d†−d†bξB∗

]
.
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This then gives, using equation (9),

[
a 0
b d

]†

= (I +Y ∗)(I +Y Y ∗)−1S +U † =
[

p q
s r

]
, (10)

where

p = ξa∗ − (1+ f ∗ f )−1 f ∗d†bξa∗ (11)

s = −(1+ f f ∗)−1d†bξa∗ (12)

q = ξb∗(1−dd†)+ (1+ f ∗ f )−1 f ∗d†[1−bξb∗(1−dd†)] (13)

r = (1+ f f ∗)−1d†[1−bξ ∗b∗(1−dd†)] (14)

in which

ξ = [a∗a+b∗(1−dd†)b]† = ξ ∗ = t(1+ x∗x)−1t∗ +(v∗v)† (15)

x = (1− vv†)(1−dd†)ba† (16)

t = [1− v†(1−dd†)b]a† (17)

f = d†b(1−a†a− v†v) and (18)

v = (1−dd†)b(1−a†a) (corner stone). (19)

We have presented an alternative expression to main theorem of [7] for the Moore-
Penrose inverse of a 2×2 lower triangular matrix.

For later use, we observe that

(a) va∗ = 0, (v∗v)†a∗ = 0.

(b) ξa∗ = tμ−1t∗a∗ ,where μ = 1+ x∗x .

(c) t = [1− v†(1−dd†)b]a† = (1− v†b)a† = a†− v†ba† .

(d) taa† = t and at = aa†−av†ba† = aa† = (at)∗

(e) xaa† = x and so aa†x∗ = x∗ , and

(f) μaa† = aa†μ and μ−1aa† = aa†μ−1 .

From the above,

ξa∗ = tμ−1(at)∗ = tμ−1aa† = taa†μ−1 = tμ−1.

The equality
ξa∗ = tμ−1 (20)

will be used later in this document.
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3. The four “faces” of M†

We now examine the four cases where the block lower triangular matrix M =[
a 0
b d

]
has a Moore-Penrose inverse of the form:

(i) M† =
[ ∗ 0
∗ ∗

]
the (1,2,0) case (unflipped),

(ii) M† =
[ ∗ ∗

0 ∗
]

the (2,1,0) case (flipped),

(iii) M† =
[

0 ∗
∗ ∗

]
the (1,1,0) case,

(iv) M† =
[ ∗ ∗
∗ 0

]
the (2,2,0) case.

3.1. The (1,2,0) case (unflipped)

The Moore-Penrose inverse of the block lower triangular matrix M =
[

a 0
b d

]
is

again of (1,2,0) type if and only if b = dd†b = ba†a (see [12]).

We may also use the general triangular case (10) to rederive this consistency. In-
deed this occurs precisely when

0 = q = ξb∗(1−dd†)+ (1+ f ∗ f )−1 f ∗d†[1−bξb∗(1−dd†)].

By post-multiplying by dd† gives (1+ f ∗ f )−1 f ∗d† = 0 which reduces to d f = 0. By
substituting this back into q , then shows that also ξb∗(1−dd†) = 0. Thus M† has the
desired lower triangular form if and only if

d f = 0 and ξb∗(1−dd†) = 0. (21)

Now recall that if B = (1− dd†)b then ξ = (a∗a + B∗B)† . Hence the second
consistency condition becomes (a∗a + B∗B)†B∗ = 0, which is equivalent to (a∗a +
B∗B)B∗ = 0. This implies that B(a∗a + B∗B)B∗ = 0 and hence by star-cancellation,
BB∗ = 0 and thus B = 0. This says that b = dd†b and hence v = 0.

By substituting in 0 = d f = dd†b[1−a†a− v†v] then yields 0 = b(1−a†a) , and
we recover the necessary condition b = dd†ba†a , which is also sufficient. We have
proved
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THEOREM 3.1. Given M =
[

a 0
b d

]
, the following conditions are equivalent:

1. M† is of (1,2,0) type.

2. b ∈ dRa.

3. b = dd†ba†a.

4. dd†b = b = ba†a.

In this case, M† =
[

a† 0
−d†ba† d†

]
.

This can be extended to the n×n case (as in [6]).

3.2. The (2,1,0) case (flipped)

Next we examine the case here the Moore-Penrose inverse of the lower triangular

matrix M “flips” and takes the form M† =
[

p q
0 r

]
for some p , q , and r . We will give

necessary and sufficient conditions for this to happen, in terms of the blocks a , b and
d .

From (12) we see that a necessary and sufficient condition for M† to have the

flipped form

[
p q
0 r

]
is that d†bξa∗ = 0.

We now observe from Equation (20), that the consistency condition collapses to
0 = d∗bt = d∗b(1− v†b)a† , which yields

d∗ba∗ = d∗bv†ba∗, (22)

or equivalently
dd†b(b†− v†)ba†a = 0.

We thus have

THEOREM 3.2. Given M =
[

a 0
b d

]
, then M† is of (2,1,0) type if and only if

dd†b(b†− v†)ba†a = 0,

in which case

M† =
[
ξa∗ ξb∗(1−dd†)+ (1+ f ∗ f )−1 f ∗d†[1−bξb∗(1−dd†)]
0 (1+ f f ∗)−1d†[1−bξ ∗b∗(1−dd†)]

]
,

where ξ , f are as above.
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If we set e = a†a and f = dd† , then the consistency condition can be written as

ζ = f be− f b[(1− f )b(1− e)]†be = 0,

which is the (2,2) Schur complement in

[
f be be
f b (1− f )b(1− e)

]
. It only involves b ,

e and f . It is not clear how to simplify this condition. All we have is that vv† =
(1−dd†)bv† .

3.3. The (2,2,0) case

From (10) we see that M† is of (2,2,0) type if and only if r = 0, which is equivalent
to

d† = d†bξ ∗b∗(1−dd†).

Right multiplication by dd† shows that necessarily d† = 0, that is, d = 0. The suffi-
ciency is clear. We may thus state the following result:

THEOREM 3.3. Given M =
[

a 0
b d

]
, M† is of (2,2,0) type if and only if d = 0 ,

in which case

[
a 0
b d

]†

=
[

(a∗a+b∗b)†a∗ (a∗a+b∗b)†b∗
0 0

]
.

3.4. The (1,1,0) case

Lastly, we analyze the case where M† is of (1,1,0) type. This corresponds to

p = ξa∗ − (1+ f ∗ f )−1 f ∗d†bξa∗ = 0,

with ξ = (a∗a+B∗B)† , B = (1−dd†)b , f = d†b(1−a†a−v†v) and v = (1−dd†)b(1−
a†a) .

Now recall, from equation (20), that ξa∗ = tμ−1 , where μ = 1 + x∗x = (1−
vv†)Ba† and t = a†−v†ba† . Thus p = 0 is equivalent to tμ−1 = (1+ f ∗ f )−1 f ∗d†btμ−1 ,
i.e. to

(1+ f ∗ f )t = f ∗d†bt. (23)

Since va† = 0 = av† we know that f a† = 0 = f v† and consequently f t = 0.
The equality (23) now reduces to t = f ∗d†bt . Lastly, left multiplication by a†a

shows that necessarily a† = 0, that is, a = 0. This is, trivially, sufficient for p = 0. We
may thus conclude that

THEOREM 3.4. Given M =
[

a 0
b d

]
, M† is of (1,1,0) type if and only if a = 0 ,

in which case

[
0 0
b d

]†

=
[

0 b∗(bb∗+dd∗)†

0 d∗(bb∗+dd∗)†

]
.

It is easily seen that these reduce to Cline’s result.
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4. Questions and remarks

1. The consistency condition for the Moore-Penrose inverse to flip involves the cor-
ner matrix v = (1−dd†)b(1−a†a) . Its Moore-Penrose inverse is a perturbation
of b† .

2. Can we use the theory of Schur complements or partial orders, to simplify the
consistency condition f be = f b[(1− f )b(1− e)]†be?

3. No further simplification of the Condition (22) seems possible.

4. The unflipped case can be, inductively, generalized to the n×n case. What can
be said for the flipped case for n×n matrices?

5. To ensure the symmetry of R2×2 with R regular and symmetric, we may replace
the square-root axiom on R by the condition SC4 .

6. SC2(R) does not imply SCn(R) , nor implies the square root property, as remarked
in Examples 2 and 3 in [13, page 215].

7. We have not used any of the other conditions that relate p , q , and r to a , b and
d .
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