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GEOMETRY AND GÂTEAUX SMOOTHNESS

IN SEPARABLE BANACH SPACES

P. HÁJEK ∗ , V. MONTESINOS† AND V. ZIZLER‡

Abstract. It is a classical fact, due to Day, that every separable Banach space admits an equiv-
alent Gâteaux smooth renorming. In fact, it admits an equivalent uniformly Gâteaux smooth
norm, as was shown later by Day, James, Swaminathan, and independently by the third named
author. It is therefore rather unexpected that the existence of Gâteaux smooth renormings satis-
fying various quantitative estimates on the directional derivative has rather strong structural and
geometrical implications for the space. For example, by a result of Vanderwerff, if the direc-
tional derivatives satisfy a p -estimate, where p varies arbitrarily with respect to the point and
the direction in question, then the Banach space must be an Asplund space. In the present survey
paper, we discuss the interplay between various types of Gâteaux differentiability of norms and
extreme points with the geometry of separable Banach spaces. In particular, we present various
characterizations of Asplund, reflexive, superreflexive, and other classes of separable Banach
spaces, via smooth as well as rotund renormings. We also include open problems of various lev-
els of difficulty, which may foster research in the area of smoothness and renormings of Banach
spaces.

In nonlinear analysis, the differentiability of norms plays an important role. The
most important type of differentiability is that of Fréchet differentiability. However,
in many instances it suffices to use weaker forms of differentiability, i.e., variants of
the Gâteaux differentiability (that are more often accessible). This happens especially
when some convexity arguments can be combined with Baire category techniques. The
present paper surveys some of these results and discusses several ideas and construc-
tions in their proofs.

We focus on the interplay of these concepts with the geometry of separable spaces,
for example with problems on containment of c0 or �1 , with superreflexivity, the
Radon–Nikodým property, etc. Several open problems in this area are discussed.

We refer to, e.g., [33], [19], [25], [1], [5], and [29] for all unexplained notions and
results used in this note.
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1. Pointwise directional Hölder derivatives

Pisier proved in [56] that every Banach space that admits a uniformly Fréchet
differentiable norm (i.e., a superreflexive space) can be renormed (by this we mean
“equivalently renormed”) by a norm with modulus of smoothness of power type. This
is not true, even directionwise, for the case of the uniform Gâteaux differentiability.

Recall that a real valued function f is Gâteaux differentiable (or, Gâteaux smooth)
at a point x of a Banach space X , if there exists an element g in the dual space X∗ such
that limt→0

1
t ( f (x+ th)− f (x)) = g(h) for each h ∈ X .

A norm is called a Gâteaux differentiable norm, if it is Gâteaux differentiable at
all nonzero points in the space.

Recall that a norm ‖ · ‖ of a Banach space X is uniformly Gâteaux differentiable
on X (UG, in short) if for each h∈ X , the limit above is uniform in x in the unit sphere
SX of X , i.e. if, and only, if for each h ∈ X , limt→0

1
t (‖x+ th‖+‖x− th‖−2‖x‖)= 0

uniformly for x ∈ SX .

It is well known that every separable Banach space can be renormed by a UG
norm: Indeed, if {xi} is a dense sequence in the unit sphere SX of a separable Banach
space (X ,‖ · ‖0) , let the norm ‖ · ‖ be defined for f ∈ X∗ by

‖ f‖2 = ‖ f‖2
0 +∑2−i f 2(xi),

where ‖ · ‖0 is the canonical dual norm of X∗ . Then ‖ · ‖ is a dual equivalent norm
on X∗ , and standard convexity arguments give that fn−gn → 0 in the weak∗ topology
of X∗ whenever ‖ fn‖ = ‖gn‖ = 1 and ‖ fn + gn‖ → 2. This means, by the Šmulyan
lemma (see, e.g., [29, Corollary 7.22]), that the predual norm of ‖ · ‖ is UG.

The situation is different if we require that the derivative be pointwise directionally
Hölder in the following sense: A function ϕ on a Banach space X is said to have a
directional Hölder derivative at x0 if for each h ∈ BX there are Kh > 0, δh > 0 and
αh ∈ (0,1] such that

|(ϕ ′(x0 + th)−ϕ ′(x0)
)
(th)| � Kht

1+αh

for all 0 � t � δh . In case that αh = 0 for all h ∈ SX , ϕ ′ is said to be directionally
Lipschitz at x0 . We will say that ϕ has pointwise directional Hölder derivative on X
if for each x ∈ X , ϕ has directional Hölder derivative at x .

We say that a function ϕ has uniform directional Hölder derivative if for each
h ∈ SX there are Ch > 0 and αh > 0 such that

|(ϕ ′(x+ th)−ϕ ′(x)
)
(th)| � Cht

1+αh

for every x ∈ X .

These cases have already a strong impact on the structure of the space. This is
seen in the following results.

Recall that a bump function on a Banach space X is a real valued function on X
with bounded nonempty support.



GEOMETRY AND GÂTEAUX SMOOTHNESS IN SEPARABLE BANACH SPACES 203

THEOREM 1. ([71]) Assume that X is a separable Banach space. Suppose that X
admits a continuous bump function with pointwise directional Hölder derivative. Then
X∗ is separable.

Note that not everyBanach space with separable dual admits a bump as in Theorem
1. Indeed, the reflexive separable space (∑�n

∞)2 is not superreflexive and thus cannot
admit such a bump by Theorem 2 below.

After the combined efforts of Davis, Huff, Maynard, Phelps and Rieffel (see ref-
erences in [21, Chapter 6]), we know that a Banach space X has the Radon-Nikodým
property (in short, RNP) if, and only if, it is dentable, i.e., if each bounded set in X
has non-empty slices of arbitrarily small diameter (where a slice is the intersection of
the set with an open halfspace). This happens if, and only if, each bounded closed
convex set C in X is the closed convex hull of its strongly exposed points (see, e.g.,
[29, Theorem 11.3]). A point x0 ∈ C is called exposed (by a functional f ∈ X∗ ) if
{x ∈C : f (x) = supx∈C f (x)} = {x0} , and strongly exposed (by f ) if it is exposed by
f and ‖xn− x0‖→ 0 whenever f (xn) → f (x0) .

There are examples of Banach space failing RNP and not containing either c0 or
L1 , see [65] and [11].

A Banach space X is called an Asplund space if every separable subspace of X
has separable dual. A norm on a Banach space is said to be strictly convex (or rotund) if
each point in its sphere is an extreme point of the ball. A norm ‖ ·‖ is locally uniformly
rotund (LUR, in short) if ‖xn−x‖→ 0 whenever xn,x∈ SX are such that ‖xn +x‖→ 2.

The following couple of results summarize some of the known results in this area.

THEOREM 2. ([18], [49], [71], [50]) Let X be a Banach space. Then each one of
the following four conditions implies that X is superreflexive.

(i) The space X has the RNP property and admits a continuous bump function
with pointwise directional Hölder derivative.

(ii) Both X and X∗ admit continuous bump functions with pointwise directional
Hölder derivative.

(iii) The space X admits an LUR norm with pointwise directional Hölder deriva-
tive on the sphere.

(iv) The space X admits a bounded bump function with uniformly directional
Hölder derivative.

Note that due to Pisier’s theorem mentioned above, and due to further results in
this area (cf. e.g. [29, Chapter 9]), each of the conditions in Theorem 2 characterizes
superreflexive spaces.

Note also that, using that the space c0 admits a C∞ smooth norm, Theorem 2 (iii)
shows that the Asplund averaging procedure (cf. e.g. [19, Chapter 3]) does not work
for this kind of Gâteaux differentiability.

The Day norm on c0 (cf. e.g. [19, p. 69]) is an example of a LUR norm whose
pointwise modulus of smoothness is of power type 2 for points of a dense subset. This
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norm is also an example of a function for which the set of points at which the derivative
is pointwise Lipschitz is not a Gδ set (cf. [18]).

THEOREM 3. ([71]) Let X be a Banach space. Assume that both X and X∗ admit
continuous bump functions with pointwise directional Lipschitz derivative. Then X is
isomorphic to a Hilbert space.

COROLLARY 4. ([49], [50], [3], [17]) (i) A separable C(K) space admits a con-
tinuous bump function with pointwise directional Hölder derivative if, and only if, K is
countable.

(ii) If X is a Banach space, then the space of compact operators K(X) on X
admits a continuous bump function with pointwise directional Lipschitz derivative if,
and only if, X is isomorphic to a Hilbert space.

We will not give proofs of the results above in this note. We will present in the
lemmas below only some of the main ideas and constructions used in these proofs.

One of the main tools in the proofs consists of the use of the Baire Category theo-
rem in several ways:

First, in [71], the Baire category theorem is used in the proof of Theorem 1 in
connection with the Ekeland variational principle (see, e.g., [29, Chapter 7]).

Second, the Baire Category theorem is used for the directions of differentiability
in the convex case ([4]).

Third, by using the RNP and duality, the Baire Category Theorem is used to apply
the Day method to reach the uniformity required ([18], [49], [16]).

If f is a real valued function on a Banach space X , x ∈ X and η > 0, we put

ρx(η) = sup{| f (x+h)+ f (x−h)−2 f (x)| : ‖h‖ � η}
and call, for a fixed x ∈ X , the function ρx the pointwise modulus of smoothness of f
at x ([72, p. 43]). We say that a real valued function f on X has pointwise modulus of
smoothness ρx of power type p > 0 at x if

limsup
η→0

ρx(η)η−p < ∞.

The modulus of convexity of the norm ‖ · ‖ is defined for ε ∈ [0,2] by

δ (ε) = inf{1−‖(x+ y)/2‖ : x,y ∈ SX ,‖x− y‖� ε}.
The norm is uniformly convex (or uniformly rotund, UR in short) if, and only if,

δ (ε) > 0 for every ε > 0.
We say that the norm ‖ · ‖ has modulus of convexity of power type p > 0 if there

is a constant C > 0 such that
δ (ε) � Kε p

for every ε ∈ (0,2] .
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The modulus of smoothness of the norm ‖ · ‖ is defined for τ > 0 by

ρ(τ) = sup{‖x+ τy‖+‖x− τy‖
2

−1 : ‖x‖ = ‖y‖ = 1}.

The norm ‖ ·‖ is uniformly Fréchet differentiable (or uniformly Fréchet smooth) if, and
only if,

lim
τ→0

ρ(τ)/τ = 0.

We say that the norm ‖·‖ has modulus of smoothness of power type p > 1 if there
is a constant C > 0 such that

ρ(τ) � Kτ p

for every τ > 0.

We will use the fact that the the derivative ‖ · ‖′ is α -Hölder (α ∈ (0,1]) if, and
only if, the norm ‖ · ‖ has modulus of smoothness of power type 1+ α (see, e.g., [19,
p. 204]).

The norm ‖ · ‖ is locally uniformly rotund on X if for every x ∈ SX and every
ε ∈ (0,2] ,

0 < δx(ε) := inf{1−‖x+ y‖/2;y∈ SX ,‖y− x‖� ε}.
For given x∈ SX , we call the function δx(ε) the pointwise modulus of rotundity at

x . If there is a p > 0 and a constant C > 0 such that δx(ε) � Cε p , for each ε ∈ (0,2] ,
we say that ‖ · ‖ has pointwise modulus of rotundity of power type p at x .

LEMMA 5. ([4]) Let a Banach space X have a norm with pointwise directional
Lipschitz derivative on the sphere. Then X admits a norm with pointwise modulus of
smoothness of power type 2 .

Proof. (Sketch) Fix x0 ∈ SX . Define Fn by

Fn = {h ∈ BX : ‖x0 + th‖+‖x0− th‖−2‖x0‖ � n‖th‖2, for all 0 < t � 1}.

Then Fn is closed for each n , and
⋃

n Fn = BX . By the Baire Category theorem, there
is a neighborhood V of some point h0 �= 0 in the interior of BX and a positive integer
n such that

‖x0 + th‖+‖x0− th‖−2‖x0‖ � n‖th‖2, for all h ∈V, 0 < t � 1.

Consider the cone generated by taking the convex hull of −h0 and V . This cone con-
tains Br for some r > 0. For some k � n , the convexity gives

‖x0 + th‖+‖x0− th‖−2‖x0 � k‖th‖2, for all ‖h‖ � r, 0 < t � 1. �
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LEMMA 6. ([17]) Let X be a Banach space. Assume that for each x ∈ SX there
is p(x) > 0 such that ‖ ·‖ has pointwise modulus of rotundity of power type p(x) at x .
Then X is superreflexive.

Proof. For positive integers N and p , we let

FN,p = {x ∈ SX : δx(ε) � N−1ε p, for all ε ∈ (0,2]}.

It is not difficult to show that each FN,p is closed. Our assumption means that

SX =
⋃
N,p

FN,p.

By the Baire Category theorem, there exist positive integers N1 and p1 such that FN1,p1

has a nonempty interior in SX . Hence there is an open set O in X such that O∩SX �= /0 ,
and

x,y ∈ O∪SX , ‖x− y‖� ε implies ‖x+ y‖� 2−2N−1
1 ε p1 .

Now, a result of Day ([15, Theorem 1]) provides a uniformly rotund norm of power
type p1 . �

LEMMA 7. ([18]) Let a Banach space X with the RNP admit a Lipschitz bump
function ϕ with pointwise Lipschitz derivative. Then X admits a norm with modulus of
smoothness of power type 2 .

The main idea of the proof.

Put ψ(x) = ϕ−2(x) if ϕ(x) �= 0, and +∞ otherwise. Let ψ∗ be the Fenchel
conjugate of ψ , i.e. for f ∈ X∗ put

ψ∗( f ) = sup{ f (x)−ψ(x) : x ∈ X}.

As X has the RNP, ψ∗ is Fréchet differentiable on a norm dense set of points Ω in
X∗ ([13]) with derivative in X . Let ψ̃ denote the Fenchel conjugate of ψ∗ in X . The
derivatives of ψ∗ give rise to the epigraph of ψ̃ , and since they are strongly exposed
points, they are actually in the epigraph of ψ . It is not hard to check that these strongly
exposed points are points where the derivative of ψ̃ is directionally Lipschitz and,
by the previous lemma, pointwise Lipschitz, so they represents points with pointwise
modulus of smoothness of power type 2. By passing to the dual, we get points with
pointwise rotundity behavior of power type 2, which give, by the method of the proof
of previous lemma, a norm on X∗ of modulus of rotundity of power type 2. We then
finish the proof by taking the predual of this norm. �

Sketch of main ideas of the proof of Theorem 2.

(i) We use the idea in the proof of Lemma 7, see [49].
(ii) The space X∗ is Asplund (Theorem 1) and thus X has the RNP (see e.g. [29,

Chapter 11]). Hence (ii) follows from (i).
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(iii) We use the general method of passing from local uniform differentiability to
the uniform differentiability (see e.g. [19, p. 188]) combined with the method of the
proof of Lemma 5 and Lemma 6.

(iv) We use the general method of constructing uniformly differentiable norms
from uniformly differentiable bumps as explained e.g. in [29, Chapter 9]. The complete
proof is given in [50]. �

Sketch of the main idea in the proof of Theorem 3.

Both X and X∗ are Asplund spaces by Theorem 1. Hence both have the RNP (cf.
e.g. [29, Chapter 11]). Thus both X and X∗ admit norms with modulus of smoothness
of power type 2 and therefore, by Kwapien’s theorem (see e.g. [1, Chapter 7.4]), X is
isomorphic to a Hilbert space. �

Sketch of the main ideas in the proof of Corollary 4.

(i) follows from Theorem 1, since if C(K) is separable Asplund then K is scattered
and thus countable (it is metrizable). If K is countable, then C(K) admits a C∞ Fréchet
differentiable norm (see, e.g., [29, Corollary 10.14]).

(ii) The “if” part follows [67]. For the “only if” part, use the fact that K(X) con-
tains copies of X and X∗ .

Thus both X and X∗ are Asplund spaces and thus both have the RNP. Thus both
have norms with modulus of smoothness of power type 2 and thus, by Kwapien’s
theorem (cf. e.g, [1]), X is isomorphic to a Hilbert space. �

PROBLEM 1. ([18]) Can the assumption of the RNP in Theorem 2 be replaced by
the weaker condition that X does not contain an isomorphic copy of c0 ?

2. Second order Gâteaux differentiability

We will say that a function ϕ : X → R is twice Gâteaux differentiable at x ∈ X
provided that the Gâteaux derivative ϕ ′(y) exists for y in a neighborhood of x , the
limit

ϕ ′′(x)(h,k) := lim
t↓0

(
1
t
(ϕ ′(x+ tk)−ϕ(x)))(h)

exists for each h,k ∈ X , and that ϕ ′′(·, ·) is a continuous symmetric bilinear form.

The following result shows that twice Gâteaux differentiable norms are quite easily
accessible in some separable superreflexive spaces.

THEOREM 8. ([27]) Assume that X is a separable Banach space with the RNP.
Then X admits an equivalent twice Gâteaux differentiable norm if, and only if, X ad-
mits a norm with modulus of smoothness of power type 2 .
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Proof. First if X admits a twice Gâteaux differentiable norm then X admits a
norm with modulus of smoothness of power type 2 by Lemma 7.

We give only roughly, the main idea of the proof of the other implication and refer
to [27] for the details.

Select a dense sequence {hi} in SX . Find a C∞ smooth function ϕ0 : R → R such
that ϕ0 is nonnegative and even, vanishes outside [−1,1] , and satisfies

∫
R

ϕ0 = 1. Put
f0 = ‖x‖2 and ϕn(t) = 2nϕ0(2nt) for t ∈ R , n � 1. Define a sequence of functions
{ fn : X → R} by

fn(x) =
∫

Rn+1
f0

(
x−

n

∑
i=0

tihi

)
n

∏
i=0

ϕi(ti)dt0 dt1...dtn

Then { fn}n converges uniformly on bounded sets, to a twice Gâteaux differentiable
function g which gives rise, via Minkowski functional of the set {x : g(x) � C} for
some C , to the desired norm on X . �

REMARK. Since �p , p ∈ [1,2) , does not admit any norm of modulus of smooth-
ness of power type 2 (cf. e.g. [19, p. 222]), it does not admit any twice Gâteaux dif-
ferentiable norm by Theorem 8. On the other hand the space (∑�n

4)2 has a norm with
modulus of smoothness of power type 2, and admits no twice Fréchet differentiable
norm [20]; however, by Theorem 8, it admits a twice Gâteaux differentiable norm. It is
proved in [70] that, for p odd, �p space admits p times Gâteaux differentiable norm.

The following is a corollary of the proof of Theorem 8

THEOREM 9. ([49]) Assume that X is a separable Banach space with a norm of
modulus of smoothness of power type 2. Then

(i) Every convex function which is bounded on bounded subsets of X can be ap-
proximated uniformly on bounded sets by twice Gâteaux differentiable convex functions
whose first derivatives are Lipschitz.

(ii) The space X admits a twice Gâteaux smooth UR norm.

The following result is a corollary of Theorem 3.

THEOREM 10. ([71]) Let X be a Banach space. Assume that both X and X∗
admit continuous bump functions the restriction of which to each line in X , respectively
in X∗ , is twice differentiable. Then X is isomorphic to a Hilbert space.

Theorem 10 improves on Meškov’s result that X is isomorphic to a Hilbert space if
both X and X∗ admit Fréchet C2 smooth bumps (cf. e.g. [19, Chapter 5], [29, Chapter
10]).
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3. Preserved extreme points

The classical Krein–Milman theorem (see, e.g., [29, Theorem 3.65]) says that ev-
ery nonempty convex compact subset C of a locally convex space has an extreme point
—hence C is the closed convex hull of the set of its extreme points. If C is a nonempty

bounded closed convex subset of a Banach space, its w∗ -closure C
w∗

in X∗∗ is a w∗ -
compact convex subset of X∗∗ , hence it is the w∗ -closed convex hull of the set of its
extreme points.

DEFINITION 11. Let C be a nonempty bounded closed convex subset of a Banach

space X . The elements in ExtC
w∗ ∩ExtC are called preserved extreme points of C .

Preserved extreme points are called weak∗ -extreme in [47]. Extreme points of C
which are not preserved extreme points of C will be called unpreserved.

A straightforward consequence of James’ weak compactness theorem is that a
bounded closed convex subset C of a Banach space is weakly compact if (and only if)

ExtC = ExtC
w∗

. Theorem 24 below gives a renorming characterization of reflexivity
in terms of preserved extreme points.

The following simple observation will be used several times in this note: Given a
non-empty subset A of a Banach space X , a finite subset { fi : i = 1,2, . . . ,n} of X∗ ,
and numbers α1,α2, . . . ,αn in R ,

{x∗∗ ∈ A
w∗

: fi(x∗∗) > αi, i = 1,2, . . . ,n}
⊂ {x ∈ A : fi(x) > αi, i = 1,2, . . . ,n}w∗

⊂ {x∗∗ ∈ A
w∗

: fi(x∗∗) � αi, i = 1,2, . . . ,n} (3.1)

The following lemma characterizes preserved extreme points of bounded closed
convex subsets of a Banach space.

LEMMA 12. (Rosenthal, see [45]) Assume that C is a bounded closed convex set
in a Banach space X . A point e in C is a preserved extreme point of C if, and only if,
the slices of C containing e form a neighborhood base of the restricted weak topology
on C at the point e .

Proof. If e is a preserved extreme point, the result is a consequence of Choquet’s
lemma (see, e.g., [29, Lemma 3.69]). For the other direction, assume that 2e = y∗∗ +
z∗∗ , where y∗∗,z∗∗ ∈ C

w∗
, y∗∗ �= z∗∗ , and let U be a closed neighborhood of e in

(X∗∗,w∗) missing both y∗∗ and z∗∗ . By the assumption, C∩U contains a set of the
form C∩ S , where S := {x∗∗ : x∗∗ ∈ X∗∗, f (x∗∗) > α} for some f ∈ X∗ and α ∈ R

such that f (e) > α . Using (3.1) we get C
w∗ ∩S ⊂U ; however, C

w∗ ∩S must contain
either y∗∗ or z∗∗ (or both), a contradiction. �
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3.1. Preserved extreme points, RNP and KMP

Recall that a Banach space X is said to have the Krein–Milman property (KMP,
in short) if every bounded closed convex set in X has an extreme point. Equivalently,
every bounded closed convex set in X is the closed convex hull of the set of all ex-
treme points (the equivalence is due to Lindenstrauss, cf., e.g., [29, Exer. 7.57]). Note
that every space with the RNP has the KMP (see e.g. [29, Chapter 11]). It is an open
problem (see Problem 3) whether every space with the KMP has the RNP. This prob-
lem has been solved in the positive in dual spaces in [41], and, for the notion of pre-
served extreme points, in the following result (see also Theorem 19 below). Here,
dist(A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B} for two non-empty subsets A and B of a
Banach space X .

THEOREM 13. Let X be a Banach space. Then, the following conditions are
equivalent:

(i) X fails the RNP.
(ii) [59] For every ε > 0 there exists an equivalent norm ‖ · ‖ on X such that

dist(Ext(B(X∗∗‖·‖)),X) � 1− ε .
(iii) [7], [63] There exists an equivalent norm ‖ · ‖ on X such that each extreme

point of B(X ,‖·‖) is unpreserved (and dist(Ext(B(X∗∗‖·‖)),X) > 0 ).

We shall not prove this theorem. We only note that (ii)⇒(iii) is obvious, and that
(iii)⇒(i) follows from the fact that, if ‖ · ‖ is an equivalent norm in X , and X has the
RNP, then B(X ,‖·‖) has a strongly exposed point. Clearly, such a point is a preserved
extreme point of B(X ,‖·‖) .

REMARK. A simple consequence of (i)⇔(ii) in Theorem 13 is the following: If
a Banach space X fails the RNP then, for every ε > 0, there exists an equivalent norm
‖ · ‖ on X such that every slice S of B(X ,‖·‖) has ‖ · ‖ -diameter greater than 1− ε .
Indeed, Let ‖ · ‖ be the norm associated to ε given by Theorem 13. Let S( f ,δ ) :=
{x ∈ B(X ,‖·‖) : f (x) > 1− δ} be an arbitrary slice of B(X ,‖·‖) , where f ∈ S(X∗,‖·‖) and
δ > 0. By the Bishop–Phelps theorem, there exists g∈ S(X∗,‖·‖) close enough to f that
attains its supremum on B(X ,‖·‖) . We can find δ ′ > 0 small enough so that S(g,δ ′) ⊂
S( f ,δ ) . It follows that {x∗∗ ∈ B(X∗∗,‖·‖) : g(x∗∗) = 1} contains both an extreme point

of B(X∗∗,‖·‖) and an element x ∈ S(X ,‖·‖) , so ‖ · ‖ -diamS( f ,δ )
w∗

� 1− ε . This implies
that diamS( f ,δ ) � 1− ε . In connection with this result, let us mention the following
open problem.

PROBLEM 2. ([59]) Assume that a Banach space X fails the RNP property and
ε > 0 is given. Can X be renormed so that all the slices of the new ball have diameter
greater than or equal to 2− ε ?

A result of Collier [13, Theorem 4] says that a Banach space (X ,‖·‖) has the RNP
if, and only if, each dual equivalent norm on X∗ is Fréchet differentiable somewhere.
The necessity is a consequence of the fact, mentioned earlier, that if X has the RNP,
then every nonempty closed convex and bounded subset of X —in particular the closed
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unit ball B(X ,|‖·|‖) of an equivalent norm |‖·|‖ on X — is the closed convex hull of the set
of its strongly exposed points. So B(X ,|‖·|‖) has a strongly exposed point, say x (exposed

by f ∈ S(X∗∗,|‖·|‖) ). Then, by the Šmulyan’s lemma, |‖ · |‖ is Fréchet differentiable at
f . The sufficiency follows from the Remark after Theorem 13, or, if we wish, from
Theorem 14 below, itself a consequence of Theorem 13. Note too that, again by the
Šmulyan’s lemma, if a dual equivalent norm ‖ · ‖ on X∗ is Fréchet differentiable at
some f ∈ SX∗ , then ‖ · ‖′( f ) ∈ X .

THEOREM 14. ([2], [32]) Let X be a Banach space. Assume that for each equiv-
alent dual norm on X∗ , there is a point where the norm is Gâteaux differentiable with
the derivative lying in X . Then X has the RNP.

Proof. Assume that X does not have the RNP. Then, by Theorem 13, there is an
equivalent norm ‖ · ‖ on X such that none of the points in S(X ,‖·‖) is an extreme point
of B(X∗∗,‖·‖) .

Let f ∈ S(X∗,‖·‖) where ‖ · ‖ on X∗ would be Gâteaux differentiable with the
derivative x in S(X ,‖·‖) . Then, {x∗∗ ∈ X∗∗ : f (x∗∗) = 1}∩B(X∗∗,‖·‖) = {x} , so x is an
extreme point of B(X∗∗,‖·‖) , a contradiction. �

Recall that a Banach space X is called weakly sequentially complete if every
weakly Cauchy sequence in X is weakly convergent in X . As a straightforward conse-
quence of Theorem 14 and the Šmulyan’s lemma, we get the following statement.

THEOREM 15. ([2]) Assume that X is a weakly sequentially complete Banach
space. Assume that every equivalent dual norm on X∗ is Gâteaux differentiable at
some point. Then X has the RNP.

A point x0 in a closed bounded convex subset C of a Banach space X is called
a weakly exposed point of C (by some f ∈ X∗ ) if x0 is exposed by f and xn

w−→ x0

whenever f (xn)→ f (x0) . It is easy to prove that, in C , every strongly exposed point is
weakly exposed, that every weakly exposed point is exposed and a preserved extreme
point, and that every exposed point is extreme. Note that the renorming in Theorem 26
has the property that all the points on its new unit sphere are exposed points of the new
unit ball but none of them is a weakly exposed point of this ball.

Theorem 13 gives also a proof of the sufficient condition in the following result.

THEOREM 16. ([8], Theorem I.4) A Banach space X has the RNP if, and only if,
each nonempty bounded closed convex set in X has a weakly exposed point.

Proof. We already mentioned that if X has RNP, then every bounded closed con-
vex subset of X is the closed convex hull of the set of its strongly exposed points. Each
of them is, certainly, a weakly exposed point. On the other side, if X has not RNP,
the closed unit ball of the equivalent norm |‖ · |‖ given by Theorem 13 has no weakly
exposed point. Indeed, assume that e ∈ S(X ,|‖·|‖) is a weakly exposed point of B(X ,|‖·|‖)
(exposed by f ∈ S(X∗,|‖·|‖) ). Since e is not extreme in BX∗∗ , 2e = x∗∗1 +x∗∗2 for some x∗∗1



212 P. HÁJEK, V. MONTESINOS AND V. ZIZLER

and x∗∗2 in B(X∗∗,‖·‖) , where x∗∗1 �= x∗∗2 . Find g∈ S(X∗,|‖·|‖) such that g(x∗∗1 )> g(e) , and a
sequence {xn} in B(X ,|‖·|‖) such that g(xn)→ g(x∗∗1 ) and f (xn)→ f (x∗∗1 ) (= 1 = f (e)) .
It follows that xn

w−→ e , a contradiction. �

There is an interplay between the notion of extreme points and the convex points
of continuity properties. We first provide a definition.

DEFINITION 17. A Banach space X is said to have the Convex Point of Continuity
Property (CPCP, in short) if every closed bounded convex subset C of X has a point at
which the relative weak and norm topologies on C coincide.

The space X∗ has the weak∗ -convex point of continuity property (C∗PCP, in short)
if every weak∗ compact convex subset C of X∗ has a point at which the relative weak∗
and norm topologies on C coincide.

If X is separable and has the property that X∗ has the C∗PCP, then X does not
contain a copy of �1 (cf. e.g. [19, Chapter 3]).

The RNP property implies the CPCP property of the space and the RNP property
of the dual space X∗ implies the C∗PCP property of X∗ (cf. e.g. [29, Chapter 11]).

The predual of the James tree space (see e.g. [1], [29, Chapter 4]), JT∗ , has the
CPCP property and not the RNP property (cf. e.g. [23]).

The non-Asplund space JT has the property that JT ∗ has the C∗PCP property
([30]).

There is a separable space X not containing �1 and yet, X∗ does not have the
C∗PCP ([30]).

In the direction of the interplay between CPCP and rotundity properties, let us
mention, first of all, that Troyanski showed that if a Banach space X has a strictly
convex norm on the sphere of which the weak and norm topology coincide, then X can
be renormed by a locally uniformly rotund norm (see, e.g. [19, chapter 4] and Raja’s
geometric proof of it in [29, Exercise in Chapter 8]).

Then we have the following result.

THEOREM 18. ([44]) Let X be a Banach space, C be a non-empty closed convex
and bounded subset of X , and e be an extreme point of C at which the relative weak
and norm topologies on C coincide. Then the slices of C containing the point e form
a neighborhood base at e of the norm topology on C.

Proof. First, we show that e is then a preserved extreme point of C . Indeed,

assume that e = 1
2(y∗∗ + z∗∗) , where y∗∗,z∗∗ ∈C

w∗
, y∗∗ �= z∗∗ . From the coincidence

of the topologies at e follows the coincidence of the relative w∗ and norm topologies

on C
w∗

at e (use (3.1)). Then, by a standard cone argument, we get that the same must
hold for both y∗∗ and z∗∗ . Thus, both y∗∗ and z∗∗ are in C , a contradiction with the
fact that e is an extreme point of C .
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Given r > 0, e+ rBX∗∗ contains a w∗ -neighborhood U of e in X∗∗ . The Cho-

quet’s Lemma applied to the w∗ -compact set C
w∗

gives a w∗ -slice S of C
w∗

such that
e ∈ S ⊂ e+ rBX∗∗ . It follows that e ∈ S∩C ⊂ e+ rBX . �

For similar results we refer also to [45].

Schachermayer proved in [58] the following theorem.

THEOREM 19. ([58]) Assume that a Banach space X has both the KMP and the
CPCP. Then X has the RNP.

Note, then, that a Banach space has the RNP if, and only if, it has, simultaneously,
the KMP and the CPCP. Related to this, we already mentioned that the following is a
well-known long-standing open problem in this area.

PROBLEM 3. Assume that every closed convex bounded set in a Banach space X
has an extreme point (in other words, assume that X has KMP). Does X have the RNP?

It is worth to mention here a geometric characterization of RNP in terms of extreme
points due to Bourgain [7]: A Banach space X has the RNP if, and only if, every
nonempty weakly closed bounded subset of X has an extreme point.

REMARK. We do not know the answer to Problem 3 even if we replace the word
“extreme” by the word “exposed”.

Theorem 20 below was proved in [17]; compare it with the renorming characteri-
zation of the RNP given in [21, Corollary 1, page 219], saying that a Banach space X
has the RNP, if, and only if, the closed unit ball of every equivalent norm is dentable.
It follows from this characterization that a Banach space X has the RNP if, and only
if, the closed unit ball of every equivalent norm is the closed convex hull of its strongly
exposed points.

THEOREM 20. ([17]) If X is a separable Banach space, then X has the CPCP
property if, and only if, the closed unit ball of every strictly convex norm is the closed
convex hull of its strongly exposed points.

Talagrand proved the following theorem

THEOREM 21. (Talagrand, see [59]) If a separable Banach space X contains an
isomorphic copy of �1 , then X∗ contains a weak∗ compact convex non norm-dentable
subset.

Yet, the following problem seems to be open.

PROBLEM 4. Let X be separable. Is it true that X does not contain a copy of �1

if, and only if, every weak∗ compact set in X∗ is norm dentable?
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Related to Theorem 21 and Problem 4, recall that the James tree space JT is a
separable space not containing isomorphic copies of �1 , having a nonseparable dual,
and being saturated with copies of �2 . The following result is due to Stegall.

THEOREM 22. ([62]) Let X denote the James tree space JT . Then
(i) On the unit sphere of X∗ , the weak and norm topologies coincide.
(ii) If C is an arbitrary weak∗ compact convex set in X∗ , then the functionals

which strongly expose C form a dense Gδ subset of X∗∗ .

3.2. Preserved extreme points and reflexivity

Theorem 24 below (that should be compared with Theorem 13) shows how pre-
served extreme points of balls can be used to characterize reflexive spaces. We slightly
modified the original proof in order to use the same technique in proving Theorem 26.
The following standard fact will be used.

LEMMA 23. Let (X ,‖ · ‖) and (Y, | · |) be Banach spaces. Let T : X → Y be a
continuous linear mapping. Define

|‖x|‖ = ‖x‖+ |Tx|, for x ∈ X . (3.2)

Then,
(i) |‖ · |‖ is an equivalent norm on X .
(ii) The corresponding norm on (X ,‖ · ‖)∗∗ is given by

|‖x∗∗|‖ = ‖x∗∗‖+ |T∗∗x∗∗|. (3.3)

(iii) If | · | is strictly convex and T is one-to-one, then |‖ · |‖ is strictly convex.

THEOREM 24. Let (X ,‖ · ‖) be a Banach space. Then, the following are equiva-
lent:

(i) The space X fails to be reflexive.
(ii) [34] There exists an equivalent norm |‖ · |‖ on X and an extreme point of

B(X ,|‖·|‖) that is unpreserved.

Proof. Obviously, only (i)⇒(ii) needs a proof. Assume first that X is separable
(and not reflexive). Fix x∗∗0 ∈X∗∗ \X , and let N := Kerx∗∗0 (⊂ X∗) , a norming subspace
of X∗ , so ‖x‖N := sup{|x∗(x)| : x∗ ∈ N, ‖x∗‖ = 1} , for x ∈ X , defines an equivalent
norm on X (whose higher dual norms are denoted, as usual, again by ‖ · ‖N ; note that
‖ · ‖N induces on N the norm ‖ · ‖ ). Let {x∗n : n ∈ N} be a subset of S(N,‖·‖N) such

that x∗n
w∗−→ 0, and spanw∗{x∗n : n ∈ N} = X∗ (find, for example, a Markushevich basis

{xn;x∗n} in X ×X∗ such that x∗n ∈ S(N,‖·‖N) for all n ∈ N , see, e.g., [29]). We may now
define two one-to-one continuous linear operators S : X → c0 and T : X → �2 by

S(x) =
(
x∗n(x)

)∞
n=1, T (x) =

(
1
2n x∗n(x)

)∞

n=1
, for all x ∈ X . (3.4)
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Put

Ak = {x ∈ X : ‖x‖N � k‖S(x)‖∞}, for k ∈ N. (3.5)

We obtain an increasing sequence {Ak}∞
k=1 of (homogeneous) subsets of X and, cer-

tainly, A2 �= /0 (indeed, x ∈ A2 for every x ∈ S(N,‖·‖N) such that 〈x∗n,x〉 > 1/2 for some
n ∈ N)1. Put then k = 2 and define a new equivalent norm |‖ · |‖ on X by

|‖x|‖ = max

{
1
2k

‖x‖N ,‖S(x)‖∞

}
+‖T(x)‖2, for all x ∈ X . (3.6)

Certainly, |‖ · |‖ is strictly convex in X . According to Lemma 23, the bidual norm |‖ · |‖
on X∗∗ is given by

|‖x∗∗|‖ = max

{
1
2k

‖x∗∗‖N ,‖S∗∗(x∗∗)‖∞

}
+‖T∗∗(x∗∗)‖2, for all x∗∗ ∈ X∗∗. (3.7)

Fix x ∈ Ak (so ‖x‖N � k‖S(x)‖∞ ) such that |‖x|‖ = 1. Since |‖ · |‖ is strictly convex, x
is an extreme point of B(X ,|‖·|‖) . Fix δ > 0 so small that ‖x± δx∗∗0 ‖N < 2‖x‖N . Note
that S∗∗(x± δx∗∗0 ) = S(x) and T ∗∗(x± δx∗∗0 ) = T (x) . Then

|‖x± δx∗∗0 |‖
= max

{
1
2k

‖x± δx∗∗0 ‖N ,‖S∗∗(x± δx∗∗0 )‖∞

}
+‖T∗∗(x± δx∗∗0 )‖2

� max

{
1
2k

2‖x‖N,‖S(x)‖∞

}
+‖T(x)‖2

= ‖S(x)‖∞ +‖T(x)‖2 � |‖x|‖ (= 1),

hence x is not an extreme point of B(X∗∗,|‖·|‖) .
If X is not separable, it is enough to apply a separable-reduction argument by

using the next lemma. �

LEMMA 25. Let (X ,‖ · ‖) be a Banach space, and let Y be a closed linear sub-
space. Then, every equivalent norm on Y can be extended to an equivalent norm on X
in such a way that, if some extreme point y0 of B(Y,|‖·|‖) is unpreserved, then y0 is an
extreme point of B(X ,|‖·|‖) that is unpreserved.

Proof. Assume that ‖y‖ � |‖y|‖ � c‖y‖ for some c > 0 and for all y ∈Y . Let | · |
be the Minkowski functional of the set conv(B(Y,|‖·|‖) ∪ 1

c B(X ,‖·‖)) (an equivalent norm
on X that induces the norm |‖ · |‖ on Y ). Finally, put |‖x|‖ := |x|+ dist |·|(x,Y ) for
x∈X . This is again an equivalent norm in X that induces on Y the norm |‖·|‖ . We shall
prove first that y0 is an extreme point of B(X ,|‖·|‖) . Indeed, assume that 2y0 = x1 + x2 ,

1We define this, seemingly, artificial sequence {Ak} to allow further manipulations in subsequent argu-
ments, although, strictly speaking, we need only here the nonempty set A2 .
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where x1 and x2 are elements in X such that |‖x1|‖= |‖x2|‖= 1. If x1 ∈Y and x2 ∈Y ,
we get x1 = x2 . Otherwise,

1 = |‖y0|‖ = |y0| � 1
2
(|x1|+ |x2|)

<
1
2
(|x1|+dist |·|(x1,Y )+ |x2|+dist |·|(y2,Y )) =

1
2
(|‖x1|‖+ |‖x2|‖) = 1,

a contradiction.
Since y0 is not an extreme point of B(Y ∗∗,|‖·|‖) , and the space (Y ∗∗, |‖ · |‖) is iso-

metrically isomorphic to a subspace of (X∗∗, |‖ · |‖) , it follows that y0 is not an extreme
point of B(X∗∗,|‖·|‖) , as claimed. �

REMARK. The proof of (i) ⇒ (ii) in the previous theorem shows that, in a sep-
arable Banach space X , the nonreflexivity is equivalent to the existence of a strictly
convex norm |‖ · |‖ on X such that some (extreme) point of S(X ,|‖·|‖) is unpreserved.

The proof we provide here of the following result —which should be compared
with Theorem 13— relies on the technique used for proving Theorem 24.

THEOREM 26. ([52]) Assume that (X ,‖·‖) is a separable Banach space that con-
tains an isomorphic copy of c0 . Then X admits an equivalent strictly convex norm |‖ · |‖
such that each point in S(X ,|‖·|‖) is not a preserved extreme point of B(X ,|‖·|‖) .

Proof. (i) We shall prove it first for the space (c0,‖ · ‖∞) itself. This follows
from the proof of Theorem 24 as we shall show presently. Keep the notation there,
letting x∗∗0 = (1,1,1, . . .) (∈ �∞ \ c0 ). In this case, the subspace N is 1-norming, so
‖ · ‖N = ‖ · ‖∞ on c0 (and ‖ · ‖N = ‖ · ‖1 on c∗0 = �1 ). If, for n ∈ N , the symbol e∗n
denotes the n -th canonical unit vector of �1 , the countable set Γ := {(1/2)(e∗n− e∗m) :
n,m ∈ N, n < m} (⊂ �1) is in S(N,‖·‖N) and spanw∗

(Γ) = �1 . The mapping S defined
in the proof of Theorem 24 for the set 2Γ is a one-to-one continuous linear operator
from X into the c0 -sum of countably many copies of (c,‖ · ‖∞) , i.e., the space Z :=
c0(c⊕ c⊕ c⊕ . . .) endowed with the supremum norm (a space linearly isomorphic to
(c0,‖ · ‖∞)). Precisely, put

S(x) :=
(
(〈e∗1 − e∗m,x〉)m>1,(〈e∗2 − e∗m,x〉)m>2, . . .

)
, for x ∈ c0.

Obviously 2‖x‖∞ � ‖S(x)‖∞ � ‖x‖∞ for every x ∈ c0 , so c0 = A1 (see formula (3.5)).
The norm |‖ · |‖ defined by (3.6) in the proof of Theorem 24 for k = 1 satisfies the
requirements (even more: we found that a single direction in �∞ is enough to check
that no element x ∈ S(c0,|‖·|‖) is a preserved extreme point).

(ii) Assume now that X contains an isomorphic copy of c0 . By Sobczyk’s theorem
(see, e.g., [28, Theorem 5.14], [29, Theorem 5.11]), this copy is complemented in X ,
i.e., X is isomorphic to (G⊕ c0, | · |) , where |(g,x)| = max{‖g‖,‖x‖∞} , g ∈ G (⊂ X) ,
and x ∈ c0 . Let S : G → �2 be a one-to-one linear and continuous operator, and let
T : c0 → �2 be the operator defined in the proof of Theorem 24. Let U : G⊕c0 → �2⊕�2
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be defined by U(g,x) = (Sg,Tx) , g ∈ G , x ∈ c0 . Then U is a one-to-one continuous
linear operator from G⊕ c0 into �2⊕ �2 . Put

|‖(g,x)|‖ := |(g,x)|+‖U(g,x)‖2, for (g,x) ∈ G⊕ c0. (3.8)

As before, the space (G⊕ c0, |‖ · |‖) is strictly convex. We shall prove that no element
(g,x) ∈ S(G⊕c0,|‖·|‖) is an extreme point of the bidual space of (G⊕ c0, |‖ · |‖) . Choose,
as in (i), x∗∗ �= 0 in �∞ such that T ∗∗x∗∗ = 0 and

‖x± x∗∗‖ = ‖x‖ (� |(g,x)|). (3.9)

We have

|‖(g,x)± (0,x∗∗)|‖ = ‖(g,x± x∗∗)‖+‖U∗∗(g,x± x∗∗)‖2

= max(‖g‖,‖x± x∗∗‖)+‖U(g,x)‖2

� max(‖g‖,‖x‖∞)+‖U(g,x)‖2 = |‖(g,x)|‖ = 1.

It follows that (g,x) is not extreme. �

PROBLEM 5. ([52]) Which spaces can be renormed to be strictly convex but to
have unpreserved extreme points?

4. Strongly Gâteaux differentiable norms

Recall that a multivalued map M from a topological space X into a topological
space Y is called upper semicontinuous if for every open set U in Y the set {x∈X :
M(x) ⊂U} is open.

DEFINITION 27. We will say that the norm ‖ · ‖ of a Banach space X is strongly
Gâteaux differentiable at a point x0 ∈ SX if it is Gâteaux differentiable at x0 and the
(multivalued) map x → ∂‖ · ‖(x) from SX into X∗ is norm-to-weak upper semicontin-
uous at x0 .

A norm on a Banach space will be called strongly Gâteaux differentiable if it is
strongly Gâteaux differentiable at each point of SX .

In the literature this concept appears also under the name very smooth. Note that
the notion of strong Gâteaux differentiability obviously coincides with that of Gâteaux
differentiability for reflexive spaces. The Šmulyan lemma (see, e.g. [29, Chapter 7])
implies that Fréchet differentiable norms are strongly Gâteaux differentiable.

LEMMA 28. Let (X ,‖ ·‖) be a Banach space and let x ∈ SX . Assume that ‖ ·‖ is
Gâteaux differentiable at x . Then the following are equivalent.

(i) The norm ‖ · ‖ of X is strongly Gâteaux differentiable at x .
(ii) The norm ‖ · ‖ of X∗∗ is Gâteaux differentiable at x .
(iii) Every sequence (x∗n) in BX∗ such that x∗n(x) → 1 is weakly convergent to

x∗ := ‖ · ‖′(x) .
(iv) The functional x∗ := ‖ · ‖′(x) is a point of continuity for the identity mapping

I : (BX∗ ,w∗) → (BX∗ ,w) .
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Proof. First of all, (ii) and (iii) are equivalent by the Šmulyan lemma (see, e.g.,
[29, Corollary 7.22 (iv)]).

(i) ⇒ (iii): Use the Brøndsted-Rockafellar theorem (see, e.g. [55, page 48]) to
choose yn ∈ SX and y∗n ∈ SX∗ such that y∗n(yn) = 1, ‖yn − x‖ � εn/

√
εn and ‖y∗n −

x∗n‖ � √
εn . Since εn → 0, it follows that yn → x . By (i) we get y∗n

w−→ ‖ · ‖′(x) , so
x∗n

w−→ ‖ ·‖′(x) .
(iii) ⇒ (iv) is obvious.
(iv) ⇒ (i): Assume that (i) fails. Then there exists a w-neighborhood U of x∗ , a

sequence {xn} in X , and elements x∗n ∈ ∂‖ · ‖(xn) , such that xn → x and x∗n �∈U for
every n ∈ N . Since the duality mapping is ‖ · ‖ -w∗ -upper semicontinuous, we get that

x∗n
w∗−→ x∗ , hence x∗n

w−→ x∗ , a contradiction. �

THEOREM 29. ([15], [31], [57]) Assume the dual norm of X∗ is strongly Gâteaux
differentiable. Then X is reflexive.

Proof. Let F ∈ SX∗∗ attain its norm at f ∈ SX∗ . Let xn ∈ SX be such that f (xn)→
1. By the strong Gâteaux differentiability of the dual norm at f , we get that xn → F in
the weak topology of X∗∗ , and thus F is in the norm closed linear hull of {xn} by the
Mazur theorem. Thus F ∈ X . Hence X∗∗ ⊂ X by the Bishop–Phelps theorem (cf. e.g.
[29, Theorem 7.41]). �

Theorem 29 has the following corollary.

COROLLARY 30. ([22]) Assume that the norm of the fourth dual of a Banach
space is strictly convex. Then X is reflexive.

In this direction, let us mention the following well-known and easy-to-prove result
(see e.g. [19, p. 51], and compare with Theorem 15).

THEOREM 31. Let X be a weakly sequentially complete Banach space whose
dual norm is Gâteaux differentiable. Then X is reflexive.

THEOREM 32. ([60]) Assume the norm of X is strongly Gâteaux differentiable.
Then X is an Asplund space.

Proof. We shall show that X∗ is separable if X is separable. To this end, let {xn}
be a dense sequence in SX . Let f ∈ SX∗ attain its norm at x ∈ SX . Take a subsequence
{xnk} of {xn} such that xnk → x .

Then f is the weak limit of the sequence {‖ · ‖′(xnk)} . Thus f is in the norm-
closed linear hull of {‖ · ‖′(xnk)} , by the Mazur theorem (cf. e.g. [29, Theorem 3.45]).
The separability of X∗ then follows from the Bishop–Phelps theorem on the density of
the norm attaining functionals (cf. e.g. [29, Theorem 7.41]). �

REMARK. Note that the notion of strong Gâteaux differentiability of the norm co-
incides with the Fréchet differentiability for the C(K) spaces, since it gives the Asplund
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property by Theorem 32 and thus the isomorphism of C(K)∗ to �1 . Then, it is enough
to use the Schur property of �1 (cf. e.g., [29, Theorem 5.36, 14.24 and 14.25]).

We do not know the answer to the following problem.

PROBLEM 6. Which separable spaces admit norms that are nowhere strongly
Gâteaux differentiable?

The following result is due to Godun, who provided an ad hoc argument in [34].
The proof we present here, although closely related to the original one, shows that, after
a reduction to the Asplund setting, this result is dual to Theorem 24.

THEOREM 33. ([35]) Let (X ,‖ · ‖) be a separable Banach space. Then X is re-
flexive if, and only if, every Gâteaux differentiable equivalent norm on X is strongly
Gâteaux differentiable.

Proof. Obviously, only the sufficient condition must be proved. So assume that X
is not reflexive. If X is not Asplund, the result follows from Theorem 32. Indeed, it is
then enough to renorm X by a Gâteaux differentiable norm and use Theorem 32. If X ,
on the contrary, is Asplund, then X∗ is separable. We shall see that the construction in
the proof of Theorem 24 carried on X∗ gives, if starting conveniently, a dual (rotund)
norm whose predual norm is the sought one. Indeed (and we use the notation there), it is
enough to choose an element (0 �=) x∗∗∗0 ∈X⊥ (⊂ X∗∗∗) . Then X ⊂Kerx∗∗∗0 ⊂ X∗∗ , and
the norm ‖ · ‖N in X∗ defined by the norming subspace N := Kerx∗∗∗0 is, in fact, ‖ · ‖ .
We choose a w-null sequence {xn} in S(X ,‖·‖) such that spanw∗{xn : n ∈ N} = X∗∗ ,
and define S : X∗ → c0 and T : X∗ → �2 as in (3.4) by using {xn} . Then the norm
|‖ · |‖ defined on X∗ by (3.6) is an equivalent dual rotund norm. Put |‖ · |‖ for its
predual norm in X , an equivalent Gâteaux differentiable norm on X . The sets Ak :=
{x∗ ∈ X∗ : ‖x∗‖ � k‖Sx∗‖∞} , k = 1,2, . . . , are ‖ · ‖ -closed, and

⋃∞
k=1 Ak = X∗ , hence

there is k ∈ N such that Ak has nonempty interior. Recall that every element x∗ in
Ak ∩ S(X∗,|‖·|‖) is an extreme point of B(X∗,|‖·|‖) that is not preserved in X∗∗∗ , precisely
because for some δ > 0 we have |‖x∗±δx∗∗∗0 |‖� 1. Use the Bishop-Phelps theorem to
ensure that Ak∩S(X∗∗∗,|‖·|‖) contains an element x∗ that attains its norm at some element
x in B(X ,|‖·|‖) . Then x is a smooth point of |‖ · |‖ ; however, it is not a very smooth point
due to the fact that x∗ ± δx∗∗∗0 ∈ B(X∗∗∗,|‖·|‖) and 〈x∗ ± δx∗∗∗0 ,x〉 = 〈x∗,x〉 . �

Let (X ,‖ · ‖) be a Banach space. A norm |‖ · |‖ on X∗ is called weak∗ uniformly

rotund (W∗UR in short) if fn − gn
w∗−→ 0 whenever fn,gn ∈ S(X∗,|‖·|‖) are such that

|‖ fn + gn|‖ → 2. It is well known (see, e.g., [19, Theorem II.6.7]), that ‖ · ‖ on X is
UG if, and only if, ‖ · ‖ on X∗ is W∗UR.

THEOREM 34. ([3]) Let X be an infinite-dimensional separable Banach space.
Then there is a (uniformly) Gâteaux differentiable norm on X that is somewhere not
Fréchet differentiable.
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Proof. Without loss of generality, we may assume that ‖·‖ on X satisfies ‖(y,t)‖=
‖y‖+ |t| for Y ⊕R = X , where Y is a closed hyperplane of X . Then the norm ‖ ·‖ on
Y ∗ ⊕R (= X∗) satisfies ‖(ζ ,r)‖ = max{‖ζ‖, |r|} , for (ζ ,r) ∈ Y ∗ ⊕R . Let {yn} be a
dense sequence in the unit ball of Y and define a compact operator T : �2 → Y by

T ((λn)) = ∑2−nλnyn, (λn) ∈ �2.

Define a norm ||| · ||| on Y ∗ ⊕R by

|||(ζ ,r)|||2 = max{‖ζ‖2,r2}+‖T∗ζ‖2
2 + |r|2, (ζ ,r) ∈ Y ∗ ⊕R.

Observe that ||| · ||| is an equivalent dual norm on Y ∗ ⊕R , dual to a norm on Y ⊕R

denoted again by ||| · ||| .
The Josefson–Niszenweig theorem allows to choose a sequence {ζn} in SY∗ such

that ζn
w∗−→ 0. Then (ζn,1)→ (0,1) in the weak∗ topology of Y ∗⊕R , and |||(0,1)|||=√

2.

Now, since T ∗ is also a compact operator, we have T ∗ζn
‖·‖2−→ 0. Therefore

|||(ζn,1)||| → √
2. Put ξn = (ζn,1)/|||(ζn,1)||| for n ∈ N , and ξ = (0,

√
2

2 ) . We have

|||ξn||| = |||ξ ||| = 1 and ξn
w∗−→ ξ .

Put x = (0,
√

2) ∈ Y ⊕R . Note that |||x||| = 1. Indeed, 〈(0,
√

2
2 ),x〉 = 1, and

|||x||| = sup{〈(ζ ,r),(0,
√

2)〉 : (ζ ,r) ∈ Y ∗ ⊕R, |||(ζ ,r)||| � 1}
= sup{

√
2r : (ζ ,r) ∈ Y ∗ ⊕R, max{‖ζ‖2,r2}+‖T∗ζ‖2 + r2 � 1}

� sup{
√

2r : r ∈ R, 2r2 � 1} = 1

Then |||ξn|||= |||ξ |||= 1 = 〈ξ ,x〉 = 1, ξn
w∗−→ ξ , and an easy computation shows

that |||ξn−ξ |||→
√

2
2 . Thus, by the Šmulyan lemma, ||| · ||| is not Fréchet differentiable

at x .
It remains to show that ||| · ||| on X is UG. For it we show that its dual norm

||| · ||| on X∗ is W∗UR. Indeed, if wn := (ζ 1
n ,r1

n) ∈Y ∗⊕R and zn := (ζ 2
n ,r2

n) ∈Y ∗⊕R ,
n ∈ N , are such that {wn} is bounded, and 2|||wn|||2 + 2|||zn|||2 − |||wn + zn|||2 → 0,
then, by a standard convexity argument, using the second and third term in the definition
of the norm ||| · ||| on X∗ , we have that r1

n− r2
n → 0 and T ∗(ζ 1

n −ζ 2
n )→ 0, which gives

ζ 1
n − ζ 2

n
w∗−→ 0 as T ∗ is a weak∗ -to-weak∗ isomorphism of the dual ball of Y ∗ onto

its image in �2 , since T ∗ is one-to-one. Therefore the predual norm ||| · ||| on X is
UG. �

In [3], the following results are proved.

THEOREM 35. ([3]) Let X∗ be separable. Then X admits a norm that is every-
where (outside the origin) Gâteaux differentiable but is Fréchet differentiable exactly
at each point of X \ span{x0} , where x0 is a fixed nonzero point.
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THEOREM 36. ([3]) If X is an infinite dimensional Banach space. Then X admits
a norm ‖ · ‖ and x0 ∈ X such that ‖ · ‖ is Gâteaux differentiable at x0 but not Fréchet
differentiable at x0 .

REMARK. Note that Theorem 36 is equivalent to the Josefson–Niszenweig theo-
rem. Indeed, given an infinite dimensional Banach space X , let ‖ · ‖ in X be the norm
defined in Theorem 36. Let x0 ∈ S(X ,‖·‖) be a point where ‖ · ‖ is Gâteaux and not

Fréchet differentiable, with ‖ ·‖′(x0) = x∗0 . Use the Šmulyan lemma to find a sequence
{x∗n} in B(X∗,‖·‖) such that 〈x∗n,x0〉 → 1 and ‖x∗n− x∗0‖ � ε , for all n ∈ N and for some

ε > 0. Then x∗n
w∗−→ x∗0 . The sequence {(x∗n − x∗0)/‖(x∗n − x∗0)‖} is in S(X∗,‖·‖) and is

w∗ -null.

The norm ‖ · ‖ on a separable Banach space is called octahedral (see e.g [19,
Chapter 3]) if there is u ∈ X∗∗ \ 0 such that ‖u + x‖ = ‖u‖+ ‖x‖ for all x ∈ X . Re-
call that X contains an isomorphic copy of �1 if, and only if, X admits an equivalent
octahedral norm (see e.g. [19, Chapter 3]).

PROBLEM 7. ([66]) Assume that X is a separable Banach space that contains an
isomorphic copy of �1 . Does X admit an equivalent Gâteaux smooth octahedral norm?

Note that an example of a separable space with Gâteaux differentiable octahedral
norm is, e.g., in [19, p. 120].

THEOREM 37. ([66]) Assume that a separable Banach space X contains an iso-
morphic copy of �1 . Then X admits an equivalent (uniformly) Gâteaux differentiable
norm that is nowhere strongly Gâteaux differentiable.

Proof. There is an equivalent octahedral norm ‖ · ‖ on X (see e.g. [19])), which
implies the existence of an element x∗∗0 ∈ X∗∗ such that x∗∗0

∣∣
(BX∗ ,‖·‖) has no point of

continuity on (B(X∗,‖·‖),w∗) . Let {xn : n ∈ N} be a countable dense subset of S(X ,‖·‖) ,
and define a continuous linear operator T : X∗ → �2 by Tx∗ =

( 1
2n x∗(xn)

)∞
n=1 , for x∗ ∈

X∗ . Then put
|x∗| := ‖x∗‖+‖Tx∗‖2, for x∗ ∈ X∗. (4.1)

This is an equivalent w∗ -uniformly rotund dual norm on X∗ , so its predual norm | · |
in X is UG. Fix x ∈ S(X ,|·|) , and let x∗ = | · |′(x) (∈ S(X∗,|·|)) . We may find a sequence

{x∗n} in ‖x∗‖B(X∗,‖·‖) such that x∗n
w∗−→ x∗ , while x∗∗0 (x∗n) �→ x∗∗0 (x∗) . Note that |x∗n| →

|x∗| . Indeed, ‖Tx∗n‖→ ‖Tx∗‖ because x∗ → ‖Tx∗‖2 is a w∗ -continuous mapping, and
‖ fn‖ → ‖ f‖ as ‖ · ‖ is w∗ -lower semicontinuous. Hence, according to the Šmulyan
lemma, the dual norm of | · | on X∗∗ is not Gâteaux differentiable at x . �

REMARK. For the particular case X := �1 , we do not need to rely on the concept
of octahedrality of a norm (incidentally, the canonical norm of �1 is indeed octahedral).
It is enough to use the following lemma, since the existence of an element in the bidual
space with a restriction to the dual unit ball that has no point of w∗ -continuity is what
matters.
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LEMMA 38. Fix a non-principal ultrafilter U in N , and let u = limU en (∈ �∗∞)
be the w∗ -limit along U of the sequence {en}n∈N consisting of the canonical unit
vectors in �1 . Then u

∣∣
B�∞

has no point of continuity as a mapping from (B�∞ ,w∗) into

R .

Proof. Fix x∗ = (xn) ∈ B�∞ . Let l := limU xn , and choose k ∈ [−1,1] such that

k �= l . For n ∈ N , put s∗n := (x1,x2, . . . ,xn,k,k, . . .) (∈ B�∞) . Then s∗n
w∗−→ x∗ , although

u(s∗n) = k for all n ∈ N , and u(x∗) = l . �

PROBLEM 8. ([66]) Which separable spaces can be renormed by a Gâteaux dif-
ferentiable norm that is nowhere strongly Gâteaux differentiable?

Answering a question of Mazur in [48], Phelps proved in [54] that there is an
equivalent Gâteaux differentiable norm on �1 that is nowhere Fréchet differentiable.
This motivated the following result.

THEOREM 39. ([17]) Assume that X is a separable Banach space. Then X ad-
mits an equivalent Gâteaux differentiable norm that is nowhere Fréchet differentiable
if, and only if, X∗ does not have the C∗PCP.

Proof. We will show only one implication, namely that if X∗ does not have C∗PCP ,
then X admits an equivalent Gâteaux differentiable norm that is nowhere Fréchet dif-
ferentiable

CLAIM. Let A , B be subsets of X∗ such that for every nonempty w∗ -open subset
O of B , we have diam(O) > ε . Then the same conclusion holds for (A+B) .

Indeed, let f ∈V , where V is a w∗ -open subset of (A+B) . We write f = g+ f ′
with g ∈ A and f ′ ∈ B . By continuity, there is a w∗ -neighbourhood O of f ′ in B such
that (g+O)⊂V . From the assumption, there are f1, f2 ∈O with ‖ f1− f2‖ > ε . Then
(g+ fi) ∈V ( i = 1,2) and

‖(g+ f1)− (g+ f2)‖ = ‖ f1 − f2‖ > ε,

which shows that diam(V ) > ε .
We now return to the proof of Theorem 39. Assume that there is a convex weak∗

compact subset K of X∗ and ε > 0 such that for every nonempty weak∗ open subset
O of K we have diam(O) > ε . Applying our claim twice shows that C := BX∗ +(K)+
(−K) shares the property of K . Clearly, C is the dual unit ball of an equivalent norm,
denoted by |||·||| .

Let {xi; i � 1} be a norm-dense sequence in the unit ball of (X , ||| · |||) . We define

| f |∗ = ||| f |||+ ( ∞

∑
i=1

2−i f (xi)2)1/2
.

Note that | f |∗ � ||| f ||| � | f |∗/2 for any f ∈ X∗ . It is easily seen that | · |∗ is a
dual strictly convex norm and therefore its predual norm | · | is Gâteaux differentiable.
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For showing that | · | is nowhere Fréchet differentiable, it suffices to show that any
nonempty w∗ -open subset O of {| f |∗ � 1} has ‖ · ‖ -norm-diameter at least ε/2.

Clearly, O∩{| f |∗ = 1} �= /0 . Hence we can pick f ∈ O with 1 = | f |∗ � ||| f ||| �
1/2.

There exist sequences fn,gn such that ||| fn||| � ||| f ||| , |||gn||| � ||| f ||| for every
n , satisfying ‖ fn −gn‖ � ε and

w∗ − lim fn = w∗ limgn = f .

By elementary rules on interchanging the limit and the summation, it follows that

lim
n ∑2−i f 2

n (xi) = ∑2−i f 2(xi).

If for some subsequence nk and δ ∈ (0,1) ,

||| fnk |||+(∑2−i f 2
nk

(xi))1/2 � δ ||| f |||+ δ (∑2−i f 2(xi))1/2,

then by using the w∗ -lower semicontinuity of ||| · ||| , we obtain

1 = ||| f |||+(∑2−i f 2(xi))1/2 � δ ||| f |||+ δ (∑2−i f 2(xi))1/2 = δ ,

a contradiction which shows that lim | fn|∗ = | f |∗ . Similarly we obtain that lim |gn|∗ =
| f |∗ . Because ‖ fn − gn‖ � ε for each n , we have ‖ fn/| fn|∗ − gn/|gn|∗‖ � ε/2, for n
large enough. �

We will show now an easier variant of Theorem 20. Recall that the norm ‖ · ‖ of
a Banach space X is called weakly uniformly rotund (WUR in short) if xn − yn → 0 in
the weak topology of X whenever xn,yn ∈ SX are such that ‖xn + yn‖→ 2.

THEOREM 40. ([17]) Let X∗ be separable. Then X has the CPCP if, and only if,
the closed unit ball of every equivalent WUR norm in X is dentable.

Proof. If X does not have the CPCP, then a variation on the proof of Theorem 39
shows that X admits an equivalent WUR norm whose closed unit ball is not dentable.
On the other hand, if X has the CPCP and ‖·‖ is a WUR norm on X , then its dual norm
is Gâteaux differentiable by the Šmulyan lemma. The closed unit ball BX of (X ,‖ · ‖)
has a point x where the identity map from (BX ,w) into (BX ,‖·‖) is continuous. Clearly
x lies on the unit sphere SX of (X ,‖ ·‖) . Let f ∈ SX∗ be such that f (x) = 1. If xn ∈ BX

are such that f (xn) → 1, then xn
w−→ x by the Šmulyan lemma, as the dual norm is

Gâteaux differentiable at f . Since the weak and norm topologies on BX coincide at x ,
we have that f is a point of Fréchet differentiability of the dual norm and x is thus a
strongly exposed point of BX . �

If a separable Banach space X contains a copy of �1 , then C[0,1] is a quotient
of X by a result of Pełczyński (see e.g. [29, Corollary 5.33]). Therefore X∗ contains
a copy of a nonseparable space �1(Γ) , that does not admit any equivalent Gâteaux
differentiable norm (see e.g. [29, Exercise 7.65]).
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5. Uniformities of rotund norms

We have seen in the previous sections how various notions of rotundity are inti-
mately linked with smoothness, structure, and geometry of a Banach space. Let us now
give a systematic description of variants of uniformities for rotund norms.

DEFINITION 41. Let (X ,‖ · ‖) be a Banach space (respectively in some cases a
dual Banach space equipped with a dual norm). Consider the following conditions.

If the relation limn→∞ ‖xn + yn‖ = 2, for some {xn}∞
n=1,{yn}∞

n=1 ⊂ BX , implies

lim
n→∞

(xn− yn) = 0, then ‖ · ‖ is called uniformly rotund (UR).

w- lim
n→∞

(xn− yn) = 0, then ‖ · ‖ is called weakly uniformly rotund (WUR).

w∗- lim
n→∞

(xn − yn) = 0, then ‖ · ‖ is called weakly∗ uniformly rotund (W∗UR).

If the relation limn,m→∞ ‖xn + ym‖ = 2, for some {xn}∞
n=1,{yn}∞

n=1 ⊂ BX , implies

lim
n,m→∞

(xn− ym) = 0, then ‖ · ‖ is called 2 -uniformly rotund (2UR).

w- lim
n,m→∞

(xn − ym) = 0, then ‖ · ‖ is called 2 -weakly uniformly rotund (2WUR).

w∗- lim
n,m→∞

(xn − ym) = 0, then ‖ · ‖ is called 2 -weakly∗ uniformly rotund (2W∗UR).

If the relation limn,m→∞ ‖xn + xm‖ = 2, for some {xn}∞
n=1 ⊂ BX , implies

lim
n→∞

xn = x, for some x ∈ X , then ‖ · ‖ is called 2 -rotund (2R).

w- lim
n,m→∞

(xn− xm) = 0, then ‖ · ‖ is called weakly Cauchy rotund (WCR).

w- lim
n→∞

xn = x, for some x ∈ X , then ‖ · ‖ is called weakly 2 -rotund (W2R).

w∗- lim
n,m→∞

(xn− xm) = 0, then ‖ · ‖ is called weakly∗ Cauchy rotund (W∗CR).

w∗- lim
n→∞

xn = x, for some x ∈ X , then ‖ · ‖ is called weakly∗ 2 - rotund (W∗ 2R).

Let us pass to simple properties of the above notions. Note that it can be easily
shown that if a norm ‖ · ‖ on X has any one of the above properties then it is a ro-
tund norm on X . For a given norm we have the easy implications: UR⇒2UR⇒2R,
WUR⇒2WUR⇒WCR⇐W2R, and analogously W∗UR⇒2W∗UR⇒W∗CR⇐
W∗ 2R. It is known (see below) that JT admits a 2WUR renorming but it has no equiv-
alent WUR norm. Also, W2R is strictly stronger than WUR. As regards the rest, we
pose the following problem.

PROBLEM 9. Which of the implications above can be reversed?
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The first three notions UR, WUR, and W∗UR are classical and have been dis-
cussed in previous sections. Recall that a Banach space X admits a UR renorming
if, and only if, X is superreflexive (Enflo [24]). If X admits a WUR norm, then X
is an Asplund space ([37]). If X is moreover separable, then WUR renormability is
equivalent to being an Asplund space. Next, X∗ has a W∗UR renorming if, and only
if, BX∗ in its w∗ -topology is a uniform Eberlein compact [26]. Regarding the duality
with smoothness, a norm ‖ · ‖ on X is uniformly Fréchet differentiable (resp. UG) if,
and only if, ‖ · ‖∗ is UR (resp. W∗UR). Finally, ‖ · ‖ is WUR if, and only if, ‖ · ‖∗∗ is
W∗UR. The proofs of all these results can be found in [19].

The notion 2WUR was introduced in [40]. The main result of this paper is that
the James tree space JT has an equivalent 2WUR renorming.

Let us explain the situation in more detail. In [6] the authors investigate the prop-
erties of the Clarke subdifferential of a typical Lipschitz function on a given Banach
space. They call a Banach space (X ,‖.‖) Lipschitz separated, if for every closed convex
set C ⊂ X and every bounded 1-Lipschitz real valued function f on C and x �∈C , there
exist 1-Lipschitz extensions of f on the whole X , say f1, f2 , satisfying f1(x) �= f2(x) .
This property depends heavily on the norm ‖.‖ . In [6] the following characterization is
proved:

THEOREM 42. For a given Banach space (X ,‖ · ‖) the following are equivalent:

(1) X is Lipschitz separated.

(2) For every pair of sequences {xn}∞
n=1,{yn}∞

n=1 ⊂ BX such that
limn,m→∞ ‖xn + ym‖ = 2 , there is no φ ∈ X∗ such that
limsupn→∞ φ(xn) < 0 < liminfn→∞ φ(yn).

It is observed in [6] that the WUR property of ‖ · ‖ implies (2) (and so does 2WUR
by a similar argument), and on the other hand (2) implies that ‖ · ‖∗∗ is rotund. The
last fact implies that �1 is not isomorphic to any subspace of X . Indeed, if �1 ↪→ X ,
then �∞ ↪→ X∗ , so in particular �1(c) ↪→ X∗ . Thus �∞(c) ↪→ X∗∗ . For these classical
results see, e.g., [38]. On the other hand, there exists no rotund renorming of �∞(c) by
Day’s result (e.g., [19, Corollary II.7.13]). Recall that, by [37], the space JH of Hagler
from [36], which also does not contain �1 , does not admit an equivalent norm ‖·‖ such
that ‖ · ‖∗∗ is rotund. Therefore JH does not admit a Lipschitz separated renorming.
Thus separable spaces with 2-WUR renorming (or Lipschitz separating renorming) cut
in between Asplund spaces and spaces not containing �1 .

PROBLEM 10. Is every Lipschitz separated separable Banach space 2WUR re-
normable?

The notions 2UR and 2W∗UR seem to be new. Since 2UR implies 2R, it can
hold only for reflexive spaces (see below).

PROBLEM 11. Study the notions 2UR and 2W∗UR with respect to duality with
some notions of smoothness. Characterize spaces sharing these properties and find the
connections with other notions above.
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We are getting to the last set of notions. Milman, in [51], introduced the notions
of 2R and W2R and suggested the problem whether they characterize reflexivity. This
was solved in [39] for W2R, and for 2R in [53], in the separable case.

THEOREM 43. ([39],[53]) Let X be a Banach space. Then X is reflexive if, and
only if, it admits an equivalent W2R norm. If X is a separable Banach space, then X
is reflexive if, and only if, it admits an equivalent 2R norm.

PROBLEM 12. Let X be a nonseparable reflexive Banach space. Is there an
equivalent 2R renorming of X ?

The remaining notions are again new and have not yet been studied. Therefore we
suggest to study them in some detail.

PROBLEM 13. Study the notions WCR, W∗CR, 2WUR and 2W∗UR with respect
to duality with some notions of smoothness. Characterize spaces sharing these proper-
ties and find connections with other notions in the present note.

In particular, since �1 �↪→ X if X has 2WUR norm, check whether ‖ · ‖ is 2WUR if,
and only if, ‖ · ‖∗∗ is 2W∗UR, and find their dual notion of smoothness. Similarly,

PROBLEM 14. Is it true that ‖ · ‖ is WCR if, and only if, ‖ · ‖∗∗ is W∗CR?

PROBLEM 15. Is there an equivalent renorming characterization (perhaps WCR)
of a separable Banach space not containing a copy of �1 ?

We point out that there is an equivalent characterization of Banach spaces which
do contain a copy of �1 by means of octahedrality, [19].

PROBLEM 16. Study the notions analogous to Definition 41 where sequences are
replaced by nets.

PROBLEM 17. (Godefroy) Suppose that w∗ -convergent sequences on SX∗ are norm
convergent. Is X an Asplund space?

6. Two more constructions of smooth norms

The following result gives a quite general geometric method of construction of
smooth norms whose dual norms are not strictly convex.

THEOREM 44. ([43]) Every infinite dimensional separable nonreflexive Banach
space admits a Gâteaux differentiable norm the dual norm of which is not strictly con-
vex.
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Sketch of the Proof. (See Figures 1 and 2.) Let L , J , and H be closed linear
subspaces of X such that L ⊂ J ⊂ H , J a hyperplane of H , and H a hyperplane of
X . Let p ∈ H such that dist(p,J) � 2 and q ∈ X such that dist(q,H) � 1. Let Q1

and Q2 be the closed half-spaces of X containing 0 and bounded by the translated
hyperplanes determined by span(J + q)∪{−p} and span(J + q)∪{p} , respectively.
We shall produce a smooth absolutely convex body B in X such that B ⊂ Q1 ∩Q2 ,
B∩(L+q) = /0 , but dist (B,L+q) = 0. Then, if | · |B denotes the Minkowski functional
of B in X (an equivalent norm in X ), as well as the corresponding norm in X/L and
the dual norm in X∗ , the closed unit ball of the space (X/L, | · |B) admits two distinct
supporting hyperplanes at the point q+L . This implies, in particular, that | · |B in X∗
is not strictly convex.

q

−p

p

H

L = J

L + q = J + q

Q1

Q2 Cn

0

A

Figure 1: Construction of the set A (for simplicity, we assumed L = J )

To construct such B , let C0 be the closed unit ball of (H,‖ · ‖) . There exists a
decreasing sequence {Cn} of bounded closed convex in L whose intersection is empty
(note that L is not reflexive). Consider A := Γ

(⋃∞
n=0(Cn + (1− 2−n)q

)
, where Γ(S)

denotes the convex and balanced hull of a set S . Then A ⊂ X \ (L+q) and dist(A,L+
q) = 0.

B

0

Figure 2: Construction of the set B

There exists a compact absolutely convex smooth subset K that is contained in
the open unit ball in (X ,‖ · ‖) (for example T ∗B�2 where T is a compact one-to-one
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operator from X into �2 ). For each t ∈ (−1,1) , let At = A∩ (H + tq) . Finally, let
B =

⋃
t∈(−1,1)

(
At +(1− t)K

)
.

This set has the required properties. �

Another example of a separable Banach space whose norm is Gâteaux differen-
tiable and its dual norm is not strictly convex was given by Troyanski in [68].

Talagrand proved that the nonseparable space C[0,ω1] , where ω1 is the first un-
countable ordinal, admits a Fréchet differentiable norm but admits no norm whose dual
norm is strictly convex (see e.g. [19, Chapter 7]).

PROBLEM 18. Assume X∗ is separable. Can a modified Klee’s construction in
Theorem 44 produce a Fréchet differentiable norm the dual of which is not strictly
convex?

The following theorem should be compared with Corollary 30. For a description
of the James space J see, e.g., [29, Definition 4.43].

THEOREM 45. ([61]) The James space J admits a norm whose third dual is strictly
convex.

Proof. Let B denote the James space J renormed by a norm ‖ · ‖ such that its
dual is at the same time LUR and W∗UR (cf. e.g. [29, Chapter 8]). Write B∗∗∗ =
B∗⊕span{b∗∗∗} , where b∗∗∗ ∈ B⊥ . We claim that B∗∗∗ is rotund. To show this suppose
that x∗∗∗ and y∗∗∗ are norm 1 elements in B∗∗∗ such that ‖x∗∗∗ + y∗∗∗‖ = 2. We are to
show that x∗∗∗ = y∗∗∗ . Write x∗∗∗ = x∗ + αb∗∗∗ and y∗∗∗ = y∗ + βb∗∗∗ , where x∗ and
y∗ are in B∗ and α and β are real numbers.

If x∗ �= y∗ , then there exists an x∈ SB such that (x∗−y∗)(x) �= 0. By the Principle
of Local Reflexivity, there is a sequence of linear maps Tn : span{x∗∗∗,y∗∗∗}→ B∗ such
that, for each n ∈ N ,

(Tn(x∗∗∗ − y∗∗∗))(x) = (x∗∗∗ − y∗∗∗)(x) = (x∗ − y∗)(x)

and
(1− εn)‖z‖ � ‖Tn(z)‖ � (1+ εn)‖z‖

for all z∈ span{x∗∗∗,y∗∗∗} , where {εn} is a positive sequence of real numbers decreas-
ing to 0 (use the fact that b∗∗∗(x) = 0).

For n∈ N , let x∗n = Tn(x∗∗∗) and y∗n = Tn(y∗∗∗) . Then we have ‖x∗n‖→ 1, ‖y∗n‖→
1, and ‖x∗n +y∗n‖→ 2. Thus by the W∗UR property of the dual norm, (x∗n−y∗n)(x)→ 0.
However, (x∗n − y∗n)(x) = (x∗ − y∗)(x) for each n , a contradiction. Thus x∗ = y∗ .

Denote by B4 the fourth dual of B . Choose f ∈ SB4 such that f ( 1
2 (x∗∗∗+y∗∗∗)) =

1. Then f (x∗∗∗) = f (y∗∗∗) = 1. Then we have

0 = f (x∗∗∗ − y∗∗∗) = (α −β ) f (b∗∗∗).

If f (b∗∗∗) �= 0, then α = β and thus x∗∗∗ = y∗∗∗ and the proof is finished.
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If f (b∗∗∗) = 0, then

f (x∗) = f (x∗ + αb∗∗∗) = f (x∗∗∗) = 1.

From this and since ‖x∗‖ � ‖x∗ + αb∗∗∗‖ = 1, it follows that ‖x∗‖ = 1 and ‖x∗ +
x∗∗∗‖ = 2.

If x∗∗∗ �= x∗ , then by the priciple of Local Reflexivity, there exists a sequence of
linear maps Tn : span{x∗,x∗∗∗} → B∗ such that Tn(x∗) = x∗ for each n and

(1− εn)‖z‖ � ‖Tn(z)‖ � (1+ εn)‖z‖

for all z ∈ span{x∗,x∗∗∗} and for all n ∈ N , where {εn} is a sequence of positive real
numbers decreasing to 0.

Let x∗n = Tn(x∗∗∗) . Then we have ‖x∗‖= 1, ‖x∗n‖→ 1 and ‖x∗+x∗n‖→ 2. By the
LUR property of the dual norm, we thus have that ‖x∗−x∗n‖→ 0. However, ‖x∗−x∗n‖�
(1− εn)‖x∗ − x∗∗∗‖ . Thus x∗∗∗ = x∗ . Similarly we can show that y∗∗∗ = y∗ = x∗ . Thus
x∗∗∗ = y∗∗∗ and the proof is completed. �

It is shown in [37] that the James tree space JT admits a norm whose second dual
is strictly convex. Thus its predual JT∗ has a norm whose third dual is strictly convex.
It is also shown in [37] that the separable Hagler’s space JH (that also does not contain
a copy of �1 and JH∗ is nonseparable (cf. [36])) admits no equivalent norm whose
second dual is strictly convex.

Yet, the following problem seems to be open.

PROBLEM 19. ([37]) Is it true that if X is separable and does not contain a copy
of �1 , then X∗ admits an equivalent Gâteaux differentiable norm?

REMARK. We do not know if appropriate versions of many results discussed
above hold true in the nonseparable setting.
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Žitná 25
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