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M–IDEALS AND THE BISHOP–PHELPS THEOREM

V. INDUMATHI

Abstract. We give new proofs for the known important approximative properties of M-ideals,
using only the definition of an M-ideal and the Bishop-Phelps theorem. Unlike the known proofs,
these proofs do not use the 3-ball intersection property of M-ideals.

1. Introduction

In [8], a new proof of proximinality for M-ideals was given, using only the def-
inition of an M-ideal and the Bishop- Phelps theorem. We refer the reader to [6] and
observe that the known proofs of proximinality and other approximative properties of
M-ideals use either the 3 or the 2-ball intersection property of the M-ideals. In this
paper, we further pursue the simple technique used in [8] and derive some of the well
known approximative properties of M-ideals, using mainly the definition of an M-ideal
and the Bishop- Phelps theorem.

We now describe the notation we use in this paper. Throughout X denotes a
real Banach space and X∗ , the dual of X . If x is in X and r > 0, the open (closed)
ball with x as center and r as radius is denoted by B(x,r) (B[x,r]) . The unit sphere
{x ∈ X : ‖x‖ = 1} , of X is denoted by SX . The class of all norm attaining functionals
on X is denoted by NA(X) and NA1(X) denotes the set NA(X)∩ SX . If A ⊆ X then
sp(A) denotes the span of A , A the norm closure of A and bd(A) , the boundary of
A . Throughout this paper, we identify an element of a Banach space X with its image
under the canonical embedding of X into X∗∗ .

For any x in X and a subspace Y of X , we denote by d(x,Y ) , the distance of x
from Y . Let

PY (x) = {y ∈ Y : ‖x− y‖= d(x,Y )}.
If PY (x) is a non-empty set for each x in X , then the subspace Y is said to be proximinal
in X . For a subspace Y of X , let Y⊥ denote the annihilator of Y in X , that is

Y⊥ = { f ∈ X∗ : f ≡ 0 on Y}.

For f in X∗ , the restriction of f to Y is denoted by f|Y . The following definitions can
be found in [6].
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DEFINITION 1.1. [6] A subspace Y of a Banach space X is called an L -summand
of X if there exists a subspace Z of X such that X =Y ⊕1 Z , the l1 -direct sum of Y and
Z . This implies that if x = y+ z for x in X , y in Y and z in Z , then ‖x‖ = ‖y‖+‖z‖ .

DEFINITION 1.2. [6] A subspace Y of a Banach space X is called an M -ideal in
X if Y⊥ is an L -summand in X∗ .

If Y is an M -ideal in X then there exists a subspace Z of X∗ such that

X∗ = Y⊥⊕1Z. (1.1)

Using the canonical isometric isomorphism Y ∗ 
 X∗/Y⊥ 
 Z , one can conclude (see
Proposition 1.12, [6]) that

Z = { f ∈ X∗ : ‖ f‖ = ‖ f|Y‖}. (1.2)

Throughout this paper we use the following notation. If X is a Banach space, Y an
M-ideal in X then Z would be given by (1.2).

Finally, If A and B are bounded, nonempty subsets of a Banach space, we denote
by dH(A,B) the Hausdorff metric distance between A and B , given by

dH(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}.

2. The new proofs

In this section, we give new proofs for the following known results. These results,
from various sources (See [1], [4], [6], [7], [9] and [11]), are all given in [6] (See
Propositions II.1.3, II.1.8 and Corollaries II.1.5 and II.1.7 of [6]).

Let X be a Banach space and Y be an M-ideal in X . If x is in X with d(x,Y ) = 1
then
i) The set PY (x)−PY (x) contains the open ball BY (0,2)
ii) The weak * closure of PY (x) in Y⊥⊥ is a closed ball of radius one
and
iii) if zi is in X for i = 1,2, then

dH(PY (z1),PY (z2)) � 2‖z1− z2‖.

We begin with a Fact, that is essentially needed in the proofs that follow. We first have
a remark, recalling an observation from [8], that is needed here.

REMARK 2.1. Let Y be an M-ideal and a hyperplane in a Banach space X . Let
x ∈ X\Y . If f ∈ SX∗ and y ∈ Y satisfy

‖ f‖ > ‖ f|Y ‖ and f (x+ y) = ±‖x+ y‖,

then it follows from the proof of the Proposition 1 of [8], that −y is in PY (x) .
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FACT 2.1. Let X be a Banach space and Y be an M-ideal and a hyperplane in X .
Assume x is in X and d(x,Y ) = 1. Then given f in SZ and ε > 0, there exist fi in
NA1(X) and −yi in PY (x) for i = 1,2 such that

‖ f − fi‖ < ε, ‖ fi‖ > ‖ fi|Y‖ for i = 1,2 (2.1)

and

fi(x+ yi) = (−1)i+1‖x+ yi‖ for i = 1,2. (2.2)

Proof. Assume w.l.o.g 0 < ε < 2. Since Y is a hyperplane in X , X = Y ⊕ sp(x) .
We have ‖ f‖ = 1 = ‖ f|Y‖ . Let g in Y⊥ satisfy

1 = ‖g‖ = g(x) = d(x,Y )

and set
hi = (−1)i+1 εg

2
+

(
1− ε

2

)
f , for i = 1,2.

Then ‖hi‖ = 1 and ‖hi|Y‖ = 1− ε
2 for i = 1,2. If hi is in NA(X) , take fi = hi . Other-

wise, using the Bishop Phelps theorem get fi in NA1(X) such that ‖hi− fi‖< ε
4 . Then

‖ fi|Y‖ < ‖ fi‖ = 1, for i = 1,2. In fact,

‖ fi|Y‖ � ‖hi|Y‖+
ε
4

= 1− ε
2

+
ε
4

= 1− ε
4
.

Further
‖ f − fi‖ � ‖ f −hi‖+‖hi− fi‖ � ε

2
+

ε
4

< ε.

This proves (2.1).
Now, fi attains its norm on X at some αix+ zi , where αi is a non-zero scalar and

zi is in Y , for i = 1,2. Hence

αi fi

(
x+

zi

αi

)
= fi(αix+ zi) = ‖αix+ zi‖ = |αi|

∥∥∥∥x+
zi

αi

∥∥∥∥
for i = 1,2. Taking yi = zi

αi
for i = 1,2, we get

fi(x+ yi) = (sgn αi)‖x+ yi‖, for i = 1,2

where sgn αi is the sign of αi . Now by Remark 2.1, −yi is in PY (x) and so ‖x+yi‖ =
1 = d(x,Y ) for i = 1,2.

We now claim that α1α2 < 0. Suppose not. We assume αi > 0 for i = 1,2, the
proof being similar for the case αi < 0 for i = 1,2,. Since αi > 0 for i = 1,2, we have

hi(x+ yi) > ‖x+ yi‖− ε
4

= 1− ε
4

for i = 1,2. Hence

1− ε
4

� hi(x+ yi) = (−1)i+1 εg(x+ yi)
2

+
(
1− ε

2

)
f (x+ yi) for i = 1,2.
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Since ‖ f‖ = 1 = ‖x+ yi‖ for i = 1,2 and g is in Y⊥ with g(x) = 1, this implies

1− ε
4

� (−1)i+1 ε
2

+1− ε
2

for i = 1,2. Thus

(−1)i+1 ε
2

� ε
4
, for i = 1,2

which is a contradiction. This proves our claim that α1α2 < 0 and completes the proof
of the Fact. �

The notion of a psuedoball as given in [2] is as follows (See Definition 1.2 of [6]).

DEFINITION 2.1. A closed, convex bounded subset B of a Banach space X is
called a pseudoball of radius r if its diameter 2r > 0 and if for each finite collection
x1,x2, · · · ,xn of points with ‖xi‖ < r there is x in B such that

x+ xi ∈ B, for i = 1,2, · · · ,n.

It was shown in [2] that B is a pseudoball of radius r in a Banach space X if
and only if the weak* closure of B in X∗∗ is a ball of radius r . We refer the reader to
Theorem II.1.6 of [6] for the details. The proof in [6], of this implication is simple and
uses only a separation theorem, due to Tukey. We are now in a position to prove the
results mentioned earlier. In the rest of the paper, if A is a subset of Y , we denote the
weak* closure of A in Y⊥⊥ by A

w∗
.

THEOREM 2.1. Let X be a Banach space and Y be an M-ideal in X . Assume x
is in X and d(x,Y ) = 1 . Then

1. The open ball BY (0,2) is contained in the set PY (x)−PY (x) .

2. The weak* closure of the set PY (x) in Y⊥⊥ , is a ball of radius one.

3. The set PY (x) is a psuedoball of radius one in Y .

Proof. In view of the remark just above the theorem, we prove only first two state-
ments.

Using Remark 2 of [8], we assume without loss of generality that X = Y ⊕ sp(x).
We first show that for any f in SZ ,

sup{ f (w) : w ∈ [PY (x)−PY (x)]} = 2. (2.3)

Select any f in SZ and 0 < ε < 1. Obtain fi in NA1(X) and yi in PY (x), i = 1,2, as
in the above Fact. Then

f (x− y1) � 1− ε and f (x− y2) < −1+ ε.



M-IDEALS AND THE BISHOP-PHELPS THEOREM 237

Hence
f (y2 − y1) = f (x− y1)− f (x− y2) > 2−2ε.

Since ε > 0 was chosen arbitrarily, this implies (2.3).
Select any y in Y , with ‖y‖ < 2 and choose ε > 0 such that ‖y‖+ ε < 2. Let

A = PY (x)−PY (x) . Then A is a symmetric, convex subset of Y and we claim that y is in
A . Suppose not. We discuss two cases. First we assume that y is in A\A . Then y is in
bd(A) and by using the Bishop- Phelps support point theorem [3] (See Theorem 2.11.9
in [10]), we can get z in bd(A) , such that z is a support point to A and ‖y− z‖ < ε. If
f in SZ is the support functional to A at z , then

sup f (A) = sup{ f (w) : w ∈ A} � f (z) < f (y)+ ε � ‖y‖+ ε < 2.

But this contradicts (2.3).
We now assume that y is not in A . We again arrive at a contradiction using the

separation theorem and similar steps as above. This completes the proof of 1.
To prove 2, we first recall that Y⊥⊥ ∼= Y ∗∗ . Define φ in X∗∗ by

φ( f ) = h(x), for all f ∈ X∗,

where f = g+h , with g in Y⊥ and h in Z . Clearly, φ is in Y⊥⊥ and

φ( f ) = f (x), for all f ∈ Z. (2.4)

We will now show that the weak*closure of the set PY (x) in Y⊥⊥ is the closed ball
BY⊥⊥ [φ ,1] .

We first show that the weak*closure of the set PY (x) in Y⊥⊥ is contained in the

closed ball BY⊥⊥ [φ ,1]. Let ψ ∈ PY (x)
w∗

. Then for any f ∈ Z 
 Y ∗ with norm 1, we
have f (φ −ψ) = f (x−ψ). Given ε > 0, pick y ∈ PY (x) such that | f (ψ − y)| < ε.
Then

| f (x−ψ)| = | f (x− y)|+ | f (y−ψ)|< 1+ ε,

as ‖x− y‖= d(x,Y ) = 1. So

| f (φ −ψ)|= | f (x−ψ)| < 1+ ε

for every ε > 0 and hence

| f (φ −ψ)|� 1 for any f ∈ Z.

This implies ‖φ −ψ‖ � 1 and ψ ∈ BY⊥⊥ [φ ,1].

We now claim PY (x)
w∗

= BY⊥⊥ [φ ,1]. Suppose not. Then by the Separation theo-
rem, there is ψ in Y⊥⊥ with ‖φ −ψ‖ � 1 and ψ is not in the weak* closure of PY (x)
in Y⊥⊥ . This with (2.4) implies that there exists h in SZ and ε > 0 satisfying

0 < ε < (φ −ψ)(h)− sup{h(x− y) : y ∈ PY (x)}. (2.5)
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Now by Fact 2.1, we can get f in NA1(X) and y1 in −(PY (x)) such that

‖h− f‖< ε and f (x+ y1) = ‖x+ y1‖ = d(x,Y ) = 1.

Hence
h(x+ y1) > 1− ε

while
(φ −ψ)(h) � 1, as ‖φ −ψ‖ � 1 and ‖h‖ = 1.

This contradicts (2.5) and completes the proof of 2. �
We need the following result, which must be known, in proving the Lipschitz

continuity of the metric projection onto an M-ideal.

PROPOSITION 2.2. Let C and D be non-empty, bounded , closed convex sets in
a Banach space. Then

dH(C,D) = dH(C
w∗

,D
w∗

).

Proof. We only need to prove the two facts

d(x,C) = d(x,C
w∗

), for any x ∈ X (2.6)

and

sup
x∈D

d(x,C
w∗

) = sup
x∗∗∈D

w∗
d(x∗∗,C

w∗
). (2.7)

If

d(x,C) > r > d(x,C
w∗

) (2.8)

then
BX∗∗ [x,r]∩C

w∗
�= /0.

As BX∗∗ [x,r] = BX [x,r]
w∗

, we have

BX [x,r]
w∗

∩C
w∗

�= /0

and so 0 is in the weak closure in X of the convex set BX [x,r]−C and thus by Mazur’s
theorem 0 is in the norm closure of BX [x,r]−C . Hence inf

y∈C
‖x− y‖ = r which contra-

dicts (2.8). So (2.6) holds.

To see the second assertion note that for any r > 0, the set C
w∗

+ rBX∗∗ is weak*

closed. Thus D ⊆ C
w∗

+ rBX∗∗ implies D
w∗

⊆ C
w∗

+ rBX∗∗ . It is now clear that 2.7
holds. �

We also need a simple observation and a definition.
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DEFINITION 2.2. Let X be a Banach space and Xi be closed subspaces of X for
i = 1,2 such that X = X1⊕X2 . The bounded linear projection Q from X onto X1 along
X2 , is called an M-projection if for any x in X ,

‖x‖ = max{‖Q(x)‖,‖x−Q(x)‖}.

The following remark is easy to verify.

REMARK 2.2. Let X be a Banach space and Xi be closed subspaces of X for
i = 1,2 such that X = X1 ⊕X2 . Assume that the projection Q from X onto X1 is an
M- projection. Then X1 is proximinal and for any x in X ,

PX1(x) = BX1 [Qx,dx]

where dx = d(x,X1) .

PROPOSITION 2.3. Let Y be an M-ideal in a Banach space X . Then for any xi

in X for i = 1,2 ,
dH(PY (x1),PY (x2)) � 2‖x1− x2‖.

Proof. We have
X∗ = Y⊥⊕1 Z,

since Y is an M-ideal in X and so the bounded linear projection Q from X∗∗ onto Y⊥⊥
along Z⊥ , is an M-projection. Using 2 of Theorem 2.1 and the above Remark (See also
Corollary 1.7 in [6]), we see that

PY⊥⊥(x) = PY (x)
w∗

= BY⊥⊥ [Qx,dx],

where dx = d(x,Y ) .
Let di = d(xi,Y ) for i = 1,2. We have by Proposition 2.2,

dH(PY (x1),PY (x2)) = dH(PY (x1)
w∗

,PY (x2)
w∗

)
= dH(PY⊥⊥(x1),PY⊥⊥(x2))
= dH(BY⊥⊥ [Qx1,d1],BY⊥⊥ [Qx2,d2])
� ‖Qx1−Qx2‖+ |d1−d2|
� ‖x1− x2‖,

and this completes the proof for the Lipschitz continuity. �

REMARK 2.3. It follows from Remark 1 of [8] and the nature of the results of
Theorem 2.1 and Proposition 2.3 that, it suffices to consider real Banach spaces for our
purpose and that these results hold for the complex case also.
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