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SPACES OF ppp–INTEGRABLE FUNCTIONS WITH RESPECT

TO A VECTOR MEASURE DEFINED ON A δδδ –RING

J. M. CALABUIG, M. A. JUAN AND E. A. SÁNCHEZ PÉREZ

Abstract. In this paper we study the lattice properties of the Banach lattices Lp(ν) and Lp
w(ν) of

p -integrable real-valued functions and weakly p -integrable real-valued functions with respect to
a vector measure ν defined on a δ -ring. The relation between these two spaces, the study of the
continuity and some kind of compactness properties of certain multiplication operators between
different spaces Lp and/or Lq

w and the representation theorems of general Banach lattices via
these spaces play a fundamental role.

1. Introduction

Integration with respect to vector measures defined on δ -rings is the natural vector
valued generalization of the case of integration with respect to positive σ -finite mea-
sures. In terms of the corresponding spaces of integrable functions, this consideration is
also up to a point true. The spaces L1(ν) of integrable functions and L1

w(ν) of weakly
integrable functions with respect to a vector measure ν are broad classes of Banach
lattices of measurable functions, and in fact represent a large family of Banach lattices.
Regarding these representations, nowadays it is well-known that order continuous Ba-
nach lattices can also be written (isometrically and in order) as an L1(ν)-space of a
certain vector measure ν on a δ -ring, and a similar result holds for Banach lattices
with the Fatou property and some additional requirement with the spaces L1

w(ν) (see
[11, Theorem 5 and Theorem 10]; see also [4, pp. 22–23]).

The case of finite positive scalar measures is generalized using vector measures
on σ -algebras. Such measures provide spaces of integrable functions that can be used
for representing any order continuous Banach lattice with a weak unit (L1(ν)) or any
Banach lattice having the Fatou property with a weak unit belonging to the order con-
tinuous part of the space (L1

w(ν)) (see [5, Theorem 8] and [6, Theorem 2.5]). The
corresponding representation theorems for p -convex Banach lattices having these ad-
ditional lattice properties are also known; the spaces Lp(ν) and Lp

w(ν) are involved in
this case (see [7, 20]). Although all the relevant (geometric, lattice, topological) proper-
ties of the spaces Lp(ν) of a vector measure ν on a σ -algebra with 1 � p < ∞ has been
already studied (see [12, 21]), this is not the case for the δ -ring case. The difference
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is important, since the case of vector measures on a σ -algebra only covers the cases
of Banach function spaces (i.e. the reference measure space is σ -finite); for instance,
Banach lattices as c0(I) or �∞(I) for an uncountable set of indexes I can be written
as spaces of p -integrable functions and weakly integrable functions with respect to a
vector measure, respectively. In fact, these spaces represent (in the case of δ -rings) a
big class of Banach lattices, as will be shown in this paper.

The aim of this work is to study the main properties of the spaces Lp(ν) and
Lp

w(ν) of a vector measure ν on a δ -ring, the natural sets of multiplication operators
and the inclusion relations with the spaces L∞(ν) and L1(ν) . After the preliminary
Section 2, Section 3 is devoted to the study of the main Banach lattice properties of
the spaces Lp(ν) and Lp

w(ν) . The general case 0 < p < ∞ is considered, although
for 0 < p < 1 these spaces are not necessarily Banach spaces; just consider the case
when the vector measure is a scalar measure. However, completeness is proved also for
this case but under a quasinorm. A general representation theorem for p -convex order
continuous Banach lattices with 1 < p < ∞ as Lp(ν) spaces is also given in Theorem
10 (the case p = 1 is already know, see [11, Theorem 5] and [4, pp. 22–23]). In Section
4 the spaces of multiplication operators between spaces of p -integrable functions and
spaces of integrable functions with respect to the same vector measure are computed,
and compactness type properties of these operators are studied, generalizing in this way
what is known in the case of σ -algebras (see [8]). Finally, Section 5 is devoted to the
analysis of the spaces Lp(ν) and Lp

w(ν) as intermediate spaces of L∞(ν)∩L1(ν) and
L∞(ν) + L1(ν) , providing the vector measure version of the classical inclusions that
hold for the Lebesgue spaces Lp[0,∞] .

2. Preliminaries

2.1. Banach lattices

Let E be a Banach lattice with norm ‖ · ‖ and order � . Let BE denotes the unit
ball in E . A subspace F of E is an ideal of E if y ∈ F whenever y ∈ E with |y| � |x|
for some x ∈ F . An ideal F in E is said to be order dense in E if for every 0 � x ∈ E
there exists an upwards directed system 0 � xτ ↑ x such that (xτ )τ ⊂ F and super order
dense if this is the case by means of increasing sequences. An upwards directed system
(xτ)τ in E is said to be a Cauchy system if for any ε > 0 there exists τ0 in {τ} such
that ‖xτ1 − xτ2‖ < ε for all xτ1 � xτ0 and xτ2 � xτ0 . A weak unit of E is an element
0 � e ∈ E such that x∧ e = 0 implies x = 0.

The Banach lattice E is order continuous if for every downwards directed system
in E , (xτ)τ ↓ 0 it follows that ‖xτ‖ ↓ 0. If ‖xn‖ ↓ 0 for any decreasing sequence xn ↓ 0
in E , then E is said to be σ -order continuous.

The Banach lattice E is said to be Dedekind σ -complete if every order bounded
sequence has a supremum. We will say that E has the weak Fatou property if for
every upwards directed system 0 � xτ ↑ in E such that supτ ‖xτ‖ < ∞ it follows that
there exists x = supτ xτ in E . If moreover ‖x‖ = supτ ‖xτ‖ then E will be said to
has the Fatou property. We will say that E has the weak σ -Fatou property if for every
increasing sequence 0 � xn ↑ in E such that supn�1 ‖xn‖< ∞ there exists x = supn�1 xn
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in E . If moreover ‖x‖ = supn�1‖xn‖ we will say that E has the σ -Fatou property.
A Banach lattice E is said to be p-convex if there exists a constant M > 0 such

that ∥∥∥( n

∑
j=1

|x j|p
) 1

p

∥∥∥ � M
( n

∑
j=1

‖x j‖p) 1
p

for all n ∈ N and x1, . . . ,xn ∈ E . The smallest constant satisfying the previous inequal-
ity for all such n ∈ N and x j ’s ( j = 1, . . . ,n ) is called the p-convexity constant of E
and is denoted by M(p)(E) .

The definitions given above and the main results concerning Banach lattices that
we use in this paper apply for the quasi-Banach lattice case, although they are not in
general Banach spaces.

An operator T : E →F between Banach lattices is said to be an order isomorphism
if it is one to one, onto and satisfies that T (x∧y) = Tx∧Ty for all x,y ∈ E . In this case
we will say that E and F are order isomorphic. If moreover ‖Tx‖F = ‖x‖E for all
x ∈ E , we will say that T is an order isometry and that E and F are order isometric.
Every positive operator between Banach lattices is continuous (see [1, Theorem 12.3]
or [15, page 2]).

The set consisting of all bounded linear maps from E into F will be denoted by
B(E,F) . A bounded linear operator T : E → F between Banach lattices is called L -
weakly compact if T (BE) is an L -weakly compact subset of F , that is, if ‖xn‖ →
0 as n → ∞ for every disjoint sequence (xn)n contained in the solid hull of T (BE) .
We denote by L (E,F) this class of bounded operators and by W (E,F) the ideal of
weakly compact operators. Note that L (E,F) ⊂ W (E,F) by Proposition 3.6.12 in
[19]. For these an other issues related to Banach lattices, see for instance [1], [15],
[16], [19] and [24].

2.2. Integration with respect to vector measures on δ -rings

We recall here the integration theory of Lewis ([14]) and Masani and Niemi ([17],
[18]). We refer also to [10]. Let R be a δ -ring of subsets of an abstract set Ω (i.e.
a ring of sets closed under countable intersections) and consider R loc the associated
σ -algebra to R given by R loc = {A ⊂ Ω : A∩B ∈ R, for every B ∈ R} . Denote by
M (R loc) the space of measurable real functions on (Ω,R loc) and by S (R loc) and
S (R) the space of simple functions with support in R loc and R respectively.

Let ν : R → X be a set function with values in a real Banach space X such that
∑n�1 ν(An) converges to ν(∪n�1An) in X whenever (An)n�1 are pairwise disjoint sets
in R with ∪n�1An ∈ R . We will say that ν is a vector measure. Denoting by X∗ the
dual space of X , the semivariation of ν is given by ‖ν‖ : R loc → [0,∞] with ‖ν‖(A) =
sup{|x∗ν|(A) : x∗ ∈ BX∗} for all A ∈ R loc and where |x∗ν| is the variation of the
measure x∗ν : R → R . A set B ∈ R loc is ν -null if ‖ν‖(B) = 0. A property holds
ν -almost everywhere (ν -a.e.) if it holds except on a ν -null set.

We will denote by L1
w(ν) the space of functions in M (R loc) which are integrable

with respect to |x∗ν| for all x∗ ∈ X∗ where functions which are equal ν -a.e. are iden-
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tified. The space L1
w(ν) is a Banach space when endowed with the norm

‖ f‖ν = sup
x∗∈BX∗

∫
Ω
| f |d|x∗ν|.

Moreover, it is a Banach lattice for the ν -a.e. pointwise order and it is an ideal of mea-
surable functions, that is, if | f | � |g| ν -a.e. with f ∈ M (R loc) and g ∈ L1

w(ν) , then
f ∈ L1

w(ν) . Even more, convergence in norm of a sequence implies ν -a.e. convergence
of some subsequence (see [18, Lemma 3.13]). A function f ∈ L1

w(ν) is integrable with
respect to ν if for each A ∈ R loc there exists a vector denoted by

∫
A f dν ∈ X , such

that

x∗
(∫

A
f dν

)
=

∫
A

f dx∗ν for all x∗ ∈ X∗.

We denote by L1(ν) the space of integrable functions with respect to ν . It is an or-
der continuous Banach lattice when endowed with the norm and the order structure
of L1

w(ν) . Moreover, it is an ideal of measurable functions and so an ideal of L1
w(ν) .

If ϕ = ∑n
i=1 aiχAi ∈ S (R) then ϕ ∈ L1(ν) with

∫
A ϕ dν = ∑n

i=1 aiν(Ai ∩A) for all
A ∈ R loc . In fact, the space S (R) is dense in L1(ν) . The integration operator
Iν : L1(ν) → X given by Iν( f ) =

∫
Ω f dν is linear and continuous with ‖Iν( f )‖ �

‖ f‖ν .
A vector measure ν : R → E with values in a Banach lattice E is positive if

ν(A) � 0 for all A∈R . In this case, the integration operator Iν : L1(ν)→ E is positive
(i.e. Iν( f ) � 0 whenever 0 � f ∈ L1(ν)) and it can be checked that ‖ f‖ν = ‖Iν(| f |)‖
for all f ∈ L1(ν) (see Lemma 3.13 in [20] with the obvious modifications in the case
of δ -rings).

3. The spaces Lp(ν) and Lp
w(ν)

As was said in the Introduction, the spaces Lp(ν) and Lp
w(ν) of p -integrable

functions and weakly p -integrable functions are nowadays well-known when the vector
measure ν is defined on a σ -algebra. The scalar measure counterpart is given in this
case by the finite measure spaces: every countably additive positive measure defined
on a σ -algebra is bounded (finite). In the vector valued case, if this boundedness
requirement is removed the measure must be defined on a δ -ring to make sense. In
this section we introduce and study the main properties of the corresponding spaces
of p -integrable functions. We extend the definition of L1(ν) and L1

w(ν) for a vector
measure on a δ -ring given in [17, 18] and [14] to Lp(ν) and Lp

w(ν) as follows.

DEFINITION 1. Let 0 < p < ∞ and let ν be a vector measure defined on a δ -ring
of subsets of an abstract set Ω . We say that a measurable real function f ∈M (R loc) is
weakly p-integrable with respect to ν if | f |p ∈ L1

w(ν) , and p-integrable with respect
to ν if | f |p ∈ L1(ν) . We denote by Lp

w(ν) the space of (equivalence classes of) weakly
p -integrable functions with respect to ν and by Lp(ν) the space of (equivalence classes
of) p -integrable functions with respect to ν .
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It is clear that Lp(ν)⊂ Lp
w(ν) . Moreover, they are ideals of the vector lattice (with

the ν -a.e. order) M (R loc) with S (R) ⊂ Lp(ν) . An homogeneous positive function
can be defined over Lp

w(ν) by

‖ f‖p,ν :=
∥∥| f |p∥∥ 1

p
ν = sup

x∗∈BX∗

(∫
Ω
| f |p d|x∗ν|) 1

p , f ∈ Lp
w(ν).

The following well-known inequalities involving positive real numbers will be
necessary through the paper (see for instance [20, Section 2.2]).

LEMMA 2. Let a,b ∈ [0,+∞) . Then the following inequalities hold.

(a+b)r � ar +br and |ar −br| � |a−b|r, for 0 < r � 1. (1)

ar +br � (a+b)r � 2r−1(ar +br), for r � 1. (2)

|ar −br| � r · |ar−1 +br−1| · |a−b|, for r � 1. (3)

Since ‖·‖ν is a norm, straightforward calculations using the previous lemma show
that ‖ · ‖p,ν is in fact a quasi-norm. We also use the notations ‖ · ‖Lp

w(ν) and ‖ · ‖Lp(ν)
when an explicit reference to the space is convenient. In what follows we prove some
fundamental topological and lattice properties of the spaces Lp(ν) and Lp

w(ν) . We
write some of the proofs for the aim of completeness, since our arguments follow the
lines of the ones that prove the corresponding results for the case of vector measures
on σ -algebras (see [20, Ch.2, Ch.3] and [12, 21]). However, there are several technical
things that makes the proofs slightly different. One of the reasons is that we are not
working in the setting of the Banach function spaces. For instance, in our spaces con-
vergence of a sequence in the norm still implies ν -a.e. convergence of the sequence,
but we have to use the result given in [18, Lemma 3.13] instead of [20, Proposition 2.2
(ii)], that is used in [20].

When 1 � p < ∞ , ‖ · ‖p,ν is actually a lattice norm. To prove this result we need
first the following lemma, that will be useful also in next sections.

LEMMA 3. Let q,r,s > 0 such that 1
q = 1

r + 1
s and let f ∈ Lr

w(ν) and g∈ Ls
w(ν) .

Then, f g ∈ Lq
w(ν) and ‖ f g‖q,ν � ‖ f‖r,ν‖g‖s,ν .

Proof. Without loss of generality, it suffices to assume that ‖ f‖r,ν = ‖g‖s,ν = 1.
By using Young’s inequality

‖ f g‖q
q,ν =

∥∥| f |q|g|q∥∥ν � q
r

∥∥| f |r‖ν +
q
s

∥∥|g|s∥∥ν =
q
r

∥∥ f‖r,ν +
q
s

∥∥g
∥∥

s,ν =
q
r
+

q
s

= 1. �

The same arguments prove that the result is also true in the case of Lp(ν) .
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PROPOSITION 4. Let 0 < p < ∞ and ν a vector valued measure on a δ -ring.
Then

(1) for 1 � p < ∞ , (Lp
w(ν),‖ · ‖p,ν) and (Lp(ν),‖ · ‖p,ν) are Banach lattices with

the ν -a.e. order, and

(2) for 0 < p < 1 , (Lp
w(ν),‖ · ‖p,ν) and (Lp(ν),‖ · ‖p,ν) are quasi Banach lattices

with the ν -a.e. order.

Proof. We only prove the case of Lp
w(ν) . Let ( fn)n�1 be a Cauchy sequence

in Lp
w(ν) . Due to the equality |a− b| = |a+ − b+|+ |a− − b−| for a,b ∈ R and the

compatibility of the quasinorm ‖ ·‖p,ν with the ν -a.e. pointwise order, we can assume
that fn ∈ Lp

w(ν)+ for all n ∈ N .
Step 1. Completeness for 0 < p < 1. Applying inequality (1) in Lemma 2 to fn

and fm and taking norm ‖ · ‖ν we have that∥∥| f p
n − f p

m|
∥∥

ν �
∥∥| fn − fm|p

∥∥
ν .

Therefore, ( f p
n )n�1 is a Cauchy sequence in L1

w(ν) and so it has a limit f ∈ L1
w(ν) .

Note that f � 0 ν -a.e. as in L1
w(ν) convergence in norm of a sequence implies ν -a.e.

convergence of some subsequence. Fix n ∈ N . Using inequality (3) in Lemma 2 with
r := 1

p , Lemma 3 with q := p,r := p
1−p and s := 1 and again (1) and (2) in Lemma 2

but now with r := 1
p −1 we obtain

∥∥| fn − f
1
p |∥∥p,ν �

∥∥|( f p
n )

1
p − f

1
p |∥∥p,ν � 1

p

∥∥|( f p
n )

1
p−1 + f

1
p−1| · | f p

n − f |∥∥p,ν

� 1
p

∥∥|( f p
n )

1
p−1 + f

1
p−1|∥∥ p

1−p ,ν

∥∥| f p
n − f |∥∥ν

� 1
p

max{2 1−2p
p ,1}(‖ f p

n ‖
1−p

p
ν +‖ f‖

1−p
p

ν
)∥∥| f p

n − f |∥∥ν

� 1
p

max{2 1−2p
p ,1}( sup

m∈N

‖ fm‖1−p
p,ν +‖ f‖

1−p
p

ν
)∥∥| f p

n − f |∥∥ν ,

hence fn → f
1
p in Lp

w(ν) and consequently Lp
w(ν) is complete.

Step 2. ‖ · ‖p,ν is a lattice norm for 1 � p < ∞ . Let f ,g ∈ Lp
w(ν) . Inequality (3)

in Lemma 2 and Lemma 3 with r := p,s := p
p−1 and q := 1 yield that

‖ f +g‖p
p,ν =

∥∥| f +g|p∥∥ν =
∥∥| f +g| · | f +g|p−1

∥∥
ν

�
∥∥| f | · | f +g|p−1

∥∥
ν +

∥∥|g| · | f +g|p−1
∥∥

ν

�
∥∥ f

∥∥
p,ν ·

∥∥| f +g|p−1
∥∥ p

p−1 ,ν +
∥∥g

∥∥
p,ν ·

∥∥| f +g|p−1
∥∥ p

p−1 ,ν

=
∥∥| f +g|p−1

∥∥ p
p−1 ,ν

(∥∥ f
∥∥

p,ν +
∥∥g

∥∥
p,ν

)
=

∥∥| f +g|p∥∥ p−1
p

ν
(∥∥ f

∥∥
p,ν +

∥∥g
∥∥

p,ν
)

=
∥∥ f +g

∥∥p−1
p,ν

(∥∥ f
∥∥

p,ν +
∥∥g

∥∥
p,ν

)
,
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hence ‖ f +g‖p,ν � ‖ f‖p,ν +‖g‖p,ν and ‖ ·‖p,ν is a norm. That it is also a lattice norm
is direct since ‖ · ‖ν so is. In fact this is also obviously true for the quasi-norm ‖ · ‖p,ν
if 0 < p < 1.

Step 3. Completeness for p � 1 . Fix n,m ∈ N . As in the case 0 < p < 1, use
inequality (3) in Lemma 2 and Lemma 3 with q := 1,r := p

p−1 and s := p to obtain

‖ f p
n − f p

m‖ν � p
∥∥| f p−1

n + f p−1
m | · | fn− fm|

∥∥
ν

� p
∥∥| f p−1

n + f p−1
m |∥∥ p

p−1 ,ν

∥∥ fn − fm
∥∥

p,ν

� p
(∥∥| f p−1

n |∥∥ p
p−1 ,ν +

∥∥| f p−1
m |∥∥ p

p−1 ,ν
)∥∥ fn − fm

∥∥
p,ν

= p
(∥∥| fn|∥∥p−1

p,ν +
∥∥| fm|∥∥p−1

p,ν
)∥∥ fn − fm

∥∥
p,ν

� 2p
(
sup
k∈N

∥∥| fk|∥∥p−1
p,ν

)∥∥ fn − fm
∥∥

p,ν .

Therefore ( f p
n )n�1 is a Cauchy sequence in L1

w(ν) . Hence there is a limit f ∈ L1
w(ν) .

Again f � 0 ν -a.e. by the same argument as the one used above. We will show that

f
1
p is the limit of ( fn)n�1 in Lp

w(ν) . Indeed inequality (1) in Lemma 2 gives

‖ fn − f
1
p ‖p,ν =

∥∥| fn − f
1
p |p∥∥ 1

p
ν �

∥∥ f p
n − f

∥∥ 1
p
ν .

Hence Lp
w(ν) is complete. The proofs are similar for the space Lp(ν) . �

REMARK 5. As it was already mentioned, S (R) ⊂ Lp(ν) . Moreover S (R) is
a dense set in Lp(ν) . Indeed, let f ∈ Lp(ν)+ , then f p ∈ L1(ν) and by the density of
S (R) in L1(ν) there exists an increasing sequence 0 � (ϕn)n�1 converging to f p ν -

a.e. and in the norm of L1(ν) . Clearly, (ϕ
1
p

n )n�1 ∈ S (R) ⊂ Lp(ν) and ϕ
1
p

n ↑ f ν -a.e.
The same corresponding inequalities used to prove the completeness of Lp

w(ν) can be

used to take an inequality like ‖ f −ϕ
1
p
n ‖p,ν � K‖ f p −ϕn‖ν and conclude the result.

The extension to the general case is routine. Consequently, Lp(ν) is a closed ideal in
Lp

w(ν) .

We study now the convexity behavior of our spaces.

PROPOSITION 6. Let 0 < p < ∞ . The spaces Lp
w(ν) and Lp(ν) are p-convex

with p-convexity constants M(p)(Lp
w(ν)) = M(p)(Lp(ν)) = 1 . Moreover, for 0< p < 1 ,

if L1
w(ν) (resp. L1(ν)) is 1

p -convex, then Lp
w(ν) (resp. Lp(ν)) is a Banach lattice with

the norm

||| f |||p := inf{
n

∑
j=1

‖ f j‖p,ν : | f | �
n

∑
j=1

| f j|, f j ∈ Lp
w(ν), j = 1, . . . ,n},

which is equivalent to the quasinorm ‖ ·‖p,ν . If moreover M( 1
p )(L1

w(ν)) = 1 , the norm
||| · |||p coincides exactly with ‖ · ‖p,ν .
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Proof. Fix f1, . . . , fn , n ∈ N , and compute

∥∥( n

∑
j=1

| f j|p
) 1

p
∥∥

p,ν =
∥∥ n

∑
j=1

| f j|p
∥∥ 1

p
ν �

( n

∑
j=1

∥∥| f j|p
∥∥

ν
) 1

p =
( n

∑
j=1

∥∥ f j
∥∥p

p,ν
) 1

p .

We have clearly that Lp
w(ν) (and Lp(ν)) is p -convex with p -convexity constant

M(p)(Lp
w(ν)) = M(p)(Lp(ν)) � 1.

Moreover, the p -convexity constant is M(p)(Lp
w(ν)) =M(p)(Lp(ν)) = 1. Indeed letting

n = 1 in the inequality above
∥∥(| f |p) 1

p
∥∥

p,ν =
∥∥ f

∥∥
p,ν = (

∥∥ f
∥∥p

p,ν)
1
p and so M(p)(Lp

w(ν))=

M(p)(Lp(ν)) � 1.
It is direct to check that ||| · |||p is a lattice norm. From the definition of ||| · |||p

it is clear that ||| f |||p � ‖ f‖p,ν just taking f1 = f ∈ Lp
w(ν) . On the other hand, let

f ∈ Lp
w(ν) and ε > 0 and choose n∈N and f1, . . . fn ∈ Lp

w(ν) such that | f |� ∑n
j=1 | f j|

and ∑n
j=1 ‖ f j‖p,ν � ||| f |||p + ε . Since L1

w(ν) is 1
p -convex with 1

p -convexity constant

M( 1
p )(L1

w(ν)) , we have

‖ f‖p,ν =
∥∥| f |p∥∥ 1

p
ν �

∥∥( n

∑
j=1

| f j|
)p∥∥ 1

p
ν =

∥∥( n

∑
j=1

(| f j|p)
1
p
)p∥∥ 1

p
ν

�
(
M( 1

p )(L1
w(ν))(

n

∑
j=1

∥∥| f j|p
∥∥ 1

p
ν )p

) 1
p

= M( 1
p )(L1

w(ν))
1
p

n

∑
j=1

∥∥ f j
∥∥

p,ν

� M( 1
p )(L1

w(ν))
1
p (||| f |||p + ε).

As ε is arbitrary, we obtain that ||| · |||p and ‖ · ‖p,ν are equivalent. Note that ||| f |||p =

‖ f‖p,ν whenever M( 1
p )(L1

w(ν)) = 1. �

PROPOSITION 7. Let 0 < p < ∞ . Then the space Lp
w(ν) has the σ -Fatou prop-

erty.

Proof. First, remark that f ∈ Lp
w(ν) if and only if

∥∥| f |p∥∥ν < ∞ since f ∈ L1
w(ν) if

and only if ‖ f‖ν < ∞ . Now, let 0 � ( fn)n�1 be an increasing sequence in Lp
w(ν) such

that supn ‖ fn‖p,ν < ∞ . By the measurability of fn there exists f := supn fn ∈M (R loc) .
Using the same argument as the one in the proof of the completeness of Lp

w(ν) , we
have that f � 0. Let us show that ‖ f‖p,ν < ∞ . Consider the increasing sequence
0 � ( f p

n )n�1 ∈ L1
w(ν) and fix x∗ ∈ BX∗ . Then for every n ∈ N , f p

n ∈ L1(|x∗ν|) and by
the Monotone Convergence Theorem∫

Ω
| f |p d|x∗ν| = lim

n→∞

∫
Ω
| fn|p d|x∗ν| � lim

n→∞

∥∥| fn|p∥∥ν = sup
n∈N

∥∥| fn|p∥∥ν < ∞.

Hence | f |p ∈ L1
w(ν) and f ∈ Lp

w(ν) . Consequently, Lp
w(ν) has the weak σ -Fatou

property. Moreover,
∥∥| f |p∥∥ν � supn

∥∥| fn|p∥∥ν , hence ‖ f‖p,ν � supn

∥∥| fn|∥∥p,ν . On the
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other hand, 0 � fn � f for every n ∈ N , then ‖ fn‖p,ν � ‖ f‖p,ν for every n ∈ N and
supn ‖ fn‖p,ν � ‖ f‖p,ν . Taking into account both inequalities we have supn ‖ fn‖p,ν =
‖ f‖p,ν , so Lp

w(ν) has the σ -Fatou property. �

PROPOSITION 8. Let 0 < p < ∞ . Then the space Lp(ν) is order continuous.

Proof. First, show that Lp(ν) is σ -order continuous. To this aim, take ( fn)n�1 a
decreasing sequence in Lp(ν)+ with inf fn = 0, that is, such that fn ↓ 0 ν -a.e. Then
( f p

n )n�1 is a decreasing sequence in L1(ν)+ such that f p
n ↓ 0 ν -a.e. The σ -order

continuity of L1(ν) yields limn→∞ ‖ f p
n ‖ν = 0, so limn→∞ ‖ f p

n ‖
1
p
ν = limn→∞ ‖ fn‖p,ν = 0

and Lp(ν) is σ -order continuous. Now, since Lp
w(ν) has the σ -Fatou property, it is

Dedekind σ -complete ([24, Theorem 113.1]) and as Lp(ν) is a closed ideal in it, it is
also Dedekind σ -complete ([16, Theorem 25.2]). Proposition 1.a.8 in [15] yields that
Lp(ν) is then order continuous. �

EXAMPLE 9. It is easy to find examples of Lp(ν) spaces which have not the σ -
Fatou property and Lp

w(ν) spaces which are not order continuous. In fact, under certain
requirements having these properties implies the coincidence of Lp(ν) and Lp

w(ν) (for
instance, when the δ -ring is a σ -algebra, see the comments at the end of this section).
For example, take the δ -ring R of all the finite subsets of N and the vector measure
η : R → c0 given by η({n}) := en , where (en)n is the canonical basis of c0 . It is
known that in this case L1(η) = c0 and L1

w(η) = �∞ (see [10, Example 2.2]). Just
looking at the definition makes clear that for all 0 < p < ∞ , Lp(η) = c0 and Lp

w(η) =
�∞ . The first one do not have the σ -Fatou property, and the second one is not order
continuous. If we define the same vector measure but having values in the space �q ,
1 � q � ∞ , instead of in c0 , it is shown in [10, Example 2.2] that L1(η) = L1

w(η) = �q ;
for 1 � p < ∞ , then Lp(η) = Lp

w(η) = �pq that is order continuous and has the Fatou
property.

The following result gives a representation theorem for abstract order continuous
and p -convex Banach lattices. It generalizes the one in [12, Proposition 2.4] (see also
[20, Proposition 3.30] for a complex version).

THEOREM 10. Let 1 < p < ∞ and let E be a p-convex order continuous Banach
lattice. Then there exists a positive vector measure ν defined on a δ -ring and with
values in E such that Lp(ν) and E are order isomorphic.

Proof. Since E is an order continuous Banach lattice, it can be renormed in order
to have a p -convexity constant equal to 1 (see Proposition 1.d.8 in [15]) and there
exists a vector measure ν1 defined on a δ -ring and with values in E , such that the
space L1(ν1) of integrable functions with respect to ν1 is order isometric to E with
the new norm. More precisely, the integration operator Iν1 : L1(ν1) → E is an order
isometry ([11, Theorem 5]; see also [4, pp. 22–23]). Consequently L1(ν1) is a p -
convex and order continuous Banach lattice with p -convexity constant equal to 1 (as
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above). Consider L
1
p (ν1) , by Proposition 6 we have that ‖ · ‖ 1

p
is actually a lattice

norm and then L
1
p (ν) is a Banach lattice. Define the set function ν2 : R → L

1
p (ν1)

by A �→ χA . Clearly, ν2 is additive. Moreover, if (Ai)i�1 ⊂ R is a pairwise disjoint
sequence such that

⋃
i�1 Ai ∈ R , then by the order continuity of L1(ν1) we have that

∥∥∥ν2(
⋃
i�1

Ai)−
n

∑
i=1

ν2(Ai)
∥∥∥

1
p ,ν1

=
∥∥∥ν2(

⋃
i�1

Ai)−ν2(
n⋃

i�1

Ai)
∥∥∥

1
p ,ν1

= ‖ν2(
⋃
i�n

Ai)
∥∥∥

1
p ,ν1

=
∥∥∥|χ⋃

i�n Ai |
1
p

∥∥∥p

ν1
=

∥∥∥χ⋃
i�n Ai

∥∥∥
ν1

→ 0,

as n → ∞ . Hence, ν2 is a countably additive vector measure. Consider now the

integration operator Iν2 : L1(ν2) → L
1
p (ν1) which is linear and continuous and take

ϕ = ∑n
j=1 a jχAj ∈ S (R) (we assume that the sets Aj are pairwise disjoint). Then,

since L
1
p (ν1) is a Banach lattice and the vector measure ν2 is positive,

‖ϕ‖ν2 =
∥∥∥∫

Ω
|ϕ |dν2

∥∥∥
1
p ,ν1

=
∥∥∥ n

∑
j=1

|a j|ν2(Aj)
∥∥∥

1
p ,ν1

=
∥∥∥ n

∑
j=1

|a j|χAj

∥∥∥
1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

.

On the other hand,

‖Iν2(ϕ)‖ 1
p ,ν1

=
∥∥∥∫

Ω
ϕ dν2

∥∥∥
1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

.

Consequently, ‖Iν2(ϕ)‖ 1
p ,ν1

= ‖ϕ‖ 1
p ,ν1

= ‖ϕ‖ν2 . Moreover, the integration operator

Iν2 over S (R) is the identity map. Extending now by density, we obtain that L1(ν2) =

L
1
p (ν1) with equal lattice norms. Therefore, again the identity map will be an order

isometry between Lp(ν2) and L1(ν1) and Lp(ν2) = L1(ν1) with equal lattice norms.
Hence, E and Lp(ν2) are order isometric. �

The properties of a vector measure ν defined on a δ -ring R influence the spaces
of integrable and weakly integrable functions L1(ν) and L1

w(ν) (see [10] and [3]). We
explain here the corresponding consequences on the spaces Lp

w(ν) and Lp(ν) with
p > 1.

In the general case it is not true that a measure ν defined on a δ -ring is bounded,
that is ‖ν‖(Ω) = ‖χΩ‖ν < ∞ which is equivalent to the fact that χΩ ∈ L1

w(ν) (see [10,
Example 2.1]). Due to the ideal property of L1(ν) in R loc , the space of measurable
bounded functions L∞(ν) is contained in L1(ν) if and only if χΩ ∈ L1(ν) (see the
comments after [10, Example 2.1]). Consequently, if ν is not bounded, this premise
fails to hold. It is clear that the same conclusion holds for Lp(ν) , p > 1. Moreover,
recall that a measure ν is said to be strongly additive if (ν(An))n�1 converges to zero
whenever (An)n�1 is a sequence of disjoint subsets of R . Corollary 3.2 in [10] assures
that ν is strongly additive if and only if χΩ ∈ L1(ν) . Therefore, L∞(ν) ⊂ L1(ν) if and
only if ν is strongly additive. Again, the same result holds for Lp(ν) , p � 1.

A measure ν is said to be σ -finite if there exists a sequence (An)n�1 in R and a
ν -null set N ∈R loc such that Ω = (∪n�1An)∪N . Theorem 3.3 in [10] ensures that the
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σ -finiteness of ν is equivalent to the existence of a weak unit in L1(ν) . Clearly, this is
equivalent to the existence of a weak unit in Lp(ν) for any/some p > 1.

New requirements on the measure ν (introduced and study in [3]) influence the
structure of the spaces L1

w(ν) strongly. Locally σ -finiteness plays an important and
very special role as it gives the condition to L1(ν) to be super order dense in L1

w(ν) .
More concretely, recall that a measure ν is locally σ -finite if given B ∈ R loc with
‖ν‖(B) < ∞ , B can be written as B = (∪n�1An)∪N, with An ∈ R and N ∈ R loc a
ν -null set. Theorem 4.8 in [3] proves that ν is locally σ -finite if and only if for every
0 � f ∈ L1

w(ν) , there exists a sequence (ϕn)⊂ S (R) such that 0 � ϕn ↑ f ν -a.e. This
characterization allows us to use the same arguments as the ones in Proposition 3.9
and Corollary 3.10 in [12], as well as certain well-known theorems on general Banach
lattices to prove the following proposition. We recall that a Banach lattice E is a KB-
space if every monotone sequence in BE is convergent.

PROPOSITION 11. Let ν be a locally σ -finite vector measure on a δ -ring R .
For p > 1 , the following conditions are equivalent:

1. Lp
w(ν) is order continuous.

2. Lp
w(ν) is a KB-space.

3. Lp
w(ν) is weakly sequentially complete.

4. Lp
w(ν) does not contain a (lattice) copy of c0 .

5. Lp
w(ν) is reflexive.

6. Lp(ν) is reflexive.

7. Lp(ν) does not contain a (lattice) copy of c0 .

8. Lp(ν) is weakly sequentially complete.

9. Lp(ν) is a KB-space.

10. Lp
w(ν) = Lp(ν) .

11. L1
w(ν) = L1(ν) .

Remark that L1
w(ν) = L1(ν) holds if the space X where the vector measure takes

its values does not contain a copy of c0 ([14, Theorem 5.1]). This always happens if X
is a weakly sequentially complete Banach space (see [1, page 226]) and the converse is
also true for Banach lattices by Theorem 14.12 in [1]. This provides a quite large list of
examples which guarantees the equality L1

w(ν) = L1(ν) .
Finally, let us note that there is a decomposition property for ν which implies that

the space L1
w(ν) has the Fatou property. It is the so called R -decomposability of ν

(see Definition 17). For a measure satisfying such property, Theorem 5.8 in [3] assures
that L1

w(ν) has the Fatou property and L1(ν) is an order dense ideal in it. Thus, the
order density of Lp(ν) in Lp

w(ν) is an obvious consequence; clearly, we also get that
under this requirement for ν the space Lp

w(ν) has the Fatou property for p > 1.
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4. Multiplication operators

Let 1 < p < ∞ and consider a vector measure ν defined on a σ -algebra. It is
well-known that in this case Lp(ν) ⊂ Lp

w(ν) ⊂ L1
w(ν) and Lp(ν) ⊂ L1(ν) ⊂ L1

w(ν) .
Moreover, by Proposition 3.1 and Corollary 3.2 in [12] a further inclusion can be es-
tablished: for p > 1, Lp

w(ν) ⊂ L1(ν) . Actually, Proposition 3.3 in [12] establishes
that this inclusion is an L-weakly compact operator (and so a weakly compact oper-
ator). However, for vector measures on δ -rings these inclusions are not necessarily
true (for instance, Lp[0,∞] is not included in L1[0,∞]), but the inclusions between
the products of the corresponding spaces are still preserved; for example the equality
Lp[0,∞] ·Lp′ [0,∞] = L1[0,∞] remains true. In this section we analyze these inclusion
relations and the compactness properties of the multiplication operators that appear in
a natural way. Let us start with two simple examples related to Example 9.

EXAMPLE 12. (a) Let Γ be an uncountable abstract set and R the δ -ring of finite
subsets of Γ . Clearly, R loc = 2Γ . Consider the vector measure ν : R → �1(Γ) defined
by ν(A) := ∑γ∈A eγ , where eγ is the characteristic function of the point γ ∈ Γ . It is
obvious that the only ν -null set is the empty set. Since �1(Γ) does not contain a copy of
c0 , we have that L1

w(ν) = L1(ν) (see the explanation at the end of Section 3). Moreover
L1

w(ν) = L1(ν) = �1(Γ) (see [10, Example 2.2] and Example 9). Take 1 < p < ∞ , then
Lp

w(ν) = Lp(ν) = �p(Γ) and �p(Γ) �⊂ �1(Γ) . Therefore, Lp(ν) = Lp
w(ν) �⊂ L1

w(ν) =
L1(ν) and some of the inclusions above fail to be true.

(b) Let 1 < p < q , and consider again the previous example. Then Lp(ν) =
Lp

w(ν) = �p(Γ) and Lq(ν) = Lq
w(ν) = �q(Γ) . Since �p(Γ) ⊂ �q(Γ) , we have Lp(ν) ⊂

Lq(ν) which is just the opposite inclusion of the one that holds in the case of σ -
algebras.

The multiplication operators between Lp(ν) spaces have been studied recently in
a series of papers for the case of vector measures ν on σ -algebras (see [20, Ch.3], [8],
[9], [13] and [2]). In particular, the equality Lp

w(ν) ·Lp′ (ν) = L1(ν) and the compact-
ness properties of the multiplication operators are nowadays well-known in this case. In
what follows we will study multiplication operators and some of their properties in the
context of vector measures defined on a δ -ring. We begin by proving some inclusions
without further requirements on the measure.

LEMMA 13. Let p, p′ > 1 be conjugated exponents. Then

1. Lp
w(ν) ·Lp′

w (ν) = L1
w(ν) , and

2. Lp(ν) ·Lp′(ν) = Lp
w(ν) ·Lp′(ν) = Lp(ν) ·Lp′

w (ν) = L1(ν) .

Proof. (1) Taking into account Lemma 3 we have that Lp
w(ν) · Lp′

w (ν) ⊂ L1
w(ν) .

Now let f ∈ L1
w(ν) . Then we can write f = sign( f )| f |= (sign( f )| f | 1

p ) · | f |
1
p′ ∈ Lp

w(ν) ·
Lp′

w (ν) and check the converse inclusion.
(2) Note that the same proof of (1) yields Lp(ν) ·Lp′(ν) = L1(ν) . We will prove that
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Lp
w(ν) ·Lp′(ν) = L1(ν) . For this aim, let f ∈ Lp

w(ν) and g ∈ Lp′(ν) . We can suppose
without loss of generality that f ,g � 0 ν -a.e. Since f ∈ Lp

w(ν) , there exists a sequence
(ψn)n�1 in S (R loc) such that 0 � ψn ↑ f ν -a.e. and since g ∈ Lp′(ν) , there exists a
sequence (ϕn)n�1 in S (R) such that 0 � ϕn ↑ g ν -a.e. and in the norm of Lp′(ν) .
Note that for every n ∈ N , ψnϕn ∈ S (R) and that f g ∈ Lp

w(ν) ·Lp′
w (ν) = L1

w(ν) , so
it suffices to prove that ‖ψnϕn − f g‖ν → 0 as n → ∞ as L1(ν) is closed in L1

w(ν) .
Indeed

‖ψnϕn− f g‖ν =
∥∥∥ f χsupp( f )

( ψn

f χsupp( f )
ϕn−g

)∥∥∥
ν

� ‖ f‖Lp
w(ν) ·

∥∥∥ ψn

f χsupp( f )
ϕn−g

∥∥∥
Lp′ (ν)

,

where the last computation has been made taking into account that L∞(ν) · Lp′(ν) ⊂
Lp′(ν) due to the ideal property of Lp′(ν) . Since 0 � ψn

f χsupp( f )
ϕn ↑ g ν -a.e., the order

continuity of Lp′(ν) yields
∥∥∥ ψn

f χsupp( f )
ϕn− f

∥∥∥
Lp′ (ν)

→ 0. Hence ‖ψnϕn− f g‖ν → 0 and

f g ∈ L1(ν) . Finally, since L1(ν) = Lp(ν) ·Lp′(ν) ⊂ Lp
w(ν) ·Lp′(ν) , the equality holds.

Symmetry on the exponents p and p′ gives the final result. �

REMARK 14. Note that in general Lp
w(ν) ·Lp′

w (ν) �⊂ L1(ν) . To see this, just con-
sider a vector measure ν such that L1(ν) �= L1

w(ν) and take a function f ∈ L1
w(ν) \

L1(ν) . Then f can be written as f = sign( f )| f |= (sign( f )| f | 1
p ) · | f |

1
p′ , but f /∈ L1(ν) .

In fact, these spaces can be of a completely different size. Let us show an example.
Take a family of disjoint probability spaces (Ωγ ,Σγ ,μγ)γ∈Γ for an uncountable set of
indexes Γ , the δ -ring R defined by finite unions B =∪n

i=1Aγi , Aγi ∈ Σγi and the vector
measure κ : R → c0(Γ) given by κ(B) = ∑n

i=1 μγi(Aγi)χ{γi} . Then a direct extension of
the arguments that are used in Example 9 ([10, Example 2.2]) gives that the space L1(κ)
is the direct sum

⊕
c0(Γ) L

1(μγ ) . In particular, the support of each elements of this space
is contained in a countable union of sets Ωγ , γ ∈ Γ . However, L1

w(κ) =
⊕

�∞(Γ) L
1(μγ )

and the functions of this space can be even strictly positive in all points of
⋃

γ∈Γ Ωγ .
(Notice that the notations

⊕
c0(Γ) and

⊕
�∞(Γ) indicate that the support of each function

in the first space is included in a countable subset of indexes γ which do not happen in
the case of the second space).

Given g∈M (R loc) we denote by Mg : M (R loc)→M (R loc) the multiplication
operator by g .

LEMMA 15. Let p, p′ > 1 be conjugated exponents and g ∈ Lp′(ν) . Then

1. Mg ∈ B(Lp(ν),L1(ν)) , and

2. Mg ∈ B(Lp
w(ν),L1(ν)) .

In both cases ‖Mg‖ coincides with ‖g‖Lp′ (ν) .

Proof. It is a consequence of Lemma 13. Indeed, Mg is well defined and so it is
automatically continuous since Mg = Mg+ −Mg− , that is, the difference of two positive
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operators between Banach lattices. Moreover ‖Mg( f )‖L1(ν) = ‖g f‖L1(ν) � ‖g‖Lp′(ν) ·
‖ f‖Lp

w(ν) for all f ∈ Lp
w(ν) , thus ‖Mg‖ � ‖g‖Lp′(ν) . For the other inequality, just take

the function

f0 = ‖g‖−
p′
p

Lp′ (ν)
|g|p′−1 ∈ BLp(ν). �

The arguments used in the previous proof prove also the next lemma.

LEMMA 16. Let p, p′ > 1 be conjugated exponents and g ∈ Lp′
w (ν) . Then

1. Mg ∈ B(Lp(ν),L1(ν)) with ‖Mg‖ � ‖g‖
Lp′

w (ν)
, and

2. Mg ∈ B(Lp
w(ν),L1

w(ν)) with ‖Mg‖ = ‖g‖
Lp′

w (ν)
.

In what follows we need further requirements on the measure space (Ω,R,ν) .
We will assume that ν is R -decomposable. This is a vector measure extension of
a well-known decomposition property for scalar measure spaces that is called to be
decomposable (or strictly localizable) (see [22, Definition 46]). Let us consider a δ -
ring R of subsets of Ω and a vector measure ν on it. Then Zorn’s Lemma gives a class
of pairwise disjoint sets {Ai : i ∈ I} ⊆ R and a disjoint ν -null subset N ⊆ Ω such that
A = ∪i∈IAi∪N .

DEFINITION 17. A vector measure ν over a δ -ring R of subsets of Ω is said to
be R -decomposable if there exists a maximal decomposition of Ω as before given by
(Ωα)α∈Δ in R and a ν -null N such that

1. for every arbitrary family (Aα)α∈Δ of elements or R such that Aα ⊂ Ωα for all
α ∈ Δ , the union ∪α∈ΔAα is in R loc , and

2. for each x∗ ∈ X∗ and every arbitrary family of |x∗ν|-null sets (Zα)α∈Δ in R
such that Zα ⊂ Ωα for all α ∈ Δ , the union ∪α∈ΔZα is |x∗ν|-null.

For an R -decomposable vector measure, Theorem 5.8 in [3] assures that

THEOREM 18. Let R be a δ -ring of subsets of Ω , X a Banach space and ν :
R → X an R -decomposable vector measure. Then L1

w(ν) has the Fatou property and
L1(ν) is an order dense ideal in it.

Consequently, in such case for every p > 1, Lp
w(ν) has also the Fatou property and

Lp(ν) is an order dense ideal. We will use this result in the sequel.

THEOREM 19. Let p, p′ > 1 be conjugated exponents and let g ∈ M (R loc) . If
ν is R -decomposable, then the following statements are equivalent:

1. g ∈ Lp′
w (ν) .

2. Mg ∈ B(Lp(ν),L1(ν)) .
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3. Mg ∈ B(Lp(ν),L1
w(ν)) .

4. Mg ∈ B(Lp
w(ν),L1

w(ν)) .

Proof. By Lemma 16 we have that (1) ⇒ (2) . Let us see the converse. Assume
that Mg ∈ B(Lp(ν),L1(ν)) and so ‖Mg‖ < ∞ . Consider

A := { f ∈ Lp′
w (ν) : 0 � f � |g|}.

By Lemma 16 for f ∈ Lp′
w (ν) , Mf ∈ B(Lp(ν),L1(ν)) and ‖Mf ‖ = ‖ f‖

Lp′
w (ν)

. In par-

ticular, this is the case for f ∈ A . We order A to see it as an upwards directed system

where f1, f2 ∈ A are majorized by f1 ∨ f2 ∈ Lp′
w (ν)∩A . We use (A,∨) to denote it.

Then, we have an upwards directed system such that

sup
f∈(A,∨)

‖ f‖
Lp′

w (ν)
= sup

f∈(A,∨)
‖Mf ‖ � ‖M|g|‖ = ‖Mg‖ < ∞.

The Fatou property of Lp′
w (ν) ensures that there exists f0 := sup f∈(A,∨) f ∈ Lp′

w (ν) and
that

‖ f0‖Lp′
w (ν)

= sup
f∈(A,∨)

‖ f‖
Lp′

w (ν)
= sup

f∈(A,∨)
‖Mf ‖.

We claim that f0 = |g| ν -a.e. Suppose that this is not the case. Then the set B :=
{ω ∈ Ω : f0(ω) �= |g|(ω)} ⊂ R loc satisfies that ‖ν‖(B) > 0. By Lemma 3.4 in [18],
‖ν‖(B)= supD∈R∩2B ‖ν‖(D) . Thus, there exists D∈R, D⊂B such that 0 < ‖ν‖(D)<
∞ . Note that D ⊂ supp(|g| − f0) , then D∩ supp(|g| − f0) �= /0 ν -a.e. We know that
0 � |g|− f0 ∈ M (R loc) , therefore, there exists a sequence (ϕn)n�1 in S (R loc) such
that ϕn ↑ |g| − f0 ν -a.e. This implies that ϕnχD ↑ (|g| − f0)χD ν -a.e. and so that
ϕnχD + f0χD ↑ |g|χD ν -a.e.

On the other hand, there exists n ∈ N such that ϕnχD �= 0 ν -a.e. In other case,
if for all n ∈ N ϕnχD = 0 ν -a.e., then supp(ϕn ∩D) = /0 ν -a.e. for all n ∈ N , thus(⋃

n�1 supp(ϕn)
)∩D = /0 ν -a.e., a contradiction. Let k ∈ N such a number. We have

that ϕkχD + f0χD � f0χD = (sup f∈(A,∨) | f |)χD where ϕkχD + f0χD ∈ Lp′
w (ν) , which

contradicts the definition of the supremum. Consequently, f0 = |g| ν -a.e. and g ∈
Lq

w(ν) .
The proof of (1) ⇐⇒ (3) is analogous.(4) ⇒ (3) is evident so let us show now

that (3) ⇒ (4) . For this aim we consider for every I ⊂ Δ finite the set ΩI = ∪α∈IΩα .
Consider 0 � f ∈ Lp

w(ν) and choose (ϕn)n�1 ⊂ S (R loc) such that 0 � ϕn ↑ f . For
each n � 1 and I ⊂ Δ finite, we define ξ(n,I) = ϕnχΩI ∈ S (R) . Then (ξ(n,I))(n,I) ⊂
Lp(ν) is an upwards directed system 0 � ξ(n,I) ↑ f . Moreover sup(n,I) ξ(n,I) = f . By (3)
we have that 0 � |g|ξ(n,I) = sign(g)gξ(n,I) ∈ L1

w(ν) . Moreover, it is clear that |g|ξ(n,I) ↑
|g| f ∈ M (R loc) and that for every n ∈ N and I ⊂ Δ finite,∥∥|g|ξ(n,I)

∥∥
L1

w(ν) = ‖Mg(ξ(n,I))‖L1
w(ν) � ‖Mg‖ · ‖ξ(n,I)‖Lp(ν) � ‖Mg‖ · ‖ f‖Lp

w(ν).

The Fatou property of L1
w(ν) yields that |g| f ∈ L1

w(ν) and so that g f ∈ L1
w(ν) . The

extension to the general case is routine. Therefore Mg : Lp
w(ν) → L1

w(ν) is well defined
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and the continuity is guaranteed since it is a difference of positive operators between
Banach lattices. �

THEOREM 20. Let p, p′ > 1 be conjugate exponents and let g ∈ M (R loc) . If ν
is R -decomposable then the following conditions are equivalent:

1. g ∈ Lp′(ν) .

2. Mg ∈ B(Lp
w(ν),L1(ν)) .

Proof. By Lemma 15 we have that (1)⇒ (2) . Let us see (2)⇒ (1) . Suppose that

Mg ∈ B(Lp
w(ν),L1(ν)) . Then also Mg ∈ B(Lp(ν),L1(ν)) so g ∈ Lp′

w (ν) by Theorem
19. That is, |g|p′ ∈ L1

w(ν) which clearly implies that |g|p′−1 ∈ Lp
w(ν) . Therefore,

|g|p′ = |g| · |g|p′−1 ∈ M|g|(Lp
w(ν)) = Mg(Lp

w(ν)) ⊂ L1(ν).

Consequently, g ∈ Lp′(ν) . �
We finish this section by analyzing the compactness properties of the multiplica-

tion operators.

THEOREM 21. Let p, p′ > 1 conjugate exponents and let g ∈ M (R loc) . If ν is
R -decomposable then the following statements are equivalent:

1. g ∈ Lp′(ν) .

2. Mg ∈ B(Lp
w(ν),L1(ν)) .

3. Mg ∈ L (Lp
w(ν),L1(ν)) .

4. Mg ∈ L (Lp(ν),L1(ν)) .

5. Mg ∈ L (Lp
w(ν),L1

w(ν)) .

6. Mg ∈ L (Lp(ν),L1
w(ν)) .

7. Mg ∈ W (Lp
w(ν),L1(ν)) .

8. Mg ∈ W (Lp(ν),L1(ν)) .

9. Mg ∈ W (Lp
w(ν),L1

w(ν)) .

10. Mg ∈ W (Lp(ν),L1
w(ν)) .

Proof. The equivalence (1) ⇐⇒ (2) is precisely Theorem 20. Let us see (1) ⇒
(3) . We already have that Mg ∈ B(Lp

w(ν),L1(ν)) . We want to see that Mg(BLp
w(ν))

is an L -weakly compact set in L1(ν) , that is, Mg(BLp
w(ν)) is norm-bounded and such

that ‖hn‖L1(ν) → 0 as n→ ∞ for every disjoint sequence (hn)n�1 contained in the solid
hull of Mg(BLp

w(ν)) . Note that Mg(BLp
w(ν)) is clearly norm-bounded by the continuity
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of Mg . Moreover, the solid hull of Mg(BLp
w(ν)) is itself, since Mg(BLp

w(ν)) is solid in

L1(ν) . In fact, let |h|� |h̃| , with h ∈ L1(ν) and h̃ ∈ Mg(BLp
w(ν)) . We have that h̃ = g f

with f ∈ BLp
w(ν) and then |h| � |g f | . Thus,

|h|
|g|χsupp(g) � | f |χsupp(g) � | f |.

The ideal property of Lp
w(ν) yields that h

g χsupp(g) ∈ Lp
w(ν) and so ‖ h

g χsupp(g)‖Lp
w(ν) �

‖ f‖Lp
w(ν) � 1. Then h = gh

g χsupp(g) ∈Mg(BLp
w(ν)) . Finally let (hn)n be such a sequence

and consider for each n ∈ N the set supp(hn) ∈ R loc . As (hn)n is a disjoint sequence
(supp(hn))n is a disjoint family in R loc . On the other hand, for every n ∈ N there
exists fn ∈ BLp

w(ν) such that hn = Mg( fn) = g fn = gχsupp(hn) fn . By Hölder’s Inequality

‖Mg( fn)‖L1(ν) = ‖hn‖L1(ν) � ‖ fn‖Lp
w(ν) · ‖gχsupp(hn)‖Lp′ (ν) � ‖gχsupp(hn)‖Lp′ (ν),

but ‖gχsupp(hn)‖Lp′ (ν) → 0 since (gχsupp(hn))n is an order bounded disjoint sequence in

the order continuous space Lp′(ν) . The implication (3) ⇒ (2) is evident and so we
close the chain (1) ⇐⇒ (2) ⇐⇒ (3) .

The implication (3) ⇒ (4) is clear because Lp(ν) is continuously contained in
Lp

w(ν) and the composition of a continuous operator (to the right) with an L -weakly
compact is an L -weakly compact operator. Let us show now (4) ⇒ (1) and close
the equivalences from (1) to (4) . Assume that Mg ∈ L (Lp(ν),L1(ν)) . In particular,

Mg ∈ B(Lp(ν),L1(ν)) and Theorem 19 yields that g ∈ Lp′
w (ν) .

In order to show that g ∈ Lp′(ν) , we consider, for every I ⊂ Δ finite, the set
ΩI =∪α∈IΩα and the σ -algebra ΣI =

{∪α∈I Aα : Aα ∈ Σα for all α ∈ I
}

of ΩI where
Σα = R ∩Ωα . Note that ΩI ⊂ Ω and ΣI ⊂ R . Denote by νI : ΣI → X the restriction
of ν to ΣI . For each f ∈ M (R loc) , denote by f I the function resulting from the
restriction of f to ΩI . For every f ∈ L1

w(ν) we have that f χΩI ∈ L1
w(ν) and f I ∈

L1
w(νI) with ‖ f I‖νI = ‖ f χΩI‖ν (see the proof of Theorem 5.8 in [3]). Moreover, for

every f ∈ L1(ν) we have that f χΩI ∈ L1(ν) and f I ∈ L1(νI) (see [11]). If Z is a
ν -null set then Z∩ΩI is νI -null. Conversely, each function in L1(νI) (respectively in
L1

w(νI)) can be considered as a function in L1(ν) (respectively L1
w(ν)) with the same

corresponding relationships.
Define now Bk := {ω ∈Ω : 0 � |g(ω)|< k} , for k∈N , and consider (|g|χBk)

I
(k,I) ∈

L∞(νI) ⊂ Lp′(νI) . Then |g|χBk χΩI ∈ Lp′(ν) . Clearly, |g|χBk χΩI ↑ |g| ν -a.e.
We claim that the upwards directed system (|g|χBk χΩI )(k,I) is a Cauchy system

in Lp′(ν) ; in this case it is also convergent in norm to the suprema, that is convergent
to g (see Theorem 100.8 in [24]) and then g ∈ Lp′(ν) . Otherwise, there would exist a
number ε > 0 and an increasing sequence (|g|χBk χΩIk

)k in (|g|χBk χΩI )(k,I) such that∥∥|g|χBk+1χΩIk+1
−|g|χBkχΩIk

∥∥
Lp′ (ν) > ε for all k ∈ N , i.e. such that

∥∥|g|χCk

∥∥
Lp′ (ν) > ε

where Ck := (Bk+1∩ΩIk+1)\(Bk∩ΩIk ) (note that Ck �= /0). Let fk :=
∥∥g

∥∥− p′
p

Lp′
w (ν)

|g|p′−1χCk
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∈ BLp(ν) . Then ‖Mg( fk)‖L1(ν) → 0 as k → ∞ due to the L -weakly compactness of
Mg , but

Mg( fk) = g|g|p′−1‖g‖−
p′
p

Lp′
w (ν)

χCk = sign(g)|g|p′‖g‖−
p′
p

Lp′
w (ν)

χCk ,

and hence ‖Mg( fk)‖L1(ν) =
∥∥|g|p′χCk

∥∥
L1(ν)‖g‖

− p′
p

Lp′
w (ν)

. Therefore

∥∥|g|χCk

∥∥
Lp′ (ν) = ‖Mg( fk)‖L1(ν) · ‖g‖

p′
p

Lp′
w (ν)

→ 0

as k → ∞ , that gives a contradiction.
Clearly, (3) ⇒ (5) since L1(ν) is continuously included in L1

w(ν) and the impli-
cation (5) ⇒ (6) follows by the same argument as the one used to prove (3) ⇒ (4) .
We will show now that (6) ⇒ (4) . Assume that Mg ∈ L (Lp(ν),L1

w(ν)) . In particu-
lar, Mg ∈ B(Lp(ν),L1

w(ν)) . Theorem 19 yields that Mg ∈ B(Lp(ν),L1(ν)) and then
Mg(Lp(ν)) ⊂ L1(ν) which gives Mg ∈ L (Lp(ν),L1(ν)) . We already have the equiva-
lences (1) to (6) .

Since every L -weakly compact operator is weakly compact, (3) ⇒ (7) . Again,
since L1(ν) ⊂ L1

w(ν) with equal norms, (7) ⇒ (9) . The same argument that proves
(3) ⇒ (4) gives (9) ⇒ (10) . (10) ⇒ (8) can be proved in the same way that (6) ⇒
(4) . Only (8) ⇒ (1) is needed to close the chain. Let us see this. Suppose Mg ∈
W (Lp(ν),L1(ν)) , then Mg ∈ B(Lp(ν),L1(ν)) and g ∈ Lp′

w (ν) . Let Ak := {ω ∈ Ω :
k− 1 � |g(ω)|p′ < k} , for k ∈ N , and consider (|g|p′χAk)

I
k ∈ L∞(νI) ⊂ L1(νI) (we

follow the notation in the proof of (4) ⇒ (1)). Then |g|p′χAk χΩI ∈ L1(ν) . Define

S(n,I) :=
n

∑
k=1

∫
Ω
|g|p′χAk χΩI dν =

∫
Ω

g(sign(g))
n

∑
k=1

|g|p′−1χAk χΩI dν.

If we write f(n,I) := sign(g)∑n
k=1 |g|p

′−1χAk χΩI (note that f(n,I) ∈ Lp(ν)), we have
S(n,I) =

∫
Ω g f(n,I) dν = Iν ◦Mg( f(n,I)) . The ideal property of the weakly compact opera-

tors gives that S(n,I) ∈W (Lp(ν),X) . Since | f(n,I)|p � |g|p′ , we have that ‖ f(n,I)‖Lp(ν) �

‖g‖
p′
p

Lp′
w (ν)

, and hence ( f(n,I))(n,I) ⊂ ‖g‖
Lp′

w (ν)
·BLp(ν) ; that is ( f(n,I))(n,I) is included in a

multiple of BLp(ν) . Therefore, (S(n,I))(n,I) is contained in a relatively weakly compact

subset of X . Consequently, there exists (S̃(n,I))(n,I) ⊂ (S(n,I))(n,I) weakly convergent to
some x0 ∈ X . On the other hand, recall that each weakly ν -integrable function has an
integral belonging to X∗∗ (this fact can be easily proved following the same arguments
as in Corollary 3 and definitions in page 224 in [23]). So there is an element x′′0 ∈ X∗∗
such that for every x∗ ∈ X∗

x∗(S(n,I)) =
∫

Ω
g f(n,I) dx∗ν →

∫
Ω
|g|p′ dx∗ν = x∗(x′′0)

due to the order continuity of L1(|x∗ν|) . Hence (S(n,I))(n,I) converges in the weak*
topology of X∗∗ to x′′0 . Since the weak* topology of X∗∗ coincides in X with the weak
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topology of X , we can take x0 := x′′0 ∈X . This assures the existence of x0 ∈X such that
x∗(x0) =

∫
Ω |g|p′ dx∗ν . So the second condition in the definition of L1(ν) is verified

and we conclude the result. �

REMARK 22. Following the results in [8], the previous theorem can be extended
to the corresponding cases of semi-compact and M -weakly compact operators. For
the definitions we refer to [19, Definition 3.6.9] and for the proof check Theorem 7 in
[8].

5. Lp and Lp
w as intermediate spaces

It is well-known that in the case of σ -finite measures, the inclusions L1(μ)∩
L∞(μ)⊂ Lp(μ)⊂ L1(μ)+L∞(μ) substitute for many purposes the inclusions L∞(μ)⊂
Lp(μ) ⊂ L1(μ) that hold for finite measures. To finish the paper, in this section we
analyze the inclusion between the spaces L1(ν)∩L∞(ν) , Lp(ν) and L1(ν)+L∞(ν) ,
and also for the corresponding weak spaces.

PROPOSITION 23. Let 1 < p � ∞ . Then the following (continuous) inclusions
hold.

1. L1
w(ν)∩L∞(ν) ⊂ Lp

w(ν) ⊂ L1
w(ν)+L∞(ν) .

2. L1(ν)∩L∞(ν) ⊂ Lp(ν) ⊂ L1(ν)+L∞(ν) .

Proof. (1) Consider the Banach lattices L1
w(ν)∩L∞(ν) and L1

w(ν)+L∞(ν) with
the ν -a.e. order and the usual lattice norms

‖ f‖L1
w(ν)∩L∞(ν) = max{‖ f‖L1

w(ν),‖ f‖∞}, and

‖h‖L1
w(ν)+L∞(ν) = inf{‖ f‖L1

w(ν) +‖g‖∞ : h = f +g, f ∈ L1
w(ν), g ∈ L∞(ν)},

respectively.
For every f ∈ L1

w(ν)∩L∞(ν) we have that | f (ω)| � ‖ f‖∞ � ‖ f‖L1
w(ν)∩L∞(ν) for

ν -almost all ω ∈ Ω , so ‖ f‖−1
L1

w(ν)∩L∞(ν)| f (ω)| � 1, ν -a.e and then

‖ f‖−p
L1

w(ν)∩L∞(ν)| f (ω)|p � ‖ f‖−1
L1

w(ν)∩L∞(ν)| f (ω)|, ν−a.e.

Hence, | f (ω)|p � ‖ f‖p−1
L1

w(ν)∩L∞(ν) · | f (ω)| , ν -a.e. The ideal property of L1
w(ν) yields

that | f |p ∈ L1
w(ν) , and therefore f ∈ Lp

w(ν) .
On the other hand, let 0 � f ∈ Lp

w(ν) . For an arbitrary ε > 0 define the measurable
set Aε := {ω ∈ Ω : f (ω) > ε} . Note that if ω ∈ Aε , then f (ω)p > ε pχAε . Therefore,

∞ > sup
x∗∈BX∗

∫
Ω
| f |p d|x∗ν| � ε p sup

x∗∈BX∗

∫
Ω

χAε d|x∗ν| = ε p‖χAε‖L1
w(ν) = ε p‖ν‖(Aε),



260 J. M. CALABUIG, M. A. JUAN AND E. A. SÁNCHEZ PÉREZ

that is ‖ν‖(Aε) < ∞ . In particular, χAε ∈ Lp′
w (ν). Write f = f χAε + f χΩ\Aε . Clearly,

f χΩ\Aε ∈ L∞(ν) . Moreover, by Lemma 13, Lp
w(ν) · Lp′

w (ν) = L1
w(ν) with p, p′ con-

jugate exponents. Hence, f χAε ∈ L1
w(ν) and we conclude that f ∈ L1

w(ν) + L∞(ν) .
The extension to the general case is routine. Finally, the continuity of the inclu-
sions is clear, since it is a positive operator between Banach lattices. The inclusions
L1(ν)∩L∞(ν) ⊂ Lp(ν) ⊂ L1(ν)+L∞(ν) in (2) follow by the same arguments, using

in this case the identification Lp(ν) ·Lp′
w (ν) = L1(ν) for proving the second one. �

In general these relations cannot be improved by changing spaces of weakly in-
tegrable functions by spaces of integrable functions. The inclusions L1

w(ν)∩L∞(ν) ⊂
Lp(ν) and Lp

w(ν) ⊂ L1(ν)+L∞(ν) fail sometimes, as the following examples show.

EXAMPLE 24. Let Γ = (0,∞) and consider the δ -ring R of the finite subsets
of Γ . Let 1 < p < ∞ and ν : R → c0(Γ) be the vector measure given by ν(A) :=
∑γ∈A χ{γ} . The corresponding spaces of integrable functions can be calculated eas-
ily and are L1(ν) = Lp(ν) = c0(Γ) and L1

w(ν) = �∞(Γ) (see Example 9, Example 12
and [10, Example 2.2]). Note also that L∞(ν) = �∞(Γ) . Therefore L1

w(ν)∩L∞(ν) =
�∞(Γ) �⊂ c0(Γ) = Lp(ν) .

EXAMPLE 25. Consider an uncountable index set I and a family of disjoint non
atomic probability spaces (Ωi,Σi,μi)i∈I . Consider the vector measure ν : R → c0(I)
constructed as the one in Remark 14. Let 1 < p < ∞ . The spaces L1(ν) and Lp

w(ν)
can be identified with the spaces

⊕
c0(I) L

1(μi) and
⊕

�∞(I) L
p(μi) , respectively, and the

space L∞(ν) is
⊕

�∞(I) L
∞(μi) . Take an element of Lp

w(ν) defined by a set of functions
( fi)i∈I , each fi with support in Ωi , with 0 < fi ∈ Lp(μi) \ L∞(μi) for all i ∈ I and
supi∈I ‖ fi‖Lp(μi) < ∞ . Then it cannot be written as a sum of elements of L1(ν) and
L∞(ν) since the elements of L1(ν) are 0 in each Ωi except in a countable subset of
indexes of I . Moreover, the functions in { fi : i ∈ I} are not essentially bounded, so fi
does not belong to L∞(μi) for any i . Consequently, Lp

w(ν) �⊂ L1(ν)+L∞(ν) .

However, an improvement is still possible in the right hand side inclusion by defin-
ing a new space. For this aim, denote

L1
w,0(ν) := L1

w(ν)∩L∞(ν)
L1

w(ν) ⊂ L1
w(ν).

Remark that L1(ν) ⊂ L1
w,0(ν) since S (R) ∈ L1

w(ν)∩L∞(ν) and S (R) is a dense set
in L1(ν) . We claim that,

THEOREM 26. Let 1 < p < ∞ . Then the (continuous) inclusion Lp
w(ν)⊂ L1

w,0(ν)+
L∞(ν) holds.

Proof. Let 0 � f ∈ Lp
w(ν) and fix ε > 0. Consider again the sets Aε := {ω ∈

Ω : f (ω) > ε} of the previous proof, and recall that ‖ν‖(Aε) < ∞ and f = f χAε +
f χΩ\Aε ∈ L1

w(ν)+L∞(ν) . Define now for every n ∈ N , Bε,n := {ω ∈ A : f (ω) � n} ∈
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R loc and fn := f χBε,n . Note that ‖ν‖(Bε,n) < ∞ . Then fn ∈ L1
w(ν)∩L∞(ν) . We claim

that ‖ f χAε − fn‖L1
w(ν) → 0 as n → ∞ . To see this, use Hölder’s Inequality

‖ f χAε − fn‖L1
w(ν) = ‖ f χAε (χAε − χBε,n)‖L1

w(ν) � ‖ f‖Lp
w(ν) · ‖χAε − χBε,n‖Lp′

w (ν)
.

Let Cn := Aε \ Bε,n , n ∈ N . Let us see that (Cn)n ↓ ⋂
nCn and ‖χCn‖Lp′

w (ν)
→ 0 as

n → ∞ . Otherwise, there would exist a number δ > 0 such that ‖ν‖(Cn) > δ for an
infinite subset M of N . Since ‖ν‖(Cn) = supC∈R∩2Cn ‖ν‖(C) (see Lemma 3.4 in [18])
there would exist also Cn,δ ⊂Cn with Cn,δ ∈ R such that ‖ν‖(Cn,δ ) > δ , n ∈ M . But

nχCn,δ � f χCn,δ for all n ∈ N , thus nδ
1
p < n‖χCn,δ‖Lp

w(ν) � ‖ f‖Lp
w(ν) < ∞ , which is a

contradiction.
Consequently, ‖ f χAε − fn‖L1

w(ν) → 0 as n → ∞ , hence f χAε ∈ L1
w,0(ν) . The ex-

tension to non positive functions is clear. �

REMARK 27. Consider the case where the vector measure is defined on a σ -
algebra. Then, L1

w(ν)∩ L∞(ν) = L∞(ν) ⊂ L1(ν) which is closed in L1
w(ν) . Hence,

L1
w,0(ν) = L1(ν) and the inclusion in the theorem gives Lp

w(ν) ⊂ L1(ν) . Therefore,
Theorem 26 is a generalization of Proposition 3.1 in [8].
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