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COMPLETELY CO–BOUNDED SCHUR MULTIPLIERS

GILLES PISIER

Abstract. A linear map u : E → F between operator spaces is called completely co-bounded if
it is completely bounded as a map from E to the opposite of F . We give several simple results
about completely co-bounded Schur multipliers on B(�2) and the Schatten class Sp . We also
consider Herz-Schur multipliers on groups.

In this short note, we wish to draw attention to the notion of “completely co-bounded”
mapping between two operator spaces. Recall that an operator space can be defined as a
Banach space E given together with an isometric embedding E ⊂ B(H) into the space
B(H) of all bounded operators on a Hilbert space H . The theory of operator spaces
started around 1987 with Ruan’s thesis and has been considerably developed after that
(notably by Effros-Ruan and Blecher-Paulsen, see [2, 8]), with applications mainly to
Operator Algebra Theory. In this theory, the morphisms between operator spaces are
the completely bounded maps (c.b. in short), defined as follows. First note that if
E ⊂ B(H) is any subspace, then the space Mn(E) of n×n matrices with entries in E
inherits the norm induced by Mn(B(H)) . The latter space is of course itself equipped
with the norm of single operators acting naturally on H ⊕ ·· ·⊕H (n times). Then, a
linear map u : E → F is called completely bounded (c.b. in short) if

‖u‖cb
def= sup

n�1
‖un : Mn(E) → Mn(F)‖ < ∞ (1)

where, for each n � 1, un is defined by un([ai j]) = [u(ai j)] . One denotes by CB(E,F)
the space of all such maps.

Given an operator space E , the opposite Eop is the same Banach space as E , but
equipped with the operator space structure (o.s.s. in short) associated to any embedding
E ⊂ B(H) such that for any a = [ai j] ∈ Mn(E) , we have ‖a‖Mn(B(H)) = ‖[a ji]‖Mn(E) .
Thus ‖a‖Mn(Eop) = ‖[a ji]‖Mn(E) . It is easy to check that the (isometric linear) mapping
T �→ tT ∈ B(H∗) realizes such an embedding (warning: here tT : H∗ →H∗ designates
the adjoint of T in the Banach space sense).

We call a map u : E → F between operator spaces completely co-bounded if
the same map is c.b. from E to Fop . This definition is inspired by existing work
on completely co-positive maps (cf. e.g. [4, 5] and references there). I started to think
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about this notion after hearing Marciniak’s lecture on co-positive multipliers at the 2004
Quantum probability conference in Bedłewo.

While this definition seems at first glance a pointless variation, easy to reduce to
the usual case, we hope in what follows to convince the reader that it has a natural
place in operator space theory and that it suggests many interesting questions. As a first
motivation for this notion, we should mention that the non-commutative Grothendieck
theorem, that came out of work by the author and Haagerup, can be rephrased as saying
that, if A,B are C∗ -algebras, any bounded linear mapping u : A → B∗ is the sum of a
c.b. mapping and a co-c.b. one, see [9, p. 189] for details and more references.

DEFINITION 1. A linear map u : E → F between operator spaces will be called
completely co-bounded if it is completely bounded as a mapping from E into Fop the
opposite operator space. We then denote

‖u‖cob = ‖u : E → Fop‖cb.

REMARK 2. Obviously, ‖u : E →Fop‖cb = ‖u : Eop →F‖cb and (Fop)∗ = F∗op

completely isometrically. Therefore, u : E → F is completely co-bounded iff the same
is true for u∗ and ‖u‖cob = ‖u∗‖cob , since this is valid for c.b. maps (cf. e.g. [2, 8]).

REMARK 3. Clearly if B is a C∗ -algebra with F ⊂ B and if α : B→ B is an anti-
automorphism (for instance transposition on B(�2)), then u : E → F is completely
co-bounded iff αu is c.b. and ‖u‖cob = ‖αu‖cb . It is well known that the transposition
on Mn has c.b. norm equal to n (cf. e.g. [8, p. 418-419]). Therefore, the identity map
on B(H) is not completely co-bounded unless H is finite dimensional. More generally,
the identity map on a von Neumann algebra B is completely co-bounded iff B is of
type In for some finite n , i.e. iff B is a direct sum of finitely many algebras of the form
Mn⊗An , with An commutative.

At first glance, the reader may have serious doubts for the need of the preceding
notion ! But hopefully the next result will provide some justification.

THEOREM 4. A Schur multiplier Mϕ : [xi j] → [ϕi jxi j] is completely co-bounded
on B(�2) iff the matrix [|ϕi j|] defines a bounded operator on �2 and we have

‖Mϕ‖cob = ‖TMϕ‖cb = ‖[|ϕi j|]‖B(�2) (2)

where T : B(�2) → B(�2) denotes the transposition. Moreover, if ‖Mϕ‖cob � 1 , then
Mϕ admits a factorization

B(�2)
J−→ �∞(N×N)

Mϕ−−−→B(�2)

where J is the natural inclusion map and where ‖Mϕ‖cb � 1 .
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Proof. Assume that [|ϕi j|] is in B(�2) . Then the mapping

Mϕ : �∞(N×N)−→ B(�2)
[xi j] −→ [xi jϕi j]

is obviously bounded with ‖Mϕ‖ = ‖[|ϕi j|]‖B(�2) . Actually, more generally, if xi j ∈
B(H) with ‖xi j‖ � 1, then the matrix [ϕi jxi j] defines a bounded operator on �2(H)
with norm easily seen to be majorized by ‖[|ϕi j|]‖B(�2) . Indeed, for any pair (ai),(b j)
in the unit ball of �n

2(H) , we have

|∑
i
〈ai,∑

j
ϕi jxi jb j〉| � ∑

i, j
‖ai‖ |ϕi j| ‖xi j‖‖|b j‖ � ‖[|ϕi j|]‖B(�2),

and hence ‖[ϕi jxi j]‖Mn(B(H))‖ � ‖[|ϕi j|]‖B(�2). This shows that ‖Mϕ‖ � ‖Mϕ‖cb �
‖[|ϕi j|]‖B(�2) .

Let J be as above. Clearly we have

‖J‖cb = 1

and hence
Mϕ = MϕJ

with ‖Mϕ‖cb = ‖[|ϕi j|]‖B(�2) . But since �∞(N×N)op and �∞(N×N) are identical we
can factorize Mϕ as follows

Mϕ : B(�2)
J−→ �∞(N×N) = �∞(N×N)op Mϕ−−−→B(�2)op

it follows that

‖Mϕ : B(�2) → B(�2)op‖cb � ‖Mϕ‖cb � ‖[|ϕi j|]‖B(�2).

This proves the “if” part.
Conversely, assume that Mϕ is completely co-bounded with ‖Mϕ‖cob � 1. Let

x = [xi j] be an n×n matrix viewed as sitting in B(�2) . Let B = B(�2) . Note that∥∥∥∥∥ n

∑
i j=1

ei j ⊗ ei jxi j

∥∥∥∥∥
Mn(B)

= ‖x‖B

while ∥∥∥∥∥ n

∑
i j=1

ei j ⊗ ei jxi j

∥∥∥∥∥
Mn(Bop)

=

∥∥∥∥∥ n

∑
i j=1

e ji⊗ ei jxi j

∥∥∥∥∥
Mn(B)

= sup |xi j|.

By definition of ‖Mϕ‖cob � 1, we have∥∥∑ei j ⊗ ei jϕi jxi j
∥∥

Mn(B) =
∥∥∑e ji⊗ ei jϕi jxi j

∥∥
Mn(Bop) �

∥∥∑e ji⊗ ei jxi j
∥∥

Mn(B)

which yields
‖[ϕi jxi j1{i, j�n}]‖B � sup

i j
|xi j| � 1.
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This implies

‖[|ϕi j|]i j�n‖ � 1

and since n is arbitrary we obtain

‖[|ϕi j|]‖B � 1.

This proves the “only if” part. The proof also yields (2). �

COROLLARY 5. A Schur multiplier Mϕ is completely co-bounded on B(�2) iff it
factors through a commutative C∗ -algebra or iff it factors through a minimal operator
space and the corresponding factorization norm coincides with ‖Mϕ‖cob .

Proof. For any commutative C∗ -algebra C or for any E ⊂ C , we have clearly
E = Eop , so a cb -factorization Mϕ : B

u1−→ E
u2−→ B yields

‖Mϕ : B → Bop‖cb � inf{‖u1‖cb‖u2‖cb}

where the infimum runs over all possible factorizations. Conversely, the preceding
shows the converse with a factorization through �∞(N×N) . �

REMARK 6. Let G be an infinite discrete group. Consider a function f : G→ C ,
and the function f̂ defined on G×G by f̂ (s,t) = f (st−1) . By the well known Kesten-
Hulanicki criterion (cf. e.g. [7, Th. 2.4]) G is amenable iff there is a constant C such
that for any finitely supported f we have ∑t∈G | f (t)| � C‖[| f̂ (s,t)|]‖B(�2(G)) and when
G is amenable this holds with C = 1. Thus, by Theorem 4, the inequality

∑t∈G | f (t)| � C‖Mf̂ ‖cob

characterizes amenable groups. This should be comparedwith Bożejko’s and Wysoczan-
ski’s criteria described in [7, p. 54] and [7, p. 38].

We now generalize Theorem 4 to the Schur multipliers that are bounded on the
Schatten p -class Sp . We assume Sp equipped with the “natural” operator space struc-
ture introduced in [6] using the complex interpolation method. We will use freely the
notation and results from [6].

THEOREM 7. Let 2 � p � ∞ . Let T : Sp → Sp denote again the transposition
mapping x → t x . Then a bounded Schur multiplier Mϕ : Sp → Sp is completely co-
bounded iff it admits a factorization as follows:

Sp
Jp−−−→�p(N×N)

Mϕ−−−→Sp

where Jp is the natural (completely contractive) inclusion and where ‖Mϕ‖cob = ‖Mϕ‖cb .
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Proof. Note that the fact that Jp : Sp → �p(N×N) is completely contractive is
immediate by interpolation between the cases p = 2 and p = ∞ .

The proof can then be completed following the same idea as for Theorem 4. We
have for any [xi j] in Mn(Sp)

∥∥∑ei j ⊗ e ji⊗ xi j
∥∥

Sn
p[Sn

p[Sp]]
=

(
∑
i j

‖xi j‖p
Sp

)1/p

while ∥∥∑ei j ⊗ ei j ⊗ xi j
∥∥

Sn
p[Sn

p[Sp]]
= ‖[xi j]‖Sn

p[Sp].

Both of these identities can be proved by routine interpolation arguments starting from
p = ∞ and p = 2. This gives us

‖[ϕi jxi j]‖Sn
p[Sp] � ‖Mϕ‖cob

(
∑‖xi j‖p

Sp

)1/p

which means (cf. [6]) that

‖Mϕ‖cb � ‖Mϕ‖cob.

To prove the converse, it suffices to notice again that

�p(N×N)op = �p(N×N). �

REMARK 8. Consider Schur multipliers from B(�2) (or the subalgebra of com-
pact operators K ) into the trace class S1 . We refer to [9] for a detailed discusion of
when such a multiplier is bounded and when it is c.b. From that discussion follows
easily that such a multiplier is completely co-bounded iff it is bounded. Indeed, more
generally (see [9, 3]), if A,B are C∗ -algebras a linear map u : A → B∗ is completely
co-bounded iff there are a constant c and states f1, f2 , g1,g2 on A,B respectively, such
that for any (a,b) ∈ A×B

|〈u(a),b〉| � c
(
( f1(a∗a)g1(b∗b))1/2 +( f2(aa∗)g2(bb∗))1/2

)
. (3)

Consider a bounded Schur multiplier ϕ = [ϕi j] from B(�2) (or K ) to S1 , where S1 is
equipped with its natural o.s.s. as the dual of K . By this we mean that 〈Mϕ (a),b〉 =
∑ϕi jai jbi j . Then (see [9]) there are two nonnegative summable sequences (λi) and
(μi) such that for any i, j

|ϕi j| � λi + μ j.

Then, using the Cauchy-Schwarz inequality, we obtain (3) with the states f1 = g1 =
(∑λ j)−1 ∑λ je j j and f2 = g2 = (∑ μ j)−1 ∑ μ je j j . This shows that Mϕ is automatically
completely co-bounded. See [10] for an extension to Schur multipliers from Sp to Sp′
with 2 < p < ∞ .
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REMARK 9. The preceding two theorems illustrate the following simple observa-
tion: Assume that a linear map u : E →F is both c.b. and completely co-bounded, then
u can be completely boundedly factorized through an operator space G for which the
identity map IG is completely co-bounded with ‖IG‖cob = 1. Indeed, we just consider
G = F ∩Fop in the sense of [6] (this means G = F equipped with the o.s.s. induced by
the diagonal embedding F ⊂ F ⊕Fop ), then u can be viewed as u : E →G→ F , with
‖u : E → G‖cb = max{‖u‖cb,‖u‖cob} and ‖G→ F‖cb = 1.

Conversely, any mapping of the form u : E
v→ G

w→ F , with c.b. maps v,w and
G such that the identity I = IG on G is completely co-bounded, must be both c.b. and

completely co-bounded (since u : E
v→ G

I→ Gop w→ Fop is c.b.).
Let us say that an operator space G is self-transposed if IG is completely co-

bounded. This property passes obviously to subspaces, quotients (and hence subquo-
tients) and dual spaces. It is also stable under ultraproducts. Examples include any
commutative C∗ -algebra (or any minimal operator space), by duality any L1 -space (or
any maximal operator space) and by interpolation any Lp -space (1 � p � ∞). Perhaps
there is a nice characterization of self-transposed operator spaces?

Let G be a finite group. Let f ,g : G → C be functions on G and let λ ( f ) : x →
f ∗ x and ρ(g) : x → x∗ g be the associated convolutors on �2(G) .

The Fourier transform of f is defined as follows: for any irreducible representa-
tion π on G (i.e. π ∈ Ĝ)

f̂ (π) =
∫

f (t)π(t)∗dm(t)

where m is the normalized Haar measure on G . We have then

PROPOSITION. With the above notation, we have

‖λ ( f )ρ(g)‖cob = supπ∈Ĝ ‖ f̂ (π)‖2‖ĝ(π)‖2

where ‖ ‖2 denotes the Hilbert–Schmidt norm on Hπ . In particular,

‖Id : C∗(G) →C∗(G)‖cob = supπ∈Ĝ dim(π).

Proof. Passing to Fourier transforms, we see that λ ( f )ρ(g) coincides with⊕
π∈Ĝ

L( f̂ (π))R(ĝ(π)) where L(a) (resp. R(a)) denotes left (resp. right) multiplication

by a on Hπ . Thus the result follows from the next lemma. �

LEMMA. Let H be a Hilbert space and let u : B(H)→B(H) be defined by u(x)=
axb. Then u is completely co-bounded iff a,b are both Hilbert–Schmidt operators and
‖u‖cob = ‖a‖2‖b‖2 .

Proof. We may easily reduce this to the finite dimensional case. So we assume
B(H) = Mn . Then again we can write∥∥∑ei j ⊗aei jb

∥∥� ‖u‖cob

∥∥∑e ji⊗ ei j
∥∥= ‖u‖cob.
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But now, T = ∑ei j ⊗ aei jb is a rank one operator on �n
2 ⊗ �n

2 = �n
2(H) with H = �n

2 .
Indeed, for any h = (hi) , k = (k j) ∈ �n

2(H) we have:

〈Th,k〉 = ∑
i j
〈aei jbh j,ki〉

= ∑
i
〈aei,ki〉∑

j
〈h j,b

∗e j〉

= 〈(aei),k〉〈h,(b∗e j)〉

and hence

‖T‖ =
(
∑‖aei‖2)1/2 (∑‖b∗e j‖2)1/2

= ‖a‖2‖b‖2. �

Let us denote by C∗
λ (G) the reduced C∗ -algebra of a discrete group G , i.e. the

C∗ -algebra generated by the left regular representation λ : G→ B(�2(G)) . By a Herz-
Schur multiplier on C∗

λ (G) , we mean a bounded linear map T on C∗
λ (G) for which

there is a function f : G → C such that, for any t ∈ G

T (λ (t)) = f (t)λ (t).

We then denote Tf = T .

COROLLARY 10. If G is a finite group and f is the function constantly equal
to 1, then ‖Tf ‖cob (i.e. the identity map on C∗

λ (G)) is equal to the supremum of the
dimensions of the irreducible representations of G.

REMARK 11. By Theorem 4, if f ≡ 1 as above, then the function defined on
G×G by f̂ (s, t) = f (st−1) (that is also constantly equal to 1), satisfies (when viewed
as a Schur multiplier on B(�2(G)) ‖Mf̂ ‖cob = |G| and in general this is different from

‖Tf ‖cob = sup{dim(π) | π ∈ Ĝ}.
Now let G be an infinite discrete group. By Remarks 2 and 3, the identity map

on A = C∗
λ (G) is completely co-bounded iff the same is true for A∗∗ , and this implies

that the latter is a direct sum of finitely many algebras of the form Mn ⊗An , with An

commutative. In particular, of course A∗∗ is injective, A is nuclear and hence G is
amenable.

It would be interesting to describe the completely co-bounded Herz-Schur multi-
pliers on the reduced C∗ -algebra of a discrete group G in analogy with what is known
for the c.b. ones (see [1]).
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