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COMPLETELY CO-BOUNDED SCHUR MULTIPLIERS

GILLES PISIER

Abstract. A linear map u: E — F between operator spaces is called completely co-bounded if
it is completely bounded as a map from E to the opposite of F'. We give several simple results
about completely co-bounded Schur multipliers on B(¢;) and the Schatten class S,. We also
consider Herz-Schur multipliers on groups.

In this short note, we wish to draw attention to the notion of “completely co-bounded”
mapping between two operator spaces. Recall that an operator space can be defined as a
Banach space E given together with an isometric embedding E C B(H) into the space
B(H) of all bounded operators on a Hilbert space H. The theory of operator spaces
started around 1987 with Ruan’s thesis and has been considerably developed after that
(notably by Effros-Ruan and Blecher-Paulsen, see [2, §]), with applications mainly to
Operator Algebra Theory. In this theory, the morphisms between operator spaces are
the completely bounded maps (c.b. in short), defined as follows. First note that if
E C B(H) is any subspace, then the space M,,(E) of n x n matrices with entries in E
inherits the norm induced by M, (B(H)). The latter space is of course itself equipped
with the norm of single operators acting naturally on H ®--- @ H (n times). Then, a
linear map u: E — F is called completely bounded (c.b. in short) if

def
lulleo = suplun: Ma(E) — Mu(F)|| < oo ()

n>1

where, for each n > 1, u, is defined by u,([a;;]) = [u(aij)]. One denotes by CB(E,F)
the space of all such maps.

Given an operator space E, the opposite E°? is the same Banach space as E, but
equipped with the operator space structure (0.s.s. in short) associated to any embedding
E C B(H) such that for any a = [aij] € Mn(E), we have HaHMn(B(H)) = ||[aj,-]||Mn(E).
Thus ||al[s,(zer) = [l@i]llm,(£) - Tt is easy to check that the (isometric linear) mapping
T —'T € B(H*) realizes such an embedding (warning: here 'T: H* — H* designates
the adjoint of T in the Banach space sense).

We call a map u: E — F between operator spaces completely co-bounded if
the same map is c.b. from E to F°P. This definition is inspired by existing work
on completely co-positive maps (cf. e.g. [4, 5] and references there). I started to think
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about this notion after hearing Marciniak’s lecture on co-positive multipliers at the 2004
Quantum probability conference in Bedtewo.

While this definition seems at first glance a pointless variation, easy to reduce to
the usual case, we hope in what follows to convince the reader that it has a natural
place in operator space theory and that it suggests many interesting questions. As a first
motivation for this notion, we should mention that the non-commutative Grothendieck
theorem, that came out of work by the author and Haagerup, can be rephrased as saying
that, if A,B are C*-algebras, any bounded linear mapping u: A — B* is the sum of a
c.b. mapping and a co-c.b. one, see [9, p. 189] for details and more references.

DEFINITION 1. A linear map u: E — F between operator spaces will be called
completely co-bounded if it is completely bounded as a mapping from E into F°7 the
opposite operator space. We then denote

tllcop = [lu: E — FP||cp.

REMARK 2. Obviously, ||u: E — F°P|| = ||u: E°? — F||» and (F°P)* =F*°P
completely isometrically. Therefore, u: E — F is completely co-bounded iff the same
is true for u* and ||u|cop = ||u*||con» since this is valid for c¢.b. maps (cf. e.g. [2, 8]).

REMARK 3. Clearly if B isa C*-algebra with ' C B andif o.: B— B is an anti-
automorphism (for instance transposition on B(¢;)), then u: E — F is completely
co-bounded iff cu is c.b. and ||u|qop = || 0| cp - It is well known that the transposition
on M, has c.b. norm equal to n (cf. e.g. [8, p. 418-419]). Therefore, the identity map
on B(H) is not completely co-bounded unless H is finite dimensional. More generally,
the identity map on a von Neumann algebra B is completely co-bounded iff B is of
type I, for some finite n, i.e. iff B is a direct sum of finitely many algebras of the form
M, ® A, , with A, commutative.

At first glance, the reader may have serious doubts for the need of the preceding
notion ! But hopefully the next result will provide some justification.

THEOREM 4. A Schur multiplier My [x;j] — [@;x;;] is completely co-bounded
on B(02) iff the matrix ||@;;|] defines a bounded operator on ¢, and we have

1Mo llcob = [ITMollcp = || [|@i]]]3(22) 2)

where T: B({) — B({2) denotes the transposition. Moreover, if ||Mg||cop < 1, then
My admits a factorization

B(ly) L 0o (N x N) =22 B(1,)

where J is the natural inclusion map and where || M| < 1.
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Proof. Assume that [|¢;;|] is in B(¢»). Then the mapping
My: leo(NxN) — B({5)
eij] — [xijij]

is obviously bounded with [|.Zl| = |[[|@;[]l|5(¢,) - Actually, more generally, if x;; €
B(H) with ||x;j|| < 1, then the matrix [¢;;x;;] defines a bounded operator on ¢»(H)
with norm easily seen to be majorized by ||[|9i;|]||(,)- Indeed, for any pair (a;), (b;)
in the unit ball of ¢(H), we have

| 2, X gijiih )| < X aill il (il 16, < |
i J 2y

[1ijl] HB(@),

and hence |[[@ijxij] s, By | < [1[|@ijl]1[5(e,)- This shows that [|.Zl| < || Ayl <

@i ls(ey) -
Let J be as above. Clearly we have

HJ”cb =1

and hence

with [[.Zpllco = [|[|@ijl]||B(¢,) - But since £eo(N x N)?” and /(N x N) are identical we
can factorize M, as follows
M
My: B(ly) —L (N x N) = (N x N)P =2 B(0,)°P
it follows that
1My B(t2) = B(£2)||cp < [|-Alco < Il 3en) -

This proves the “if” part.
Conversely, assume that M, is completely co-bounded with ||Ml[c» < 1. Let
x = [x;;] be an n x n matrix viewed as sitting in B(¢»). Let B = B({»). Note that

n
‘ Z €ij & ejXij = [|x|s
ij=1 M, (B)
while
n n
Zeij®eijxij = Zeﬁ@)e,-jxij :sup|x,-j\.
ij=1 My(sor) - NIH=1 My (B)

By definition of [|My||cop < 1, we have

12 eij @ eij iy, 5y = | X i ® €301l 3y, (gory < | X i @ €ifilly, )

which yields
[ @ijxij1i j<nylllB < suplxij| < 1.
L
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This implies
Ileijllij<nll <1

and since 7 is arbitrary we obtain

Illijl]llB < 1.

This proves the “only if” part. The proof also yields (2). [

COROLLARY 5. A Schur multiplier My is completely co-bounded on B({>) iff it
factors through a commutative C*-algebra or iff it factors through a minimal operator
space and the corresponding factorization norm coincides with ||Mg||cop-

Proof. For any commutative C*-algebra C or for any E C C, we have clearly
E =E°P, so a cb-factorization My: B L E 2 B yields

[Mg: B — BP||cp < inf{|luy[cp|uzlcn}

where the infimum runs over all possible factorizations. Conversely, the preceding
shows the converse with a factorization through /(N x N). O

REMARK 6. Let G be an infinite discrete group. Consider a function f: G — C,
and the function f defined on G x G by f(s,) = f(st—'). By the well known Kesten-
Hulanicki criterion (cf. e.g. [7, Th. 2.4]) G is amenable iff there is a constant C such
that for any finitely supported f we have Y, | f(2)] < C||[|f(s,1)]] B(t>(G)) and when
G is amenable this holds with C = 1. Thus, by Theorem 4, the inequality

Ye | FO] < ClIMlcob

characterizes amenable groups. This should be compared with Bozejko’s and Wysoczan-
ski’s criteria described in [7, p. 54] and [7, p. 38].

We now generalize Theorem 4 to the Schur multipliers that are bounded on the
Schatten p-class S,. We assume S, equipped with the “natural” operator space struc-
ture introduced in [6] using the complex interpolation method. We will use freely the
notation and results from [6].

THEOREM 7. Let 2 < p < o. Let T: S, — S, denote again the transposition
mapping x — 'x. Then a bounded Schur multiplier My: S, — S, is completely co-
bounded iff it admits a factorization as follows:

M
Sy~ (Nx N)—22s,

where J,, is the natural (completely contractive) inclusion and where ||Mg || cop = || #p||cp-
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Proof. Note that the fact that J,: S, — ¢,(N x N) is completely contractive is
immediate by interpolation between the cases p =2 and p = oo.

The proof can then be completed following the same idea as for Theorem 4. We
have for any [x;;] in M,(S,)

(12 eij @ eji @]

1/p
Splsplsyl) (;j”xwll’s’p)

while

HEeij ®eij @ xij S [Sp]] = ”[xij]”Sg[Sp]'
Both of these identities can be proved by routine interpolation arguments starting from
p=cc and p = 2. This gives us

I/p
i lsyis,) < 1M lleon (3 515, )

which means (cf. [6]) that
| Aplep < [|Mop]|cob-

To prove the converse, it suffices to notice again that

£,(N x N)?P = £,(N x N). 0

REMARK 8. Consider Schur multipliers from B(¢;) (or the subalgebra of com-
pact operators K) into the trace class S;. We refer to [9] for a detailed discusion of
when such a multiplier is bounded and when it is c.b. From that discussion follows
easily that such a multiplier is completely co-bounded iff it is bounded. Indeed, more
generally (see [9, 3]), if A,B are C*-algebras a linear map u: A — B* is completely
co-bounded iff there are a constant ¢ and states f, f>, g1,g2 on A, B respectively, such
that for any (a,b) € Ax B

(@), b)| < ¢ ((fi (@ a)gr (5°B))' 2 + (fo(aa")ga(bb7))'/2) 3)

Consider a bounded Schur multiplier ¢ = [¢;;] from B({>) (or K) to Sy, where S; is
equipped with its natural o.s.s. as the dual of K. By this we mean that (My(a),b) =
Y. @ijaijbij. Then (see [9]) there are two nonnegative summable sequences (A;) and
(1) such that for any i, j

@i < Ai+ ;.

Then, using the Cauchy-Schwarz inequality, we obtain (3) with the states f| = g; =
(XA)) 'S Aje;; and fo =g> = (T ;) ' T pje;;. This shows that M, is automatically
completely co-bounded. See [10] for an extension to Schur multipliers from S, to S,
with 2 < p < oo.
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REMARK 9. The preceding two theorems illustrate the following simple observa-
tion: Assume thata linear map u: E — F is both c.b. and completely co-bounded, then
u can be completely boundedly factorized through an operator space G for which the
identity map I is completely co-bounded with ||I5||cor = 1. Indeed, we just consider
G = FNF°P in the sense of [6] (this means G = F equipped with the o.s.s. induced by
the diagonal embedding F C F & F°P), then u can be viewed as u: E — G — F, with
lu: E — Gllop = maxlulls [l cop} and |G — Fllep = 1.

Conversely, any mapping of the form u: E — G - F, with c.b. maps v,w and
G such that the identity I = I on G is completely co-bounded, must be both c.b. and
completely co-bounded (since u: E - G 5> G % FoP is c.b.).

Let us say that an operator space G is self-transposed if Iz is completely co-
bounded. This property passes obviously to subspaces, quotients (and hence subquo-
tients) and dual spaces. It is also stable under ultraproducts. Examples include any
commutative C*-algebra (or any minimal operator space), by duality any L; -space (or
any maximal operator space) and by interpolation any L, -space (1 < p < o). Perhaps
there is a nice characterization of self-transposed operator spaces?

Let G be a finite group. Let f,g: G — C be functionson G and let A(f): x —
Sf*xand p(g): x — xxg be the associated convolutors on /,(G).

The Fourier transform of f is defined as follows: for any irreducible representa-
tion w on G (i.e. € G)

fim) = [ 1m0y dmr)
where m is the normalized Haar measure on G. We have then

PROPOSITION. With the above notation, we have

1A ()P (&)llcob = sup g I () 12118 ()12

where || ||o denotes the Hilbert—Schmidt norm on Hy. In particular,

ld: C*(G) — C*(G)l|cop = sup, g dim(7).

neG

Proof. Passing to Fourier transforms, we see that A(f)p(g) coincides with
@ L(f(m))R(¢(m)) where L(a) (resp. R(a)) denotes left (resp. right) multiplication
neG
by a on Hy. Thus the result follows from the next lemma. [

LEMMA. Let H be a Hilbert space andlet u: B(H)— B(H) be defined by u(x) =
axb. Then u is completely co-bounded iff a,b are both Hilbert—Schmidt operators and
[ellcon = llall2]|B]]2-

Proof. We may easily reduce this to the finite dimensional case. So we assume
B(H) = M, . Then again we can write

1> eij @aeib|| < lullcos | D €ji @ eij]| = llullcop-
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But now, T = Y.¢;j ® ae;;b is a rank one operator on ¢4 ® 4 = (5(H) with H = /3.
Indeed, for any h = (h;), k= (k;) € £3(H) we have:

(Th,k) = Z(aeijbhj,ki>

= Ylaci ki) ¥ (hj,b"e;)

J
= ((aei), k) (h, (b"¢}))

and hence
2 2
1) = (X laedl®)' (b7 12)" = llallab]l2- O

Let us denote by C; (G) the reduced C*-algebra of a discrete group G, i.e. the
C* -algebra generated by the left regular representation A: G — B(¢3(G)). By a Herz-
Schur multiplier on C; (G), we mean a bounded linear map 7' on C; (G) for which
there is a function f: G — C such that, forany r € G

T(A(1)) = f()A ().

We then denote Ty =T .

COROLLARY 10. If G is a finite group and f is the function constantly equal
to 1, then ||T¢||cop (i.e. the identity map on C;(G)) is equal to the supremum of the
dimensions of the irreducible representations of G.

REMARK 11. By Theorem 4, if f =1 as above, then the function defined on
G x G by f(s,t) = f(st~') (that is also constantly equal to 1), satisfies (when viewed
as a Schur multiplier on B(¢2(G)) |[M||cop = |G| and in general this is different from
| T7llcop = sup{dim(r) | = € G}.

Now let G be an infinite discrete group. By Remarks 2 and 3, the identity map
on A = C; (G) is completely co-bounded iff the same is true for A**, and this implies
that the latter is a direct sum of finitely many algebras of the form M, ® A,,, with A,
commutative. In particular, of course A** is injective, A is nuclear and hence G is
amenable.

It would be interesting to describe the completely co-bounded Herz-Schur multi-
pliers on the reduced C*-algebra of a discrete group G in analogy with what is known
for the c.b. ones (see [1]).
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