COMPLETELY CO-BOUNDED SCHUR MULTIPLIERS

Gilles Pisier

Abstract

A linear map $u: E \rightarrow F$ between operator spaces is called completely co-bounded if it is completely bounded as a map from E to the opposite of F. We give several simple results about completely co-bounded Schur multipliers on $B\left(\ell_{2}\right)$ and the Schatten class S_{p}. We also consider Herz-Schur multipliers on groups.

In this short note, we wish to draw attention to the notion of "completely co-bounded" mapping between two operator spaces. Recall that an operator space can be defined as a Banach space E given together with an isometric embedding $E \subset B(H)$ into the space $B(H)$ of all bounded operators on a Hilbert space H. The theory of operator spaces started around 1987 with Ruan's thesis and has been considerably developed after that (notably by Effros-Ruan and Blecher-Paulsen, see [2, 8]), with applications mainly to Operator Algebra Theory. In this theory, the morphisms between operator spaces are the completely bounded maps (c.b. in short), defined as follows. First note that if $E \subset B(H)$ is any subspace, then the space $M_{n}(E)$ of $n \times n$ matrices with entries in E inherits the norm induced by $M_{n}(B(H))$. The latter space is of course itself equipped with the norm of single operators acting naturally on $H \oplus \cdots \oplus H$ (n times). Then, a linear map $u: E \rightarrow F$ is called completely bounded (c.b. in short) if

$$
\begin{equation*}
\|u\|_{\mathrm{cb}} \stackrel{\text { def }}{=} \sup _{n \geqslant 1}\left\|u_{n}: M_{n}(E) \rightarrow M_{n}(F)\right\|<\infty \tag{1}
\end{equation*}
$$

where, for each $n \geqslant 1, u_{n}$ is defined by $u_{n}\left(\left[a_{i j}\right]\right)=\left[u\left(a_{i j}\right)\right]$. One denotes by $C B(E, F)$ the space of all such maps.

Given an operator space E, the opposite $E^{o p}$ is the same Banach space as E, but equipped with the operator space structure (o.s.s. in short) associated to any embedding $E \subset B(H)$ such that for any $a=\left[a_{i j}\right] \in M_{n}(E)$, we have $\|a\|_{M_{n}(B(H))}=\left\|\left[a_{j i}\right]\right\|_{M_{n}(E)}$. Thus $\|a\|_{M_{n}\left(E^{o p}\right)}=\left\|\left[a_{j i}\right]\right\|_{M_{n}(E)}$. It is easy to check that the (isometric linear) mapping $T \mapsto{ }^{t} T \in B\left(H^{*}\right)$ realizes such an embedding (warning: here ${ }^{t} T: H^{*} \rightarrow H^{*}$ designates the adjoint of T in the Banach space sense).

We call a map $u: E \rightarrow F$ between operator spaces completely co-bounded if the same map is c.b. from E to $F^{o p}$. This definition is inspired by existing work on completely co-positive maps (cf. e.g. [4, 5] and references there). I started to think

[^0]about this notion after hearing Marciniak's lecture on co-positive multipliers at the 2004 Quantum probability conference in Bedłewo.

While this definition seems at first glance a pointless variation, easy to reduce to the usual case, we hope in what follows to convince the reader that it has a natural place in operator space theory and that it suggests many interesting questions. As a first motivation for this notion, we should mention that the non-commutative Grothendieck theorem, that came out of work by the author and Haagerup, can be rephrased as saying that, if A, B are C^{*}-algebras, any bounded linear mapping $u: A \rightarrow B^{*}$ is the sum of a c.b. mapping and a co-c.b. one, see [9, p. 189] for details and more references.

Definition 1. A linear map $u: E \rightarrow F$ between operator spaces will be called completely co-bounded if it is completely bounded as a mapping from E into $F^{o p}$ the opposite operator space. We then denote

$$
\|u\|_{c o b}=\left\|u: E \rightarrow F^{o p}\right\|_{c b}
$$

REMARK 2. Obviously, $\left\|u: E \rightarrow F^{o p}\right\|_{c b}=\left\|u: E^{o p} \rightarrow F\right\|_{c b}$ and $\left(F^{o p}\right)^{*}=F^{* o p}$ completely isometrically. Therefore, $u: E \rightarrow F$ is completely co-bounded iff the same is true for u^{*} and $\|u\|_{c o b}=\left\|u^{*}\right\|_{c o b}$, since this is valid for c.b. maps (cf. e.g. [2, 8]).

REMARK 3. Clearly if B is a C^{*}-algebra with $F \subset B$ and if $\alpha: B \rightarrow B$ is an antiautomorphism (for instance transposition on $B\left(\ell_{2}\right)$), then $u: E \rightarrow F$ is completely co-bounded iff αu is c.b. and $\|u\|_{c o b}=\|\alpha u\|_{c b}$. It is well known that the transposition on M_{n} has c.b. norm equal to n (cf. e.g. [8, p. 418-419]). Therefore, the identity map on $B(H)$ is not completely co-bounded unless H is finite dimensional. More generally, the identity map on a von Neumann algebra B is completely co-bounded iff B is of type I_{n} for some finite n, i.e. iff B is a direct sum of finitely many algebras of the form $M_{n} \otimes A_{n}$, with A_{n} commutative.

At first glance, the reader may have serious doubts for the need of the preceding notion! But hopefully the next result will provide some justification.

THEOREM 4. A Schur multiplier $M_{\varphi}:\left[x_{i j}\right] \rightarrow\left[\varphi_{i j} x_{i j}\right]$ is completely co-bounded on $B\left(\ell_{2}\right)$ iff the matrix $\left[\left|\varphi_{i j}\right|\right]$ defines a bounded operator on ℓ_{2} and we have

$$
\begin{equation*}
\left\|M_{\varphi}\right\|_{c o b}=\left\|T M_{\varphi}\right\|_{c b}=\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)} \tag{2}
\end{equation*}
$$

where $T: B\left(\ell_{2}\right) \rightarrow B\left(\ell_{2}\right)$ denotes the transposition. Moreover, if $\left\|M_{\varphi}\right\|_{\text {cob }} \leqslant 1$, then M_{φ} admits a factorization

$$
B\left(\ell_{2}\right) \xrightarrow{J} \ell_{\infty}(\mathbb{N} \times \mathbb{N}) \xrightarrow{\mathscr{M}_{\varphi}} B\left(\ell_{2}\right)
$$

where J is the natural inclusion map and where $\left\|\mathscr{M}_{\varphi}\right\|_{c b} \leqslant 1$.

Proof. Assume that $\left[\left|\varphi_{i j}\right|\right]$ is in $B\left(\ell_{2}\right)$. Then the mapping

$$
\begin{aligned}
\mathscr{M}_{\varphi}: \ell_{\infty}(\mathbb{N} \times \mathbb{N}) & \longrightarrow B\left(\ell_{2}\right) \\
{\left[x_{i j}\right] } & \longrightarrow\left[x_{i j} \varphi_{i j}\right]
\end{aligned}
$$

is obviously bounded with $\left\|\mathscr{M}_{\varphi}\right\|=\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)}$. Actually, more generally, if $x_{i j} \in$ $B(H)$ with $\left\|x_{i j}\right\| \leqslant 1$, then the matrix $\left[\varphi_{i j} x_{i j}\right]$ defines a bounded operator on $\ell_{2}(H)$ with norm easily seen to be majorized by $\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)}$. Indeed, for any pair $\left(a_{i}\right),\left(b_{j}\right)$ in the unit ball of $\ell_{2}^{n}(H)$, we have

$$
\left|\sum_{i}\left\langle a_{i}, \sum_{j} \varphi_{i j} x_{i j} b_{j}\right\rangle\right| \leqslant \sum_{i, j}\left\|a_{i}\right\|\left|\varphi_{i j}\right|\left\|x_{i j}\right\|\| \| b_{j}\|\leqslant\|\left[\left|\varphi_{i j}\right|\right] \|_{B\left(\ell_{2}\right)}
$$

and hence $\left\|\left[\varphi_{i j} x_{i j}\right]\right\|_{M_{n}(B(H))}\|\leqslant\|\left[\left|\varphi_{i j}\right|\right] \|_{B\left(\ell_{2}\right)}$. This shows that $\left\|\mathscr{M}_{\varphi}\right\| \leqslant\left\|\mathscr{M}_{\varphi}\right\|_{c b} \leqslant$ $\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)}$.

Let J be as above. Clearly we have

$$
\|J\|_{c b}=1
$$

and hence

$$
M_{\varphi}=\mathscr{M}_{\varphi} J
$$

with $\left\|\mathscr{M}_{\varphi}\right\|_{c b}=\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)}$. But since $\ell_{\infty}(\mathbb{N} \times \mathbb{N})^{o p}$ and $\ell_{\infty}(\mathbb{N} \times \mathbb{N})$ are identical we can factorize M_{φ} as follows

$$
M_{\varphi}: B\left(\ell_{2}\right) \xrightarrow{J} \ell_{\infty}(\mathbb{N} \times \mathbb{N})=\ell_{\infty}(\mathbb{N} \times \mathbb{N})^{o p} \xrightarrow{\mathscr{M}_{\varphi}} B\left(\ell_{2}\right)^{o p}
$$

it follows that

$$
\left\|M_{\varphi}: B\left(\ell_{2}\right) \rightarrow B\left(\ell_{2}\right)^{o p}\right\|_{c b} \leqslant\left\|\mathscr{M}_{\varphi}\right\|_{c b} \leqslant\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B\left(\ell_{2}\right)} .
$$

This proves the "if" part.
Conversely, assume that M_{φ} is completely co-bounded with $\left\|M_{\varphi}\right\|_{c o b} \leqslant 1$. Let $x=\left[x_{i j}\right]$ be an $n \times n$ matrix viewed as sitting in $B\left(\ell_{2}\right)$. Let $B=B\left(\ell_{2}\right)$. Note that

$$
\left\|\sum_{i j=1}^{n} e_{i j} \otimes e_{i j} x_{i j}\right\|_{M_{n}(B)}=\|x\|_{B}
$$

while

$$
\left\|\sum_{i j=1}^{n} e_{i j} \otimes e_{i j} x_{i j}\right\|_{M_{n}\left(B^{o p}\right)}=\left\|\sum_{i j=1}^{n} e_{j i} \otimes e_{i j} x_{i j}\right\|_{M_{n}(B)}=\sup \left|x_{i j}\right| .
$$

By definition of $\left\|M_{\varphi}\right\|_{c o b} \leqslant 1$, we have

$$
\left\|\sum e_{i j} \otimes e_{i j} \varphi_{i j} x_{i j}\right\|_{M_{n}(B)}=\left\|\sum e_{j i} \otimes e_{i j} \varphi_{i j} x_{i j}\right\|_{M_{n}\left(B^{o p}\right)} \leqslant\left\|\sum e_{j i} \otimes e_{i j} x_{i j}\right\|_{M_{n}(B)}
$$

which yields

$$
\left\|\left[\varphi_{i j} x_{i j} 1_{\{i, j \leqslant n\}}\right]\right\|_{B} \leqslant \sup _{i j}\left|x_{i j}\right| \leqslant 1
$$

This implies

$$
\left\|\left[\left|\varphi_{i j}\right|\right]_{i j \leqslant n}\right\| \leqslant 1
$$

and since n is arbitrary we obtain

$$
\left\|\left[\left|\varphi_{i j}\right|\right]\right\|_{B} \leqslant 1 .
$$

This proves the "only if" part. The proof also yields (2).

COROLLARY 5. A Schur multiplier M_{φ} is completely co-bounded on $B\left(\ell_{2}\right)$ iff it factors through a commutative C^{*}-algebra or iff it factors through a minimal operator space and the corresponding factorization norm coincides with $\left\|M_{\varphi}\right\|_{\text {cob }}$.

Proof. For any commutative C^{*}-algebra C or for any $E \subset C$, we have clearly $E=E^{o p}$, so a $c b$-factorization $M_{\varphi}: B \xrightarrow{u_{1}} E \xrightarrow{u_{2}} B$ yields

$$
\left\|M_{\varphi}: B \rightarrow B^{o p}\right\|_{c b} \leqslant \inf \left\{\left\|u_{1}\right\|_{c b}\left\|u_{2}\right\|_{c b}\right\}
$$

where the infimum runs over all possible factorizations. Conversely, the preceding shows the converse with a factorization through $\ell_{\infty}(\mathbb{N} \times \mathbb{N})$.

REMARK 6. Let G be an infinite discrete group. Consider a function $f: G \rightarrow \mathbb{C}$, and the function \hat{f} defined on $G \times G$ by $\hat{f}(s, t)=f\left(s t^{-1}\right)$. By the well known KestenHulanicki criterion (cf. e.g. [7, Th. 2.4]) G is amenable iff there is a constant C such that for any finitely supported f we have $\sum_{t \in G}|f(t)| \leqslant C\|[|\hat{f}(s, t)|]\|_{B\left(\ell_{2}(G)\right)}$ and when G is amenable this holds with $C=1$. Thus, by Theorem 4 , the inequality

$$
\sum_{t \in G}|f(t)| \leqslant C\left\|M_{\hat{f}}\right\|_{c o b}
$$

characterizes amenable groups. This should be compared with Bożejko's and Wysoczanski's criteria described in [7, p. 54] and [7, p. 38].

We now generalize Theorem 4 to the Schur multipliers that are bounded on the Schatten p-class S_{p}. We assume S_{p} equipped with the "natural" operator space structure introduced in [6] using the complex interpolation method. We will use freely the notation and results from [6].

THEOREM 7. Let $2 \leqslant p \leqslant \infty$. Let $T: S_{p} \rightarrow S_{p}$ denote again the transposition mapping $x \rightarrow^{t} x$. Then a bounded Schur multiplier $M_{\varphi}: S_{p} \rightarrow S_{p}$ is completely cobounded iff it admits a factorization as follows:

$$
S_{p} \xrightarrow{J_{p}} \ell_{p}(\mathbb{N} \times \mathbb{N}) \xrightarrow{\mathscr{M}_{\varphi}} S_{p}
$$

where J_{p} is the natural (completely contractive) inclusion and where $\left\|M_{\varphi}\right\|_{c o b}=\left\|\mathscr{M}_{\varphi}\right\|_{c b}$.

Proof. Note that the fact that $J_{p}: S_{p} \rightarrow \ell_{p}(\mathbb{N} \times \mathbb{N})$ is completely contractive is immediate by interpolation between the cases $p=2$ and $p=\infty$.

The proof can then be completed following the same idea as for Theorem 4. We have for any $\left[x_{i j}\right]$ in $M_{n}\left(S_{p}\right)$

$$
\left\|\sum e_{i j} \otimes e_{j i} \otimes x_{i j}\right\|_{S_{p}^{n}\left[S_{p}^{n}\left[S_{p}\right]\right]}=\left(\sum_{i j}\left\|x_{i j}\right\|_{S_{p}}^{p}\right)^{1 / p}
$$

while

$$
\left\|\sum e_{i j} \otimes e_{i j} \otimes x_{i j}\right\|_{S_{p}^{n}\left[S_{p}^{n}\left[S_{p}\right]\right]}=\left\|\left[x_{i j}\right]\right\|_{S_{p}^{n}\left[S_{p}\right]}
$$

Both of these identities can be proved by routine interpolation arguments starting from $p=\infty$ and $p=2$. This gives us

$$
\left\|\left[\varphi_{i j} x_{i j}\right]\right\|_{S_{p}^{n}\left[S_{p}\right]} \leqslant\left\|M_{\varphi}\right\|_{\operatorname{cob}}\left(\sum\left\|x_{i j}\right\|_{S_{p}}^{p}\right)^{1 / p}
$$

which means (cf. [6]) that

$$
\left\|\mathscr{M}_{\varphi}\right\|_{c b} \leqslant\left\|M_{\varphi}\right\|_{c o b} .
$$

To prove the converse, it suffices to notice again that

$$
\ell_{p}(\mathbb{N} \times \mathbb{N})^{o p}=\ell_{p}(\mathbb{N} \times \mathbb{N})
$$

REMARK 8. Consider Schur multipliers from $B\left(\ell_{2}\right)$ (or the subalgebra of compact operators K) into the trace class S_{1}. We refer to [9] for a detailed discusion of when such a multiplier is bounded and when it is c.b. From that discussion follows easily that such a multiplier is completely co-bounded iff it is bounded. Indeed, more generally (see [9,3]), if A, B are C^{*}-algebras a linear map $u: A \rightarrow B^{*}$ is completely co-bounded iff there are a constant c and states $f_{1}, f_{2}, g_{1}, g_{2}$ on A, B respectively, such that for any $(a, b) \in A \times B$

$$
\begin{equation*}
|\langle u(a), b\rangle| \leqslant c\left(\left(f_{1}\left(a^{*} a\right) g_{1}\left(b^{*} b\right)\right)^{1 / 2}+\left(f_{2}\left(a a^{*}\right) g_{2}\left(b b^{*}\right)\right)^{1 / 2}\right) \tag{3}
\end{equation*}
$$

Consider a bounded Schur multiplier $\varphi=\left[\varphi_{i j}\right]$ from $B\left(\ell_{2}\right)$ (or K) to S_{1}, where S_{1} is equipped with its natural o.s.s. as the dual of K. By this we mean that $\left\langle M_{\varphi}(a), b\right\rangle=$ $\sum \varphi_{i j} a_{i j} b_{i j}$. Then (see [9]) there are two nonnegative summable sequences $\left(\lambda_{i}\right)$ and $\left(\mu_{i}\right)$ such that for any i, j

$$
\left|\varphi_{i j}\right| \leqslant \lambda_{i}+\mu_{j}
$$

Then, using the Cauchy-Schwarz inequality, we obtain (3) with the states $f_{1}=g_{1}=$ $\left(\sum \lambda_{j}\right)^{-1} \sum \lambda_{j} e_{j j}$ and $f_{2}=g_{2}=\left(\sum \mu_{j}\right)^{-1} \sum \mu_{j} e_{j j}$. This shows that M_{φ} is automatically completely co-bounded. See [10] for an extension to Schur multipliers from S_{p} to $S_{p^{\prime}}$ with $2<p<\infty$.

REMARK 9. The preceding two theorems illustrate the following simple observation: Assume that a linear map $u: E \rightarrow F$ is both c.b. and completely co-bounded, then u can be completely boundedly factorized through an operator space G for which the identity map I_{G} is completely co-bounded with $\left\|I_{G}\right\|_{c o b}=1$. Indeed, we just consider $G=F \cap F^{o p}$ in the sense of [6] (this means $G=F$ equipped with the o.s.s. induced by the diagonal embedding $F \subset F \oplus F^{o p}$), then u can be viewed as $u: E \rightarrow G \rightarrow F$, with $\|u: E \rightarrow G\|_{c b}=\max \left\{\|u\|_{c b},\|u\|_{c o b}\right\}$ and $\|G \rightarrow F\|_{c b}=1$.

Conversely, any mapping of the form $u: E \xrightarrow{v} G \xrightarrow{w} F$, with c.b. maps v, w and G such that the identity $I=I_{G}$ on G is completely co-bounded, must be both c.b. and completely co-bounded (since $u: E \xrightarrow{v} G \xrightarrow{I} G^{o p} \xrightarrow{w} F^{o p}$ is c.b.).

Let us say that an operator space G is self-transposed if I_{G} is completely cobounded. This property passes obviously to subspaces, quotients (and hence subquotients) and dual spaces. It is also stable under ultraproducts. Examples include any commutative C^{*}-algebra (or any minimal operator space), by duality any L_{1}-space (or any maximal operator space) and by interpolation any L_{p}-space $(1 \leqslant p \leqslant \infty)$. Perhaps there is a nice characterization of self-transposed operator spaces?

Let G be a finite group. Let $f, g: G \rightarrow \mathbb{C}$ be functions on G and let $\lambda(f): x \rightarrow$ $f * x$ and $\rho(g): x \rightarrow x * g$ be the associated convolutors on $\ell_{2}(G)$.

The Fourier transform of f is defined as follows: for any irreducible representation π on G (i.e. $\pi \in \widehat{G}$)

$$
\hat{f}(\pi)=\int f(t) \pi(t)^{*} d m(t)
$$

where m is the normalized Haar measure on G. We have then
Proposition. With the above notation, we have

$$
\|\lambda(f) \rho(g)\|_{c o b}=\sup _{\pi \in \widehat{G}}\|\hat{f}(\pi)\|_{2}\|\hat{g}(\pi)\|_{2}
$$

where $\left\|\|_{2}\right.$ denotes the Hilbert-Schmidt norm on H_{π}. In particular,

$$
\left\|I d: C^{*}(G) \rightarrow C^{*}(G)\right\|_{c o b}=\sup _{\pi \in \widehat{G}} \operatorname{dim}(\pi)
$$

Proof. Passing to Fourier transforms, we see that $\lambda(f) \rho(g)$ coincides with $\bigoplus L(\hat{f}(\pi)) R(\hat{g}(\pi))$ where $L(a)$ (resp. $R(a))$ denotes left (resp. right) multiplication $\pi \in \widehat{G}$
by a on H_{π}. Thus the result follows from the next lemma.
Lemma. Let H be a Hilbert space and let $u: B(H) \rightarrow B(H)$ be defined by $u(x)=$ axb. Then u is completely co-bounded iff a, b are both Hilbert-Schmidt operators and $\|u\|_{c o b}=\|a\|_{2}\|b\|_{2}$.

Proof. We may easily reduce this to the finite dimensional case. So we assume $B(H)=M_{n}$. Then again we can write

$$
\left\|\sum e_{i j} \otimes a e_{i j} b\right\| \leqslant\|u\|_{c o b}\left\|\sum e_{j i} \otimes e_{i j}\right\|=\|u\|_{c o b}
$$

But now, $T=\sum e_{i j} \otimes a e_{i j} b$ is a rank one operator on $\ell_{2}^{n} \otimes \ell_{2}^{n}=\ell_{2}^{n}(H)$ with $H=\ell_{2}^{n}$. Indeed, for any $h=\left(h_{i}\right), k=\left(k_{j}\right) \in \ell_{2}^{n}(H)$ we have:

$$
\begin{aligned}
\langle T h, k\rangle & =\sum_{i j}\left\langle a e_{i j} b h_{j}, k_{i}\right\rangle \\
& =\sum_{i}\left\langle a e_{i}, k_{i}\right\rangle \sum_{j}\left\langle h_{j}, b^{*} e_{j}\right\rangle \\
& =\left\langle\left(a e_{i}\right), k\right\rangle\left\langle h,\left(b^{*} e_{j}\right)\right\rangle
\end{aligned}
$$

and hence

$$
\|T\|=\left(\sum\left\|a e_{i}\right\|^{2}\right)^{1 / 2}\left(\sum\left\|b^{*} e_{j}\right\|^{2}\right)^{1 / 2}=\|a\|_{2}\|b\|_{2}
$$

Let us denote by $C_{\lambda}^{*}(G)$ the reduced C^{*}-algebra of a discrete group G, i.e. the C^{*}-algebra generated by the left regular representation $\lambda: G \rightarrow B\left(\ell_{2}(G)\right)$. By a HerzSchur multiplier on $C_{\lambda}^{*}(G)$, we mean a bounded linear map T on $C_{\lambda}^{*}(G)$ for which there is a function $f: G \rightarrow \mathbb{C}$ such that, for any $t \in G$

$$
T(\lambda(t))=f(t) \lambda(t)
$$

We then denote $T_{f}=T$.

COROLLARY 10. If G is a finite group and f is the function constantly equal to 1 , then $\left\|T_{f}\right\|_{\text {cob }}$ (i.e. the identity map on $\left.C_{\lambda}^{*}(G)\right)$ is equal to the supremum of the dimensions of the irreducible representations of G.

Remark 11. By Theorem 4, if $f \equiv 1$ as above, then the function defined on $G \times G$ by $\hat{f}(s, t)=f\left(s t^{-1}\right)$ (that is also constantly equal to 1), satisfies (when viewed as a Schur multiplier on $B\left(\ell_{2}(G)\right)\left\|M_{\hat{f}}\right\|_{c o b}=|G|$ and in general this is different from $\left\|T_{f}\right\|_{c o b}=\sup \{\operatorname{dim}(\pi) \mid \pi \in \widehat{G}\}$.

Now let G be an infinite discrete group. By Remarks 2 and 3, the identity map on $A=C_{\lambda}^{*}(G)$ is completely co-bounded iff the same is true for $A^{* *}$, and this implies that the latter is a direct sum of finitely many algebras of the form $M_{n} \otimes A_{n}$, with A_{n} commutative. In particular, of course $A^{* *}$ is injective, A is nuclear and hence G is amenable.

It would be interesting to describe the completely co-bounded Herz-Schur multipliers on the reduced C^{*}-algebra of a discrete group G in analogy with what is known for the c.b. ones (see [1]).

Acknowledgement

I am grateful to Marek Bożejko and Marcin Marciniak for stimulating communication.

REFERENCES

[1] M. BożejKo and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Unione Mat. Ital. (6) 3-A (1984), 297-302.
[2] E. G. Effros and Z. J. Ruan, Operator Spaces, The Clarendon Press, Oxford University Press, New York, 2000, xvi+363 pp.
[3] U. Haagerup and M. Musat, The Effros-Ruan conjecture for bilinear forms on C^{*}-algebras, Invent. Math. 174 (2008), 139-163.
[4] W. Majewski and M. Marciniak, k-decomposability of positive maps, Quantum probability and infinite dimensional analysis, 362-374, QP-PQ: Quantum Probab. White Noise Anal., 18, World Sci. Publ., Hackensack, NJ, 2005.
[5] M. Marciniak, On extremal positive maps acting between type I factors, arXiv:0812.2311.
[6] G. PISIER, Non-commutative vector valued L_{p}-spaces and completely p-summing maps, Astérisque 247 (1998), vi+131 pp.
[7] G. PISIER, Similarity problems and completely bounded maps, Springer Lecture Notes 1618, Second Expanded Edition. (Incl. the solution to "the Halmos Problem") (2001), 1-198.
[8] G. PISIER, Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003, viii+478 pp.
[9] G. Pisier and D. Shlyakhtenko, Grothendieck's theorem for operator spaces, Invent. Math. 150, 1 (2002), 185-217.
[10] Q. Xu, Operator-space Grothendieck inequalities for noncommutative L_{p}-spaces, Duke Math. J. 131 (2006), 525-574.
(Received December 28, 2010)

Gilles Pisier
Texas A\&M University
College Station
TX 77843, U. S. A.
and
Université Paris VI
Equipe d'Analyse
Case 186, 75252
Paris Cedex 05, France

[^0]: Mathematics subject classification (2010): 47L07,47L25.
 Keywords and phrases: Completely bounded map; operator space; transposition; multiplier.
 Partially supported by NSF grant 0503688.

