BINARY SHIFTS OF HIGHER COMMUTANT INDEX

Geoffrey L. Price

For Robert T. Powers,
on the occasion of his seventieth birthday

Abstract

In a previous paper the author has shown that all binary shifts of commutant index 2 are cocycle conjugate. In this paper we show that there are only finitely many conjugacy classes of binary shifts of commutant index 3 .

1. Introduction

We continue a study of the binary shifts on the hyperfinite $I I_{1}$ factor R. A binary shift α is a unital $*$-endomorphism on R with the property that the subfactor index, $[R: \alpha(R)]$, is 2. The study of binary shifts was initiated by R. T. Powers. In his original paper Powers classified binary shifts up to conjugacy, [8][Theorem 3.6]. The cocycle conjugacy classification (Definition 1.1) is still an open problem, but partial results have been obtained previously by the author and others, see $[2,4,9,10,11,12]$. In [10] the author has shown that all binary shifts of commutant index 2 are cocycle conjugate, and some results on binary shifts of higher commutant index were obtained in [11]. It follows from a result in [2] that there are at least 2^{k-2} distinct cocycle conjugacy classes of binary shifts of commutant index $k, k \geqslant 2$. Here we consider the binary shifts of commutant index 3 . We show that there are at most 5 distinct cocycle conjugacy classes of these shifts.

In [10] the author carried out an analysis of the congruence classes of Toeplitz matrices over $G F(2)$ associated with binary shifts of commutant index 2 (see Definition 1.2, see also [7]) for a detailed study on the congruence of matrices over a field of characteristic 2). We showed that the Toeplitz matrices associated with a pair of binary shifts of commutant index 2 are congruent. This result allows one to show that the corresponding binary shifts are cocycle conjugate. Similar techniques were used in [11] to study certain higher commutant cases. Here we employ an extension of the techniques used in $[10,11]$ to study the commutant index 3 case. It appears that additional techniques will be required to settle the question of whether there are only finitely many distinct cocycle conjugacy classes of higher commutant index.

[^0]A pair α and β of unital $*$-endomorphisms on R are said to be conjugate in R if there is a $*$-automorphism γ of R such that $\alpha=\gamma^{-1} \circ \beta \circ \gamma$. The notion of cocycle conjugacy is derived from A. Connes' notion of outer conjugacy of automorphisms in [3], and is defined as follows.

DEFINITION 1.1. A pair α and β of unital $*$-endomorphisms on R are cocycle conjugate if there exists a unitary operator y in R such that $A d(y) \circ \alpha$ is conjugate to β.

Next we define what is meant by a binary shift, cf. [8][Definition 3.2]. Let a_{0}, a_{1}, \ldots be a fixed sequence of 0 's and 1 's in $G F(2)$, with $a_{0}=0$. Let u_{0}, u_{1}, \ldots be a sequence of self-adjoint unitary operators such that, for all $j, k \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
u_{j} u_{j+k}=(-1)^{a_{k}} u_{j+k} u_{j} \tag{1.1}
\end{equation*}
$$

We shall call generators with the relations above a spin system (see [1] for results on more general spin systems). In [12] it was shown that the $A F$-algebra generated by a spin system is simple if and only if the sequence $\ldots, a_{2}, a_{1}, a_{0}, a_{1}, a_{2}, \ldots$ is not periodic. In every such case the C^{*}-algebra generated by the spin system is isomorphic to the CAR algebra, [11][Theorem 3.5] (see also [1]). We shall assume in all that follows that the sequences $a_{0}, a_{1}, a_{2}, \ldots$ we study have this property, and we shall refer to such sequences as the bitstream for the spin system. Let τ be the unique tracial state on the $C A R$ algebra. It follows that $\tau(w)=0$ for any non-trivial word $u=u_{0}^{k_{0}} u_{1}^{k_{1}} \ldots u_{n}^{k_{n}}$ in the u_{j} 's. Using the GNS representation of the CAR algebra A with respect to the trace τ one may consider A as a strongly dense subalgebra of R. In what follows we abuse notation by viewing A as a C^{*}-subalgebra of R. Thus the set of linear combinations of words in the generators forms a weakly dense submanifold of the algebra R.

The assumption that the commutation relations are translation-invariant makes it possible to define a unital $*$-endomorphism α on \mathscr{A} by setting $\alpha\left(u_{j}\right)=u_{j+1}$ and extending the definition of α to linear combinations of words in the obvious way. The mapping α extends to a unital $*$-endomorphism on R, which we also denote by α. As noted above the subfactor index of $\alpha(R)$ in R is 2 , see [8][Section 3].

As shown in [8] the bitstream a_{0}, a_{1}, \ldots of a binary shift α is a complete conjugacy invariant, i.e., binary shifts α and β are conjugate if and only if their bitstreams are identical. We conclude this section by presenting two cocycle conjugacy invariants for binary shifts on R.

DEFINITION 1.2. The commutant index of a binary shift α is the first positive integer k (or ∞) such that the relative commutant algebra $\alpha^{k}(R)^{\prime} \cap R$ is nontrivial.

It follows from a remark in [5] that $k \geqslant 2$. Examples of binary shifts of commutant k exist for every $k \in\{\infty, 2,3, \ldots\}$, [11]. For example, fix $k \geqslant 2$ and consider the bitstream $0 \ldots 010 \ldots$ where $a_{i}=0$ for $i \neq k-1$ and $a_{k-1}=1$. It is straightforward to show that α has commutant index k and that u_{0} generates the algebra $\alpha^{k}(R)^{\prime} \cap R$. At the other extreme, α has infinite commutant index if and only if its bitstream is not eventually periodic (by eventually periodic we mean that there exists a non-negative integer q such that a_{q}, a_{q+1}, \ldots is a periodic sequence).

THEOREM 1.3. [11][Cor. 5.7] Let α be a binary shift of finite commutant index k. Then there is a word $u=u_{0}^{r_{0}} u_{1}^{r_{1}} \ldots u_{m}^{r_{m}}$, with r_{0} necessarily equal to 1 , which generates $\alpha^{k}(R)^{\prime} \cap R$. In fact for $j \geqslant 0$ the algebra $\alpha^{k+j}(R)^{\prime} \cap R$ is the 2^{j+1}-dimensional algebra generated by $u, \alpha(u), \ldots, \alpha^{j}(u)$.

COROLLARY 1.4. [2][Theorem 2.1] Let α be a binary shift of finite index k. Then its bitstream a_{0}, a_{1}, \ldots is eventually periodic, i.e. there is a non-negative integer $r \leqslant k$ such that a_{r}, a_{r+1}, \ldots is periodic.

Proof. Let $u=u_{0}^{r_{0}} u_{1}^{r_{1}} \ldots u_{m}^{r_{m}}$ be the word generating $\alpha^{k}(R)^{\prime} \cap R$. Since u commutes with the generators $u_{k}, u_{k+1}, u_{k+2}, \ldots$ we obtain the following homogeneous system of equations over $G F(2)$ (where, if $j<0$ in the system below we define a_{j} to be $\left.a_{|j|)}\right)$:

$$
\begin{array}{r}
a_{k} r_{0}+a_{k-1} r_{1}+a_{k-2} r_{2}+\ldots+a_{k-m} r_{m}=0 \\
a_{k+1} r_{0}+a_{k} r_{1}+a_{k-1} r_{2}+\ldots+a_{k-m+1} r_{m}=0 \\
a_{k+2} r_{0}+a_{k+1} r_{1}+a_{k} r_{2}+\ldots+a_{k-m+2} r_{m}=0
\end{array}
$$

Since $r_{0}=1$ we may rewrite the system as

$$
\begin{aligned}
a_{k} & =a_{k-1} r_{1}+a_{k-2} r_{2}+\ldots+a_{k-m} r_{m} \\
a_{k+1} & =a_{k} r_{1}+a_{k-1} r_{2}+\ldots+a_{k-m+1} r_{m} \\
a_{k+2} & =a_{k+1} r_{1}+a_{k} r_{2}+\ldots+a_{k-m+2} r_{m}
\end{aligned}
$$

It follows (see [6][Theorem 6.11]) that the sequence a_{k}, a_{k+1}, \ldots is periodic.
Let u be the word generating $\alpha^{k}(R)^{\prime} \cap R$ in the statement of the theorem above. Let d_{j}, for $j \geqslant 0$, be the sequence of 0 's and 1's satisfying $u \alpha^{j}(u)=(-1)^{d_{j}} \alpha^{j}(u) u$. Since $\alpha^{j}(u) \in \alpha^{k}(R)$ for $j \geqslant k$ we have $d_{j}=0$ for these j. On the other hand, $\alpha^{k-1}(u)$ has the form $u_{k-1}^{r_{0}} u_{k}^{r_{1}} \ldots u_{m+k-1}^{r_{m}}=u_{k-1} w$, where $w \in \alpha^{k}(R)$. Since α has commutant index k, u anticommutes with u_{k-1} and commutes with w. Therefore u anticommutes with $\alpha^{k-1}(u)$ and so $d_{k-1}=1$. Note that the sequence d_{0}, d_{1}, \ldots has the property that $\ldots, d_{2}, d_{1}, d_{0}, d_{1}, d_{2}, \ldots$ is not periodic, so by [12] the von Neumann algebra R_{∞} generated by $u, \alpha(u), \alpha^{2}(u) \ldots$ is also isomorphic to R. It follows that α restricts to a binary shift on R_{∞} with bitstream d_{0}, d_{1}, \ldots We denote the restriction of α to R_{∞} by α_{∞}. Following [2], (see also [4]) α_{∞} is called the derived shift of α and d_{0}, d_{1}, \ldots is the derived bitstream. In [2] it is shown that the derived bitstream is a cocycle conjugacy invariant for α, i.e. a necessary condition for α and β to be cocycle conjugate is that their derived shifts α_{∞} and β_{∞} are conjugate.

It is easy to show that a binary shift α with a finitely non-zero bitstream a_{0}, a_{1}, \ldots, $a_{k-2}, 1,0,0, \ldots$, has commutant index k, and in this case α coincides with its derived shift α_{∞}, as $u=u_{0}$ generates $\alpha^{k}(R)^{\prime} \cap R$. On the other hand any commutant index k binary shift must have a derived shift with a bitstream of the form above. Therefore we have the following.

THEOREM 1.5. [2]. There are at least 2^{k-2} distinct cocycle conjugacy classes of binary shifts of commutant index $k, k \geqslant 2$.

As mentioned above there is only one class of binary shifts of index 2 up to cocycle conjugacy. The preceding theorem shows that there are at least two cocycle conjugacy classes of binary shifts of commutant index 3 . The object of this paper is to show that there are at most five. We believe that there are exactly five but we do not know how to prove this.

We note that nothing is known about the number of cocycle conjugacy classes of binary shifts of commutant index ∞. These are the binary shifts whose bitstreams are never eventually periodic. It is not known, for example, whether all binary shifts of commutant index ∞ are cocycle conjugate to each other or whether there are uncountably many distinct cocycle conjugacy classes.

2. The center sequence

Let a_{0}, a_{1}, \ldots be the bitstream of a binary shift α. We define \mathscr{A}_{n} for each $n \in \mathbb{N}$ to be the $n \times n$ matrix

$$
\mathscr{A}_{n}=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \tag{2.1}\\
a_{1} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

with entries in $G F(2)$, and call \mathscr{A}_{n} the $n \times n$ Toeplitz matrix associated with α, or the $n \times n$ Toeplitz matrix associated with the bitstream $a_{0}, a_{1}, a_{2}, \ldots$.

For each $n \in \mathbb{N}$ let $c_{n}=v(n)$ be the nullity of \mathscr{A}_{n}. The center sequence c_{1}, c_{2}, \ldots has the following remarkable property.

THEOREM 2.1. [11][Corollary 2.10] The center sequence is the concatenation of strings of even length. Its strings are of the form 1,0 or $1,2, \ldots, j-1, j, j-1, \ldots, 0$ for some $j \geqslant 2$, where j may vary from one string to the next. In particular, c_{n} is odd if and only if n is.

For example, given the bitstream $011000 \ldots$ it is possible to show that the corresponding center sequence is 101210 repeated forever (see Theorem 2.5 (vi)).

Definition 2.2. For $n \in \mathbb{N}$ let A_{n} be the finite-dimensional von Neumann subalgebra of R generated by $u_{0}, u_{1}, \ldots, u_{n-1}$.

Note that A_{n} has dimension 2^{n}, consisting of all linear combinations of words of the form $u_{0}^{k_{0}} u_{1}^{k_{1}} \ldots u_{n-1}^{k_{n-1}}$, with exponents $k_{j} \in\{0,1\}$. The following result links c_{n} to the dimension of the center of A_{n} of R and justifies the name center sequence.

THEOREM 2.3. [11][Lemma 3.3, Theorem 3.4] The center $\mathscr{Z}\left(A_{n}\right)$ of A_{n} is an algebra of dimension $2^{c_{n}}$. More precisely, suppose $c_{r+1}, c_{r+2}, \ldots, c_{r+2 j}$ is a string in the center sequence of the form $1,2, \ldots, j-1, j, j-1, \ldots, 1,0$, for some $r \geqslant 0$. Then there
is a word z of the form $z=u_{0}^{s_{0}} u_{1}^{s_{1}} \ldots u_{r}^{s_{r}}$ in A_{n}, with $s_{0}=1=s_{r}$, such that $\mathscr{Z}\left(A_{r+q}\right)$ is generated by $z, \alpha(z), \ldots, \alpha^{q-1}(z)$ if $1 \leqslant q \leqslant j$ and by $\alpha^{q-j-1}(z), \alpha^{q-j}(z), \ldots, \alpha^{j-1}(z)$ if $j<q \leqslant 2 j$. The exponents of z read the same backwards as forwards, i.e., s_{r}, s_{r-1}, \ldots, s_{0} is the same as $s_{0}, s_{1}, \ldots, s_{r}$.

REMARK 2.4. In what follows we shall refer to z as a palindrome since its exponents $s_{0}, s_{1}, \ldots, s_{r}$ read the same in reverse order.

In this paper we consider almost exclusively binary shifts of commutant index 3 . The following five binary shifts of commutant index 3 will play an important role in the analysis. The notation $\overline{b_{1} \ldots b_{n}}$ means that the pattern $b_{1} \ldots b_{n}$ repeats forever.

THEOREM 2.5. Consider the following binary shifts β_{1} through β_{5}, determined by the given bitstreams.
(i) β_{1} has bitstream $011 \overline{0}$.
(ii) β_{2} has bitstream $\overline{010}$.
(iii) β_{3} has bitstream $\overline{001}$.
(iv) β_{4} has bitstream $001 \overline{0}$.
(v) β_{5} has bitstream $\overline{0110}$.

Each of these binary shifts has commutant index 3.
(vi) The word $v=v_{0}$ generates $\beta_{1}^{3}(R)^{\prime} \cap R$ and v anticommutes with $\beta_{1}(v)=v_{1}$. Hence β_{1} coincides with its derived shift $\beta_{1 \infty}$. The center sequence is $\overline{101210}$.
(vii) The word $v=v_{0} v_{3}$ generates $\beta_{2}^{3}(R)^{\prime} \cap R$ and v anticommutes with $\beta_{2}(v)$. Hence its derived shift has bitstream $011 \overline{0}$, i.e., $\beta_{2 \infty}$ is conjugate to β_{1}. The center sequence of β_{2} is $10 \overline{101210}$.
(viii) The word $v=v_{0} v_{3}$ generates $\beta_{3}^{3}(R)^{\prime} \cap R$ and v anticommutes with $\beta_{3}(v)$. Hence its derived shift has bitstream $001 \overline{0}$, i.e., $\beta_{3 \infty}$ is conjugate to β_{1}. The center sequence of β_{3} is $\overline{121010}$.
(ix) The word $v=v_{0}$ generates $\beta_{4}^{3}(R)^{\prime} \cap R$ and v commutes with $\beta_{4}(v)=v_{1}$. Hence β_{4} coincides with its derived shift $\beta_{4 \infty}$. Its center sequence is $\overline{1210}$.
(x) The word $v=v_{0} v_{1} v_{2} v_{3}$ generates $\beta_{5}^{3}(R)^{\prime} \cap R$ and v commutes with $\beta_{5}(v)$. Hence its derived shift has bitstream $001 \overline{0}$, i.e., $\beta_{5 \infty}$ is conjugate to β_{4}. The center sequence of β_{5} is $10 \overline{1210}$.

Proof. We illustrate the proof using $\beta=\beta_{2}$. We show β has commutant index 3. It is easy to show, using the bitstream for β, that $v=v_{0} v_{3} \in \beta^{3}(R)^{\prime} \cap R$. Since $[R: \beta(R)]=2$ ([8]) it follows from [5] that $\beta(R)^{\prime} \cap R$ is trivial. Suppose there is a nontrivial word w in $\beta^{2}(R)^{\prime} \cap R$, then by [11], v must be in the $*$-subalgebra generated by w and $\beta(w)$. Hence w must have the form $v_{0}^{k_{0}} v_{1}^{k_{1}} v_{2}^{k_{2}} v_{3}^{k_{3}}$ with $k_{0}=1$. If $k_{3}=1$ then
$w= \pm v$, but v does not commute with v_{2}. Hence $w=v_{0} v_{1}^{k_{1}} v_{2}^{k_{2}}$ and $v= \pm w \beta(w)=$ $\pm v_{0} v_{1}^{1+k_{1}} v_{2}^{k_{1}+k_{2}} v_{3}^{k_{2}}$. This shows that $w=v_{0} v_{1} v_{2}$, but this word does not commute with v_{2}, so we have shown that $\beta^{2}(R)^{\prime} \cap R$ is trivial, and therefore β has commutant index 3.

We now show that the center sequence for β is of eventual period 6 and has the form $10 \overline{101210} \ldots$. Using the bitstream $\overline{010}$ for β, easy calculations show that the first five entries $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ of the center sequence for β are $1,0,1,0,1$ (see Theorem 2.3). (Alternatively, one can use the nullity sequence corresponding to the Toeplitz matrices for β to show that this is so.) For each $n \in \mathbb{N}$ of the form $n=6 k-2, k \in \mathbb{N}$, we will show that the center $\mathscr{Z}\left(\mathscr{B}_{n}\right)$ of the algebra $\mathscr{B}_{n}=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}^{\prime \prime}$ is generated by the word $v=v_{0} v_{1} \ldots v_{n}$ and $\mathscr{Z}\left(\mathscr{B}_{n+1}\right)$ is generated by v and $\beta(v)$. It is trivial to show this by direct calculation for $n=4$. Suppose the result holds for $n=6 k-2$ for some $k \geqslant 1$. Consider the word $v^{\prime}=v_{0} v_{1} \ldots v_{n+6}=\left(v_{0} v_{1} \ldots v_{n}\right)\left(v_{n+1} \ldots v_{n+6}\right)=$ $v\left(v_{n+1} \ldots v_{n+6}\right)=-v\left(v_{n+1} v_{n+4}\right)\left(v_{n+2} v_{n+5}\right)\left(v_{n+3} v_{n+6}\right)$. Since $v_{0} v_{3} \in \beta^{3}(R)^{\prime} \cap R$ it follows from the symmetry of the commutation relations that the words $v_{n+1} v_{n+4}, v_{n+2} v_{n+5}$ and $v_{n+3} v_{n+6}$ all commute with v_{0} through v_{n+1}. But $v \in \mathscr{Z}\left(\mathscr{B}_{n+1}\right)$, so v_{0} through v_{n+1} also commute with v. Hence v_{0} through v_{n+1} all commute with v^{\prime}, by the induction assumption. By the symmetry of v^{\prime}, moreover, it follows, since v_{0} through v_{6} all commute with v^{\prime} and $\beta\left(v^{\prime}\right)$, that v_{n+7} down through v_{n+1} all commute with v^{\prime}. Hence v^{\prime} is in the center of both B_{n+6} and B_{n+7}. Similarly using the assumption that $\beta(v) \in \mathscr{Z}\left(\mathscr{B}_{n+1}\right)$, it follows that $\beta\left(v^{\prime}\right)$ is in the center of B_{n+7}. Therefore c_{n+6} is at least 1 and c_{n+7} is at least 2 .

Next note that v_{0} anticommutes with $\beta^{2}\left(v^{\prime}\right)=v_{2} \ldots v_{n+8}$ because v_{0} commutes with $\beta\left(v^{\prime}\right)$, commutes with v_{n+8} (because $n+8=6(k+1)-2+2=6(k+1)$ and $a_{6 j}=0$ for all j) and anticommutes with v_{1} : therefore $\beta^{2}\left(v^{\prime}\right)$ is not in $\mathscr{Z}\left(\mathscr{B}_{n+8}\right)$, so by Theorem 2.3, $c_{n+8}<c_{n+7}$.

Next observe that for any $r \geqslant 3$ the center sequence term c_{r} satisfies $c_{r}<3$. For suppose r is the first $r \geqslant 3$ such that $c_{r}=3$. By the observations made about $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ in the first paragraph of the proof, $r \geqslant 6$. Then $c_{r-3}, c_{r-2}, c_{r-1}$ must be $0,1,2$ respectively, by Theorem 2.1. Then by Theorem 2.2 there is an element $z \in \mathscr{B}_{r-2}$ such that $z, \beta(z)$ and $\beta^{2}(z)$ are in $\mathscr{Z}\left(\mathscr{B}_{r}\right)$ and z is a word beginning with v_{0}. Hence $\beta^{2}(z)$ begins with v_{2}. Since $v_{0} v_{3} \in \mathscr{B}_{r}$ generates $\beta^{3}(R)^{\prime} \cap R$ and also anticommutes with v_{2}, however, it follows that $v_{0} v_{3}$ anticommutes with $\beta^{2}(z)$. Therefore $\beta^{2}(z)$ is not in the center of \mathscr{B}_{r}, a contradiction, and we have established our claim.

Combining the observations of the last two paragraphs together with Theorem 2.1, we see that $c_{n}, c_{n+1}, c_{n+2}, c_{n+3}, c_{n+4}$ is $1,2,1,0,1$. Then either $c_{n+5}=0$ or $c_{n+5}=2$. If $c_{n+5}=2$ it follows from the bound $c_{r}<3$ for $r \geqslant 3$ that $c_{n+6}=1$ and $c_{n+7}=0$. But we have shown that $c_{n+7} \geqslant 2$. Hence $c_{n+5}=0, c_{n+6}=1$. This proves the assertions about the form of the center sequence for β.

Finally, the claims about the bitstreams of the derived shifts $\beta_{j \infty}$ for each of the β_{j} 's are easily verified, using the Powers' result that two shifts are conjugate if and only if they have the same bitstream, [8][Theorem 3.6].

THEOREM 2.6. Let σ be a binary shift of commutant index 3. Then its center sequence eventually coincides with the center sequence of one of the shifts $\beta_{j}, 1 \leqslant j \leqslant$ 5.

Proof. The derived shift σ_{∞} must have bitstream either $001 \overline{0}$ or $011 \overline{0}$. By the theorem above the center sequence of σ_{∞} has period 4 or 6. From [13][Theorem 3.7] the center sequence of σ is eventually periodic with period an even integer dividing the period of σ_{∞}. Therefore the possible periods are 2,4 or 6 . If the center sequence of σ has eventual period 4 or 6 it follows from Theorem 2.1 that its center sequence must eventually agree with that of one of the five shifts $\beta_{j}, 1 \leqslant j \leqslant 5$. We next rule out the possibility that the center sequence of σ has eventual period 2 .

Let $w=v_{0}^{r_{0}} v_{1}^{r_{1}} \ldots v_{m}^{r_{m}}$ be the nontrivial word which generates $\sigma^{3}(R)^{\prime} \cap R$. Then by Theorem 1.3, w must anticommute with v_{2} and r_{0} must equal 1.

For each positive integer p let A_{p} be the 2^{p}-dimensional algebra generated by the spin generators v_{0} through v_{p-1} of σ. Suppose the center sequence eventually has period 2. Fix an even positive integer n such that $n>m$ and $c_{n}, c_{n+1}, c_{n+2}, \ldots$ is periodic with period 2. Then $c_{n}=c_{n+2}=\ldots=0$ and $c_{n+1}=c_{n+3}=\ldots=1$. Let z_{n} (resp., z_{n+2}) be a nontrivial word generating $\mathscr{Z}\left(A_{n+1}\right)$ (resp. $\mathscr{Z}\left(A_{n+3}\right)$). We know by Theorem 2.3 that both z_{n} and z_{n+2} "start" with v_{0} and that z_{n} (resp., z_{n+2}) ends in v_{n}, (resp., in v_{n+2}).

For the remainder of the proof we will use the notation $x \sim y$ for words x and y in the generators v_{0}, v_{1}, \ldots to indicate that $x= \pm y$. Note, for example, that if $y=$ $v_{0}^{k_{0}} v_{1}^{k_{1}} \ldots v_{r}^{k_{r}}$ is any word in the v_{j}^{\prime} 's then $y^{*}=v_{r}^{k_{r}} \ldots v_{1}^{k_{1}} v_{0}^{k_{0}}$ and $y \sim y^{*}$.

Consider $x=\sigma^{2}\left(z_{n}\right) z_{n+2}$, a word which begins with v_{0}. Note that $x \in A_{n+2}$ because because both $\sigma^{2}\left(z_{n}\right)$ and z_{n+2} end in v_{n+2}, and therefore x ends in v_{n+1} or earlier. $\sigma^{2}\left(z_{n}\right)$ commutes with v_{2} through v_{n+2}, since z_{n} commutes with v_{0} through v_{n}. Also z_{n} anticommutes with v_{n+1}, otherwise we would conclude that $z_{n} \in \mathscr{Z}\left(A_{n+2}\right)$, a contradiction since $c_{n+2}=0$. Since z_{n} anticommutes with v_{n+1} it follows from the fact z_{n} is a palindrome (Theorem 2.3), that $\sigma^{2}\left(z_{n}\right)$ anticommutes with v_{1}. Since $z_{n+2} \in \mathscr{Z}\left(A_{n+3}\right)$ the facts about $\sigma^{2}\left(z_{n}\right)$ imply that $\sigma^{2}\left(z_{n}\right) z_{n+2}$ anticommutes with v_{1} and commutes with v_{2} through v_{n+2}.

Next consider the word $w x$, which commutes with v_{3}, \ldots, v_{n+2}, anticommutes with v_{2}, and starts with a generator after v_{0}. Hence we can define y by $y=\sigma^{-1}(w x)$. The word y commutes with v_{2}, \ldots, v_{n+1} and anticommutes with v_{1}. Also $y \in A_{n+1}$ since $x \in A_{n+2}$ and $m<n$, so $w \in A_{n+1}$.

We claim that y starts with the generator v_{0}. For if y starts with v_{2} or higher, $\sigma^{-2}(y)$ commutes with v_{0} through v_{n-1} and lies in A_{n-1}. Hence $\sigma^{-2}(y) \in A_{n}^{c} \cap$ $A_{n-1} \subset \mathscr{Z}\left(A_{n}\right)$ which is trivial, since $c_{n}=0$. If y starts with v_{1} then since it anticommutes with v_{1} and commutes with v_{2} through v_{n+1} we conclude that y anticommutes with itself, a contradiction. Hence we have determined that y starts with v_{0}.

Since both x and y start with v_{0} we can form $\sigma^{-1}(x y)$, which commutes with v_{0} since both x and y anticommute with v_{1}. Hence $\sigma^{-1}(x y)$ commutes with v_{0} through v_{n}, i.e., $\sigma^{-1}(x y) \in \mathscr{Z}\left(A_{n+1}\right)$. Therefore either $\sigma^{-1}(x y) \sim z_{n}$ or $\sigma^{-1}(x y) \sim I$.

First suppose $\sigma^{-1}(x y) \sim z_{n}$. Then $x y \sim \sigma\left(z_{n}\right)$, or $x \sigma^{-1}(w x) \sim \sigma\left(z_{n}\right)$, or $\sigma(x) w x \sim$ $\sigma^{2}\left(z_{n}\right)$, or $\sigma(x) w \sigma^{2}\left(z_{n}\right) z_{n+2}$, or $\sigma(x) w z_{n+2} \sim I$, so $w z_{n+2} \sim \sigma(x)$. Since w commutes
with v_{n+3} and z_{n+2} does not (otherwise $z_{n+2} \in \mathscr{Z}\left(A_{n+4}\right)$, which is trivial) the word $w z_{n+2}$ anticommutes with v_{n+3}. But $\sigma(x)$ commutes with v_{n+3}, a contradiction. So we have ruled out the possibility that $\sigma^{-1}(x y) \sim z_{n}$.

Next suppose $\sigma^{-1}(x y) \sim I$. Then $x y \sim I$, so $x \sim y=\sigma^{-1}(w x)$, so $\sigma(x) \sim w x$, or $w \sim x \sigma(x)$. Therefore $x \sigma(x)$ commutes with v_{j}, for all $j \geqslant 3$. Since x commutes with v_{2} through $v_{n+2}, \sigma(x)$ commutes with v_{3} through v_{n+3}. Since both w and $\sigma(x)$ commute with v_{n+3}, so must x. Continuing in this way we conclude that x commutes with v_{j} for all $j \geqslant 2$. Then $x \in \sigma^{2}(R)^{\prime} \cap R$, which is trivial. But x starts with v_{0} and so is not trivial. This contradiction shows that $x y \nsim I$. Hence we have ruled out the possibility that the center sequence has eventual period 2 .

As we have ruled out the possibility that a shift of commutant index 3 could have a center sequence of eventual period 2, we see from the first paragraph of the proof that if the center sequence of the derived shift σ_{∞} has eventual period 4 then so does σ. Similarly if the eventual period of the center sequence of σ_{∞} is 6 then the same is true for σ. An application of Theorem 2.3 on the form of strings of a center sequence now establishes the result.

When the bitstream of σ_{∞} has the form $001 \overline{0}$ (see Theorem 2.5, see also [13][Theorem 2.10]), i.e., when the word v that generates $\sigma^{3}(R)^{\prime} \cap R$ commutes with $\sigma(v)$ then the eventual period of both σ and σ_{∞} is 4. In the case when σ is a binary shift for which v, the generator of $\sigma^{3}(R)^{\prime} \cap R$, anticommutes with $\sigma(v)$, the eventual period of the center sequence of σ_{∞} and of σ is 6 . Hence we have established the following.

COROLLARY 2.7. Let σ be a binary shift of commutant index 3. If σ_{∞} has bitstream $001 \overline{0}$ then the center sequences of both σ_{∞} and σ have eventual period 4. If σ_{∞} has bitstream $011 \overline{0}$ then the center sequences of both σ and σ_{∞} have eventual period 6 .

3. Toeplitz matrices and congruence

As we have seen, the Toeplitz matrix associated with a bitstream contains important information about the corresponding binary shift. In this section we show that if a pair of binary shifts of commutant index 3 have center sequences which eventually coincide, then their associated Toeplitz matrices are congruent. We first recall the notion of congruence of a pair of $n \times n$ matrices. See [7][Chapter IV] for details.

DEFINITION 3.1. A pair of $n \times n$ matrices \mathscr{A} and \mathscr{B} are congruent if there is a unitary matrix U such that $U^{t} \mathscr{A} U=\mathscr{B}$, where U^{t} is the transpose of U.

It is clear that congruence of matrices is an equivalence relation and that congruent matrices have the same rank.

As it will be useful to consider infinite Toeplitz matrices (see below) we will develop a notion of congruence in this context. Before we do so we introduce some notation. Given a binary shift α of commutant index 3 , with corresponding bitstream $a_{0}, a_{1}, a_{2}, \ldots$, let \mathscr{A} be the semi-infinite Toeplitz matrix over $G F(2)$ determined by the bitstream for α, i.e.,

$$
\mathscr{A}=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \ldots \tag{3.1}\\
a_{1} & a_{0} & a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{1} & a_{0} & a_{1} & a_{2} & \ldots \\
a_{3} & a_{2} & a_{1} & a_{0} & a_{1} & \ldots \\
a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Note that for $n \geqslant 1, \mathscr{A}_{n}$ from (2.1) is the $n \times n$ upper left block of \mathscr{A}. For convenience in subsequent calculations the rows and columns of \mathscr{A}_{n} are numbered from 0 to $n-1$. Let $u_{0}, u_{1}, u_{2}, \ldots$ be the generators of α satisfying the commutation relations

$$
u_{i} u_{i+k}=(-1)^{a_{k}} u_{i+k} u_{i}, i, k \in \mathbb{Z}^{+}
$$

Let A_{n} be the 2^{n}-dimensional C^{*}-subalgebra generated by the words in the spin generators $u_{0}, u_{1}, \ldots, u_{n-1}$. Let $w=u_{0}^{r_{0}} u_{1}^{r_{1}} \ldots u_{m}^{r_{m}}$ be the word generating $\alpha^{3}(R)^{\prime} \cap R$.

DEFINITION 3.2. For fixed $n \geqslant 2$ and $i, j \in\{0, \ldots, n-1\}$ with $i \neq j$, let $E_{i j}$ be the $n \times n$ elementary matrix with 1 's along the main diagonal, a 1 in the (i, j) position of the matrix, and 0 's elsewhere.

We will always be able to determine the size of the matrix $E_{i j}$ from the context in which it appears. The following properties of $E_{i j}$ are easily verified.

Proposition 3.3. Let \mathscr{B} be an $n \times n$ matrix over $G F(2)$. Then

1. $\mathscr{B} E_{i j}$ is the matrix obtained from \mathscr{B} by adding column i to column j.
2. $E_{j i} \mathscr{B}$ is the matrix obtained from \mathscr{B} by adding row i to row j.
3. $E_{j i}=E_{i j}^{t}$, i.e., $E_{j i}$ is the transpose of $E_{i j}$.
4. $E_{i j}^{-1}=E_{i j}$.

The following result is immediate from combining the first two properties of the preceding Proposition and the fact that the matrices $\mathscr{A}_{n}, n \in \mathbb{N}$ over $G F(2)$ have 0 diagonal.

COROLLARY 3.4. If \mathscr{A}_{n} is the $n \times n$ corner matrix of \mathscr{A} and $E_{i j}$ is an $n \times n$ elementary matrix then $E_{i j}^{t} \mathscr{A}_{n} E_{i j}$ has 0 diagonal.

Let β be another binary shift of commutant index 3 , with bitstream b_{0}, b_{1}, \ldots, Toeplitz matrix \mathscr{B}, whose center sequence eventually agrees with that of α. We may then conclude from the paragraph preceding Corollary 2.7 that the bitstreams of their derived shifts α_{∞} and β_{∞} coincide. We use the notation $d_{0} d_{1} d_{2} \overline{0}$ for the bitstream of α_{∞} and β_{∞}, where $d_{2}=1$ and d_{1} is 0 or 1 , depending upon whether the center sequence of α has period 4 or 6 .

We will show for n sufficiently large that \mathscr{A}_{n} and \mathscr{B}_{n} are congruent. We will establish this congruence with the use of products of $n \times n$ elementary matrices. We first show that for n sufficiently large \mathscr{A}_{n} is congruent to a matrix of a special form.

A similar result will follow for \mathscr{B}_{n}. We will make use of products of the form $\mathscr{E}_{j}=$ $E_{j-m, j}^{r_{m}} E_{j-m+1, j}^{r_{m-1}} \ldots E_{j-1, j}^{r_{1}}$. By Theorem 2.5 there are infinitely many $p \in \mathbb{N}$ such that the string $c_{p} c_{p+1} c_{p+2} c_{p+3} c_{p+4}$ is 01210 . Fix $n>p+4>p>m$. Using the fact that $c_{p+2}=2,[11]\left[\right.$ Corollary 6.5] shows that $\left(\mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{p+2}\right)^{t} \mathscr{A}_{n} \mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{p+2}=$ \mathscr{F}_{n}, where \mathscr{F}_{n} is the matrix

and where $d_{2}=e_{2}=1$.
Since the matrices $\mathscr{A}_{p}, \mathscr{A}_{p+1}, \mathscr{A}_{p+2}$ have nullities $0,1,2$ respectively, there is, by Theorem 2.3, an element $z=u_{0}^{s_{0}} u_{1}^{s_{1}} \ldots u_{p}^{s_{p}}$ with the following properties: z generates $\mathscr{Z}\left(A_{p+1}\right), z, \alpha(z)$ generate $\mathscr{Z}\left(A_{p+2}\right)$, and $\alpha(z)$ generates $\mathscr{Z}\left(A_{p+3}\right)$. Also $s_{0}=1$ and the vector of exponents, $\mathbf{s}=\left[s_{0}, s_{1}, \ldots, s_{p}\right]$, reads the same backwards as forwards. Since $\alpha(z)$ is in the center $\mathscr{Z}\left(A_{p+2}\right)$ of A_{p+2} it follows that the dot product (over $G F(2))$ of the vector $\left[0, s_{0}, s_{1}, \ldots, s_{p}\right]$ with all of the rows of \mathscr{A}_{p+2} gives 0 . The same holds for the dot product of this vector with $\left[0,0, \ldots, 0, e_{2}, e_{1}\right]$ in the row below the corner matrix \mathscr{A}_{p+2}. To see this, observe that the latter vector is a linear combination of the rows of \mathscr{A}_{p+2} and the row vector $\left[a_{p+2}, a_{p+1}, \ldots, a_{0}\right]$. But $\left[0, s_{0}, s_{1}, \ldots, s_{p}\right]$ annihilates the rows of \mathscr{A}_{p+2} and $\left[s_{0}, s_{1}, \ldots, s_{p}\right]$ annihilates the last row $\left[a_{p}, a_{p-1}, \ldots, a_{0}\right]$ of \mathscr{A}_{p+1}. These observations establish the claim. Hence if $\mathscr{D}_{p+1}=E_{p, p+1}^{c_{p-1}} E_{p-1, p+1}^{c_{p-2}} \ldots E_{1, p+1}^{c_{0}}$,
then via \mathscr{D}_{p+1} the matrix \mathscr{F}_{n} is congruent to the matrix

obtained from \mathscr{F}_{n} by changing the last row and column of the corner matrix \mathscr{A}_{p+2} to 0 's, and replacing e_{1} with 0 in row $p+1$ and column $p+1$ of \mathscr{F}_{n}.

Next note that since \mathbf{s} annihilates the rows of \mathscr{A}_{p+1} it follows that if we set \mathscr{D}_{p} to be $E_{p-1, p}^{c_{p-1}} \ldots E_{1, p}^{c_{1}}$ (note that $E_{0, p}^{c_{0}}=E_{0, p}$ is "missing" from this expression) then via \mathscr{D}_{p} the matrix above is congruent to the matrix

Applying techniques from [11], and using the assumption that \mathscr{A}_{p} is invertible, there is a product \mathscr{D}_{0} of elementary matrices $E_{j k}$ with $0<j<p-1$ and $0<k \leqslant p-1$ which implements the congruence between \mathscr{A}_{p} and \mathscr{J}_{p}, where \mathscr{J}_{p} is the Toeplitz matrix with 1 's along its secondary diagonals and 0 's elsewhere. It follows, by comparing the first and last columns of the matrix
that $\mathscr{D}_{0}^{t} \mathscr{R}_{p+1} \mathscr{D}_{0}$ is the matrix

$$
\left(\begin{array}{cccccc}
& & & & & 0 \\
& & & & & 1 \\
& & & & & 0 \\
& & & & & \vdots \\
& & \mathscr{J}_{p} & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
0 & 1 & 0 & \ldots & \ldots & 0 \\
& & & &
\end{array}\right) .
$$

The latter matrix is congruent, via the product $\mathscr{K}=E_{2 p} E_{4 p} \ldots E_{p-2, p}$, to the matrix \mathscr{J}_{p+1}. Hence A_{n} is congruent via $\mathscr{E}_{n-2} \ldots \mathscr{E}_{p+2} \mathscr{D}_{p+1} \mathscr{D}_{p} \mathscr{D}_{0} \mathscr{K}$ to the matrix \mathscr{C}_{n} :

Let β be any other binary shift of commutant index 3 whose center sequence eventually coincides with the center sequence of α. If β has bitstream $b_{0} b_{1} b_{2} \ldots$ let \mathscr{B}_{n} denote the $n \times n$ Toeplitz matrix whose first row is $b_{0}, b_{1}, \ldots, b_{n-1}$. Then following the procedure above shows that for n sufficiently both \mathscr{B}_{n} and \mathscr{A}_{n} are congruent to \mathscr{C}_{n}. We will apply this observation to show that the two binary shifts α and β are cocycle conjugate.

We will use the notation $\mathscr{M}_{\alpha}(n)$ to denote the matrix $\mathscr{E}_{n-1} \ldots \mathscr{E}_{p+2} \mathscr{D}_{p+1} \mathscr{D}_{p} \mathscr{D}_{0} \mathscr{K}$ for α which implements the congruence between \mathscr{A}_{n} and \mathscr{C}_{n}. (We will also simplify the notation by writing $\mathscr{M}_{\alpha}(n)$ as $\mathscr{E}_{n-1} \ldots \mathscr{E}_{p+2} \mathscr{F}$ in what follows.) Similarly \mathscr{B}_{n} and \mathscr{C}_{n} are congruent via the same procedure and we shall use $\mathscr{M}_{\beta}(n)$ to denote the matrix implementing this congruence.

Denote by F^{n}, (resp., F^{∞}) the vector space of n-tuples $\left[t_{0}, t_{1}, \ldots, t_{n-1}\right]$ (resp. of finitely non-zero ∞-tuples) over the field $G F(2)$. It will be convenient to view F^{k} as a subspace of F^{n} for non-negative integers $k<n$, and F^{n} as a subspace of F^{∞}, for all n. Let $\left\{e_{j}: j \geqslant 0\right\}$ be the standard basis for F^{∞}, i.e. e_{j} has a 1 in the $j^{t h}$ spot and 0 's elsewhere. We shall also use the notation F_{0}^{n}, (resp., F_{0}^{∞}) for the subspace of F^{n} (resp., of F^{∞}) consisting of all vectors whose first entry is 0 .

For $0 \leqslant j \leqslant j+k$ the identities

$$
\begin{equation*}
\left(e_{j}\right)^{t} \mathscr{A}_{n} e_{j+k}=a_{k} \tag{3.3}
\end{equation*}
$$

are easily verified.
The next result follows from an analysis of the transformations $\mathscr{M}_{\alpha}(n)$. Details of the proof may be found in [11]. In the statement of the following lemma we shall assume that p is a fixed integer chosen so that $p>m$, where m is the length of the word $w=u_{0}^{r_{0}} \ldots u_{m}^{r_{m}}$ generating $\alpha^{3}(R)^{\prime} \cap R$ and \mathscr{A}_{p} and \mathscr{A}_{p+4} are both invertible. Also we shall assume $n \in \mathbb{N}$ is chosen so that $n>p+4$.

Lemma 3.5. (cf. [11][Theorem 6.12]) Let n and p be as above. Then
(o) $M_{\alpha}(n)^{t} \mathscr{A}_{n} \mathscr{M}_{\alpha}(n)=\mathscr{C}_{n}$,
(i) for any j such that $0 \leqslant j \leqslant n-1$, and any $k \geqslant 1$, $\mathscr{M}_{\alpha}(n+k) e_{j}=\mathscr{M}_{\alpha}(n) e_{j}$ and $\mathscr{M}_{\alpha}(n+k)^{-1} e_{j}=\mathscr{M}_{\alpha}(n)^{-1} e_{j}$,
(ii) $\mathscr{M}_{\alpha}(n) e_{0}=e_{0}=\mathscr{M}_{\alpha}(n)^{-1} e_{0}$,
(iii) if $\mathbf{v} \in F_{0}^{n}$, then $\mathscr{M}_{\alpha}(n) \mathbf{v}$ and $\mathscr{M}_{\alpha}(n)^{-1} \mathbf{v}$ lie in F_{0}^{n},
(iv) if $\mathbf{v} \in F_{0}^{p+2}$ then $\mathscr{M}_{\alpha}(n) \mathbf{v}$ and $\mathscr{M}_{\alpha}(n) \mathbf{v}$ lie in F_{0}^{p+2}.
(v) if $j \geqslant p+2$ then both $\mathscr{M}_{\alpha}(n) e_{j}$ and $\mathscr{M}_{\alpha}(n)^{-1} e_{j}$ lie in F_{0}^{j+1} (the linear span of $\left\{e_{1}, \ldots, e_{j}\right\}$.

We remark that it follows from the form of $\mathscr{M}_{\alpha}(n)$ for $n>p+4$ that if $p+4<$ $k \leqslant n$ then $\mathscr{M}_{\alpha}(n) e_{k}$ and $\mathscr{M}_{\alpha}(n)^{-1} e_{k}$ are both in F^{k} but not in F^{k-1}, i.e. that both of these vectors end in e_{k}.

Given the results of the lemma it makes sense to define an invertible transformation \mathscr{M}_{α} on F_{0}^{∞} by setting

$$
\mathscr{M}_{\alpha} e_{j}=\underset{n \rightarrow \infty}{\rightarrow} \lim \mathscr{M}_{\alpha}(n) e_{j}
$$

for $j \geqslant 1$, and extending \mathscr{M}_{α} to all of F_{0}^{∞} by linearity. Similarly for M_{α}^{-1}.
From now on let β be another binary shift of commutant index 3 whose center sequence eventually agrees with that of α. Let v_{0}, v_{1}, \ldots be the spin generators for β, and let $w^{\prime}=v_{0}^{s_{0}} \ldots v_{m^{\prime}}^{s_{m^{\prime}}}$ be the word generating $\beta^{3}(R)^{\prime} \cap R$. Let $b_{0} b_{1} \ldots$ be the bitstream defining the commutation relations among the generators. Let \mathscr{B} be the Toeplitz matrix corresponding to this bitstream with upper $n \times n$ corners denoted by \mathscr{B}_{n}. Finally let $\mathscr{W}(n)=\mathscr{W}_{\alpha, \beta}(n)$ be the invertible linear transformation $\mathscr{M}_{\alpha}(n) \mathscr{M}_{\beta}^{-1}(n)$ on F_{n}. Note from the lemma that $\mathscr{W}(n)$ restricts to an invertible transformation on F_{0}^{n}.

For the remainder of this section we assume that p has been chosen so that $p>$ $m_{0}=\max \left\{m, m^{\prime}\right\}$, and such that the center sequences of both α and β agree and coincide with one of the center sequences in Theorem 2.5 from position p and above. We assume p has also been chosen so that the center sequences for both α and β take the values 01210 for $k=p$ through $k=p+4$. In particular $\mathscr{A}_{p}, \mathscr{B}_{p}, \mathscr{A}_{p+4}, \mathscr{B}_{p+4}$ are all invertible. Finally, we shall assume $n \in \mathbb{N}$ has been chosen so that $n>p+4$.

The following result is obtained as an application of the lemma. The proof uses the fact that $E_{i j}^{-1}=E_{i j}$.

THEOREM 3.6. Let \mathscr{S} denote the unilateral shift on F^{∞}. Under the standing assumptions of the preceding,
(0) $\mathscr{W}(n)^{t} \mathscr{A}_{n} \mathscr{W}(n)=\mathscr{B}_{n}$,
(i) for any j such that $0 \leqslant j \leqslant n-1$, and any $k \geqslant 1, \mathscr{W}(n+k) e_{j}=\mathscr{W}(n) e_{j}$ and $\mathscr{W}(n+k)^{-1} e_{j}=\mathscr{W}(n)^{-1}$,
(ii) $\mathscr{W}(n) e_{0}=e_{0}=\mathscr{W}(n)^{-1} e_{0}$,
(iii) if $\mathbf{v} \in F_{0}^{n}$ then $\mathscr{W}(n) \mathbf{v}$ and $\mathscr{W}(n)^{-1} \mathbf{v}$ lie in F_{0}^{n},
(iv) if $\mathbf{v} \in F_{0}^{p+2}$ then $\mathscr{W}(n) \mathbf{v}$ and $\mathscr{W}(n)^{-1} \mathbf{v}$ lie in F_{0}^{p+2},
(v) if $j \geqslant p+2$ then both $\mathscr{W}_{\alpha}(n) e_{j}$ and $\mathscr{W}_{\alpha}(n)^{-1} e_{j}$ lie in F_{0}^{j+1} (the linear span of $\left\{e_{1}, \ldots, e_{j}\right\}$,
(vi) for any k such that $n>k>p$, and for any \mathbf{v} of the form $s_{m^{\prime}} e_{k-m^{\prime}}$ $+s_{m^{\prime}-1} e_{k-\left(m^{\prime}-1\right)}+\ldots+s_{1} e_{k-1}+e_{k}, \quad \mathscr{W}(n) \mathscr{S} \mathbf{v}=\mathscr{S} \mathscr{W}(n) \mathbf{v}=r_{m} e_{k+1-m}+$ $r_{m-1} e_{k+1-(m-1)}+\ldots+r_{1} e_{k}+e_{k+1}$.

Proof. All but the last statement follow from their counterparts in the lemma. For (vi) note that if $\left.\mathscr{E}_{j}^{\prime}=E_{j-m^{\prime}, j}^{s_{m^{\prime}}} E_{j-\left(m^{\prime}-1, j\right.}\right)^{s_{m^{\prime}-1}} \ldots E_{j-1, j}^{s_{1}}$ for $j>m_{0}$, then $\mathscr{M}_{\beta}(n)=$ $\mathscr{E}_{n-1}^{\prime} \mathscr{E}_{n-2}^{\prime} \ldots \mathscr{E}_{p+2}^{\prime} \mathscr{F}^{\prime}$, where \mathscr{F}^{\prime} is the counterpart for β of \mathscr{F} in the expression for $\mathscr{M}_{\alpha}(n)$. Noting that $\left(\mathscr{E}_{k}^{\prime \prime}\right)^{-1} \mathbf{v}=e_{k}$ and that $\left(\mathscr{E}_{j}^{\prime}\right)^{-1} \mathbf{v}=\mathbf{v}$ for $j>k$, it follows that

$$
\begin{aligned}
\mathscr{W}(n) \mathbf{v} & =\mathscr{M}_{\alpha}(n) \mathscr{M}_{\beta}(n)^{-1} \mathbf{v} \\
& =\mathscr{M}_{\alpha}(n)\left(\mathscr{E}_{n-1}^{\prime} \mathscr{E}_{n-2}^{\prime} \ldots \mathscr{E}_{p+2}^{\prime} \mathscr{F}^{\prime}\right)^{-1} \mathbf{v} \\
& =\mathscr{M}_{\alpha}(n)\left(\mathscr{F}^{\prime}\right)^{-1}\left(\mathscr{E}_{p+2}^{\prime}\right)^{-1} \ldots\left(\mathscr{E}_{n-1}^{\prime}\right)^{-1} \mathbf{v} \\
& =\mathscr{M}_{\alpha}(n)\left(\mathscr{F}^{\prime}\right)^{-1}\left(\mathscr{E}_{p+2}^{\prime}\right)^{-1} \ldots\left(\mathscr{E}_{k}^{\prime}\right)^{-1} \mathbf{v} \\
& =\mathscr{M}_{\alpha}(n)\left(\mathscr{F}^{\prime}\right)^{-1}\left(\mathscr{E}_{p+2}^{\prime}\right)^{-1} \ldots\left(\mathscr{E}_{k-1}^{\prime}\right)^{-1} e_{k} \\
& =\mathscr{M}_{\alpha}(n)\left(\mathscr{F}^{\prime}\right)^{-1} e_{k} \\
& =\mathscr{M}_{\alpha}(n) e_{k} \\
& =\mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{p+2} \mathscr{F}_{e} e_{k} \\
& =\mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{p+2} e_{k} \\
& =\mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{k} e_{k} \\
& =\mathscr{E}_{n-1} \mathscr{E}_{n-2} \ldots \mathscr{E}_{k+1}\left(r_{m} e_{k-m}+r_{m-1} e_{k-(m-1)}+\ldots+r_{1} e_{k-1}+e_{k}\right) \\
& =r_{m} e_{k-m}+r_{m-1} e_{k-(m-1)}+\ldots+r_{1} e_{k-1}+e_{k} .
\end{aligned}
$$

The last statement of the theorem follows from this calculation.
From the theorem it makes sense to define \mathscr{W} on F^{∞} as $\mathscr{W}=\underset{n \rightarrow \infty}{\rightarrow} \lim \mathscr{W}(n)$.
Lemma 3.7. (cf. [11][Theorem 6.12]) For all $j>0$ and for all $k \geqslant 0$ it follows that $\left(\mathscr{W}^{-1} e_{j}\right)^{t} \mathscr{B}\left(\mathscr{W}^{-1} e_{j+k}\right)=a_{k}$.

Proof. We have

$$
\begin{aligned}
\left(\mathscr{W}^{-1} e_{j}\right)^{t} \mathscr{B} \mathscr{W}^{-1} e_{j+k} & =\left(\mathscr{M}_{\beta} \mathscr{M}_{\alpha}^{-1} e_{j}\right)^{t} \mathscr{B} \mathscr{M}_{\beta} \mathscr{M}_{\alpha}^{-1} e_{j+k} \\
& =e_{j}^{t}\left(\mathscr{M}_{\alpha}^{-1}\right)^{t} \mathscr{M}_{\beta}^{t} \mathscr{B} \mathscr{M}_{\beta} \mathscr{M}_{\alpha}^{-1} e_{j+k} \\
& =e_{j}^{t}\left(\mathscr{M}_{\alpha}^{-1}\right)^{t} \mathscr{C} \mathscr{M}_{\alpha}^{-1} e_{j+k}, \text { where } \mathscr{C}=" \lim " \mathscr{C}_{n} \\
& =e_{j}^{t} \mathscr{A} e_{j+k} \\
& =a_{k} . \quad \square
\end{aligned}
$$

As we shall see in the next section, the linear transformation $\mathscr{W}^{-1} \mathscr{S}^{\mathscr{W}} \mathscr{S}^{-1}$ on F_{0}^{∞} in the following lemma is closely related to a unitary operator in R which implements the cocycle conjugacy between α and β.

LEMMA 3.8. For $j>0$ and $k \geqslant 0,\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1} e_{j}\right)^{t} \mathscr{B}^{\mathscr{W}} \mathscr{W}^{-1} \mathscr{S}^{W} \mathscr{S}^{-1} e_{j+k}=$ b_{k}.

Proof. We calculate

$$
\begin{aligned}
\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1} e_{j}\right)^{t} \mathscr{B} \mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1} e_{j+k} & =\left(\mathscr{W}^{-1} \mathscr{S}^{\mathscr{W}} e_{j-1}\right)^{t} \mathscr{B}^{-1} \mathscr{W}^{-1} \mathscr{S} \mathscr{W}_{j+k-1} \\
& =e_{j-1}^{t} \mathscr{W}^{t} \mathscr{S}^{t}\left(\mathscr{W}^{-1}\right)^{t} \mathscr{B}^{W^{-1}} \mathscr{S} \mathscr{W} e_{j+k-1} \\
& =e_{j-1}^{t} \mathscr{W}^{t} \mathscr{S}^{t} \mathscr{A} \mathscr{S} \mathscr{W} e_{j+k-1} \\
& =e_{j-1}^{t} \mathscr{W}^{t} \mathscr{A} \mathscr{W} e_{j+k-1} \\
& =e_{j-1}^{t} \mathscr{B} e_{j+k-1} \\
& =b_{k},
\end{aligned}
$$

where we have used the fact that $\mathbf{v} \mathscr{S}^{t} \mathscr{A} \mathscr{S} \mathbf{w}=\mathbf{v} \mathscr{A} \mathbf{w}$ for any vectors \mathbf{v} and \mathbf{w} in F^{∞}.

REMARK 3.9. From the proof of $(v i)$ in the theorem note that $M_{\beta}^{-1} \mathbf{v}=e_{k}$ for $k>p$, where $\mathbf{v}=s_{m^{\prime}} e_{k-m^{\prime}}+s_{m^{\prime}-1} e_{k-\left(m^{\prime}-1\right)}+\ldots+s_{1} e_{k-1}+e_{k}$.

COROLLARY 3.10. The mapping $\varphi=\mathscr{W}^{-1} \mathscr{S}^{W} \mathscr{S}^{-1}$ is well-defined as a linear transformation on F_{0}^{∞} and is in fact an isomorphism on F_{0}^{∞}. Moreover, when restricting \mathscr{B} to F_{0}^{∞},

Therefore $\varphi\left(e_{j}\right)^{t} \mathscr{B} \varphi\left(e_{k}\right)=e_{j}^{t} \mathscr{B} e_{k}$ for all $j, k \in \mathbb{N}$.
Proof. Note by (ii), (iii) and (iv) of the theorem, $\varphi\left(e_{1}\right)=\mathscr{W}^{-1} \mathscr{S} \mathscr{W} e_{0}=\mathscr{W}^{-1} \mathscr{S} e_{0}$ $=\mathscr{W}^{-1} e_{1} \in F_{0}^{\infty}$, and for $k>1$ parts (iii) and (iv) of the theorem show that $\varphi\left(e_{k}\right) \in F_{0}^{\infty}$ as well. In particular it follows from (iii) that $\varphi \upharpoonright_{F_{0}^{n}}$ is an isomorphism on F_{0}^{n} for all $n \geqslant p$, hence φ itself is actually an isomorphism on F_{0}^{∞}.

It is straightforward to see, from the symmetry of \mathscr{A}, that for $j, k \in \mathbb{N}, e_{j}^{t} \mathscr{A} e_{k}=$ $e_{j-1}^{t} \mathscr{A} e_{k-1}$. Therefore, on F_{0}^{∞},

$$
\begin{aligned}
\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1}\right)^{t} \mathscr{B}\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1}\right) & =\mathscr{S}^{-1^{t} \mathscr{W}^{t} \mathscr{S}^{t} \mathscr{W}^{-1^{t}} \mathscr{B} \mathscr{W}^{-1} \mathscr{S}_{\mathscr{W}} \mathscr{S}^{-1}} \\
& =\mathscr{S}^{-1^{t} \mathscr{W}^{t} \mathscr{S}^{t} \mathscr{A} \mathscr{S}^{W} \mathscr{S}^{-1}} \\
& =\mathscr{S}^{-1^{t} \mathscr{W}^{t} \mathscr{A} \mathscr{W} \mathscr{S}^{-1}} \\
& =\mathscr{S}^{-1^{t}} \mathscr{B} \mathscr{S}^{-1} \\
& =\mathscr{B} . \quad \square
\end{aligned}
$$

From now on we will specialize to the case where β is the binary shift β_{2} from Theorem 2.5 above with generators v_{0}, v_{1}, \ldots and bitstream $01001001001 \ldots$. We have shown that β has commutant index 3 and that $v_{0} v_{3}$ is the word generating $\beta^{3}(R)^{\prime} \cap R$.

Our goal is to show that if α is any other binary shift of commutant index 3 , whose center sequence eventually coincides with that of β, then β and α are cocycle conjugate.

We record the following remark, which follows immediately as a special case of the remark above and part (vi) of Theorem 3.6.

REMARK 3.11. For $k>p, M_{\beta}^{-1}\left(e_{k}+e_{k-3}\right)=e_{k}$, and $\mathscr{W} \mathscr{S}=\mathscr{S} \mathscr{W}$ on the vector space of finitely non-zero linear combinations of $\left\{e_{p+3}+e_{p}, e_{p+4}+e_{p+1}, \ldots\right\}$.

4. Cocycle conjugacy results

As above we will assume in this section that $\beta=\beta_{2}$ is the binary shift of commutant index 3 from Theorem 2.5. Below we follow the approach of $[10,11]$ to define an automorphism π on $\beta(R)$ related to the map φ on F_{0}^{∞} of the previous section. As we will see, π is "nearly" an inner automorphism in the sense that for sufficiently large n there is a unitary operator y in B_{n} (more specifically, in $B_{n} \cap N N(\beta)$, (see the paragraph following Theorem 4.5 below for the definition of $N N(\beta)$) such that, for any word v in the generators $v_{0}, v_{1}, \ldots, \pi(v)= \pm y^{*} \nu y$. Using y we will be able to show that β and α above are cocycle conjugate, i.e., if α is any binary shift of commutant index 3 whose center sequence eventually coincides with the center sequence $10 \overline{101210}$ of β, then α and β are cocycle conjugate (see Theorem 4.12).

A similar analysis can be carried out to show that if α is a binary shift of commutant index 3 whose center sequence eventually coincides with the center sequence of β_{3} of Example 3 (respectively, of β_{5} of Example 5) then α is cocycle conjugate to β_{3} (respectively, to β_{5}).

Recall that the derived shift of β_{2} is conjugate to β_{1}, as is the derived shift of β_{3}, whereas the derived shift of β_{5} is conjugate to β_{4}. Therefore the center sequences of each of the binary shifts β_{2}, β_{3} and β_{5} do not eventually coincide with the center sequences of the corresponding derived shift. On the other hand, in [11][Theorem 7.12] it was shown that if α is a binary shift of finite commutant index whose center sequence eventually agrees with the center sequence of its derived shift α_{∞} then α and α_{∞} are cocycle conjugate.

As the center sequence of any shift of commutant index 3 must eventually coincide with the center sequence of one of the binary shifts $\beta_{i}, i=1,2,3,4,5$, we can combine our results from this section and from [11] to conclude that there are at most 5 cocycle conjugacy classes of shifts of commutant index 3 .

DEFINITION 4.1. Given a vector $\mathbf{s}=s_{0} e_{0}+s_{1} e_{1}+\ldots+s_{q} e_{q} \in F^{\infty}$, let $\chi(\mathbf{s})$ be the word $v_{0}^{s_{0}} v_{1}^{s_{1}} \ldots v_{q}^{s_{q}}$ in R.

Next we use the mapping χ to define a mapping π on $\beta(R)$. First note by an application of (3.3) it follows the words $\chi(\mathbf{s})$ and $\chi(\mathbf{t})$ commute if and only if $\mathbf{s}^{t} \mathscr{B} \mathbf{t}=$ 0 . From Corollary 3.10 we have

$$
\varphi\left(e_{j}\right)^{t} \mathscr{B} \varphi\left(e_{k}\right)=e_{j}^{t} \mathscr{B} e_{k}
$$

for all $j, k \in \mathbb{N}$. It therefore follows that if we define words x_{j} in $\beta(R)$ by $x_{j}=$ $\chi\left(\varphi\left(e_{j}\right)\right)$, for $j \geqslant 1$, then for $j, k \geqslant 1, x_{j}$ and x_{k} commute if and only if v_{j} and v_{k} do.

We define π on the v_{j} 's, for $j \geqslant 1$, by

$$
\pi\left(v_{j}\right)=\left\{\begin{aligned}
x_{j}, & \text { if } \quad x_{j}=x_{j}^{*}, \quad \text { and } \\
\sqrt{-1} x_{j}, & \text { if } \quad x_{j}=-x_{j}^{*}
\end{aligned}\right.
$$

For convenience we will write $\pi\left(v_{j}\right)=w_{j}$ for all $j \in \mathbb{N}$.
By Corollary 3.10 the mapping φ is an isomorphism of F_{0}^{∞}. It follows that the set of linear combinations of words in the w_{j} 's, for $j \geqslant 1$ is weakly dense in $\beta(R)$. Hence by defining π on words $v=v_{1}^{t_{1}} v_{2}^{t_{2}} \ldots v_{r}^{t_{r}}$ according to

$$
\pi(v)=w_{1}^{t_{1}} w_{2}^{t_{2}} \ldots w_{r}^{t_{r}}
$$

π extends to a $*$-isomorphism on $\beta(R)$.
The following notation will be useful.
DEfinition 4.2. For any $n \in \mathbb{N}$ let B_{n}^{0} be the C^{*}-subalgebra of B_{n} generated by v_{1}, \ldots, v_{n}.

We now wish to show that we can assume that π fixes the words $v_{n} v_{n+3}$ for all $n>p+2$. To see this note first from Theorem 3.6(vi) that φ fixes $e_{n}+e_{n+3}$, so π fixes $v_{n} v_{n+3}$ up to multiplication by a scalar, i.e. $\pi\left(v_{n} v_{n+3}\right)=b_{n} v_{n} v_{n+3}$ for some $b_{n} \in \mathbb{C}$ of modulus one. On the other hand, since φ is an isomorphism of F_{0}^{n} for $n \geqslant p+2$ it follows that π restricts to a $*$-automorphism of B_{n}^{0}. Fix $n \geqslant p+2$. From the paragraph following Lemma 3.5 we see that we can assume $\varphi\left(e_{n}\right)$ "ends" with e_{n}, hence $\pi\left(v_{n}\right)$ "ends" with v_{n}, i.e. there is a unitary operator w, in the algebra generated by v_{1} through v_{n-1}, such that $\pi\left(v_{n}\right)=w v_{n}$. Since $\pi\left(v_{n} v_{n+3}\right)=b_{n} v_{n} v_{n+3}, \pi\left(v_{n+3}\right)=c w v_{n+3}$ for some scalar c. Since the word $w v_{n}=\pi\left(v_{n}\right)$ is hermitian, $w v_{n}=\left(w v_{n}\right)^{*}=v_{n} w^{*}$, so $v_{n} w v_{n}=w^{*}$. Then

$$
\begin{aligned}
v_{n+3} w v_{n+3} & =v_{n+3} v_{n}\left(v_{n} w v_{n}\right) v_{n} v_{n+3} \\
& =v_{n+3} v_{n} w^{*} v_{n} v_{n+3} \\
& =v_{n+3} v_{n} v_{n} v_{n+3} w^{*} \\
& =w^{*},
\end{aligned}
$$

where the next to last equality holds because $v_{0} v_{3}$ commutes with v_{3}, v_{4}, \ldots and therefore, by symmetry $v_{n} v_{n+3}$ commutes with $v_{n}, v_{n-1}, \ldots, v_{1}$. Hence $w v_{n+3}$ is hermitian if $w v_{n}$ is. Therefore, having defined $\pi\left(v_{n}\right)$ as $w v_{n}$ we can define $\pi\left(v_{n+3}\right)$ as $w v_{n+3}$, if $w v_{n} w=v_{n}$, and as $-w v_{n+3}$ if $w v_{n} w=-v_{n}$. In either case we have $\pi\left(v_{n} v_{n+3}\right)=$ $v_{n} v_{n+3}$. Therefore, having defined $\pi\left(v_{p+2}\right), \pi\left(v_{p+3}\right)$ and $\pi\left(v_{p+4}\right)$ we can define v_{j} for $j \geqslant p+5$ such that π fixes $v_{n} v_{n+3}$ for all $n \geqslant p+2$. Hence we have established the following result.

LEMMA 4.3. There is $a *$-automorphism π of $\beta(R)$ such that $\pi\left(v_{j}\right)$ is a scalar multiple of $\chi\left(\varphi\left(e_{j}\right)\right)$, for all $j \in \mathbb{N}$, and for all $n \geqslant p+2, \pi$ fixes $v_{n} v_{n+3}$.

REMARK 4.4. Note from Theorem 3.6(vi) that for $n \geqslant p+2, \varphi\left(e_{n}\right)$ is a vector which ends in e_{n}. Hence $\pi\left(v_{n}\right)$ is a scalar multiple of a word which ends in v_{n}.

In [8][Lemma 3.3] Powers obtained the following characterization of the normalizer $N(\beta)$ of β, i.e. the subgroup of unitary operators w in R such that $w^{*} x w \in \beta(R)$ for all $x \in \beta(R)$.

THEOREM 4.5. A unitary operator w is in $N(\beta)$ if and only w has the form λI or $\lambda v_{k_{1}} v_{k_{2}} \ldots v_{k_{s}}$ where $0 \leqslant k_{1}<k_{2}<\ldots<k_{s}$.

In [9][Theorem 3.7] it was shown that if $y \in R$ is a unitary operator with the property that $A d(y)$ maps words in the v_{j} 's into other words, then y is a finite product of words and operators of the form $\Gamma_{ \pm}(w)$, for $w \in N(\beta)$, where $\Gamma_{ \pm}=(1 / \sqrt{2})(I \pm i w)$, if $w=w^{*}$ and $(I \pm w) / \sqrt{2}$, if $w=-w^{*}$. We use the notation $N N(\beta)$ (the normalizer of the normalizer group $N(\beta)$) to denote the group of such operators. The proof can easily be adapted to show that the result holds for factors B_{n} as well as for R, i.e., if $y \in B_{n}$, where B_{n} is a factor and $\operatorname{Ad}(y)$ leaves $N(\beta) \cap B_{n}$ invariant, then y is of the form above. We shall use this result in the proof of the following theorem.

THEOREM 4.6. For any $n>p+2, \pi$ restricts to an automorphism of B_{n}^{0}. If, in addition, B_{n}^{0} is a factor, then there is a unitary operator $y_{n} \in B_{n}^{0} \cap N N(\beta)$ such that, for all words $v=v_{k_{1}} v_{k_{2}} \ldots v_{k_{s}}$ in $B_{n}^{0}, \pi(v)=y_{n}^{*} v y_{n}$.

Proof. For $n>p+2$ it follows that φ restricts to an isomorphism of F_{0}^{n} and therefore, $\pi\left(v_{j}\right)=\chi\left(\varphi\left(e_{j}\right)\right), 1 \leqslant j \leqslant n$ is in B_{n}^{0}, hence π is an automorphism of B_{n}^{0}. If B_{n}^{0} is a factor then the automorphism $\pi \upharpoonright_{B_{n}^{0}}$ is inner. Let y_{n} be a unitary operator implementing this automorphism.

To show that $y_{n} \in N N(\beta)$ note by Lemma 4.3 that π maps words $v \in B_{n}^{0}$ in the v_{j} 's into scalar multiples of words in the v_{j} 's. Therefore $\operatorname{Ad}\left(y_{n}\right)(v)$ is a word in the v_{j} 's. It follows that $y_{n} \in N N(\beta)$, from the remark in the paragraph preceding the theorem.

REMARK 4.7. Note that for $n \in \mathbb{N}, B_{n}^{0}$ is a factor if and only if B_{n-1} is a factor, since $B_{n-1}=\left\{v_{0}, \ldots, v_{n-1}\right\}^{\prime \prime}$ and $B_{n}^{0}=\beta\left(B_{n-1}\right)=\left\{v_{1}, \ldots, v_{n}\right\}^{\prime \prime}$ are isomorphic.

COROLLARY 4.8. For every $n>p+2$ such that B_{n}^{0} is a factor, let $y_{n} \in B_{n}^{0}$ satisfy $\pi_{\left\lceil B_{n}^{0}\right.}=A d\left(y_{n}\right)$ as above. Then B_{n+6}^{0} is also a factor and $y_{n} y_{n+6}^{*} \in N N(\beta) \cap\left(B_{n}^{0}\right)^{\prime} \cap$ $\left\{v_{n} v_{n+3}, v_{n+1} v_{n+4}, v_{n+2} v_{n+5}, v_{n+3} v_{n+6}\right\}^{\prime} \cap B_{n+6}^{0}$.

Proof. Since the center sequence is eventually periodic with period 6 it follows that B_{n+6}^{0} is also a factor. Since $\pi_{\mid B_{n}^{0}}=A d\left(y_{n}\right)$ and $\pi_{\upharpoonright B_{n+6}^{0}}=\operatorname{Ad}\left(y_{n+6}\right), y_{n}^{*} x y_{n}=$ $y_{n+6}^{*} x y_{n+6}$ for all $x \in B_{n}^{0}$, so that $y_{n} y_{n+6}^{*}$ commutes with B_{n}^{0}. Since $v_{0} v_{3} \in \beta^{3}(R)^{\prime} \cap R$, it follows that $v_{0} v_{3}, v_{1} v_{4}, v_{2} v_{5}$ and $v_{3} v_{6}$ all commute with $\left\{v_{6}, v_{7}, v_{8}, \ldots\right\}^{\prime \prime}$. By the symmetry of the commutation relations for the spin system corresponding to β it follows that the operators $v_{n} v_{n+3}, v_{n+1} v_{n+4}, v_{n+2} v_{n+5}$ and $v_{n+3} v_{n+6}$ all commute with B_{n}^{0} and hence with $y_{n} \in B_{n}^{0}$. On the other hand, y_{n+6} commutes with each of these four operators, since π fixes them.

Since π maps words in $\beta(R)$ into words in $\beta(R)$, and since $A d\left(y_{n}\right)_{\mid B_{n}^{0}}=\pi_{\left\lceil B_{n}^{0}\right.}$, it follows from the argument in the paragraph preceding Theorem 4.6 that $y_{n} \in N N(\beta)$. Similarly for y_{n+6}. Hence $y_{n} y_{n+6}^{*} \in N N(\beta)$ also.

The following is an immediate consequence of the proof of Theorem 2.5.

Proposition 4.9. Let $n \geqslant p+2$ be such that B_{n}^{0} is a factor and the center $Z\left(B_{n+1}^{0}\right)$ of B_{n+1}^{0} (respectively, $Z\left(B_{n+2}^{0}\right)$ of B_{n+2}^{0}) is generated by one (respectively, two) words. Then $Z\left(B_{n+1}^{0}\right)=\{z\}^{\prime \prime}$, where $z=v_{1} v_{2} \ldots v_{n+1}$ and $Z\left(B_{n+2}^{0}\right)=\{z, \beta(z)\}^{\prime \prime}$.

THEOREM 4.10. Fix $n>p+2$ such that $v_{n}=0, v_{n+1}=1$ and $v_{n+2}=2$. Then $C=\left(B_{n}^{0}\right)^{\prime} \cap\left\{v_{n} v_{n+3}, v_{n+1} v_{n+4}, v_{n+2} v_{n+5}, v_{n+3} v_{n+6}\right\}^{\prime} \cap B_{n+6}=\left\{z_{0} z_{1} z_{2}, z_{1} z_{2} z_{3}\right\}^{\prime \prime}$ where $z_{0}=v_{n} v_{n+3}$ and $z_{j}=\beta^{j}\left(z_{0}\right)$, for $j=0,1,2,3$.

Proof. It is straightforward to see that C is generated by the words that it contains. Suppose $w \in C$ is a word. Noting that $B_{n+6}^{0}=B_{n+2}^{0} \vee\left\{z_{0}, z_{1}, z_{2}, z_{3}\right\}^{\prime \prime}$ we can write $w=\left(v_{1}^{t_{1}} v_{2}^{t_{2}} \ldots v_{n+2}^{t_{n+2}}\right)\left(z_{0}^{p_{0}} z_{1}^{p_{1}} z_{2}^{p_{2}} z_{3}^{p_{3}}\right)$ where the exponents are 0 's or 1 's. Since w and z_{0} through z_{3} commute with B_{n}^{0} it follows that \tilde{w} does too, where $\tilde{w}=v_{1}^{t_{1}} v_{2}^{t_{2}} \ldots v_{n+2}^{t_{n+2}}$. We will show that \tilde{w} is a scalar multiple of a word of the form $u^{s_{0}} \beta(u)^{s_{1}}$, where u is the word generating the center of B_{n+1}^{0} (and therefore, by Proposition 4.9, u and $\beta(u)$ are the words generating the center of B_{n+2}^{0}). Assume that \tilde{w} is a nontrivial word, then $\tilde{w} \notin B_{n}^{0}$ since B_{n}^{0} has trivial center. Therefore \tilde{w} is a word that ends with either v_{n+1} or v_{n+2} and so, since u ends with v_{n+1}, by Theorem 2.3, there is a word of the form $u^{s_{0}} \beta(u)^{s_{1}}$ such that $\tilde{w} u^{s_{0}} \beta(u)^{s_{1}} \in B_{n}$ and commutes with B_{n}^{0}. Since B_{n}^{0} has trivial center, \tilde{w} must be a scalar multiple of $u^{s_{0}} \beta(u)^{s_{1}}$. Therefore we may assume that w has the form $u^{s_{0}} \beta(u)^{s_{1}} z_{0}^{p_{0}} z_{1}^{p_{1}} z_{2}^{p_{2}} z_{3}^{p_{3}}$.

From the commutation relations associated with the bitstream for β it follows that z_{0} anticommutes with both z_{1} and z_{2} and commutes with z_{3}. Also note from the commutation relations for β that $v_{0} v_{3}$ commutes with v_{0}, anticommutes with both v_{1} and v_{2}, and commutes with v_{3}, v_{4}, \ldots. Therefore we can use the symmetry of the commutation relations to conclude that z_{0} anticommutes with v_{n+1} and v_{n+2} and commutes with v_{j} for $1 \leqslant j \leqslant n$. We also have the result from the preceding proposition that $u=v_{1} v_{2} \ldots v_{n+1}$. Using the observations above we arrive at the following equations over $G F(2)$, from w commuting with z_{0} through z_{3}.

$$
\begin{aligned}
s_{0}+p_{1}+p_{2} & =0 \\
s_{1}+p_{0}+p_{2}+p_{3} & =0 \\
p_{0}+p_{1}+p_{3} & =0 \\
p_{1}+p_{2} & =0
\end{aligned}
$$

Then $s_{0}=0, s_{1}=0, p_{1}=p_{2}$ and $p_{3}=p_{0}+q$, where $q=p_{1}=p_{2}$. This establishes the claim.

Using the preceding results we can show that the $*$-automorphism π of $\beta(R)$ is "nearly" inner.

Corollary 4.11. Let n and $y=y_{n}$ as above. Then for any word z in the generators $v_{1}, v_{2}, \ldots, \pi(z)= \pm y^{*} z y$.

Proof. By assumption $y^{*} z y=\pi(z)$ for all words $z \in B_{n}^{0}$. Since B_{n+6}^{0} is generated by B_{n}^{0} and the words $z_{0}, z_{1}, z_{2}, z_{3}, z_{-1}=v_{n-1} v_{n+2}$ and $z_{-2}=v_{n-2} v_{n+1}$, we may assume that z is one of these words. Since y commutes with z_{0} through z_{3}
we have $y^{*} z_{j} y=z_{j}=\pi\left(z_{j}\right)$ for $0 \leqslant j \leqslant 3$. Let $w=y_{n+6}^{*} y$. Since y and y_{n+6} are in $N N(\beta)$, so is w. Then if $j=-1$ or -2 we have, since both π and $\operatorname{Ad}\left(y_{n+6}\right)$ fix $z_{j}, y^{*} z_{j} y=w^{*} y_{n+6}^{*} z_{j} y_{n+6} w=w^{*} z_{j} w$. Since $w \in C$, where C is as in the previous theorem, it follows from the theorem and paragraph describing $N N(\beta)$ following Theorem 4.5 that $w^{*} z_{j} w$ must be a scalar multiple of one of the following words: $z_{j}, z_{j} z_{0} z_{1} z_{2}, z_{j} z_{1} z_{2} z_{3}$ or $z_{j} z_{0} z_{3}$. But $y^{*} z_{j} y \in B_{n+2}^{0}$ whereas z_{j} is the only word of the four above that is in B_{n+2}^{0}. Therefore we have shown that $y^{*} z_{j} y= \pm y_{n+6}^{*} z_{j} y_{n+6}$ and that therefore $\operatorname{Ad}(y)$ agrees with π on words in B_{n+6}^{0}, up to multiplication by ± 1.

Similarly $A d\left(y_{n+6}\right)$ agrees with π on words in B_{n+12}^{0}, up to scalar multiplication by ± 1. But since B_{n+12}^{0} is generated by B_{n}^{0} and z_{j}, for $-2 \leqslant j \leqslant 9$, and since $\operatorname{Ad}(y), A d\left(y_{n+6}\right)$ and $\operatorname{Ad}\left(y_{n+12}\right)$ all fix the z_{j} 's up to multiplication by ± 1; and since $\operatorname{Ad}\left(y_{n+12}\right)$ agrees with π on B_{n+12}^{0}, it follows that $\operatorname{Ad}(y)$ agrees with π on words in B_{n+12}^{0} up to a multiple of -1 . Continuing inductively establishes the result.

THEOREM 4.12. Let α be a binary shift on R of commutant index 3 and center sequence that eventually coincides with the center sequence of β. Then β and α are cocycle conjugate.

Proof. Let $\mathscr{W}=\mathscr{M}_{\alpha} \mathscr{M}_{\beta}^{-1}$ be the invertible linear transformation defined in the paragraph preceding Lemma 3.7. From Lemma 3.7 it follows that for any $j \in \mathbb{N}$ and $k \in \mathbb{Z}^{+},\left(\mathscr{W}^{-1} e_{j}\right)^{t} \mathscr{B} \mathscr{W}^{-1} e_{j+k}=a_{k}=e_{j}^{t} \mathscr{A} e_{j+k}$. Hence if we define $x_{j}, j \in \mathbb{Z}^{+}$by $x_{j}=$ $\chi\left(\mathscr{W}^{-1} e_{j}\right)$, the x_{j} 's satisfy the same commutation relations as do the spin generators for α.

Since \mathscr{W}^{-1} is an invertible linear transformation on F^{∞} it follows that F^{∞} is spanned by $\left\{\mathscr{W}^{-1} e_{j}: j \geqslant 0\right\}$. From the definition of the x_{j} 's in the preceding paragraph we may therefore conclude that every generator w_{k} is a word in the x_{j} 's. Hence the von Neumann algebra generated by the x_{j} 's coincides with R.

Let y be the unitary operator defined in the previous result. Then y satisfies $\operatorname{Ad}(y)(v)= \pm \pi(v)$ for every word v in the v_{j} 's. We will show that $A d(y) \circ \beta$ is conjugate to α, cf. [10]. We shall do this by demonstrating that $\operatorname{Ad}(y) \circ \beta\left(x_{j}\right)= \pm x_{j+1}$ for all $j \geqslant 0$. To begin note that $\mathscr{W}^{-1} e_{0}=e_{0}$ from Theorem 3.6(ii), $x_{0}=\chi\left(\mathscr{W}^{-1} e_{0}\right)=$ $\chi\left(e_{0}\right)=v_{0}$. But then

$$
\begin{aligned}
y^{*} \beta\left(x_{0}\right) y & =y^{*} v_{1} y \\
& = \pm \pi\left(v_{1}\right) \\
& = \pm \chi\left(\varphi\left(e_{1}\right)\right) \\
& = \pm \chi\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} \mathscr{S}^{-1} e_{1}\right) \\
& = \pm \chi\left(\mathscr{W}^{-1} \mathscr{S} \mathscr{W} e_{0}\right) \\
& = \pm \chi\left(\mathscr{W}^{-1} e_{1}\right)=x_{1}
\end{aligned}
$$

Suppose $y^{*} \beta\left(x_{j}\right) y= \pm x_{j+1}$ for $0 \leqslant j \leqslant k-1$. Since $\beta \circ \chi=\chi \circ \mathscr{S}$ on F_{0}^{∞},

$$
\begin{aligned}
y^{*} \beta\left(x_{k}\right) y & =y^{*} \beta\left(\chi\left(\mathscr{W}^{-1} e_{k}\right)\right) y \\
& = \pm y^{*} \chi\left(\mathscr{S}^{-1} \mathscr{W}_{k}\right) y \\
& = \pm \pi\left(\chi\left(\mathscr{S}^{-1} e_{k}\right)\right)
\end{aligned}
$$

and since $\pi \circ \chi=\chi \circ \varphi$,

$$
\begin{aligned}
y^{*} \beta\left(x_{k}\right) y & = \pm \chi\left(\varphi\left(\mathscr{S}^{W^{-1}} e_{k}\right)\right. \\
& = \pm \chi\left(\mathscr{W}^{-1} \mathscr{S}^{W} \mathscr{S}^{-1} \mathscr{S}^{\mathscr{W}} \mathscr{W}^{-1} e_{k}\right) \\
& = \pm \chi\left(\mathscr{W}^{-1} e_{k+1}\right)= \pm x_{k+1} .
\end{aligned}
$$

Define $x_{j}^{\prime}, j \in \mathbb{N} \cup\{0\}$ inductively by $x_{0}^{\prime}=x_{0}$ and for $j \geqslant 0, x_{j+1}^{\prime}=A d(y) \circ \beta\left(x_{j}^{\prime}\right)$. Then $x_{j}^{\prime}= \pm x_{j}$ for all j and therefore the x_{j}^{\prime} 's satisfy the same commutation relations as the w_{j} 's. Therefore we have shown that $A d(y) \circ \beta$ is conjugate to α from which we can conclude that α and β are cocycle conjugate.

We suspect that for any $k \geqslant 2$ there are only finitely many cocycle conjugacy classes of binary shifts of commutant index k. The proof that we have used to establish the result for commutant index 3 does not immediately generalize, however. In the proof above we relied on the fact that if α has commutant index 3 its center sequence contains infinitely many strings of the form 1210. The analogous result is not necessarily true for the higher commutant cases, i.e., it is not always true that the center sequence of a binary shift of commutant index k with $k \geqslant 4$ contains has the property that $c_{n}=k-1$ for infinitely many n. In [13][Example 4.2], for example, a binary shift of commutant index 4 is identified whose center sequence eventually has period 2. The proof of Theorem 4.12 does not seem to generalize to cases such as this. We also suspect that the eventual pattern of the center sequences of binary shifts of a fixed commutant index is a complete cocycle conjugacy invariant. As evidence to support this conjecture R. T. Powers and the author showed in [9] that if $\operatorname{Ad}(y) \circ \beta$ and α are conjugate with $y \in N N(\beta)$ the center sequences of β and α must eventually coincide.

REFERENCES

[1] W. Arveson and G. Price, The structure of spin systems, Internat. J. Math. 14 (2003), 119-137.
[2] D. Bures and H. Yin, Outer conjugacy of shifts on the hyperfinite I_{1} factor, Pacific J. Math. 142 (1990), 245-257.
[3] A. Connes, Periodic automorphisms of the hyperfinite factor of type $I I_{1}$, Acta Sci. Math. 17 (1977), 39-66.
[4] E. Enomoto and Y. Watatani, Powers' binary shifts on the hyperfinite factor of type $I I_{1}$, Proc. Amer. Math. Soc. 105 (1989), 371-374.
[5] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.
[6] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge Univ. Press, 1987.
[7] M. Newman, Integral matrices, Academic Press, 1986.
[8] R. T. POWERS, An index theory for semigroups of *-endomorphisms of $\mathscr{B}(\mathscr{H})$ and type $I I_{1}$ factors, Canad. J. Math 40 (1988), 86-114.
[9] R. T. Powers and G. Price, Cocycle conjugacy classes of shifts on the hyperfinite $I I_{1}$ factor, J. Funct. Anal. 121 (1994), 275-295.
[10] G. Price, Cocycle conjugacy classes of shifts on the hyperfinite I_{1} factor II, J. Operator Theory 39 (1998), 177-195.
[11] G. Price, Shifts on the hyperfinite $I I_{1}$ factor, J. Functional Analysis 156 (1998), 121-169.
[12] G. Price, Shifts on type $I I_{1}$ factors, Canad. J. Math 39 (1987), 492-511.
[13] G. Price and G. H. Truitt, On the ranks of Toeplitz, matrices over finite fields, Linear Algebra and its Applications 294 (1999), 49-66.

[^0]: Mathematics subject classification (2010): 46L10,46L40,46L55.
 Keywords and phrases: binary shift; cocycle conjugacy; commutant index; center sequence; Toeplitz matrix.

 Supported in part by NSF grant DMS 0700469.

