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BINARY SHIFTS OF HIGHER COMMUTANT INDEX

GEOFFREY L. PRICE

For Robert T. Powers,
on the occasion of his seventieth birthday

Abstract. In a previous paper the author has shown that all binary shifts of commutant index 2
are cocycle conjugate. In this paper we show that there are only finitely many conjugacy classes
of binary shifts of commutant index 3 .

1. Introduction

We continue a study of the binary shifts on the hyperfinite II1 factor R . A binary
shift α is a unital ∗ -endomorphism on R with the property that the subfactor index,
[R : α(R)] , is 2 . The study of binary shifts was initiated by R. T. Powers. In his
original paper Powers classified binary shifts up to conjugacy, [8][Theorem 3.6]. The
cocycle conjugacy classification (Definition 1.1) is still an open problem, but partial
results have been obtained previously by the author and others, see [2, 4, 9, 10, 11, 12].
In [10] the author has shown that all binary shifts of commutant index 2 are cocycle
conjugate, and some results on binary shifts of higher commutant index were obtained
in [11]. It follows from a result in [2] that there are at least 2k−2 distinct cocycle
conjugacy classes of binary shifts of commutant index k , k � 2. Here we consider the
binary shifts of commutant index 3. We show that there are at most 5 distinct cocycle
conjugacy classes of these shifts.

In [10] the author carried out an analysis of the congruence classes of Toeplitz
matrices over GF(2) associated with binary shifts of commutant index 2 (see Defini-
tion 1.2, see also [7]) for a detailed study on the congruence of matrices over a field of
characteristic 2). We showed that the Toeplitz matrices associated with a pair of binary
shifts of commutant index 2 are congruent. This result allows one to show that the cor-
responding binary shifts are cocycle conjugate. Similar techniques were used in [11] to
study certain higher commutant cases. Here we employ an extension of the techniques
used in [10, 11] to study the commutant index 3 case. It appears that additional tech-
niques will be required to settle the question of whether there are only finitely many
distinct cocycle conjugacy classes of higher commutant index.
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A pair α and β of unital ∗ -endomorphisms on R are said to be conjugate in R
if there is a ∗ -automorphism γ of R such that α = γ−1 ◦β ◦ γ . The notion of cocycle
conjugacy is derived from A. Connes’ notion of outer conjugacy of automorphisms in
[3], and is defined as follows.

DEFINITION 1.1. A pair α and β of unital ∗ -endomorphisms on R are cocycle
conjugate if there exists a unitary operator y in R such that Ad(y) ◦α is conjugate to
β .

Next we define what is meant by a binary shift, cf. [8][Definition 3.2]. Let
a0,a1, . . . be a fixed sequence of 0’s and 1’s in GF(2) , with a0 = 0. Let u0,u1, . . .
be a sequence of self-adjoint unitary operators such that, for all j,k ∈ Z+ ,

u ju j+k = (−1)aku j+ku j. (1.1)

We shall call generators with the relations above a spin system (see [1] for results on
more general spin systems). In [12] it was shown that the AF -algebra generated by a
spin system is simple if and only if the sequence . . . ,a2,a1,a0,a1,a2, . . . is not periodic.
In every such case the C∗ -algebra generated by the spin system is isomorphic to the
CAR algebra, [11][Theorem 3.5] (see also [1]). We shall assume in all that follows
that the sequences a0,a1,a2, . . . we study have this property, and we shall refer to such
sequences as the bitstream for the spin system. Let τ be the unique tracial state on the
CAR algebra. It follows that τ(w) = 0 for any non-trivial word u = uk0

0 uk1
1 . . .ukn

n in the
u j ’s. Using the GNS representation of the CAR algebra A with respect to the trace τ
one may consider A as a strongly dense subalgebra of R . In what follows we abuse
notation by viewing A as a C∗ -subalgebra of R . Thus the set of linear combinations of
words in the generators forms a weakly dense submanifold of the algebra R .

The assumption that the commutation relations are translation-invariant makes it
possible to define a unital ∗ -endomorphism α on A by setting α(u j) = u j+1 and
extending the definition of α to linear combinations of words in the obvious way. The
mapping α extends to a unital ∗ -endomorphism on R , which we also denote by α . As
noted above the subfactor index of α(R) in R is 2 , see [8][Section 3].

As shown in [8] the bitstream a0,a1, . . . of a binary shift α is a complete conju-
gacy invariant, i.e., binary shifts α and β are conjugate if and only if their bitstreams
are identical. We conclude this section by presenting two cocycle conjugacy invariants
for binary shifts on R .

DEFINITION 1.2. The commutant index of a binary shift α is the first positive
integer k (or ∞) such that the relative commutant algebra αk(R)′ ∩R is nontrivial.

It follows from a remark in [5] that k � 2. Examples of binary shifts of commutant
k exist for every k ∈ {∞,2,3, . . .} , [11]. For example, fix k � 2 and consider the
bitstream 0 . . .010 . . . where ai = 0 for i �= k− 1 and ak−1 = 1. It is straightforward
to show that α has commutant index k and that u0 generates the algebra αk(R)′ ∩R .
At the other extreme, α has infinite commutant index if and only if its bitstream is not
eventually periodic (by eventually periodic we mean that there exists a non-negative
integer q such that aq,aq+1, . . . is a periodic sequence).
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THEOREM 1.3. [11][Cor. 5.7] Let α be a binary shift of finite commutant index
k . Then there is a word u = ur0

0 ur1
1 . . .urm

m , with r0 necessarily equal to 1 , which gen-
erates αk(R)′ ∩R. In fact for j � 0 the algebra αk+ j(R)′ ∩R is the 2 j+1 -dimensional
algebra generated by u,α(u), . . . ,α j(u) .

COROLLARY 1.4. [2][Theorem 2.1] Let α be a binary shift of finite index k .
Then its bitstream a0,a1, ... is eventually periodic, i.e. there is a non-negative integer
r � k such that ar,ar+1, . . . is periodic.

Proof. Let u = ur0
0 ur1

1 . . .urm
m be the word generating αk(R)′ ∩R . Since u com-

mutes with the generators uk,uk+1,uk+2, . . . we obtain the following homogeneous sys-
tem of equations over GF(2) (where, if j < 0 in the system below we define a j to be
a| j|) ):

akr0 +ak−1r1 +ak−2r2 + . . .+ak−mrm = 0

ak+1r0 +akr1 +ak−1r2 + . . .+ak−m+1rm = 0

ak+2r0 +ak+1r1 +akr2 + . . .+ak−m+2rm = 0

...

Since r0 = 1 we may rewrite the system as

ak = ak−1r1 +ak−2r2 + . . .+ak−mrm

ak+1 = akr1 +ak−1r2 + . . .+ak−m+1rm

ak+2 = ak+1r1 +akr2 + . . .+ak−m+2rm

...

It follows (see [6][Theorem 6.11]) that the sequence ak,ak+1, . . . is periodic. �
Let u be the word generating αk(R)′ ∩R in the statement of the theorem above.

Let d j, for j � 0, be the sequence of 0’s and 1’s satisfying uα j(u) = (−1)d jα j(u)u .
Since α j(u)∈αk(R) for j � k we have d j = 0 for these j . On the other hand, αk−1(u)
has the form ur0

k−1u
r1
k . . .urm

m+k−1 = uk−1w , where w ∈ αk(R) . Since α has commutant
index k , u anticommutes with uk−1 and commutes with w . Therefore u anticommutes
with αk−1(u) and so dk−1 = 1. Note that the sequence d0,d1, . . . has the property
that . . . ,d2,d1,d0,d1,d2, . . . is not periodic, so by [12] the von Neumann algebra R∞
generated by u,α(u),α2(u) . . . is also isomorphic to R . It follows that α restricts to a
binary shift on R∞ with bitstream d0,d1, . . . . We denote the restriction of α to R∞ by
α∞ . Following [2], (see also [4]) α∞ is called the derived shift of α and d0,d1, . . . is
the derived bitstream. In [2] it is shown that the derived bitstream is a cocycle conjugacy
invariant for α , i.e. a necessary condition for α and β to be cocycle conjugate is that
their derived shifts α∞ and β∞ are conjugate.

It is easy to show that a binary shift α with a finitely non-zero bitstream a0,a1, . . . ,
ak−2,1,0,0, . . . , has commutant index k , and in this case α coincides with its derived
shift α∞ , as u = u0 generates αk(R)′ ∩R . On the other hand any commutant index k
binary shift must have a derived shift with a bitstream of the form above. Therefore we
have the following.
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THEOREM 1.5. [2]. There are at least 2k−2 distinct cocycle conjugacy classes of
binary shifts of commutant index k , k � 2 .

As mentioned above there is only one class of binary shifts of index 2 up to cocy-
cle conjugacy. The preceding theorem shows that there are at least two cocycle conju-
gacy classes of binary shifts of commutant index 3. The object of this paper is to show
that there are at most five. We believe that there are exactly five but we do not know
how to prove this.

We note that nothing is known about the number of cocycle conjugacy classes of
binary shifts of commutant index ∞ . These are the binary shifts whose bitstreams are
never eventually periodic. It is not known, for example, whether all binary shifts of
commutant index ∞ are cocycle conjugate to each other or whether there are uncount-
ably many distinct cocycle conjugacy classes.

2. The center sequence

Let a0,a1, . . . be the bitstream of a binary shift α . We define An for each n ∈ N

to be the n×n matrix

An =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . an−1

a1 a0 a1 . . . an−1

a2 a1 a0 . . . an−1
...

...
...

. . .
...

an−1 an−2 an−3 . . . a0

⎞
⎟⎟⎟⎟⎟⎠ (2.1)

with entries in GF(2) , and call An the n×n Toeplitz matrix associated with α , or the
n×n Toeplitz matrix associated with the bitstream a0,a1,a2, . . . .

For each n ∈ N let cn = ν(n) be the nullity of An . The center sequence c1,c2, . . .
has the following remarkable property.

THEOREM 2.1. [11][Corollary 2.10] The center sequence is the concatenation of
strings of even length. Its strings are of the form 1,0 or 1,2, . . . , j− 1, j, j− 1, . . . ,0
for some j � 2 , where j may vary from one string to the next. In particular, cn is odd
if and only if n is.

For example, given the bitstream 011000 . . . it is possible to show that the corre-
sponding center sequence is 101210 repeated forever (see Theorem 2.5 (vi)).

DEFINITION 2.2. For n ∈ N let An be the finite-dimensional von Neumann sub-
algebra of R generated by u0,u1, . . . ,un−1 .

Note that An has dimension 2n , consisting of all linear combinations of words of
the form uk0

0 uk1
1 . . .ukn−1

n−1 , with exponents k j ∈ {0,1} . The following result links cn to
the dimension of the center of An of R and justifies the name center sequence.

THEOREM 2.3. [11][Lemma 3.3, Theorem 3.4] The center Z (An) of An is an al-
gebra of dimension 2cn . More precisely, suppose cr+1,cr+2, . . . ,cr+2 j is a string in the
center sequence of the form 1,2, . . . , j−1, j, j−1, . . . ,1,0 , for some r � 0 . Then there
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is a word z of the form z = us0
0 us1

1 . . .usr
r in An , with s0 = 1 = sr , such that Z (Ar+q) is

generated by z,α(z), . . . ,αq−1(z) if 1 � q � j and by αq− j−1(z),αq− j(z), . . . ,α j−1(z)
if j < q � 2 j . The exponents of z read the same backwards as forwards, i.e., sr,sr−1, . . . ,
s0 is the same as s0,s1, . . . ,sr .

REMARK 2.4. In what follows we shall refer to z as a palindrome since its expo-
nents s0,s1, . . . ,sr read the same in reverse order.

In this paper we consider almost exclusively binary shifts of commutant index 3.
The following five binary shifts of commutant index 3 will play an important role in
the analysis. The notation b1 . . .bn means that the pattern b1 . . .bn repeats forever.

THEOREM 2.5. Consider the following binary shifts β1 through β5 , determined
by the given bitstreams.

(i) β1 has bitstream 0110 .

(ii) β2 has bitstream 010 .

(iii) β3 has bitstream 001 .

(iv) β4 has bitstream 0010 .

(v) β5 has bitstream 0110 .

Each of these binary shifts has commutant index 3 .

(vi) The word v = v0 generates β 3
1 (R)′ ∩R and v anticommutes with β1(v) = v1 .

Hence β1 coincides with its derived shift β1∞ . The center sequence is 101210.

(vii) The word v = v0v3 generates β 3
2 (R)′ ∩R and v anticommutes with β2(v) . Hence

its derived shift has bitstream 0110 , i.e., β2∞ is conjugate to β1 . The center
sequence of β2 is 10101210.

(viii) The word v = v0v3 generates β 3
3 (R)′ ∩R and v anticommutes with β3(v) . Hence

its derived shift has bitstream 0010 , i.e., β3∞ is conjugate to β1 . The center
sequence of β3 is 121010.

(ix) The word v = v0 generates β 3
4 (R)′ ∩R and v commutes with β4(v) = v1 . Hence

β4 coincides with its derived shift β4∞ . Its center sequence is 1210 .

(x) The word v = v0v1v2v3 generates β 3
5 (R)′ ∩R and v commutes with β5(v) . Hence

its derived shift has bitstream 0010 , i.e., β5∞ is conjugate to β4 . The center
sequence of β5 is 101210.

Proof. We illustrate the proof using β = β2 . We show β has commutant index
3. It is easy to show, using the bitstream for β , that v = v0v3 ∈ β 3(R)′ ∩R . Since
[R : β (R)] = 2 ([8]) it follows from [5] that β (R)′ ∩R is trivial. Suppose there is a
nontrivial word w in β 2(R)′ ∩R , then by [11], v must be in the ∗ -subalgebra generated
by w and β (w) . Hence w must have the form vk0

0 vk1
1 vk2

2 vk3
3 with k0 = 1. If k3 = 1 then
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w = ±v , but v does not commute with v2 . Hence w = v0v
k1
1 vk2

2 and v = ±wβ (w) =
±v0v

1+k1
1 vk1+k2

2 vk2
3 . This shows that w = v0v1v2 , but this word does not commute with

v2 , so we have shown that β 2(R)′ ∩R is trivial, and therefore β has commutant index
3.

We now show that the center sequence for β is of eventual period 6 and has the
form 10101210. . . . Using the bitstream 010 for β , easy calculations show that the
first five entries c0,c1,c2,c3,c4 of the center sequence for β are 1,0,1,0,1 (see Theo-
rem 2.3). (Alternatively, one can use the nullity sequence corresponding to the Toeplitz
matrices for β to show that this is so.) For each n ∈ N of the form n = 6k−2,k ∈ N ,
we will show that the center Z (Bn) of the algebra Bn = {v0,v1, . . . ,vn}′′ is generated
by the word v = v0v1 . . .vn and Z (Bn+1) is generated by v and β (v) . It is trivial
to show this by direct calculation for n = 4. Suppose the result holds for n = 6k− 2
for some k � 1. Consider the word v′ = v0v1 . . .vn+6 = (v0v1 . . .vn)(vn+1 . . .vn+6) =
v(vn+1 . . .vn+6) = −v(vn+1vn+4)(vn+2vn+5)(vn+3vn+6) . Since v0v3 ∈ β 3(R)′ ∩R it fol-
lows from the symmetry of the commutation relations that the words vn+1vn+4,vn+2vn+5

and vn+3vn+6 all commute with v0 through vn+1 . But v ∈ Z (Bn+1) , so v0 through
vn+1 also commute with v . Hence v0 through vn+1 all commute with v′ , by the in-
duction assumption. By the symmetry of v′ , moreover, it follows, since v0 through v6

all commute with v′ and β (v′) , that vn+7 down through vn+1 all commute with v′ .
Hence v′ is in the center of both Bn+6 and Bn+7 . Similarly using the assumption that
β (v) ∈ Z (Bn+1) , it follows that β (v′) is in the center of Bn+7 . Therefore cn+6 is at
least 1 and cn+7 is at least 2 .

Next note that v0 anticommutes with β 2(v′) = v2 . . .vn+8 because v0 commutes
with β (v′) , commutes with vn+8 (because n + 8 = 6(k + 1)− 2 + 2 = 6(k + 1) and
a6 j = 0 for all j ) and anticommutes with v1 : therefore β 2(v′) is not in Z (Bn+8) , so
by Theorem 2.3, cn+8 < cn+7 .

Next observe that for any r � 3 the center sequence term cr satisfies cr < 3.
For suppose r is the first r � 3 such that cr = 3. By the observations made about
c0,c1,c2,c3,c4 in the first paragraph of the proof, r � 6. Then cr−3,cr−2,cr−1 must be
0,1,2 respectively, by Theorem 2.1. Then by Theorem 2.2 there is an element z∈Br−2

such that z,β (z) and β 2(z) are in Z (Br) and z is a word beginning with v0 . Hence
β 2(z) begins with v2 . Since v0v3 ∈ Br generates β 3(R)′ ∩R and also anticommutes
with v2 , however, it follows that v0v3 anticommutes with β 2(z) . Therefore β 2(z) is
not in the center of Br , a contradiction, and we have established our claim.

Combining the observations of the last two paragraphs together with Theorem 2.1,
we see that cn,cn+1,cn+2,cn+3,cn+4 is 1,2,1,0,1. Then either cn+5 = 0 or cn+5 = 2.
If cn+5 = 2 it follows from the bound cr < 3 for r � 3 that cn+6 = 1 and cn+7 = 0. But
we have shown that cn+7 � 2. Hence cn+5 = 0,cn+6 = 1. This proves the assertions
about the form of the center sequence for β .

Finally, the claims about the bitstreams of the derived shifts β j∞ for each of the
β j ’s are easily verified, using the Powers’ result that two shifts are conjugate if and only
if they have the same bitstream, [8][Theorem 3.6]. �
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THEOREM 2.6. Let σ be a binary shift of commutant index 3 . Then its center
sequence eventually coincides with the center sequence of one of the shifts β j , 1 � j �
5 .

Proof. The derived shift σ∞ must have bitstream either 0010 or 0110. By the
theorem above the center sequence of σ∞ has period 4 or 6. From [13][Theorem 3.7]
the center sequence of σ is eventually periodic with period an even integer dividing the
period of σ∞ . Therefore the possible periods are 2, 4 or 6. If the center sequence of σ
has eventual period 4 or 6 it follows from Theorem 2.1 that its center sequence must
eventually agree with that of one of the five shifts β j , 1 � j � 5. We next rule out the
possibility that the center sequence of σ has eventual period 2.

Let w = vr0
0 vr1

1 . . .vrm
m be the nontrivial word which generates σ3(R)′ ∩R . Then by

Theorem 1.3, w must anticommute with v2 and r0 must equal 1.
For each positive integer p let Ap be the 2p -dimensional algebra generated by

the spin generators v0 through vp−1 of σ . Suppose the center sequence eventually
has period 2. Fix an even positive integer n such that n > m and cn,cn+1,cn+2, . . . is
periodic with period 2. Then cn = cn+2 = . . . = 0 and cn+1 = cn+3 = . . . = 1. Let zn

(resp., zn+2 ) be a nontrivial word generating Z (An+1) (resp. Z (An+3)) . We know by
Theorem 2.3 that both zn and zn+2 “start” with v0 and that zn (resp., zn+2 ) ends in vn ,
(resp., in vn+2 ).

For the remainder of the proof we will use the notation x ∼ y for words x and
y in the generators v0,v1, . . . to indicate that x = ±y . Note, for example, that if y =
vk0
0 vk1

1 . . .vkr
r is any word in the v j ’s then y∗ = vkr

r . . .vk1
1 vk0

0 and y ∼ y∗ .
Consider x = σ2(zn)zn+2 , a word which begins with v0 . Note that x ∈ An+2 be-

cause because both σ2(zn) and zn+2 end in vn+2 , and therefore x ends in vn+1 or ear-
lier. σ2(zn) commutes with v2 through vn+2 , since zn commutes with v0 through vn .
Also zn anticommutes with vn+1 , otherwise we would conclude that zn ∈ Z (An+2) ,
a contradiction since cn+2 = 0. Since zn anticommutes with vn+1 it follows from
the fact zn is a palindrome (Theorem 2.3), that σ2(zn) anticommutes with v1 . Since
zn+2 ∈ Z (An+3) the facts about σ2(zn) imply that σ2(zn)zn+2 anticommutes with v1

and commutes with v2 through vn+2 .
Next consider the word wx , which commutes with v3, . . . ,vn+2 , anticommutes

with v2 , and starts with a generator after v0 . Hence we can define y by y = σ−1(wx) .
The word y commutes with v2, . . . ,vn+1 and anticommutes with v1 . Also y ∈ An+1

since x ∈ An+2 and m < n , so w ∈ An+1 .
We claim that y starts with the generator v0 . For if y starts with v2 or higher,

σ−2(y) commutes with v0 through vn−1 and lies in An−1 . Hence σ−2(y) ∈ Ac
n ∩

An−1 ⊂ Z (An) which is trivial, since cn = 0. If y starts with v1 then since it anticom-
mutes with v1 and commutes with v2 through vn+1 we conclude that y anticommutes
with itself, a contradiction. Hence we have determined that y starts with v0 .

Since both x and y start with v0 we can form σ−1(xy) , which commutes with v0

since both x and y anticommute with v1 . Hence σ−1(xy) commutes with v0 through
vn , i.e., σ−1(xy) ∈ Z (An+1) . Therefore either σ−1(xy) ∼ zn or σ−1(xy) ∼ I .

First suppose σ−1(xy)∼ zn . Then xy∼σ(zn) , or xσ−1(wx)∼σ(zn) , or σ(x)wx∼
σ2(zn) , or σ(x)wσ2(zn)zn+2 , or σ(x)wzn+2 ∼ I , so wzn+2 ∼ σ(x) . Since w commutes
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with vn+3 and zn+2 does not (otherwise zn+2 ∈ Z (An+4) , which is trivial) the word
wzn+2 anticommutes with vn+3 . But σ(x) commutes with vn+3 , a contradiction. So
we have ruled out the possibility that σ−1(xy) ∼ zn .

Next suppose σ−1(xy) ∼ I . Then xy ∼ I , so x ∼ y = σ−1(wx) , so σ(x) ∼ wx ,
or w ∼ xσ(x) . Therefore xσ(x) commutes with v j , for all j � 3. Since x commutes
with v2 through vn+2 , σ(x) commutes with v3 through vn+3 . Since both w and σ(x)
commute with vn+3 , so must x . Continuing in this way we conclude that x commutes
with v j for all j � 2. Then x ∈ σ2(R)′ ∩R , which is trivial. But x starts with v0 and
so is not trivial. This contradiction shows that xy � I . Hence we have ruled out the
possibility that the center sequence has eventual period 2.

As we have ruled out the possibility that a shift of commutant index 3 could have
a center sequence of eventual period 2, we see from the first paragraph of the proof that
if the center sequence of the derived shift σ∞ has eventual period 4 then so does σ .
Similarly if the eventual period of the center sequence of σ∞ is 6 then the same is true
for σ . An application of Theorem 2.3 on the form of strings of a center sequence now
establishes the result. �

When the bitstream of σ∞ has the form 0010 (see Theorem2.5, see also [13][Theo-
rem 2.10]), i.e., when the word v that generates σ3(R)′ ∩R commutes with σ(v) then
the eventual period of both σ and σ∞ is 4 . In the case when σ is a binary shift for
which v , the generator of σ3(R)′ ∩R , anticommutes with σ(v) , the eventual period of
the center sequence of σ∞ and of σ is 6 . Hence we have established the following.

COROLLARY 2.7. Let σ be a binary shift of commutant index 3 . If σ∞ has
bitstream 0010 then the center sequences of both σ∞ and σ have eventual period 4 .
If σ∞ has bitstream 0110 then the center sequences of both σ and σ∞ have eventual
period 6 .

3. Toeplitz matrices and congruence

As we have seen, the Toeplitz matrix associated with a bitstream contains impor-
tant information about the corresponding binary shift. In this section we show that if a
pair of binary shifts of commutant index 3 have center sequences which eventually co-
incide, then their associated Toeplitz matrices are congruent. We first recall the notion
of congruence of a pair of n×n matrices. See [7][Chapter IV] for details.

DEFINITION 3.1. A pair of n×n matrices A and B are congruent if there is a
unitary matrix U such that UtA U = B , where Ut is the transpose of U .

It is clear that congruence of matrices is an equivalence relation and that congruent
matrices have the same rank.

As it will be useful to consider infinite Toeplitz matrices (see below) we will de-
velop a notion of congruence in this context. Before we do so we introduce some
notation. Given a binary shift α of commutant index 3, with corresponding bitstream
a0,a1,a2, . . . , let A be the semi-infinite Toeplitz matrix over GF(2) determined by the
bitstream for α , i.e.,
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 . . .
a1 a0 a1 a2 a3 . . .
a2 a1 a0 a1 a2 . . .
a3 a2 a1 a0 a1 . . .
a4 a3 a2 a1 a0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

Note that for n � 1, An from (2.1) is the n× n upper left block of A . For
convenience in subsequent calculations the rows and columns of An are numbered
from 0 to n−1. Let u0,u1,u2, . . . be the generators of α satisfying the commutation
relations

uiui+k = (−1)akui+kui, i,k ∈ Z
+.

Let An be the 2n -dimensional C∗ -subalgebra generated by the words in the spin gen-
erators u0,u1, . . . ,un−1 . Let w = ur0

0 ur1
1 . . .urm

m be the word generating α3(R)′ ∩R .

DEFINITION 3.2. For fixed n � 2 and i, j ∈ {0, . . . ,n−1} with i �= j , let Ei j be
the n×n elementary matrix with 1’s along the main diagonal, a 1 in the (i, j) position
of the matrix, and 0’s elsewhere.

We will always be able to determine the size of the matrix Ei j from the context in
which it appears. The following properties of Ei j are easily verified.

PROPOSITION 3.3. Let B be an n×n matrix over GF(2) . Then

1. BEi j is the matrix obtained from B by adding column i to column j .

2. E jiB is the matrix obtained from B by adding row i to row j .

3. E ji = Et
i j , i.e., E ji is the transpose of Ei j .

4. E−1
i j = Ei j .

The following result is immediate from combining the first two properties of the
preceding Proposition and the fact that the matrices An,n ∈ N over GF(2) have 0
diagonal.

COROLLARY 3.4. If An is the n× n corner matrix of A and Ei j is an n× n
elementary matrix then Et

i jAnEi j has 0 diagonal.

Let β be another binary shift of commutant index 3, with bitstream b0,b1, . . . ,
Toeplitz matrix B , whose center sequence eventually agrees with that of α . We may
then conclude from the paragraph preceding Corollary 2.7 that the bitstreams of their
derived shifts α∞ and β∞ coincide. We use the notation d0d1d20 for the bitstream
of α∞ and β∞ , where d2 = 1 and d1 is 0 or 1, depending upon whether the center
sequence of α has period 4 or 6.

We will show for n sufficiently large that An and Bn are congruent. We will
establish this congruence with the use of products of n× n elementary matrices. We
first show that for n sufficiently large An is congruent to a matrix of a special form.



296 GEOFFREY L. PRICE

A similar result will follow for Bn . We will make use of products of the form E j =
Erm

j−m, jE
rm−1
j−m+1, j . . .E

r1
j−1, j . By Theorem 2.5 there are infinitely many p ∈ N such that

the string cpcp+1cp+2cp+3cp+4 is 01210. Fix n > p+4 > p > m . Using the fact that
cp+2 = 2, [11][Corollary 6.5] shows that (En−1En−2 . . .Ep+2)tAnEn−1En−2 . . .Ep+2 =
Fn , where Fn is the matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0

...
...

Ap+2 0 . . . 0

e2 0 . . . 0

e1 e2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 e2 e1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 e2 d1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 0 d2 d1 0 d1 d2 0 . . . 0
...

...
...

. . .
...

. . .

. . .

. . .

0 0 . . . 0 0 . . . 0 d2 d1 0 d1

0 0 . . . 0 0 . . . 0 0 d2 d1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

and where d2 = e2 = 1.
Since the matrices Ap,Ap+1,Ap+2 have nullities 0,1,2 respectively, there is, by

Theorem 2.3, an element z = us0
0 us1

1 . . .u
sp
p with the following properties: z generates

Z (Ap+1) , z,α(z) generate Z (Ap+2) , and α(z) generates Z (Ap+3) . Also s0 = 1
and the vector of exponents, s = [s0,s1, . . . ,sp] , reads the same backwards as forwards.
Since α(z) is in the center Z (Ap+2) of Ap+2 it follows that the dot product (over
GF(2)) of the vector [0,s0,s1, . . . ,sp] with all of the rows of Ap+2 gives 0. The same
holds for the dot product of this vector with [0,0, . . . ,0,e2,e1] in the row below the cor-
ner matrix Ap+2 . To see this, observe that the latter vector is a linear combination of the
rows of Ap+2 and the row vector [ap+2,ap+1, . . . ,a0] . But [0,s0,s1, . . . ,sp] annihilates
the rows of Ap+2 and [s0,s1, . . . ,sp] annihilates the last row [ap,ap−1, . . . ,a0] of Ap+1 .
These observations establish the claim. Hence if Dp+1 = E

cp−1
p,p+1E

cp−2
p−1,p+1 . . .Ec0

1,p+1 ,
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then via Dp+1 the matrix Fn is congruent to the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
...

...
...

Ap+1

0 0 . . . 0

0 e2 0 . . . 0

0 0 . . . 0 0 0 0 e2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 e2 e1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 e2 d1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 0 d2 d1 0 d1 d2 0 . . . 0
...

...
...

. . .
...

. . .

. . .

. . .

0 0 . . . 0 0 . . . 0 d2 d1 0 d1

0 0 . . . 0 0 . . . 0 0 d2 d1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

obtained from Fn by changing the last row and column of the corner matrix Ap+2 to
0’s, and replacing e1 with 0 in row p+1 and column p+1 of Fn .

Next note that since s annihilates the rows of Ap+1 it follows that if we set Dp to
be E

cp−1
p−1,p . . .Ec1

1,p (note that Ec0
0,p = E0,p is “missing” from this expression) then via Dp

the matrix above is congruent to the matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 0 . . . 0
...

...
...

...

Ap

ap−2 0 0 . . . 0

a0 a1 . . . ap−2 0 0 e2 0 . . . 0

0 0 . . . 0 0 0 0 e2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 e2 e1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 e2 d1 0 d1 d2 0 . . . 0

0 0 . . . 0 0 0 d2 d1 0 d1 d2 0 . . . 0
...

...
...

. . .
...

. . .
. . .

. . .

0 0 . . . 0 0 . . . 0 d2 d1 0 d1

0 0 . . . 0 0 . . . 0 0 d2 d1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Applying techniques from [11], and using the assumption that Ap is invertible,
there is a product D0 of elementary matrices Ejk with 0 < j < p−1 and 0 < k � p−1
which implements the congruence between Ap and Jp , where Jp is the Toeplitz ma-
trix with 1’s along its secondary diagonals and 0’s elsewhere. It follows, by comparing
the first and last columns of the matrix

Rp+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1
...

Ap

...
ap−2

a0 . . . . . . ap−2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that D t
0Rp+1D0 is the matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
...

Jp

...
0

0 1 0 . . . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The latter matrix is congruent, via the product K = E2pE4p . . .Ep−2,p , to the ma-
trix Jp+1 . Hence An is congruent via En−2 . . .Ep+2Dp+1DpD0K to the matrix Cn :

Let β be any other binary shift of commutant index 3 whose center sequence
eventually coincides with the center sequence of α . If β has bitstream b0b1b2 . . . let
Bn denote the n×n Toeplitz matrix whose first row is b0,b1, . . . ,bn−1. Then following
the procedure above shows that for n sufficiently both Bn and An are congruent to Cn .
We will apply this observation to show that the two binary shifts α and β are cocycle
conjugate.

We will use the notation Mα(n) to denote the matrix En−1 . . .Ep+2Dp+1DpD0K
for α which implements the congruence between An and Cn . (We will also simplify
the notation by writing Mα(n) as En−1 . . .Ep+2F in what follows.) Similarly Bn and
Cn are congruent via the same procedure and we shall use Mβ (n) to denote the matrix
implementing this congruence.

Denote by Fn , (resp., F∞ ) the vector space of n -tuples [t0,t1, . . . ,tn−1] (resp. of
finitely non-zero ∞-tuples) over the field GF(2) . It will be convenient to view Fk as a
subspace of Fn for non-negative integers k < n , and Fn as a subspace of F∞ , for all
n . Let {e j : j � 0} be the standard basis for F∞ , i.e. e j has a 1 in the jth spot and
0’s elsewhere. We shall also use the notation Fn

0 , (resp., F∞
0 ) for the subspace of Fn

(resp., of F∞) consisting of all vectors whose first entry is 0.
For 0 � j � j + k the identities

(e j)tAne j+k = ak (3.3)

are easily verified.
The next result follows from an analysis of the transformations Mα(n) . Details

of the proof may be found in [11]. In the statement of the following lemma we shall
assume that p is a fixed integer chosen so that p > m , where m is the length of the word
w = ur0

0 . . .urm
m generating α3(R)′ ∩R and Ap and Ap+4 are both invertible. Also we

shall assume n ∈ N is chosen so that n > p+4.

LEMMA 3.5. (cf. [11][Theorem 6.12]) Let n and p be as above. Then

(o) Mα(n)tAnMα(n) = Cn ,

(i) for any j such that 0 � j � n−1 , and any k � 1 , Mα(n+k)e j = Mα(n)e j and
Mα(n+ k)−1e j = Mα(n)−1e j ,
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(ii) Mα(n)e0 = e0 = Mα(n)−1e0 ,

(iii) if v∈ Fn
0 , then Mα(n)v and Mα(n)−1v lie in Fn

0 ,

(iv) if v∈ F p+2
0 then Mα(n)v and Mα(n)v lie in F p+2

0 .

(v) if j � p+2 then both Mα(n)e j and Mα(n)−1e j lie in F j+1
0 (the linear span of

{e1, . . . ,e j} .

We remark that it follows from the form of Mα(n) for n > p+4 that if p+4 <
k � n then Mα(n)ek and Mα(n)−1ek are both in Fk but not in Fk−1 , i.e. that both of
these vectors end in ek .

Given the results of the lemma it makes sense to define an invertible transformation
Mα on F∞

0 by setting
Mαe j = →

n→∞
limMα(n)e j,

for j � 1, and extending Mα to all of F∞
0 by linearity. Similarly for M−1

α .
From now on let β be another binary shift of commutant index 3 whose center

sequence eventually agrees with that of α . Let v0,v1, . . . be the spin generators for β ,
and let w′ = vs0

0 . . .v
sm′
m′ be the word generating β 3(R)′ ∩R . Let b0b1 . . . be the bitstream

defining the commutation relations among the generators. Let B be the Toeplitz matrix
corresponding to this bitstream with upper n× n corners denoted by Bn . Finally let
W (n) = Wα ,β (n) be the invertible linear transformation Mα(n)M−1

β (n) on Fn . Note
from the lemma that W (n) restricts to an invertible transformation on Fn

0 .
For the remainder of this section we assume that p has been chosen so that p >

m0 = max{m,m′} , and such that the center sequences of both α and β agree and
coincide with one of the center sequences in Theorem 2.5 from position p and above.
We assume p has also been chosen so that the center sequences for both α and β take
the values 01210 for k = p through k = p+4. In particular Ap,Bp,Ap+4,Bp+4 are
all invertible. Finally, we shall assume n ∈ N has been chosen so that n > p+4.

The following result is obtained as an application of the lemma. The proof uses
the fact that E−1

i j = Ei j .

THEOREM 3.6. Let S denote the unilateral shift on F∞ . Under the standing
assumptions of the preceding,

(0) W (n)tAnW (n) = Bn ,

(i) for any j such that 0 � j � n− 1 ,and any k � 1 ,W (n + k)e j = W (n)e j and
W (n+ k)−1e j = W (n)−1 ,

(ii) W (n)e0 = e0 = W (n)−1e0 ,

(iii) if v∈ Fn
0 then W (n)v and W (n)−1 v lie in Fn

0 ,

(iv) if v∈ F p+2
0 then W (n)v and W (n)−1 v lie in F p+2

0 ,

(v) if j � p+2 then both Wα(n)e j and Wα(n)−1e j lie in F j+1
0 (the linear span of

{e1, . . . ,e j} ,
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(vi) for any k such that n > k > p, and for any v of the form sm′ek−m′
+ sm′−1ek−(m′−1) + . . . + s1ek−1 + ek , W (n)S v= S W (n)v = rmek+1−m +
rm−1ek+1−(m−1) + . . .+ r1ek + ek+1 .

Proof. All but the last statement follow from their counterparts in the lemma.
For (vi) note that if E ′

j = E
sm′
j−m′, jE j−(m′−1, j)

sm′−1 . . .Es1
j−1, j for j > m0 , then Mβ (n) =

E ′
n−1E

′
n−2 . . .E ′

p+2F
′ , where F ′ is the counterpart for β of F in the expression for

Mα(n) . Noting that (E ′
k)

−1v = ek and that (E ′
j )
−1v = v for j > k , it follows that

W (n)v = Mα(n)Mβ (n)−1v

= Mα(n)(E ′
n−1E

′
n−2 . . .E ′

p+2F
′)−1v

= Mα(n)(F ′)−1(E ′
p+2)

−1 . . . (E ′
n−1)

−1v

= Mα(n)(F ′)−1(E ′
p+2)

−1 . . . (E ′
k)

−1v

= Mα(n)(F ′)−1(E ′
p+2)

−1 . . . (E ′
k−1)

−1ek

= Mα(n)(F ′)−1ek

= Mα(n)ek

= En−1En−2 . . .Ep+2Fek

= En−1En−2 . . .Ep+2ek

= En−1En−2 . . .Ekek

= En−1En−2 . . .Ek+1(rmek−m + rm−1ek−(m−1) + . . .+ r1ek−1 + ek)

= rmek−m + rm−1ek−(m−1) + . . .+ r1ek−1 + ek.

The last statement of the theorem follows from this calculation. �

From the theorem it makes sense to define W on F∞ as W = →
n→∞

limW (n) .

LEMMA 3.7. (cf. [11][Theorem 6.12]) For all j > 0 and for all k � 0 it follows
that (W −1e j)tB(W −1e j+k) = ak .

Proof. We have

(W −1e j)tBW −1e j+k = (Mβ M−1
α e j)tBMβ M−1

α e j+k

= et
j(M

−1
α )tM t

β BMβ M−1
α e j+k

= et
j(M

−1
α )tC M−1

α e j+k, where C = “lim”Cn

= et
jA e j+k

= ak. �

As we shall see in the next section, the linear transformation W −1S W S −1 on
F∞

0 in the following lemma is closely related to a unitary operator in R which imple-
ments the cocycle conjugacy between α and β .
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LEMMA 3.8. For j > 0 and k � 0 , (W −1S W S −1e j)tBW −1S W S −1e j+k =
bk .

Proof. We calculate

(W −1S W S −1e j)tBW −1S W S −1e j+k = (W −1S W e j−1)tBW −1S W e j+k−1

= et
j−1W

tS t(W −1)tBW −1S W e j+k−1

= et
j−1W

tS tA S W e j+k−1

= et
j−1W

tAW e j+k−1

= et
j−1Be j+k−1

= bk,

where we have used the fact that vS tA S w = vA w for any vectors v and w in
F∞ . �

REMARK 3.9. From the proof of (vi) in the theorem note that M−1
β v = ek for

k > p , where v = sm′ek−m′ + sm′−1ek−(m′−1) + . . .+ s1ek−1 + ek .

COROLLARY 3.10. The mapping ϕ = W −1S W S −1 is well-defined as a linear
transformation on F∞

0 and is in fact an isomorphism on F∞
0 . Moreover, when restricting

B to F∞
0 ,

(W −1S W S −1)tB �F∞
0

(W −1S W S −1) = B �F∞
0

.

Therefore ϕ(e j)tBϕ(ek) = et
jBek for all j,k ∈ N .

Proof. Note by (ii),(iii) and (iv) of the theorem, ϕ(e1)= W −1S W e0 = W −1S e0

= W −1e1 ∈ F∞
0 , and for k > 1 parts (iii) and (iv) of the theorem show that ϕ(ek)∈F∞

0
as well. In particular it follows from (iii) that ϕ �Fn

0
is an isomorphism on Fn

0 for all
n � p , hence ϕ itself is actually an isomorphism on F∞

0 .
It is straightforward to see, from the symmetry of A , that for j,k ∈ N , et

jA ek =
et

j−1A ek−1 . Therefore, on F∞
0 ,

(W −1S W S −1)tB(W −1S W S −1) = S −1t
W tS tW −1t

BW −1S W S −1

= S −1t
W tS tA S W S −1

= S −1t
W tAW S −1

= S −1t
BS −1

= B. �

From now on we will specialize to the case where β is the binary shift β2 from
Theorem 2.5 above with generators v0,v1, . . . and bitstream 01001001001 . . .. We have
shown that β has commutant index 3 and that v0v3 is the word generating β 3(R)′ ∩R .

Our goal is to show that if α is any other binary shift of commutant index 3,
whose center sequence eventually coincides with that of β , then β and α are cocycle
conjugate.
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We record the following remark, which follows immediately as a special case of
the remark above and part (vi) of Theorem 3.6.

REMARK 3.11. For k > p , M−1
β (ek +ek−3) = ek , and W S = S W on the vector

space of finitely non-zero linear combinations of {ep+3 + ep,ep+4 + ep+1, . . .} .

4. Cocycle conjugacy results

As above we will assume in this section that β = β2 is the binary shift of commu-
tant index 3 from Theorem 2.5. Below we follow the approach of [10, 11] to define an
automorphism π on β (R) related to the map ϕ on F∞

0 of the previous section. As we
will see, π is “nearly” an inner automorphism in the sense that for sufficiently large n
there is a unitary operator y in Bn (more specifically, in Bn∩NN(β ) , (see the paragraph
following Theorem 4.5 below for the definition of NN(β )) such that, for any word v in
the generators v0,v1, . . . , π(v) =±y∗vy . Using y we will be able to show that β and α
above are cocycle conjugate, i.e., if α is any binary shift of commutant index 3 whose
center sequence eventually coincides with the center sequence 10101210 of β , then α
and β are cocycle conjugate (see Theorem 4.12).

A similar analysis can be carried out to show that if α is a binary shift of commu-
tant index 3 whose center sequence eventually coincides with the center sequence of
β3 of Example 3 (respectively, of β5 of Example 5) then α is cocycle conjugate to β3

(respectively, to β5 ).
Recall that the derived shift of β2 is conjugate to β1 , as is the derived shift of

β3 , whereas the derived shift of β5 is conjugate to β4 . Therefore the center sequences
of each of the binary shifts β2,β3 and β5 do not eventually coincide with the center
sequences of the corresponding derived shift. On the other hand, in [11][Theorem 7.12]
it was shown that if α is a binary shift of finite commutant index whose center sequence
eventually agrees with the center sequence of its derived shift α∞ then α and α∞ are
cocycle conjugate.

As the center sequence of any shift of commutant index 3 must eventually coincide
with the center sequence of one of the binary shifts βi, i = 1,2,3,4,5, we can combine
our results from this section and from [11] to conclude that there are at most 5 cocycle
conjugacy classes of shifts of commutant index 3.

DEFINITION 4.1. Given a vector s = s0e0 + s1e1 + . . .+ sqeq ∈ F∞ , let χ(s) be
the word vs0

0 vs1
1 . . .v

sq
q in R .

Next we use the mapping χ to define a mapping π on β (R) . First note by an
application of (3.3) it follows the words χ(s) and χ(t) commute if and only if stBt =
0. From Corollary 3.10 we have

ϕ(e j)tBϕ(ek) = et
jBek

for all j,k ∈ N . It therefore follows that if we define words x j in β (R) by x j =
χ(ϕ(e j)) , for j � 1, then for j,k � 1, x j and xk commute if and only if v j and vk do.
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We define π on the v j ’s, for j � 1, by

π(v j) =

{
x j, if x j = x∗j , and

√−1x j, if x j = −x∗j
For convenience we will write π(v j) = wj for all j ∈ N .

By Corollary 3.10 the mapping ϕ is an isomorphism of F∞
0 . It follows that the set

of linear combinations of words in the wj ’s, for j � 1 is weakly dense in β (R) . Hence
by defining π on words v = vt1

1 vt2
2 . . .vtr

r according to

π(v) = wt1
1 wt2

2 . . .wtr
r ,

π extends to a ∗ -isomorphism on β (R) .
The following notation will be useful.

DEFINITION 4.2. For any n ∈ N let B0
n be the C∗ -subalgebra of Bn generated by

v1, . . . ,vn .
We now wish to show that we can assume that π fixes the words vnvn+3 for all

n > p+2. To see this note first from Theorem 3.6(vi) that ϕ fixes en +en+3 , so π fixes
vnvn+3 up to multiplication by a scalar, i.e. π(vnvn+3) = bnvnvn+3 for some bn ∈ C of
modulus one. On the other hand, since ϕ is an isomorphism of Fn

0 for n � p + 2 it
follows that π restricts to a ∗ -automorphism of B0

n . Fix n � p+2. From the paragraph
following Lemma 3.5 we see that we can assume ϕ(en) ”ends” with en , hence π(vn)
”ends” with vn , i.e. there is a unitary operator w , in the algebra generated by v1 through
vn−1 , such that π(vn) = wvn . Since π(vnvn+3) = bnvnvn+3 , π(vn+3) = cwvn+3 for
some scalar c . Since the word wvn = π(vn) is hermitian, wvn = (wvn)∗ = vnw∗ , so
vnwvn = w∗ . Then

vn+3wvn+3 = vn+3vn(vnwvn)vnvn+3

= vn+3vnw
∗vnvn+3

= vn+3vnvnvn+3w
∗

= w∗,

where the next to last equality holds because v0v3 commutes with v3,v4, . . . and there-
fore, by symmetry vnvn+3 commutes with vn,vn−1, . . . ,v1 . Hence wvn+3 is hermitian
if wvn is. Therefore, having defined π(vn) as wvn we can define π(vn+3) as wvn+3 ,
if wvnw = vn , and as −wvn+3 if wvnw = −vn . In either case we have π(vnvn+3) =
vnvn+3 . Therefore, having defined π(vp+2),π(vp+3) and π(vp+4) we can define v j for
j � p+ 5 such that π fixes vnvn+3 for all n � p+ 2. Hence we have established the
following result.

LEMMA 4.3. There is a ∗ -automorphism π of β (R) such that π(v j) is a scalar
multiple of χ(ϕ(e j)) , for all j ∈ N , and for all n � p+2 , π fixes vnvn+3 .

REMARK 4.4. Note from Theorem 3.6(vi) that for n � p+ 2, ϕ(en) is a vector
which ends in en . Hence π(vn) is a scalar multiple of a word which ends in vn .

In [8][Lemma 3.3] Powers obtained the following characterization of the normal-
izer N(β ) of β , i.e. the subgroup of unitary operators w in R such that w∗xw ∈ β (R)
for all x ∈ β (R) .
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THEOREM 4.5. A unitary operator w is in N(β ) if and only w has the form λ I
or λvk1vk2 . . .vks where 0 � k1 < k2 < .. . < ks .

In [9][Theorem 3.7] it was shown that if y ∈ R is a unitary operator with the
property that Ad(y) maps words in the v j ’s into other words, then y is a finite product
of words and operators of the form Γ±(w) , for w∈N(β ) , where Γ± = (1/

√
2)(I± iw) ,

if w = w∗ and (I±w)/
√

2, if w = −w∗ . We use the notation NN(β ) (the normalizer
of the normalizer group N(β )) to denote the group of such operators. The proof can
easily be adapted to show that the result holds for factors Bn as well as for R , i.e., if
y ∈ Bn , where Bn is a factor and Ad(y) leaves N(β )∩Bn invariant, then y is of the
form above. We shall use this result in the proof of the following theorem.

THEOREM 4.6. For any n > p+2 , π restricts to an automorphism of B0
n . If, in

addition, B0
n is a factor, then there is a unitary operator yn ∈ B0

n ∩NN(β ) such that,
for all words v = vk1vk2 . . .vks in B0

n , π(v) = y∗nvyn .

Proof. For n > p + 2 it follows that ϕ restricts to an isomorphism of Fn
0 and

therefore, π(v j) = χ(ϕ(e j)),1 � j � n is in B0
n , hence π is an automorphism of B0

n .
If B0

n is a factor then the automorphism π �B0
n

is inner. Let yn be a unitary operator
implementing this automorphism.

To show that yn ∈ NN(β ) note by Lemma 4.3 that π maps words v ∈ B0
n in the

v j ’s into scalar multiples of words in the v j ’s. Therefore Ad(yn)(v) is a word in the
v j ’s. It follows that yn ∈ NN(β ) , from the remark in the paragraph preceding the
theorem. �

REMARK 4.7. Note that for n ∈ N , B0
n is a factor if and only if Bn−1 is a factor,

since Bn−1 = {v0, . . . ,vn−1}′′ and B0
n = β (Bn−1) = {v1, . . . ,vn}′′ are isomorphic.

COROLLARY 4.8. For every n > p+2 such that B0
n is a factor, let yn ∈ B0

n satisfy
π�B0

n
= Ad(yn) as above. Then B0

n+6 is also a factor and yny∗n+6 ∈ NN(β )∩ (B0
n)

′ ∩
{vnvn+3,vn+1vn+4,vn+2vn+5,vn+3vn+6}′ ∩B0

n+6 .

Proof. Since the center sequence is eventually periodic with period 6 it follows
that B0

n+6 is also a factor. Since π�B0
n

= Ad(yn) and π�B0
n+6

= Ad(yn+6) , y∗nxyn =

y∗n+6xyn+6 for all x ∈ B0
n , so that yny∗n+6 commutes with B0

n . Since v0v3 ∈ β 3(R)′ ∩R ,
it follows that v0v3,v1v4,v2v5 and v3v6 all commute with {v6,v7,v8, . . .}′′ . By the
symmetry of the commutation relations for the spin system corresponding to β it fol-
lows that the operators vnvn+3,vn+1vn+4,vn+2vn+5 and vn+3vn+6 all commute with B0

n
and hence with yn ∈ B0

n . On the other hand, yn+6 commutes with each of these four
operators, since π fixes them.

Since π maps words in β (R) into words in β (R) , and since Ad(yn)�B0
n
= π�B0

n
, it

follows from the argument in the paragraph preceding Theorem 4.6 that yn ∈ NN(β ) .
Similarly for yn+6 . Hence yny∗n+6 ∈ NN(β ) also. �

The following is an immediate consequence of the proof of Theorem 2.5.
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PROPOSITION 4.9. Let n � p + 2 be such that B0
n is a factor and the center

Z(B0
n+1) of B0

n+1 (respectively, Z(B0
n+2) of B0

n+2 ) is generated by one (respectively,
two) words. Then Z(B0

n+1) = {z}′′ , where z = v1v2 . . .vn+1 and Z(B0
n+2) = {z,β (z)}′′ .

THEOREM 4.10. Fix n > p+2 such that νn = 0,νn+1 = 1 and νn+2 = 2 . Then
C = (B0

n)
′ ∩ {vnvn+3,vn+1vn+4,vn+2vn+5,vn+3vn+6}′ ∩Bn+6 = {z0z1z2,z1z2z3}′′ where

z0 = vnvn+3 and z j = β j(z0), for j = 0,1,2,3 .

Proof. It is straightforward to see that C is generated by the words that it contains.
Suppose w ∈ C is a word. Noting that B0

n+6 = B0
n+2 ∨ {z0,z1,z2,z3}′′ we can write

w = (vt1
1 vt2

2 . . .vtn+2
n+2)(z

p0
0 zp1

1 zp2
2 zp3

3 ) where the exponents are 0’s or 1’s. Since w and

z0 through z3 commute with B0
n it follows that w̃ does too, where w̃ = vt1

1 vt2
2 . . .vtn+2

n+2 .
We will show that w̃ is a scalar multiple of a word of the form us0β (u)s1 , where u
is the word generating the center of B0

n+1 (and therefore, by Proposition 4.9, u and
β (u) are the words generating the center of B0

n+2 ). Assume that w̃ is a nontrivial word,
then w̃ /∈ B0

n since B0
n has trivial center. Therefore w̃ is a word that ends with either

vn+1 or vn+2 and so, since u ends with vn+1 , by Theorem 2.3, there is a word of the
form us0β (u)s1 such that w̃us0β (u)s1 ∈ Bn and commutes with B0

n . Since B0
n has trivial

center, w̃ must be a scalar multiple of us0β (u)s1 . Therefore we may assume that w has
the form us0β (u)s1zp0

0 zp1
1 zp2

2 zp3
3 .

From the commutation relations associated with the bitstream for β it follows that
z0 anticommutes with both z1 and z2 and commutes with z3 . Also note from the com-
mutation relations for β that v0v3 commutes with v0 , anticommutes with both v1 and
v2 , and commutes with v3,v4, . . . . Therefore we can use the symmetry of the commu-
tation relations to conclude that z0 anticommutes with vn+1 and vn+2 and commutes
with v j for 1 � j � n . We also have the result from the preceding proposition that
u = v1v2 . . .vn+1 . Using the observations above we arrive at the following equations
over GF(2) , from w commuting with z0 through z3 .

s0 + p1 + p2 = 0

s1 + p0 + p2 + p3 = 0

p0 + p1 + p3 = 0

p1 + p2 = 0

Then s0 = 0, s1 = 0, p1 = p2 and p3 = p0 +q , where q = p1 = p2 . This establishes
the claim. �

Using the preceding results we can show that the ∗ -automorphism π of β (R) is
”nearly” inner.

COROLLARY 4.11. Let n and y = yn as above. Then for any word z in the
generators v1,v2, . . . , π(z) = ±y∗zy.

Proof. By assumption y∗zy = π(z) for all words z ∈ B0
n . Since B0

n+6 is gen-
erated by B0

n and the words z0,z1,z2,z3,z−1 = vn−1vn+2 and z−2 = vn−2vn+1 , we
may assume that z is one of these words. Since y commutes with z0 through z3
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we have y∗z jy = z j = π(z j) for 0 � j � 3. Let w = y∗n+6y . Since y and yn+6 are
in NN(β ) , so is w . Then if j = −1 or −2 we have, since both π and Ad(yn+6)
fix z j , y∗z jy = w∗y∗n+6z jyn+6w = w∗z jw . Since w ∈ C , where C is as in the previ-
ous theorem, it follows from the theorem and paragraph describing NN(β ) follow-
ing Theorem 4.5 that w∗z jw must be a scalar multiple of one of the following words:
z j,z jz0z1z2,z jz1z2z3 or z jz0z3 . But y∗z jy ∈ B0

n+2 whereas z j is the only word of the
four above that is in B0

n+2 . Therefore we have shown that y∗z jy = ±y∗n+6z jyn+6 and
that therefore Ad(y) agrees with π on words in B0

n+6 , up to multiplication by ±1.

Similarly Ad(yn+6) agrees with π on words in B0
n+12 , up to scalar multiplica-

tion by ±1. But since B0
n+12 is generated by B0

n and z j , for −2 � j � 9, and since
Ad(y),Ad(yn+6) and Ad(yn+12) all fix the z j ’s up to multiplication by ±1; and since
Ad(yn+12) agrees with π on B0

n+12 , it follows that Ad(y) agrees with π on words in
B0

n+12 up to a multiple of −1. Continuing inductively establishes the result.

THEOREM 4.12. Let α be a binary shift on R of commutant index 3 and center
sequence that eventually coincides with the center sequence of β . Then β and α are
cocycle conjugate.

Proof. Let W = MαM−1
β be the invertible linear transformation defined in the

paragraph preceding Lemma 3.7. From Lemma 3.7 it follows that for any j ∈ N and
k∈Z+ , (W −1e j)tBW −1e j+k = ak = et

jA e j+k . Hence if we define x j, j ∈Z+ by x j =
χ(W −1e j) , the x j ’s satisfy the same commutation relations as do the spin generators
for α .

Since W −1 is an invertible linear transformation on F∞ it follows that F∞ is
spanned by {W −1e j : j � 0} . From the definition of the x j ’s in the preceding paragraph
we may therefore conclude that every generator wk is a word in the x j ’s. Hence the
von Neumann algebra generated by the x j ’s coincides with R .

Let y be the unitary operator defined in the previous result. Then y satisfies
Ad(y)(v) = ±π(v) for every word v in the v j ’s. We will show that Ad(y)◦β is conju-
gate to α , cf. [10]. We shall do this by demonstrating that Ad(y)◦β (x j) = ±x j+1 for
all j � 0. To begin note that W −1e0 = e0 from Theorem 3.6(ii), x0 = χ(W −1e0) =
χ(e0) = v0 . But then

y∗β (x0)y = y∗v1y

= ±π(v1)
= ±χ(ϕ(e1))

= ±χ(W −1S W S −1e1)

= ±χ(W −1S W e0)

= ±χ(W −1e1) = x1
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Suppose y∗β (x j)y = ±x j+1 for 0 � j � k−1. Since β ◦ χ = χ ◦S on F∞
0 ,

y∗β (xk)y = y∗β (χ(W −1ek))y

= ±y∗χ(S W −1ek)y

= ±π(χ(S W −1ek))

and since π ◦ χ = χ ◦ϕ ,

y∗β (xk)y = ±χ(ϕ(S W −1ek)

= ±χ(W −1S W S −1S W −1ek)

= ±χ(W −1ek+1) = ±xk+1.

Define x′j, j ∈N∪{0} inductively by x′0 = x0 and for j � 0, x′j+1 = Ad(y)◦β (x′j) .
Then x′j = ±x j for all j and therefore the x′j ’s satisfy the same commutation relations
as the wj ’s. Therefore we have shown that Ad(y)◦β is conjugate to α from which we
can conclude that α and β are cocycle conjugate. �

We suspect that for any k � 2 there are only finitely many cocycle conjugacy
classes of binary shifts of commutant index k . The proof that we have used to estab-
lish the result for commutant index 3 does not immediately generalize, however. In
the proof above we relied on the fact that if α has commutant index 3 its center se-
quence contains infinitely many strings of the form 1210. The analogous result is not
necessarily true for the higher commutant cases, i.e., it is not always true that the center
sequence of a binary shift of commutant index k with k � 4 contains has the property
that cn = k− 1 for infinitely many n . In [13][Example 4.2], for example, a binary
shift of commutant index 4 is identified whose center sequence eventually has period
2. The proof of Theorem 4.12 does not seem to generalize to cases such as this. We
also suspect that the eventual pattern of the center sequences of binary shifts of a fixed
commutant index is a complete cocycle conjugacy invariant. As evidence to support
this conjecture R. T. Powers and the author showed in [9] that if Ad(y)◦β and α are
conjugate with y ∈ NN(β ) the center sequences of β and α must eventually coincide.
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