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ON THE IDEALS OF ORLICZ TYPE OPERATORS

M. GUPTA AND L. R. ACHARYA

Abstract. We establish results on mappings of type �M defined by approximation numbers, for a
given Orlicz function M . We associate the spaces of mappings of type �M with Köthe sequence
spaces.

1. Introduction

Approximation numbers of an operator have a major role to play in studying sev-
eral important concepts in functional analysis e.g. compactness, eigenvalue problems,
nuclearity and in developing the theory of operator ideals. Indeed, these numbers co-
incide with the eigenvalues of a compact operator in case of Hilbert spaces and form
a null sequence. In case, this sequence is a member of �1 , the operator turns out to
be nuclear. Possibly motivated by this observation, Pietsch studied in [5] the class of
mappings of type �p, 0 < p < ∞, on Banach spaces, which are the mappings for which
the sequence of approximation numbers belongs to �p . These mappings are compact
and characterize the nuclear spaces. Moreover, all such operators of the same type con-
situte an ideal of operators in the class of all bounded linear operators. On the other
hand, generalizing the spaces �p , we have the Orlicz sequence spaces �M defined with
the help of an Orlicz function M . These spaces, besides being of independent interest
have been found useful in the development of the theory of sequence spaces [2], [3],
[4]. However, in the context of this paper it is natural to ask what we can say about
mappings of type �M ? Study of such mappings has been carried out in this paper. In-
deed, we show such mappings form an operator ideal and a component of this ideal can
be associated with a Köthe sequence space through their approximation numbers.

2. Preliminaries and Notations

Throughout this paper, we denote by N , the set of all natural numbers; by N0 , the
set {0,1,2, . . .} and by K , the space of all scalars. An Orlicz function is a continuous
mapping M : [0 ∞)→ [0 ∞) which is convex, strictly increasing and satisfies M(0) = 0.
If M(x) �= x , it always admits the following integral representation

M(x) =
∫ x

0
p(t) dt
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where p , called the kernel of M is right-continuous for t � 0, p(0) = 0, p(t) > 0 for
t > 0, p is increasing and p(t) → ∞ if t → ∞ . If we define

q(s) = sup{t : p(t) � s}

and consider

N(x) =
∫ x

0
q(s) ds

then N is also an Orlicz function. M and N are called mutually complementary Orlicz
functions. An Orlicz sequence space corresponding to M is defined by

�M =

{
{xi} ∈ ω :

∞

∑
i=0

M

( |xi|
ρ

)
< ∞, for some ρ > 0

}
,

where ω stands for the space of all scalar sequences. The subspace of �M which

contains those elements of �M for which ∑∞
i=0 M

( |xi |
ρ

)
< ∞, for each ρ > 0 is denoted

by hM . M is said to satisfy the �2 condition for small x or at zero if for each k >
0, ∃ Rk � 1 and xk > 0 such that M(kx) � Rk M(x), ∀ x ∈ (0 xk] . It is well known that
if M satisfies the �2 condition at zero then �M = hM [2]. We also define

�(M) =

{
{xi} ∈ ω : δ (x,M) =

∞

∑
i=0

M(|xi|) < ∞

}
.

For arbitraryBanach spaces X and Y , L (X ,Y ) stands for the space of all bounded
linear operators from X to Y . We write L (X) for the space L (X ,X) and UX rep-
resents the closed unit ball in X . For n ∈ N0 , the nth approximation number of
T ∈ L (X ,Y ) is defined as

an(T ) = inf{‖T −A‖ : A ∈ L (X ,Y ), rank(A) � n}

For a scalar sequence space λ , T is said to be of type λ if {an(T )} ∈ λ . For various
properties and results on these numbers one is referred to [1], [4], [5] and [6].

For x = {xi} ∈ ω , we use the notation x(n) to denote its nth section which is given
by

{x0,x1,x2, . . . ,xn,0,0, . . .}
and x(n)

i will denote the ith co-ordinate of such a sequence. A subset M of a scalar
sequence space λ is said to be normal if for any {xi}∈M and αi ∈K , with |αi|� 1, i∈
N0 , the sequence {αixi} ∈M . If P is a collection of real sequences a = {an} satisfying
the properties (i) an � 0, ∀ n ∈ N0 and each a ∈ P , (ii) for each n ∈ N0, ∃ a ∈ P with
an > 0 and (iii) for each a, b ∈ P, ∃ c ∈ P with an � cn, bn � cn, ∀ n ∈ N0 , then P is
called a Köthe set or Power set and the sequence space Λ(P) defined as

Λ(P) = {x = {xi} ∈ ω : pa(x) =
∞

∑
n=0

|xn|an < ∞, ∀ a = {an} ∈ P},
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is called a Köthe sequence space. The space Λ(P) is equipped with the locally con-
vex topology generated by the seminorms {pa : a ∈ P} and in this topology Λ(P) is
complete [5]. Λ(P) is said to be of infinite type or a G∞− space (resp. of finite
type or a G1 space) if P satisfies (i) for each a = {an} ∈ P , 0 < an � an+1 (resp.
0 < an+1 � an), ∀ n ∈ N0. (ii) for each a = {an} ∈ P ∃ b = {bn} ∈ P such that
a2

n � bn (resp. an � b2
n), ∀ n ∈ N0.

3. The space �M(X ,Y )

For an Orlicz function M and Banach spaces X , Y , let us introduce

�M(X ,Y ) = {T ∈ L (X ,Y ) : {an(T )} ∈ �M},

and for T ∈ �M(X ,Y ) ,

‖T‖M = inf

{
ρ > 0 :

∞

∑
i=0

M

(
ai(T )

ρ

)
� 1

}
.

Also, we define
hM(X ,Y ) = {T ∈ L (X ,Y ) : {an(T )} ∈ hM}.

We prove

PROPOSITION 3.1. (�M(X ,Y ),‖.‖M) is a quasi-Banach space with norm satisfy-
ing the condition,

∞

∑
i=0

M

(
ai(T )
‖T‖M

)
� 1,

for T ∈ �M(X ,Y ) .

Proof. For T, S ∈ �M(X ,Y ) if μ1 > 0 and μ2 > 0 are such that

∞

∑
i=0

M

(
ai(T )

μ1

)
< ∞ and

∞

∑
i=0

M

(
ai(S)

μ2

)
< ∞,

then for δ = 2max(μ1,μ2) ,

∞

∑
i=0

M

(
ai(T +S)

δ

)
�

∞

∑
i=0

M

(
ai(T )

μ1

)
+

∞

∑
i=0

M

(
ai(S)

μ2

)
< ∞,

by using the inequalities

M(a2i(T +S))+M(a2i+1(T +S)) � 2M(a2i(T +S))

and
a2i(T +S)) � ai(T )+ai(S).
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So, T + S ∈ �M(X ,Y ) . Similarly, for α ∈ K , one can easily check that αT ∈
�M(X ,Y ) .

For showing that ‖.‖M is a quasi-norm on �M(X ,Y ) , we first show that ‖T‖M =
0 ⇒ T = 0. If ‖T‖M = 0, then ∀ ε > 0, we have

∞

∑
i=0

M

(
ai(T )

ε

)
� 1.

⇒
{

ai(T )
ε

, i = 0,1,2, . . .

}

is bounded in �∞ [2] and so a0(T ) � ε K , for some K > 0. As ε > 0 is arbitray, we
get T = 0.

It can be easily verified that ‖αT‖M = |α|‖T‖M, for each α ∈ K .
For triangle inequality note that for T, S ∈ �M(X ,Y ) and δ = 2 (ρ + η) , where

ρ > 0, η > 0, we have

∞

∑
i=0

M

(
ai(T +S)

δ

)
� ρ

ρ + η

∞

∑
i=0

M

(
ai(T )

ρ

)
+

η
ρ + η

∞

∑
i=0

M

(
ai(S)

η

)
.

If ρ and η are such that

∞

∑
i=0

M

(
ai(T )

ρ

)
� 1, 0 < ρ < ‖T‖M +

ε
2

and
∞

∑
i=0

M

(
ai(S)

η

)
� 1, 0 < η < ‖S‖M +

ε
2
,

for each ε > 0, we get

‖T +S‖M � 2 (‖T‖M +‖S‖M).

The fact
∞

∑
i=0

M

(
ai(T )
‖T‖M

)
� 1,

clearly holds.
Let {Tn} be a Cauchy sequence in �M(X ,Y ) . Then ∀ ε > 0, ∃ p ∈ N such that

∞

∑
i=0

M

(
ai(Tn−Tm)

ε

)
� 1, ∀ n, m � p. (3.1)

⇒ ai(Tn −Tm)
ε

� K, ∀ n, m � p,

for each i ∈ N0 and some constant K > 0. In particular when i = 0, we conclude that
{Tn} is a Cauchy sequence in L (X ,Y ) and thus there exists T ∈ L (X ,Y ) such that
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Tn → T as n → ∞ , in the operator norm. Hence limn→∞ ai(Tm −Tn) = ai(Tm −T ) , [5]
By taking the limit in (3.1) as n → ∞ , we get T ∈ �M(X ,Y ) and

‖T −Tm‖M < ε , ∀ m � p.

This completes the proof. �

Next we have

PROPOSITION 3.2. �M(X ,Y ) is a subspace of L (X ,Y ) such that the inclusion
map from (�M(X ,Y ),‖.‖M) to (L (X ,Y ),‖.‖) is continuous.

Proof. Let Tn → T in �M(X ,Y ) . Then for ε > 0, we can find n0 ∈ N0 such that
‖Tn − T‖ � ε K , for some K > 0 and all n � n0 as in the proof of Proposition 3.1.
Hence the result follows. �

PROPOSITION 3.3. (i) For T ∈ L (X ,Y ) and S ∈ �M(Y,Z) , ST ∈ �M(X ,Z) .
Moreover, ‖ST‖M � ‖S‖M‖T‖ .

(ii) If T ∈ �M(X ,Y ), S ∈L (Y,Z) , then ST ∈ �M(X ,Z) and ‖ST‖M � ‖S‖‖T‖M .

Proof. (i) Since

∞

∑
i=0

M

(
ai(ST )

ρ

)
�

∞

∑
i=0

M

(
ai(S)‖T‖

ρ

)
,

for any ρ > 0 and so for ρ = μ‖T‖ , where μ > 0 satisfies

∞

∑
i=0

M

(
ai(S)

μ

)
< ∞,

it follows that ST ∈ �M(X ,Z). Also

∞

∑
i=0

M

(
ai(ST )

‖S‖M‖T‖
)

�
∞

∑
i=0

M

(
ai(S)
‖S‖M

)
� 1.

⇒ ‖ST‖M � ‖S‖M‖T‖.
(ii) Omitted as it is analogous to the proof of (i) . �

REMARK 3.4. It follows from the above proposition that the space L M of all
bounded linear operators T between arbitrary Banach spaces such that {an(T )} ∈ �M,
for a fixed Orlicz function M , is an operator ideal whose components are given by
�M(X ,Y ).

PROPOSITION 3.5. hM(X ,Y ) is a closed subspace of �M(X ,Y ) .
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Proof. Clearly hM(X ,Y ) is a subspace of �M(X ,Y ). For showing that it is closed
in �M(X ,Y ) , consider T ∈ hM(X ,Y ) , when closure is being considered in �M(X ,Y ) .
Then there exists a sequence {Tn} in hM(X ,Y ) such that

lim
n→∞

‖Tn−T‖M = 0.

For ε > 0, choose p ∈ N0 such that

‖Tn−T‖M <
ε
2
, ∀ n � p

Now for each k ∈ N0

k

∑
i=0

M

(
ai(T )

ε

)
� 2

k

∑
i=0

M

(
ai(T −Tp)+ai(Tp)

ε

)

�
∞

∑
i=0

M

(
ai(T −Tp)
‖T −Tp‖M

)
+

∞

∑
i=0

M

(
ai(Tp)

ε
2

)
< ∞,

as Tp ∈ hM(X ,Y ) and ∑∞
i=0 M

(
ai(S)
‖S‖M

)
� 1, for any S∈ �M(X ,Y ) . Hence T ∈ hM(X ,Y ) .

�

THEOREM 3.6. The space A (X ,Y ) of all finite rank operators from X to Y is
dense in hM(X ,Y ) .

Proof. Clearly A (X ,Y ) ⊆ hM(X ,Y ) . For showing that A (X ,Y ) is dense in
hM(X ,Y ) , consider T ∈ hM(X ,Y ) . Then for ε > 0, in particular for 0 < ε < 1, we
have

∞

∑
i=0

M

(
ai(T )

ε2

)
< ∞.

⇒ For 0 < δ < 1
6 , ∃ k ∈ N such that

k M

(
a2k(T )

ε2

)
�

2k

∑
i=k+1

M

(
ai(T )

ε2

)
�

∞

∑
i=k

M

(
ai(T )

ε2

)
< δ ,

as approximation numbers are decreasing and M is increasing in nature.
Since a2k(T )

ε > a2k(T ), there exists A ∈ L (X ,Y ) of rank at most 2k−1 such that

‖T −A‖<
a2k(T )

ε
.

⇒ M

(‖T −A‖
ε

)
< M

(
a2k(T )

ε2

)
.

⇒ k M

(‖T −A‖
ε

)
< δ .
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Further, we note that for any n ∈ N0 , we have an+2k(T −A) � an(T ) and so

∞

∑
i=0

M

(
ai(T −A)

ε

)
=

3k−1

∑
i=0

M

(
ai(T −A)

ε

)
+

∞

∑
i=3k

M

(
ai(T −A)

ε

)

� 3k M

(‖T −A‖
ε

)
+

∞

∑
i=k

M

(
ai(T )

ε

)

<
1
2

+
1
6

< 1.

Thus we get
‖T −A‖M < ε.

Hence A (X ,Y ) is dense in hM(X ,Y ). �

COROLLARY 3.7. Every operator T ∈ hM(X ,Y ) is precompact.

Proof. Follows from Proposition 3.2 and the previous result. �
From Proposition 3.5, we conclude that A (X ,Y ) may not be dense in �M(X ,Y )

until we impose certain restrictions on M . In this context, we prove

PROPOSITION 3.8. If the Orlicz function M satisfies the �2 condition at zero
then A (X ,Y ) is dense in �M(X ,Y ) .

Proof. Obvious from the fact that �M = hM in case M satisfies the �2 condition
at zero. �

4. �M(X ,Y ) as Köthe sequence space of linear operators

In this section, we assume throughout that M and N are mutually complementary
Orlicz functions and show that the space �M(X ,Y ) studied in the previous section can
be identified with a Köthe Power space ΛM(X ,Y ) of linear operators defined with the
help of a Köthe set PN . Indeed, let us introduce

P = {{xi} ∈ ω : xi � 0,∀ i ∈ N and {xi} is decreasing}
PN = {{xi} ∈ P : δ (x,N) < ∞}.

Then we have

PROPOSITION 4.1. P and PN are Power sets.

Proof. Obvious. �
Let us now define the Köthe Power space of linear operators

ΛM(X ,Y ) = {T ∈ L (X ,Y ) :
∞

∑
i=0

ai(T )yi < ∞, ∀ y = {yi} ∈ PN}.
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THEOREM 4.2. ΛM(X ,Y ) is a quasi-Banach space.

We split the proof of the above theorem in the following four propositions.

PROPOSITION 4.3. ΛM(X ,Y ) is a vector space.

Proof. Note that for T, S ∈ ΛM(X , Y ) and y = {yn} ∈ PN we have

∞

∑
n=0

an(T +S)yn � 2
∞

∑
n=0

(an(T )+an(S)) yn < ∞

and
∞

∑
n=0

an(αT )yn = |α|
∞

∑
n=0

an(T )yn < ∞,

for any α ∈ K . Thus ΛM(X , Y ) is a linear space. �

PROPOSITION 4.4. For each T ∈ ΛM(X ,Y ) ,

sup{
∞

∑
i=0

ai(T )yi : y = {yi} ∈ PN , δ (y,N) � 1} < ∞. (4.1)

Proof. Let sup{∑∞
i=0 ai(T )yi : y = {yi} ∈ PN , δ (y,N) � 1} = ∞ . Then for each

n ∈ N0, ∃ yn = {yn
i } ∈ PN with δ (yn,N) � 1 and

∞

∑
i=0

ai(T )yn
i > 2n.

Define

xi =
∞

∑
n=0

1
2n+1 yn+1

i .

Note that the sequence {xi} is well defined and xi � xi+1, ∀ i ∈ N0 . Further, by the
convexity of N ,

N(
m−1

∑
n=0

1
2n+1 yn+1

i ) �
m−1

∑
n=0

1
2n+1 N(yn+1

i ),

for each m � 1 and so

δ (x,N) =
∞

∑
i=0

N(xi) �
∞

∑
n=0

1
2n+1

∞

∑
i=0

N(yn+1
i ) � 1,

as N is continuous. Thus x ∈ PN .
On the other hand

∞

∑
i=0

ai(T )xi �
∞

∑
i=0

ai(T )
m−1

∑
n=0

1
2n+1 yn+1

i � m
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for each m ∈ N . This contradicts that T ∈ ΛM(X ,Y ) . Hence the result follows. �

The finiteness of the expression in (4.1) leads us to define

‖T‖′M = sup{
∞

∑
i=0

ai(T )yi : y = {yi} ∈ PN , δ (y,N) � 1},

for T ∈ ΛM(X ,Y ) .

PROPOSITION 4.5. ‖.‖′M defines a quasi-norm on ΛM(X ,Y ) and the inclusion
map from (ΛM(X ,Y ),‖.‖′M) to (L (X ,Y ),‖.‖) is continuous.

Proof. Clearly for any T ∈ ΛM(X , Y ), ‖T‖′M � 0 and ‖T‖′M = 0 if T = 0. If
‖T‖′M = 0, then a0(T ) y0 = 0, ∀ y = {yi} ∈ PN , with δ (y,N) � 1. If {yi} is a non-
zero sequence then a0(T ) = ‖T‖ = 0 ⇒ T = 0. Clearly, for any α ∈ K , ‖α T‖′M =
|α|‖T‖′M. If S ∈ ΛM(X ,Y ) , then for every y = {yi} ∈ PN with δ (y,N) � 1,

∞

∑
n=0

an(T +S)yn � 2
∞

∑
n=0

(an(T )+an(S)) yn � 2 (‖T‖′M +‖S‖′M).

⇒ ‖T +S‖′M � 2(‖T‖′M +‖S‖′M).

The fact that the inclusion map from ΛM(X ,Y ) to L (X ,Y ) is continuous, can be easily
verified. �

PROPOSITION 4.6. (ΛM(X , Y ), ‖.‖′M) is a quasi-Banach space.

Proof. Let {Tn} be a Cauchy sequence in ΛM(X , Y ) and y = {yi} ∈ PN be a
non-zero sequence with δ (y,N) � 1. Then for any ε > 0 we can find k ∈ N0 such that

∞

∑
i=0

ai(Tn −Tm) yi < ε, ∀ n,m � k. (4.2)

⇒ {Tn} is a Cauchy sequence in L (X ,Y ) . Thus there exists a T ∈ L(X ,Y ) such that

lim
n→∞

‖Tn−T‖ = 0.

Since
|ai(T −Tm)−ai(Tm −Tn)| � ‖T −Tn‖,

we have
lim
m→∞

ai(Tm −Tn) = ai(T −Tn), ∀ n ∈ N0

Taking the limit in (4.2) as m → ∞ we get

∞

∑
i=0

ai(T −Tn) yi � ε, ∀ n � k, ∀ y = {yi} ∈ PN , δ (y,N) � 1.
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Hence T −Tk and thus T ∈ ΛM(X , Y ) . Further

sup{
∞

∑
i=0

ai(T −Tn) yi : y = {yi} ∈ PN , δ (y,N) � 1} � ε, ∀ n � k.

⇒ lim
n→∞

‖T −Tn‖′M = 0.

Thus ΛM(X , Y ) is a quasi-Banach space. �
By combining the Propositions 4.3, 4.4, 4.5 and 4.6, we get Theorem 4.2.
We now proceed proving the equality between the spaces �M(X ,Y ) and ΛM(X ,Y ) .

To begin with, let us introduce the notations

�(M)(X ,Y ) = {T ∈ L (X ,Y ) : {an(T )} ∈ �(M)}
and

δ (T,M) =
∞

∑
n=0

M(an(T )),

for T ∈ �(M)(X ,Y ) .
Using Young’s inequality [2], we immediately get the following

PROPOSITION 4.7. �(M)(X ,Y ) ⊆ ΛM(X ,Y ).

For proving the other inclusion we make use of the following results, proofs of
which are being omitted as they are similar to the ones given in [2] pp. 301–303.

PROPOSITION 4.8. For each T ∈ ΛM(X ,Y ) with ‖T‖′M � 1 , the sequence φ =
{φi} ∈ PN with δ (φ ,N) � 1 , where φi = p(ai(T )), ∀ i ∈ N0.

PROPOSITION 4.9. If T ∈ ΛM(X ,Y ) with ‖T‖′M � 1 , then T ∈ �(M)(X ,Y ) and
δ (T,M) � ‖T‖′M .

We also have

PROPOSITION 4.10. ΛM(X ,Y )⊆ �M(X ,Y ) and ‖T‖M � ‖T‖′M , for T ∈ΛM(X Y ) .

PROPOSITION 4.11. �M(X ,Y ) ⊆ ΛM(X ,Y ) and ‖T‖′M � 2 ‖T‖M .

Combining the above two propositions we conclude

THEOREM 4.12. �M(X ,Y ) = ΛM(X ,Y ) and ‖T‖M � ‖T‖′M � 2 ‖T‖M .

COROLLARY 4.13. T ∈L (X ,Y ) is of type �M if and only if {an(T )} ∈ Λ(PN) .
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