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ON THE IDEALS OF ORLICZ TYPE OPERATORS

M. GUPTA AND L. R. ACHARYA

Abstract. We establish results on mappings of type ¢j; defined by approximation numbers, for a
given Orlicz function M. We associate the spaces of mappings of type ¢y with Kothe sequence
spaces.

1. Introduction

Approximation numbers of an operator have a major role to play in studying sev-
eral important concepts in functional analysis e.g. compactness, eigenvalue problems,
nuclearity and in developing the theory of operator ideals. Indeed, these numbers co-
incide with the eigenvalues of a compact operator in case of Hilbert spaces and form
a null sequence. In case, this sequence is a member of ¢!, the operator turns out to
be nuclear. Possibly motivated by this observation, Pietsch studied in [5] the class of
mappings of type 7, 0 < p < eo, on Banach spaces, which are the mappings for which
the sequence of approximation numbers belongs to ¢”. These mappings are compact
and characterize the nuclear spaces. Moreover, all such operators of the same type con-
situte an ideal of operators in the class of all bounded linear operators. On the other
hand, generalizing the spaces ¢”, we have the Orlicz sequence spaces {j; defined with
the help of an Orlicz function M. These spaces, besides being of independent interest
have been found useful in the development of the theory of sequence spaces [2], [3],
[4]. However, in the context of this paper it is natural to ask what we can say about
mappings of type ¢3;? Study of such mappings has been carried out in this paper. In-
deed, we show such mappings form an operator ideal and a component of this ideal can
be associated with a Kothe sequence space through their approximation numbers.

2. Preliminaries and Notations

Throughout this paper, we denote by N, the set of all natural numbers; by Ny, the
set {0,1,2,...} and by K, the space of all scalars. An Orlicz function is a continuous
mapping M : [0 o) — [0 o) which is convex, strictly increasing and satisfies M(0) =0.
If M(x) # x, it always admits the following integral representation

M(x) = /O " p(t) di
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where p, called the kernel of M is right-continuous for > 0, p(0) =0, p(z) > 0 for
t >0, p is increasing and p(r) — oo if 1 — co. If we define

q(s) = sup{z : p(r) < s}

X) = /qu(s) ds

then N is also an Orlicz function. M and N are called mutually complementary Orlicz
functions. An Orlicz sequence space corresponding to M is defined by

and consider

by = {{x,-}ew:ZM('f)’) < oo, forsomep>0}

where @ stands for the space of all scalar sequences. The subspace of ¢y which
|x,‘

contains those elements of £y, for which Y;° o M ( < oo, foreach p >0 is denoted

by hy. M is said to satisfy the A\, condition for small x or at zero if for each k >
0, 3R, > 1 and x; > 0 such that M (kx) < Ry M(x), V x € (0 x¢]. It is well known that
if M satisfies the A\, condition at zero then ¢p; = hy; [2]. We also define

Com {{xl}ea) o(x,M) = ZM Ixi]) < }

For arbitrary Banach spaces X and Y, 2 (X,Y) stands for the space of all bounded
linear operators from X to Y. We write £ (X) for the space £ (X,X) and Ux rep-
resents the closed unit ball in X. For n € Ny, the n” approximation number of
T € .Z(X,Y) is defined as

an(T) = inf{||T —A||: A € Z(X,Y), rank(A) < n}

For a scalar sequence space A, T is said to be of type A if {a,(T)} € A. For various
properties and results on these numbers one is referred to [1], [4], [5] and [6].
For x = {x;} € ®, we use the notation x") to denote its n" section which is given
by
{XO,Xl,xz, ce ,xn,0,0, . }

and xE") will denote the i co-ordinate of such a sequence. A subset M of a scalar

sequence space A is said to be normal if forany {x;} € M and o; € K, with |os| < 1, i €
Ny, the sequence {o;x;} € M. If P is a collection of real sequences a = {a, } satisfying
the properties (i) a, >0, V n € Ny and each a € P, (ii) for each n € Ny, Ja € P with
a, >0 and (iii) foreach a, b € P, 3¢ € P with a, < ¢, b, < ¢y, Vn € Ny, then P is
called a Kothe set or Power set and the sequence space A(P) defined as

AP)={x={x} € 0: pylx 2|xn\an<°o Va={a,} € P},
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is called a Kothe sequence space. The space A(P) is equipped with the locally con-
vex topology generated by the seminorms {p, : a € P} and in this topology A(P) is
complete [5]. A(P) is said to be of infinite type or a G..— space (resp. of finite
type or a Gy space) if P satisfies (i) for each @ = {a,} € P, 0 < a, < a4 (resp.
0<apt1 <ay), VneNg. (i) for each a = {a,} € P 3 b= {b,} € P such that
a2 < b, (resp. a, < b2), VneN.

3. The space /y(X,Y)
For an Orlicz function M and Banach spaces X, Y, let us introduce
(X,Y)={T € Z(X,Y) : {an(T)} € lu},

andfor T € {y(X,Y),

T||M:inf{p >0: iM(@) < 1}.

i=0

Also, we define
hu(X,Y)={T € Z(X,Y):{an(T)} € ha}.

We prove

PROPOSITION 3.1. (y(X,Y),||.|lm) is a quasi-Banach space with norm satisfy-

ing the condition,
oo (T
EM (a (T) ) <1,
2 \ITlm

Proof. For T, S € £y (X,Y) if y; >0 and up > 0 are such that
oo (T oo (S
2M<M> < oo and 2M(M> < oo,
i=0 M1 i=0 25}

then for & = 2max(uy, us),

() < g () B (e
M(axi(T +38)) +M(azi1(T +5)) < 2M(ax(T +5))

for T €ly(X,Y).

by using the inequalities

and
azi(T +S)) < a,-(T) —i—a,-(S).
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So, T+ S € ¢y(X,Y). Similarly, for o € K, one can easily check that aT €
u(X,Y).

For showing that |.||s is a quasi-norm on ¢(X,Y), we first show that ||T||y =
0=T=0.1If |T||y =0, then V € > 0, we have

§0M<$)<1
- {@71':071727...}

is bounded in ¢~ [2] and so ao(T) < € K, for some K > 0. As € > 0 is arbitray, we
get T =0.

It can be easily verified that || T ||y = |&|||T||u, for each o € K.

For triangle inequality note that for T, S € £)/(X,Y) and 6 =2 (p +7n), where
p >0, n >0, we have

() stz () s ()

If p and n are such that

o
S (“D) <1, 0<p <t

and

= s
ZM<a( )) <1, 0<n<||SHM+§,

for each € > 0, we get

T +Sllar <2 (ITMIar +1S|lar)-

The fact .
S (i) <
= \Tlm
clearly holds.
Let {T,,} be a Cauchy sequence in ¢y/(X,Y). Then ¥V € >0, 3 p € N such that
(T, — Ty
ZM( )><1,Vn,m2p. 3.1
= Mg[(, Vo, m=p,

€

for each i € N and some constant K > 0. In particular when i = 0, we conclude that
{T,} is a Cauchy sequence in .Z(X,Y) and thus there exists T € .Z(X,Y) such that
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T, — T as n — oo, in the operator norm. Hence lim, .. a;(Ty — T,) = ai(Tn —T), [5]
By taking the limit in (3.1) as n — oo, we get T € {)(X,Y) and

\T—Tullmy<e,Ym=p

This completes the proof. [l

Next we have

PROPOSITION 3.2. ¢y (X,Y) is a subspace of £ (X,Y) such that the inclusion
map from (Ly(X,Y),||.|lm) to (Z(X,Y),]|.||) is continuous.

Proof. Let T, — T in £y(X,Y). Then for € > 0, we can find ny € Ny such that
|T, —T| < €K, for some K >0 and all n > ny as in the proof of Proposition 3.1.
Hence the result follows. [

PROPOSITION 3.3. (i) For T € X(X,Y) and S € {y(Y,Z), ST € {y(X,Z).
Moreover,
(@) If T € by (X,Y), SEX(Y Z), then ST € Uy(X,Z) and ||ST ||y < |ISIIT ||as-

Proof. (i) Since

2M( ) iM( pIITII)’

for any p > 0 and so for p = u||T||, where u > 0 satisfies

() <=

it follows that ST € £y (X,Z). Also

2M( I;;T;> S iM<%|ii) <1

= [IST|ln < [ISIlmlIT .

(i) Omitted as it is analogous to the proof of (7). O
REMARK 3.4. It follows from the above proposition that the space .2 of all
bounded linear operators 7' between arbitrary Banach spaces such that {a,(T)} € lu,

for a fixed Orlicz function M, is an operator ideal whose components are given by
Iy (X,Y).

PROPOSITION 3.5. hy(X,Y) is a closed subspace of €y (X,Y).
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Proof. Clearly hy(X,Y) is a subspace of 4(X,Y). For showing that it is closed
in ¢y(X,Y), consider T € hy(X,Y), when closure is being considered in ¢y(X,Y).
Then there exists a sequence {7, } in hy(X,Y) such that

lim ||T,, — T||p = 0.
Nn—o0
For € > 0, choose p € Ny such that
€
I~ Tl <5, ¥n>p

Now for each k € Ny

2M< ) 2iM( iT—Tpg—l-ai(Tp))

i=0

h ZM<alTT TﬂM) 2M<

i=0 i=0

2 <o

as T, € hy(X,Y) and 2}"’:0M<T§HS[;> <1, forany S€ £y (X,Y). Hence T € hy(X,Y).
g

THEOREM 3.6. The space </ (X,Y) of all finite rank operators from X to Y is
dense in hy(X,Y).

Proof. Clearly <7 (X,Y) C
hy(X,Y), consider T € hy(X,
have

(X,Y). For showing that </(X,Y) is dense in
Then for € > 0, in particular for 0 < e < 1, we

- (T
(") <
=0 £

= For 0< 8<%, 3 keN such that

()< 3 () <

i=k-+1

Iy
Y).

)<,

as approximation numbers are decreasing and M is increasing in nature.
Since ”2"( S an(T), there exists A € Z(X,Y) of rank at most 2k — 1 such that

T
IT— A < “”“T()
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Further, we note that for any n € Ny, we have a,,124(T —A) < a,(T) and so
3k—1
(T-A
() = 3 () 3 ()
i=3k

con (T4 (1)

< = ! + - ! <1.
2 6
Thus we get
IT—Al|lm<e.

Hence «7(X,Y) is dense in hy(X,Y). O
COROLLARY 3.7. Every operator T € hy(X,Y) is precompact.

Proof. Follows from Proposition 3.2 and the previous result. [

From Proposition 3.5, we conclude that </ (X,Y) may not be dense in £y(X,Y)
until we impose certain restrictions on M. In this context, we prove

PROPOSITION 3.8. If the Orlicz function M satisfies the /\, condition at zero
then <7 (X,Y) is dense in Ly (X,Y).

Proof. Obvious from the fact that ¢3; = hys in case M satisfies the A\, condition
at zero. [

4. ¢y(X,Y) as Kothe sequence space of linear operators

In this section, we assume throughout that M and N are mutually complementary
Orlicz functions and show that the space ¢);(X,Y) studied in the previous section can
be identified with a Kthe Power space Ay (X,Y) of linear operators defined with the
help of a Kothe set &y . Indeed, let us introduce

P ={{xi} €w:x; >0,Vie Nand {x;} is decreasing}
Py ={{xi} € Z:6(x,N) <oo}.

Then we have

PROPOSITION 4.1. & and &Py are Power sets.

Proof. Obvious. [

Let us now define the Kothe Power space of linear operators

Au(X,Y)={T € Z(X,Y): Zal Vi < oo, Vy={yi} € Py}
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THEOREM 4.2. Ay(X,Y) is a quasi-Banach space.

We split the proof of the above theorem in the following four propositions.

PROPOSITION 4.3. Ay (X,Y) is a vector space.

Proof. Note that for T, S € Ay(X, Y) and y = {y,} € Pn we have

oo

S an(T 4 <2 Y (@n(T) +an(S)) yu < oo
n=0 n=0

and

Z an(aT )y, = |of Z an(T)yn < oo,
n=0

n=0

forany o € K. Thus Ay(X, Y) is a linear space. [J

PROPOSITION 4.4. Foreach T € Ay(X,Y),

sup{ Y ai(T)yi :y ={yi} € Pn, 8(»,N) <1} <o. 4.1)
i=0

Proof. Let sup{Xi=gai(T)yi:y ={yi} € PN, 6(y,N) < 1} = eo. Then for each
neNy, 3y"={y!} € Py with 6(y",N) <1 and

Zai(T)yl'-' > 2"
i=0

Define
|
_ +1
Xi= 2 on+l ylr'l :
n=0

Note that the sequence {x;} is well defined and x; > x;41, V i € Ny. Further, by the
convexity of N,

m—1 m—1
1 1 1 1
N(%znﬂ it < sznﬂ NG,

for each m > 1 and so

O(x,N) = iN(xi) < i

as N is continuous. Thus x € Py .
On the other hand

co m—1 1

2)61,‘(T)X,‘ > Ea,‘(T) 2

i=0 n=0
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for each m € N. This contradicts that T € Ay (X,Y). Hence the result follows. [J

The finiteness of the expression in (4.1) leads us to define
IT|ly = sup{ X ai(T)yi:y = {yi} € Pn, 8(»N) <1},
i=0

for T € Au(X,Y).

PROPOSITION 4.5. ||.||3; defines a quasi-norm on Ay(X,Y) and the inclusion
map from (Ay(X,Y),.||}y) to (ZL(X,Y),|.|]) is continuous.

Proof. Clearly for any T € Ay(X, Y), |T||}; =0 and |||/}, =0 if T =0. If
IT||3 =0, then ao(T) yo =0, ¥y = {yi} € Py, with §(y,N) < 1. If {y;} is a non-
zero sequence then ay(T) = ||T||=0 = T =0. Clearly, forany o € K, || T||}, =
lo|||T|[3- If S € Am(X,Y), then for every y = {y;} € Py with 6(y,N) < 1,

=

io (T8 <2 32 (@n(T) +al)) 30 <2 (T + 1T

= T+l < 20T Il + 1S ]1h0)-

The fact that the inclusion map from Ay (X,Y) to £ (X,Y) is continuous, can be easily
verified. [J

PROPOSITION 4.6. (Ay(X, Y), ||.||}y) is a quasi-Banach space.

Proof. Let {T,} be a Cauchy sequence in Ay (X, Y) and y = {y;} € Py be a
non-zero sequence with 8(y,N) < 1. Then for any € > 0 we can find k € Ny such that

> ai(Ty—Ty) yi <€, Vnm=>k 4.2)
i=0
= {T,} is a Cauchy sequence in .Z(X,Y). Thus there exists a 7 € L(X,Y) such that
lim ||T, — T|| =0.
Since
|ai(T —Tin) — ai(Tn — To)| < |IT = Tl
we have

lim a,-(Tm — Tn) = a,-(T — Tn), VneNy

m-—oo

Taking the limit in (4.2) as m — oo we get

Eai(T—Tn)yi <e, Vnzk Vy={y} e Py, 6(y,N)< 1.
i=0
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Hence T — Ty and thus T € Ay(X, Y). Further

sup{ Y. ai(T —T,)) yi : y = {yi} € Pv, 8(»N) <1} <&, Vn> k.
i=0

= lim ||T — T3 =0.
n—oo

Thus Apy(X, Y) is a quasi-Banach space. [J

By combining the Propositions 4.3, 4.4, 4.5 and 4.6, we get Theorem 4.2.
We now proceed proving the equality between the spaces ¢3/(X,Y) and Ay (X,Y).
To begin with, let us introduce the notations

f(M)(X7Y) = {T S X(X7Y) : {a,,(T)} GE(M)}
and

- ionn(T))

for T € E(M)(X,Y) .
Using Young’s inequality [2], we immediately get the following

PROPOSITION 4.7. Ly (X,Y) C Au(X,Y).

For proving the other inclusion we make use of the following results, proofs of
which are being omitted as they are similar to the ones given in [2] pp. 301-303.

PROPOSITION 4.8. For each T € Ay(X,Y) with ||T||}; < 1, the sequence ¢ =
{0:} € Py with §(¢,N) < 1, where ¢; = p(a;(T)), Vi€ Ny.

PROPOSITION 4.9. If T € Ay(X,Y) with |T|}; <1, then T € Con(X,Y) and
O(T,M) < ||T|[y-

We also have
PROPOSITION 4.10. Ap(X,Y) Cly(X,Y) and ||T|\m < ||T |3y, for T € Au(X Y).

PROPOSITION 4.11. £y(X,Y) C Ap(X,Y) and ||T ||}y <2 ||T |-

Combining the above two propositions we conclude
THEOREM 4.12. ly(X,Y) = Ap(X,Y) and ||T||m < ||T|/y <2 || T||um-

COROLLARY 4.13. T € Z(X,Y) is of type Ly if and only if {a,(T)} € A(Py).
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