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JORDAN STRUCTURES IN BANACH SPACES

CHO-HO CHU

Abstract. We explain how Jordan algebraic structures in Banach spaces arise from the geometry
of symmetric manifolds and discuss some applications.

1. Introduction

Since the introduction of Jordan algebras in quantum formalism by P. Jordan, J.
von Neumann and E. Wigner [15], many unexpected applications in Lie algebra, ge-
ometry and analysis have been found (cf. [4, 13, 26, 27]). We discuss the geometric
aspect of Jordan algebraic structures in Banach spaces, which has its origin in the study
of infinite dimensional symmetric manifolds. Indeed, since É. Cartan’s seminal work,
Lie theory has been an important tool in the study of Rimannian symmetric spaces and
their classification. It was found relatively recently that Jordan algebras and Jordan
triple systems can be used to describe a large class of symmetric spaces which is also
accessible in infinite dimension.

In finite dimensions, it is well known [2, 12] that the Hermitian symmetric spaces
of non-compact type, which form a subclass of Riemannian symmetric spaces, can
be realized as bounded symmetric domains in spaces of several complex variables, of
which the open unit disc in C is the simplest example. The concept of a bounded
symmetric domain as well as É. Cartan’s classification of these domains [2] can be
extended to infinite dimension in the following way.

Let D be a domain in a complex Banach space V , that is, D is a nonempty open
connected set in V . We call D a symmetric domain if each point a ∈ D admits a sym-
metry sa : D −→ D (which is necessarily unique). A symmetry sa at a is defined to be
a biholomorphic map such that s2

a is the identity map and a is an isolated fixed point
of sa . A symmetric domain is said to be irreducible if it is not (biholomorphic to) a
Cartesian product of symmetric domains. Cartan’s classification can be very briefly
described by saying that every (finite dimensional) irreducible bounded symmetric do-
main is biholomorphic to the open unit ball in one of the six types of complex vector
spaces of matrices over C or the Cayley algebra O . These spaces are finite dimensional
JB*-triples. An infinite dimensional extension of this classification is the following re-
sult due to Kaup [20].
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THEOREM 1.1. Let D be a bounded symmetric domain in a complex Banach
space. Then D is biholomorphic to the open unit ball of a JB*-triple.

A precursor and a finite dimensional version of the above result is due to Loos
[25, 30]. Our objective is to discuss the main ingredients in the proof of the above
theorem and various ramifications.

2. JB*-triples

We continue to use the above notation. A JB*-triple is a complex Banach space
equipped with a Jordan triple product. How is this Jordan structure constructed in the
above theorem? A crucial and fundamental device is the seminal result of H. Cartan
[3], which states that the automorphism group Aut D of biholomorphic self-maps on
a bounded domain D ⊂ C

n carries the structure of a Lie group, and its infinite di-
mensional generalization due to Upmeier [32] and Vigué [34]. If D is symmetric but
possibly infinite dimensional, then the Lie group Aut D induces a JB*-structure on the
tangent space TaD at any chosen point a ∈D and moreover, D is biholomorphic to the
open unit ball of TaD .

For completeness, we recall that a mapping f : D1 −→ D2 between open sets
Di in complex Banach spaces Vi ( i = 1,2) is called holomorphic if it has a (Fréchet)
derivative f ′(a) at every point a ∈D , where f ′(a) :V1 −→V2 is a bounded linear map
satisfying

lim
z→a

‖ f (z)− f (a)− f ′(a)(z−a)‖
‖z−a‖ = 0.

The mapping f is called biholomorphic if it is bijective, holomorphic and its inverse
f−1 is also holomorphic. The biholomorphic self-maps on a domain D form a group
Aut D under function composition, called the automorphism group of D .

Let U be the open unit disc in C and let H(D,U) denote the vector space of
holomorphic maps from a bounded domain D in a complex Banach space V to U .
Then D is endowed with the Carathéodory metric

d(z,w) = sup

{
tanh−1

∣∣∣∣∣ f (z)− f (w)
1− f (z) f (w)

∣∣∣∣∣ : f ∈ H(D,U)

}
(z,w ∈ D).

Fix a point a ∈ D . Let r > 0 so that the open ball B(a,4r) = {z ∈ D : d(z,a) < 4r} is
contained in D . Define a metric ρ on Aut D by

ρ( f ,g) = sup{d( f (z),g(z)) : z ∈ B(a,r/2)} ( f ,g ∈ AutD).

Note that the metric ρ is defined by the ball B(a,r/2) of radius r/2. Equipped with the
topology induced by the metric ρ , the automorphism group Aut D becomes a real Lie
group whose Lie algebra autD is formed by the complete holomorphic vector fields
on D , with the usual Lie brackets of vector fields [32, 34]. A holomorphic vector field
X on D is a holomorphic selection of a tangent vector at each point in D . Identifying
each tangent space with the ambient Banach space V , we can, and will, view X as a
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holomorphic map X : D−→V . A holomorphic vector field X gives rise to a flow of lo-
cal biholomorphic transformations of D by elementary theory of differential equations:
for every z0 ∈ D , there is a holomorphic map g : T ×Ω −→ D defined on the product
of convex domains T ⊂ C and Ω ⊂ D , with 0 ∈ T and z0 ∈ Ω , such that

∂g(t,z)
∂ t

= X(g(t,z)), g(0,z0) = z0.

The vector field X is called complete if T can be chosen to contain the whole real line
R and Ω = D , in which case we write

expX(z) := g(1,z) (z ∈ D).

The map expX : D −→ D is biholomorphic and we have the exponential mapping
exp : X ∈ autD �→ expX ∈ AutD . The real Lie algebra autD is a Banach Lie algebra
in the norm

‖X‖ = sup{‖X(z)‖ : z ∈ B(a,r/2)} (X ∈ autD).

Now let D be a bounded symmetric domain in a complex Banach space V and fix
a point a∈D as before. The symmetry sa ∈AutD induces an involutive automorphism
θ = Ad sa : autD −→ autD via differentiation. The involution θ has eigenvalues ±1
and gives an eigenspace decomposition

autD = k⊕p

where k is the 1-eigenspace and p the (−1)-eigenspace of θ . The eigenspace k is the
Lie algebra of the isotropy group K = {g ∈ AutD : g(a) = a} whereas the eigenspace
p is real linear isomorphic to the tangent space V via the evaluation map

X ∈ p �→ X(a) ∈V.

The real vector space p admits a complex structure, that is, there is a map

J : p −→ p

which satisfies J2 = −id and is defined by (JX)(a) = iX(a) ∈ V . Morevoer, we have
Jθ = θJ and

[JX ,Y ](a) = i[X ,Y ](a) (X ∈ p,Y ∈ autD).

With the complex structure J , the eigenspace p becomes a complex vector space and
is complex linear isomorphic to V . We can now construct the Jordan triple product on
V via the Lie triple product.

LEMMA 2.1. Let D be a bounded symmetric domain in a complex Banach space
V . Then V has the structure of a Jordan triple, that is, there is a triple product {·, ·, ·} :
V 3 −→ V which is complex linear in the outer variables but conjugate linear in the
middle variable, and satisfies the Jordan triple identity

{u,v,{x,y,z}} = {{u,v,x},y,z}−{x,{v,u,y},z}+{x,y,{u,v,z}}
for all u,v,x,y,z ∈V .



350 CHO-HO CHU

Proof. Let X ∈ p �→ X(a)∈V be the linear isomorphism given above. For x,y,z ∈
V with x = X(a),y = Y (a) and z = Z(a) , the desired triple product is defined by

{x,y,z} = −1
4
[ [X ,Y ], Z](a)+

1
4
[ [JX ,Y ], JZ](a). �

The concept of a Jordan triple was introduced by Meyberg [29] in order to extend
Koecher’s construction [23, 24] of Lie algebras from Jordan algebras. This construction
was also discovered independently by Kantor [17, 18] and Tits [31], now called the Tits-
Kantor-Koecher construction which lies in the background of Lemma 2.1. More details
of the construction can be seen in [7, Example 4.8].

A Jordan algebra [14, 27] is a commutative, but not necessarily associative, alge-
bra satisfying the Jordan identity

(ab)a2 = a(ba2).

A complex Jordan algebra A with an involution ∗ is a Jordan triple in the canonical
Jordan triple product defined by

{a,b,c} = (ab∗)c+a(b∗c)−b∗(ac) (a,b,c ∈ A ).

Given a Jordan triple V and z ∈V , one can define the box operator z z :V −→V
by

z z(x) = {z,z,x} (x ∈V ).

The box operators are fundamental in the geometry of symmetric manifolds.
In Lemma 2.1, the Banach space V , which is linearly isomorphic to the tangent

space TaD , together with the Jordan triple product {·, ·, ·} , need not be a JB*-triple in
its original norm. We need to renorm V to a JB*-triple.

DEFINITION 2.2. A complex Banach space V is called a JB*-triple if it is a Jor-
dan triple with a continuous Jordan triple product satisfying

(i) z z is a hemitian operator on V , that is, ‖exp it(z z)‖ = 1 for all t ∈ R ;

(ii) z z has non-negative spectrum;

(iii) ‖z z‖ = ‖z‖2

for all z ∈V .

A JB*-triple is called a JBW*-triple if, as a Banach space, it has a predual which
is necessarily unique.

LEMMA 2.3. Let D be a bounded symmetric domain in a complex Banach space
V . Then D is biholomorphic to the open unit ball of a JB*-triple V ′ = (V,‖ · ‖a)
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Proof. View V as the tangent space TaD at a chosen point a ∈ D , as before.
Define the Carathéodory norm on V by

‖v‖a = sup{| f ′(a)(v)| : f ∈ H(D,U), f (a) = 0} (v ∈V ). (1)

Then (V,‖ · ‖a) is the desired JB*-triple. �

REMARK 2.4. If, in the preceding lemma, D happens to be the open unit ball
of V , then by choosing a = 0, the norm ‖ · ‖a is the original norm and V itself is a
JB*-triple.

To achieve all the results above, one very important key is the fact that each vector
field X ∈ p is a polynomial vector field of degree 2 and has the form

X(z) = X(a)−{z,X(a),z} (z ∈ D). (2)

Complete proofs for what has been asserted all above can be found in the original work
of Kaup [19, 20] or [4, 33]. The converse of Theorem 1.1 is the following result in [20].

THEOREM 2.5. Let V be a JB*-triple. Then its open unit ball is a bounded sym-
metric domain.

Proof. Let D be the open unit ball of V . Evidently s0(z) = −z is a symmetry at
the origin 0. To see that every point a ∈D has a symmetry, we only need to ‘move’ the
symmetry s0 to a via the Möbius transformation ga : D −→ D defined by

ga(x) = a+B(a,a)1/2(id + x a)−1(x) (x ∈ D)

where B(a,a) : V −→V is the Bergman operator defined by

B(a,a)(v) = v−2{a,a,v}+{a,{a,v,a},a} (v ∈V ).

The symmetry sa at a is given by sa = ga ◦ s0 ◦ g−1
a . �

3. Applications

The importance of JB*-triples in the geometry of Hermitian symmetric spaces
cannot be overemphasized. On the other hand, JB*-triples also play an important role
in analysis. In the vista of functional analysis, they form an important class of Ba-
nach spaces, including Hilbert spaces, C*-algebras, spaces of operators between Hilbert
spaces and some exceptional Jordan Banach algebras. Further, the construction of the
Jordan triple product from a bounded symmetric domain reveals that every complex
Banach space V admits a Jordan algebraic structure! Indeed, let D be the open unit
ball of V and let

autD = k⊕p
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be the eigenspace decomposition induced by the symmetry s0(z) = −z at the origin
0 ∈ D . Although D need not be a symmetric domain, the vector fields X ∈ p are still
polynomials of degree 2. Let

Vs = {X(0) : X ∈ autD} = {X(0) : X ∈ p}

which is a closed subspace of V and the open unit ball Ds := D∩Vs of Vs is a symmetric
domain. Therefore Vs is a JB*-triple and is called the symmetric part of V [21]. Of
course, V itself is a JB*-triple if, and only if, V = Vs .

The fact that every complex Banach space V contains a subspace Vs which is a
JB*-triple is a remarkable phenomenon. This suggests that Vs is an interesting object
of study.

EXAMPLE 3.1. A Banach algebra A with identity 1 is said to satisfy the von
Neumann inequality if for each a ∈ A with ‖a‖ � 1, we have

‖p(a)‖ � sup{|p(α)| : |α| = 1}

for every polynomial p with complex coefficients. This property can be characterized
by the the symmetric part As of A . In fact, A satisfies the von Neumann inequality
if, and only if, 1 ∈ As . The necessity has been shown in [1] and the sufficiency was
shown in [10].

From the viewpoint of JB*-triples, many results in operator algebras can be seen
simply through a geometric perspective. A C*-algebra A is a JB*-triple in the Jordan
triple product

{a,b,c} =
1
2
(ab∗c+ cb∗a) (a,b,c ∈ A ).

The complexBanach space B(H,K) of bounded linear operators between Hilbert spaces
H and K also forms a JB*-triple with the triple product

{a,b,c}=
1
2
(ab∗c+ cb∗a) (a,b,c ∈ B(H,K)).

An important feature of JB*-triples is that their norm and triple product determine each
other.

THEOREM 3.2. Let ϕ :V −→W be a linear bijection between JB*-triples V and
W . Then ϕ is an isometry if, and only if, ϕ is a triple homomorphism, that is, ϕ
preserves the triple product:

ϕ{a,b,c} = {ϕ(a),ϕ(b),ϕ(c)} (a,b,c ∈V ).

Proof. Let ϕ be an isometry. By the polarization

2{x,y,z} = {x+ z,y,x+ z}−{x,y,x}−{z,y,z},
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it suffices to show

ϕ{z,a,z} = {ϕ(z),ϕ(a),ϕ(z)} (a,z ∈V )

where, we may assume ‖z‖ < 1.
Consider V and W as the tangent space at 0 of the open unit balls DV and DW

respectively, which are symmetric domains. Let autDW = k⊕ p be the eigenspace
decomposition induced by the symmetry s0(w) = −w at 0 ∈ DW .

Let a ∈V . Since the evaluation map Y ∈ p �→ Y (0) ∈W is a linear isomorphism,
there is a unique vector field Yϕ(a) ∈ p such that Yϕ(a)(0) = ϕ(a) . Likewise, let Xa

be the unique complete holomorphic vector field on DV such that Xa(0) = a . Since
ϕ : DV −→ DW is a surjective linear isometry, ϕXaϕ−1 is a complete holomorphic
vector filed on DW satisfying

(ϕXaϕ−1)(0) = ϕ(a).

Hence we have ϕXaϕ−1 =Yϕ(a) . This gives, using (2),

ϕ(a)−{w,ϕ(a),w} = Yϕ(a)(w) = (ϕXaϕ−1)(w) = ϕ(a)−ϕ{ϕ−1(w),a,ϕ−1(w)}
(w ∈ DW )

and it follows that, letting z = ϕ−1(w) ∈ DV ,

ϕ{z,a,z} = {ϕ(z),ϕ(a),ϕ(z)} (z ∈ DV ).

Conversely, let ϕ be a triple homomorphism and let a ∈V\{0} . Let V (a) be the
JB*-subtriple generated by a . Then ϕ(V (a)) is the JB*-subtriple W (ϕ(a)) generated
by ϕ(a) in W . Further, for each complex-valued triple homomorphism χ of W (ϕ(a)) ,
the composite χ ◦ϕ is a complex-valued triple homomorphism of V (a) . It follows that

‖ϕ(a)‖ = sup{|χ(ϕ(a))| : χ is a triple homomorphism of W (ϕ(a))} � ‖a‖.

The same applies to the inverse ϕ−1 which concludes the proof. �

The above result in [20] not only subsumes Kadison’s result [16] on isometries
between C*-algebras, but also renders it a geometric perspective. The latter part of
the proof of sufficiency in the preceding theorem makes use of the spectral theory in
JB*-triples, applicable to non-self-adjoint operators in C*-algebras, namely, the closed
subtriple V (a) generated by any element a in a JB*-triple V is linearly isometric to
the C*-algebra C0(σ(a)) of continuous functions vanishing at infinity on the triple
spectrum σ(a) ⊂ [0,∞) of a [20].

Cartan’s classification of bounded symmetric domains and Theorem 1.1 can be
viewed as generalizations of the Riemann mapping theorem. In this context, the open
unit balls of JB*-triples are infinite dimensional generalization of the open unit disc U
is the complex plane. It is therefore natural to study function theory on the open unit
ball D of a JB*-triple V and expect fruitful applications of Jordan structures. Useful
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tools are the box operators z z : V −→ V , the Möbius transformations ga : D −→ D
and the Bergman operators B(b,c) : V −→V , where a ∈ D and b,c ∈V ,

B(b,c)(z) = z−2{b,c,z}+{b,{c,z,c},b} (z ∈V ).

We mention two examples to highlight the use of Jordan structures. We first note that
the Bergamn operator B(a,a) has positive spectrum and

g′a(0) = B(a,a)1/2.

In applications, it is essential to estimate the norm of the square roots of B(a,a) . The
formula

‖B(a,a)−1/2‖ =
1

1−‖a‖2

has been derived in [22]. An alternative proof can be found in [4, Chapter 3]. If V is
an abelian C*-algebra, we have

‖B(a,a)1/2‖ = 1−‖a‖2.

For a Hilbert space V with inner product 〈·, ·〉 , which is a JB*-triple in the triple product
2{x,y,z} = 〈x,y〉z+ 〈z,y〉x , we have

‖B(a,a)1/2‖2 = ‖B(a,a)‖ =
{

(1−‖a‖2)2 if dimV = 1
1−‖a‖2 if dimV � 2

(cf. [4, 8]). The following distortion theorem has been proved in [8].

THEOREM 3.3. Let D be the open unit ball of a JB*-triple V and let f : D−→V
be a biholomorphic map onto f (D) which is convex. Given that f (0) = 0 and f ′(0) is
the identity map, we have, for a ∈ D,

(i)
1

(1+‖a‖)2 � ‖ f ′(a)‖ � 1
(1−‖a‖)2 .

(ii)
(1−‖a‖)‖z‖

(1+‖a‖)‖B(a,a)1/2‖ � ‖ f ′(a)(z)‖ � ‖z‖
(1−‖a‖)2 (z ∈V ) .

Proof. We refer to [8] for details, but simply note that, for example, the Jordan
technique is used in the following computation:

‖ f ′(a)(z)‖ � 1+‖a‖
1−‖a‖‖z‖a =

1+‖a‖
1−‖a‖‖g

′
−a(a)(z)‖g−a(a)

=
1+‖a‖
1−‖a‖‖B(a,a)−1/2(z)‖ � 1+‖a‖

1−‖a‖
( ‖z‖

1−‖a‖2

)

=
‖z‖

(1−‖a‖)2
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where ‖z‖a is the Carathéodory norm defined in (1). If V is an abelian C*-algebra, the
the lower bound in (ii) reduces to

‖z‖
(1+‖a‖)2 . �

Our second example concerns the dynamics of a holomorphic map f : D −→ D
on a bounded symmetric domain D of any dimension. By Theorem 1.1, we regard D
as the open unit ball of a JB*-triple V . If f has no fixed point and the image f (D) is
relatively compact, then it is easily seen that there is a sequence (zk) in D converging
to a boundary point ξ ∈ ∂D with limk f (zk) = ξ . Further, if the sequence of operators

(1−‖zk‖2)B(zk,zk)−1/2 : V −→V

converges uniformly to an operator T ∈ L(V ) , which is the case if dimV < ∞ or V is
a Hilbert space, then for any λ > 0, the set

D(ξ ,λ ) := {x ∈ D : ‖B(x,x)−1/2B(x,ξ )T‖ < λ}

is f -invariant, that is, f (D(ξ ,λ )) ⊂ D(ξ ,λ ) . This result has been proved in [28].
When D is the open unit ball in a Hilbert space V , the following Denjoy-Wolff theorem
for f has been proved in [9].

THEOREM 3.4. Let D be the open unit ball of a Hilbert space and f : D −→ D
a holomorphic map without fixed point such that f (D) is relatively compact. Then the
iterates ( f n) of f converge to a constant function g(·) = ξ , uniformly on any open ball
strictly contained in D, where ‖ξ‖ = 1 .

Finally, we refer to [11] for applications of Jordan theory in harmonic analysis
on symmetric cones. Some connections found recently between Jordan structures and
harmonic analysis are described in [5, 6].
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[2] É. CARTAN, Sur les domaines bornés homogènes de l’espace de n variables complexes, Abh. Math.
Semin. Univ. Hamburg 11 (1935), 116–162.

[3] H. CARTAN, Les fonctions de deux variables complexes et le problème de la représentation analytique,
J. Math. Pures et Appl. 10 (1931), 1–114.

[4] C-H. CHU, Jordan structures in geometry and analysis, Cambridge Tracts in Math. 190, Cambridge
Univ. Press, Cambridge, 2012.

[5] C-H. CHU, Matrix-valued harmonic functions on groups, J. Reine Angew. Math. 552 (2002), 15–52.
[6] C-H. CHU, Matrix convolution operators on groups, Lecture Notes in Math. 1956, Springer-Verlag,

Heidelberg, 2008.
[7] C-H. CHU, Jordan triples and Riemannian symmetric spaces, Advances in Math. 219 (2008), 2029–

2057.
[8] C-H. CHU, H. HAMADA, T. HONDA AND G. KOHR, Distorsion theorems for convex mappings on

homogeneous balls, J. Math. Anal. Appl. 369 (2010), 437–442.



356 CHO-HO CHU

[9] C-H. CHU AND P. MELLON, Iteration of compact holomorphic maps on a Hilbert ball, Proc. Amer.
Math. Soc. 125 (1997), 1771–1777.

[10] C-H. CHU AND P. MELLON, Jordan structures in Banach spaces and symmetric manifolds, Expos.
Math. 16 (1998), 157–180.

[11] J. FARAUT AND A. KORANYI, Analysis on symmetric cones, Clarendon Press, Oxford, 1994.
[12] HARISH-CHANDRA, Representations of semi-simple Lie groups VI, Amer. J. Math. 78 (1956), 564–

628.
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Dordrecht (1994), 204–214.

[23] M. KOECHER, Imbedding of Jordan algebras into Lie algebras I, Bull. Amer. J. Math. 89 (1967),
787–816.

[24] M. KOECHER, An elementary approach to bounded symmetric domains, Lecture Notes, Rice Univer-
sity, 1969.

[25] O. LOOS, Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of Cali-
fornia, Irvine, 1977.

[26] K. MCCRIMMON, Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), 612–
627.

[27] K. MCCRIMMON, A taste of Jordan algebras, Universitext, Springer-Verlag, Heidelberg, 2004.
[28] P. MELLON, Holomorphic invariance on bounded symmetric domains, J. Reine Angew. Math. 523

(2000), 199–223.
[29] K. MEYBERG, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Math. Z. 115

(1970), 58–78.
[30] I. SATAKE, Algebraic strutures of symmetric domains, Princeton Univ. Press, Princeton, 1980.
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