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MATRIX FORMULATION FOR INFINITE–RANK OPERATORS
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Abstract. Every finite-rank operator on a linear space X is the composition of an operator from
X to a finite dimensional Euclidean space and of an operator from that Euclidean space to X . We
consider operators which are the sum of a finite-rank operator and another infinite-rank operator
which satisfies an invariance condition with respect to one of the two ‘components’ of the finite-
rank operator. A canonical procedure is given to reduce operator equations, eigenvalue problems
and spectral subspace problems involving such operators to corresponding problems for finite
matrices.

1. Introduction

Finite-rank operators have long been used in classical methods such as the col-
location method, the Galerkin method, the degenerate kernel method or the Nyström
method for approximating integral operators. They yield approximate solutions of op-
erator equations and of eigenvalue problems as well as spectral subspace problems in-
volving the given integral operator. (See [3] and [1].) The corresponding problem for
a finite-rank operator S is then reduced to a problem for a finite dimensional operator
A , that is, to a matrix problem, by a variety of procedures depending on the nature
of the finite-rank operator. In 1986, Whitley [7, Lemma 1] first proposed a canonical
reduction procedure which unified all known classical procedures. His result was im-
proved, and it was extended to eigenvalue problems and spectral subspace problems in
[4, Lemma 1] and [5, Lemma 3.1].

Every finite-rank operator on a linear space X can be written as LK , where K is a
linear map from X to a finite dimensional Euclidean space and L is a linear map from
that Euclidean space to X . The purpose of the present article is to obtain a canonical
reduction procedure for an operator T := S+U or T := S+V , where S is any finite-
rank operator on X , the operator U on X is such that the range of the transpose of K
is invariant under the transpose of U , and the operator V on X is such that the range
of L is invariant under V . An operator equation, an eigenvalue problem or a spectral
subspace problem involving the operator T = S+U is reduced to a question involving
a finite dimensional operator B := A +C . This generalizes the results of [2], where
the finite-rank operator S is given by evaluation of a continuous function at certain
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nodes, and U is a multiplication operator on the space of continuous functions. This
case arises in the singularity subtraction technique for integral operators with weakly
singular kernels. (See also [1, §5.1.1].) Our framework also includes a case treated
recently by Majidian and Babolian [6], where the operator S arises from a degenerate
kernel method with piecewise constant interpolation in the second variable of a smooth
kernel, and the operator U arises again from a multiplication by a piecewise constant
function. In both cases, the matrix corresponding to the finite dimensional operator C is
a diagonal matrix, since the operator U is a multiplication operator. On the other hand,
our results include cases where this matrix is diagonal, cross-diagonal, subdiagonal,
lower-triangular etc. In the process of this generalization, we have simplified many of
the arguments given in [2] and have made the results more elaborate.

Although this paper is of a theoretical nature, issues regarding the actual imple-
mentation of the results proved here are kept in view (as in comments after the proofs of
Propositions 3.4 and 5.1). The paper is organized as follows. In Section 2, we relate so-
lution of an operator equation and of an eigenvalue problem (including considerations
of geometric multiplicity and ascent) involving an operator of the form T = S +U to
that of a matrix of the form B = A+C in the framework of a linear space X (without
mention of any norm on it). We give several specific examples which include the ones
treated in [2] and [6]. In Section 3, we consider a complete norm on X and take up
spectral considerations for T = S +U , such as finding a basis for a spectral subspace
or the algebraic multiplicity of a spectral value. In Section 4, we deal with stability
considerations for linear systems arising from operator equations on the lines of [7]. In
Section 5, we consider an operator of the form T = S+V mentioned earlier. Here the
reduction procedure is not of much use for solving operator equations, but it is useful
in dealing with eigenvalue problems and spectral subspace problems.

2. Operator Equation and Eigenvalue Problem for T = S+U

Let X be a linear space over C and S : X → X be a linear operator. Then the
rank of S is at most n ∈ N if and only if there are linear maps K : X → Cn×1 and
L : Cn×1 → X such that LK = S . In fact, there are elements x1, . . . ,xn in X and linear
functionals f1, . . . , fn on X such that

Sx =
n

∑
j=1

f j(x)x j for all x ∈ X .

Define Kx := [ f1(x), . . . , fn(x)]t for x ∈ X and Lu := u(1)x1 + · · ·+ u(n)xn for u :=
[u(1), . . . ,u(n)]t ∈ Cn×1 , where the superscript t denotes transpose. Then S = LK . We
emphasize that neither the elements x1, . . . ,xn in X nor the linear functionals f1, . . . , fn
on X need be linearly independent.

Let S be of finite rank, and S = LK as above. Define A : Cn×1 → Cn×1 by A :=
KL . Then AK = KS .

Consider a linear map U : X → X such that fi ◦U belongs to the linear span of
f1, . . . , fn for each i = 1, . . . ,n . Then there are complex numbers ci, j such that fi ◦U =
∑n

j=1 ci, j f j for each i = 1, . . . ,n . Define a linear map C : C
n×1 → C

n×1 by Cu :=
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[
∑n

j=1 c1, ju( j), . . . ,∑n
j=1 cn, ju( j)

]t
for u := [u(1), . . . ,u(n)]t in Cn×1 . Then CK = KU .

Let
T := S+U and B := A+C.

It follows that BK = KT . We shall reduce problems involving the linear map T to
problems involving the finite dimensional linear map B . Before doing so, we give sev-
eral examples of functionals f1, . . . , fn and linear maps U which satisfy the invariance
condition mentioned above.

EXAMPLES 2.1. (i) Let J be a set and X be a subspace of the linear space of all
complex-valued functions defined on J . Let �∈N , and consider ξk ∈ X and αk : J → J
such that ξkx and x ◦αk belong to X for each k = 1, . . . , � and all x ∈ X . For x ∈ X ,
define Ux := ξ1(x ◦α1)+ · · ·+ ξ�(x ◦α�). Then U is a linear map from X to X . In
the following two items, we point out situations where fi ◦U ∈ span{ f1, . . . , fn} for
i = 1, . . . ,n .

• Let J be a topological space and X denote the linear space of all complex-valued
continuous functions on J . Consider distinct points t1, . . . ,tn in J , and let fi(x) := x(ti)
for i = 1, . . . ,n and x ∈ X . Assume that αk is continuous and αk(ti) ∈ {t1, . . . ,tn} for
each k = 1, . . . , � and i = 1, . . . ,n . Then for i = 1, . . . ,n and x ∈ X ,

(Ux)(ti) =
�

∑
k=1

ξk(ti)x
(
αk(ti)

)
=

n

∑
j=1

(
∑

αk(ti)=t j

ξk(ti)

)
x(t j).

Thus fi ◦U =
n

∑
j=1

ci, j f j , where ci, j := ∑
αk(ti)=t j

ξk(ti), 1 � i, j � n .

• Let J := [a,b] , an interval in R , and let X be the linear space of all complex-
valued bounded Lebesgue measurable functions on [a,b] . Consider disjoint subinter-
vals E1, . . . ,En of [a,b] of positive lengths and let fi(x) := 1

m(Ei)
∫
Ei

xdm for i = 1, . . . ,n

and x ∈ X . Assume that αk is Lebesgue measurable and αk(Ei) ∈ {E1, . . . ,En} for
each k = 1, . . . , � and i = 1, . . . ,n . Suppose every ξk is constant and every αk is affine
on each Ei . Thus there are complex numbers pi,k and qi,k such that ξk = pi,k and
α ′

k := qi,k on Ei for k = 1, . . . , � and i = 1, . . . ,n . Then for i = 1, . . . ,n and x ∈ X ,

∫
Ei

(Ux)dm =
�

∑
k=1

∫
Ei

ξk(x◦αk)dm =
�

∑
k=1

pi,k

|qi,k|
∫

αk(Ei)
xdm

=
n

∑
j=1

(
∑

αk(Ei)=Ej

pi,k

|qi,k|

)∫
Ej

xdm.

Thus fi ◦U = ∑n
j=1 ci, j f j , where

ci, j :=
m(Ej)
m(Ei)

∑
αk(Ei)=Ej

pi,k

|qi,k| , 1 � i, j � n.
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Let us give specific instances of the two items mentioned above. Let J = [0,1] =
[a,b], n � 2, ti := (i− 1)/(n− 1) and Ei := ((i− 1)/n, i/n) for i = 1, . . . ,n . First, let
� = 1 and α1(t) := t for t ∈ [0,1] . In the case of the first item, α1(ti) = ti for i =
1, . . . ,n , so that ci, j = ξ1(ti) if i = j and ci, j = 0 if i �= j for i, j = 1, . . . ,n . Similarly,
in the case of the second item, α1(Ei) = Ei , so that ci, j = 1

m(Ei)
∫
Ei

ξ1 dm if i = j , and
ci, j = 0 if i �= j for i, j = 1, . . . ,n . In both items, the linear map C is defined by a
diagonal matrix. (Compare [2] and [6].) Next, let � = 2, α1(t) := t and α2(t) := 1− t
for t ∈ [0,1] . In the case of the first item, α1(ti) = ti and α2(ti) = tn−i+1 for i = 1, . . . ,n ,
so that

ci, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ1(ti) if i = j but i �= n− j +1,

ξ2(ti) if i = n− j +1 but i �= j,

(ξ1 + ξ2)(ti) if i = j = n− j +1,

0 otherwise

for i, j = 1, . . . ,n . Similarly, in the case of the second item, α1(Ei) = Ei, α2(Ei) =
En−i+1 and m(Ei) = m(En−i+1) for i = 1, . . . ,n , so that

ci, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
m(Ei)

∫
Ei

ξ1 dm if i = j but i �= n− j +1,
1

m(Ei)
∫
Ei

ξ2 dm if i = n− j +1 but i �= j,
1

m(Ei)
∫
Ei

(ξ1 + ξ2)dm if i = j = n− j +1,

0 otherwise

for i, j = 1, . . . ,n . In both items, the linear map C is defined by a matrix which has
nonzero entries only along the diagonal and the cross diagonal.

(ii) Let X be a subspace of the linear space of all complex sequences. Let fi(x) :=
x(i) for i = 1, . . . ,n and x := (x(1),x(2), . . .)∈ X . Let a lower-triangular infinite matrix
[ui, j] define a linear map U : X →X . Note that ui, j := 0 for all i, j ∈N with j > i . Then
(Ux)(i) = ∑i

j=1 ui, jx( j) for i = 1, . . . ,n and x ∈ X . Thus fi ◦U = ∑n
j=1 ci, j f j , where

ci, j := ui, j if j � i and ci, j := 0 if j > i for 1 � i, j � n . To obtain a specific example,
let w1,w2, . . . be complex numbers such that Ux := (0,w1x(1),w2x(2), . . .) ∈ X for
each x := (x1,x2, . . .) ∈ X . Then f1 ◦U = 0 and fi ◦U = wi−1 fi−1 for i = 2, . . . ,n . For
this weighted right-shift operator U on X , the linear map C is defined by a matrix
which has nonzero entries only along the subdiagonal.

We now turn to a simple-minded but crucial result.

PROPOSITION 2.2. Let ζ ∈ C, y ∈ X , and define v := Ky.
(i) Let x ∈ X satisfy ζx− Tx = y and define u := Kx. Then ζu−Bu = v and

ζx−Ux = Lu+ y.
(ii) Suppose ζ is not an eigenvalue of C . Let u ∈ C

n×1 satisfy ζu−Bu = v and
let x ∈ X satisfy ζx−Ux = Lu+ y. Then ζx−Tx = y and Kx = u.

Proof. Let I denote the identity operator on X as well as on Cn×1 . Consider the
diagrams
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X
ζ I−T−−−−→ X

K

⏐⏐� ⏐⏐�K

Cn×1 −−−−→
ζ I−B

Cn×1

and

X
ζ I−U−−−−→ X

K

⏐⏐� ⏐⏐�K

Cn×1 −−−−→
ζ I−C

Cn×1

.

(i) Since BK = KT , the first diagram above is commutative. Hence ζu−Bu = v .
Also, Lu+ y = LKx+ y = Sx+ y = Tx−Ux+ y = ζx−Ux .

(ii) Since CK = KU , the second diagram above is commutative. Hence (ζ I −
C)Kx = K(ζ I −U)x = K(Lu + y) = Au+ v = Bu−Cu+ v = (ζ I −C)u . Since ζ is
not an eigenvalue of C , it follows that Kx = u . In turn, ζx−Tx = (ζx−Ux)− Sx =
(ζx−Ux)−LKx = Lu+ y−Lu = y . �

Given ζ ∈ C , which is not an eigenvalue of C , any y ∈ X and any u ∈ Cn×1 ,
Proposition 2.2 gives a prescription for finding x∈ X which satisfies the operator equa-
tion ζx−Tx = y along with the boundary condition Kx = u as follows. Let v := Ky .
Check whether u satisfies the finite linear system ζu−Bu = v . If so, part (ii) says that
any x ∈ X satisfying ζx−Ux = Lu+ y is a desired solution, and part (i) says that all
desired solutions are obtained in this manner. Of course, for this procedure to work, the
operator ζ I−U would have to be surjective.

We now relate the eigenvalue problem for the operator T to the eigenvalue prob-
lem for the finite dimensional operator B .

COROLLARY 2.3. Let λ ∈ C .
(i) Suppose λ I−U is injective and λ is an eigenvalue of T . Then λ is an eigen-

value of B; if x is an eigenvector of T corresponding to λ , then Kx is an eigenvector
of B corresponding to λ . The geometric multiplicity of λ as an eigenvalue of T is less
than or equal to the geometric multiplicity of λ as an eigenvalue of B.

(ii) Suppose λ I −U is surjective and λ is an eigenvalue of B, but not of C .
Then λ is an eigenvalue of T ; if u is an eigenvector of B corresponding to λ , and
x ∈ X is such that λx−Ux = Lu, then x is an eigenvector of T corresponding to λ .
The geometric multiplicity of λ as an eigenvalue of T is greater than or equal to the
geometric multiplicity of λ as an eigenvalue of B.

(iii) Suppose λ I−U is bijective and λ is not an eigenvalue of C . Then λ is an
eigenvalue of T if and only if λ is an eigenvalue of B. The geometric multiplicity of
λ as an eigenvalue of T is equal to the geometric multiplicity of λ as an eigenvalue
of B. Let g be this geometric multiplicity, {u1, . . . ,ug} be a basis of the eigenspace
N(λ I −B) of B, and let xi := (λ I−U)−1Lui for i = 1, . . . ,g. Then {x1, . . . ,xg} is a
basis of the eigenspace N(λ I−T) of T , and K(xi) = ui for i = 1, . . . ,g.

Proof. Let ζ := λ and y := 0 in Proposition 2.2. Then v := Ky = 0.
(i) Let nonzero x ∈ X be such that Tx = λx , and let u := Kx . Then by part (i)

of Proposition 2.2, Bu = λu and Lu = λx−Ux . Since λ is not an eigenvalue of U ,
we see that Lu �= 0, and hence u �= 0, so that u is an eigenvector of B corresponding
to λ . This also shows that K maps N(λ I −T ) to N(λ I −B) injectively. Hence the
dimension of N(λ I−T ) is less than or equal to the dimension of N(λ I−B) .
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(ii) Let nonzero u∈ Cn×1 be such that Bu = λu . Since λ I−U is surjective, there
is x ∈ X such that λx−Ux = Lu . Then by part (ii) of Proposition 2.2, Tx = λx and
Kx = u . Also, x �= 0, since u �= 0, so that x is an eigenvector of T corresponding
to λ . This also shows that K maps N(λ I −T ) to N(λ I −B) surjectively. Hence the
dimension of N(λ I−T ) is greater than or equal to the dimension of N(λ I−B) .

(iii) It follows from (i) and (ii) above that K maps N(λ I −T ) to N(λ I −B) bi-
jectively. Also, Txi = λxi and Kxi = ui for i = 1, . . . ,g , as in (ii) above. Further, since
{u1, . . . ,ug} is a linearly independent subset of Cn×1 , it follows that {x1, . . . ,xg} is a
linearly independent subset of X . �

Next, we relate the ascent of an eigenvalue λ of T to the ascent of λ as an
eigenvalue of B .

PROPOSITION 2.4. Let λ ∈ C . For j ∈ N , let Yj := N((λ I − T ) j) and Vj :=
N((λ I−B) j) . Then K maps Yj to Vj for every j ∈ N .

(i) Suppose λ I −U is injective. Then the map K restricted to Yj is injective for
every j ∈ N .

(ii) Suppose λ I−U is surjective and λ is not an eigenvalue of C . Then the map
K from Yj to Vj is surjective for every j ∈ N .

(iii) Suppose λ I−U is bijective and λ is not an eigenvalue of C . Then the ascent
of λ as an eigenvalue of T is equal to the ascent of λ as an eigenvalue of B.

Proof. Let j ∈N and x∈Yj . Since BK = KT , we see that (λ I−B) jKx = K(λ I−
T ) jx = K(0) = 0. Thus Kx ∈Vj .

(i) Let j ∈ N and x ∈ Yj be such that Kx = 0. Then Sx = LKx = L(0) = 0,
and hence (λ I −U) jx = (λ I −T + S) jx = (λ I −T ) jx = 0. Also, since (λ I −U) j is
injective, we see that x = 0. Thus the restriction of K to Yj is injective.

(ii) We prove this part by induction on j ∈ N . The proof of part (ii) of Corollary
2.3 shows that the result holds for j = 1. Assume that the result holds for j ∈ N .
Let u ∈ Vj+1 , and define v := λu−Bu . Then v ∈ Vj . By the inductive assumption,
there is y ∈ Yj such that Ky = v . Since λ I−U is surjective, there is x ∈ X such that
λx−Ux = Lu+y . By part (ii) of Proposition 2.2, we see that λx−Tx = y and Kx = u .
Hence (λ I−T ) j+1x = (λ I−T ) jy = 0. Thus x ∈ Yj+1 and Kx = u , and so the result
holds for j +1. Thus the proof by induction is complete.

(iii) It follows from (i) and (ii) above that K maps Yj to Vj bijectively, so that
dimYj = dimVj < ∞ , and hence Yj+1 = Yj if and only if Vj+1 = Vj for any j ∈ N .
Consequently, the smallest � ∈ N for which V�+1 = V� is also the smallest � ∈ N for
which Y�+1 = Y� . Thus the ascent of λ as an eigenvalue of T is equal to the ascent of
λ as an eigenvalue of B . �

3. Spectral Subspace problem for T = S+U

In this section, we shall relate the spectrum of T to the spectrum of B . For the
development of spectral theory, it is convenient to use the framework of a Banach al-
gebra with identity. We consider a complete norm ‖ · ‖ on the linear space X over C ,
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and BL(X) denote the Banach algebra of all bounded linear maps on X . We assume
that the finite-rank operator S and the operator U are in BL(X) . We can (and we shall)
assume that the functionals f1, . . . , fn on X appearing in the presentation of S are con-
tinuous, that is, they belong to the normed dual X ′ of X . We specify a norm ‖ · ‖0

on Cn×1 , and let K′ : (Cn×1)′ → X ′ denote the transpose of the continuous linear map
K : X → C

n×1 . The invariance condition on the map U : X → X says that the range
of K′ is invariant under the transpose U ′ : X ′ → X ′ of U . Let us denote the spectrum
{λ ∈ C : λ I−T is not invertible in BL(X)} of T ∈ BL(X) by sp(T ) .

PROPOSITION 3.1. Suppose λ ∈ C is not an eigenvalue of C , and λ �∈ sp(U) .
Then λ ∈ sp(T ) if and only if λ ∈ sp(B) .

Proof. Suppose λ ∈ sp(B) . Since λ is not an eigenvalue of C , and λ I −U is
surjective, part (ii) of Corollary 2.3 shows that λ is an eigenvalue of T , and hence a
spectral value of T . Conversely, suppose λ �∈ sp(B) . We show that λ �∈ sp(T ) . Since
λ I −U is injective, part (i) of Corollary 2.3 shows that λ I −T is injective. To show
that λ I−T is also surjective, we argue as follows. Let y∈ X and define v := Ky . Since
λ I−B is surjective, there is u ∈ Cn×1 such that λu−Bu = v . Also, since λ I −U is
surjective, there is x∈ X such that λx−Ux = Lu+y . Part (ii) of Proposition 2.2 shows
that λx−Tx = y . This completes the proof. �

PROPOSITION 3.2. Let E := sp(C)∪sp(U) and Λ⊆ sp(T )\E . Then Λ is a finite
set; each λ ∈ Λ is an eigenvalue of T and it is an isolated point of sp(T ) . Further,
K maps the spectral subspace M(T,Λ) associated with T and Λ into the spectral
subspace M(B,Λ) associated with B and Λ injectively.

Proof. By Proposition 3.1, Λ⊆ sp(T )\E = sp(B)\E ⊆ sp(B) . Hence Λ is a finite
set. Also, sp(T )\Λ is a closed set since it is the union of the closed sets sp(T )∩E and
(sp(T )\E)\Λ . This shows that each λ ∈ Λ is an isolated point of sp(T ) . The proof of
Proposition 3.1 shows that each λ ∈ Λ is an eigenvalue of T . Let Γ denote a Cauchy
contour whose interior contains Λ , whose exterior contains (sp(T )\Λ)∪E , and each
point of which is in the resolvent sets of T , B and U . (See, for example, Corollary
1.22 of [1].) The spectral projections associated with T and Λ , and with B and Λ are
given respectively by

P :=
1

2π i

∫
Γ
(ζ I−T )−1dζ and Q :=

1
2π i

∫
Γ
(ζ I−B)−1dζ .

Since BK = KT , we see that

QK =
1

2π i

∫
Γ
(ζ I−B)−1Kdζ =

1
2π i

∫
Γ
K(ζ I−T)−1dζ = KP.

Hence K maps the range of P into the range of Q , that is, K maps M(T,Λ) into
M(B,Λ) . Finally, we show that this map is injective. For ζ on Γ and y ∈ X , let x :=
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(ζ I −T )−1y , so that ζx−Tx = y . Also, let u := Kx . Then by part (i) of Proposition
2.2, ζu−Bu = Ky and ζx−Ux = Lu+ y , and so

(ζ I−T )−1y = x = (ζ I−U)−1(Lu+ y) = (ζ I −U)−1(L(ζ I −B)−1Ky+ y
)
.

Thus (ζ I−T )−1 = (ζ I−U)−1
(
L(ζ I−B)−1K + I

)
. Hence

P =
(

1
2π i

∫
Γ
(ζ I−U)−1L(ζ I −B)−1dζ

)
K +

1
2π i

∫
Γ
(ζ I−U)−1dζ .

But since no spectral values of U is inside Γ , the second term on the right is zero. Now
if x is in the range of P and Kx = 0, then

x = Px =
(

1
2π i

∫
Γ
(ζ I−U)−1L(ζ I −B)−1dζ

)
(0) = 0.

This completes the proof. �
The above result shows that if Λ ⊆ sp(T ) \ (sp(C)∪ sp(U)) , then the dimension

of the spectral subspace M(T,Λ) associated with T and Λ is less than or equal to the
dimension of the spectral subspace M(B,Λ) associated with B and Λ . In particular, if
λ ∈ sp(T ) , but λ �∈ sp(C)∪sp(U) , then the algebraic multiplicity of λ as an eigenvalue
of T is less than or equal to the algebraic multiplicity of λ as an eigenvalue of B . In
order to prove the equality of the dimensions mentioned above, we need to generalize
Proposition 2.2 to product spaces. This will also yield a method for constructing an
ordered basis of M(T,Λ) starting with an ordered basis of M(B,Λ) , just as part (ii) of
Corollary 2.3 yields a method for constructing an eigenvector of T corresponding to an
eigenvalue λ starting with an eigenvector of B .

Let m ∈ N . Given a linear map F from a linear space X to a linear space Y , the
linear map F from the Cartesian product X1×m := {[x1, . . . ,xm] : x j ∈ X for 1 � j � m}
to Y 1×m is defined by F x := [F(x1), . . . ,F(xm)] for x := [x1, . . . ,xm] ∈ X1×m . Also, for

x := [x1, . . . ,xm]∈X1×m and Z := [ζi, j]∈Cm×m , let xZ :=
[

∑m
i=1 ζi,1xi, . . . ,∑m

i=1 ζi,mxi

]
.

It is easy to see that F(xZ) = (F x)Z for all x ∈ X1×m and Z ∈ Cm×m .

PROPOSITION 3.3. Let m ∈ N, Z ∈ C
m×m, y ∈ X1×m , and define v := K y.

(i) Let x ∈ X1×m satisfy xZ−T x = y and define u := K x. Then uZ−Bu = v and
xZ−U x = Lu+ y.

(ii) Suppose Z and C have no common eigenvalues. Let u ∈ Cn×m satisfy uZ−
Bu = v and let x ∈ X1×m satisfy xZ−U x = Lu+ y. Then xZ−T x = y and K x = u.

Proof. The proof of Proposition 2.2 carries over in a straightforward manner ex-
cept for the following point. In part (ii), we obtain (K x)Z−C(K x) = uZ−Cu . Then
K x = u , since the map α �−→ α Z−Cα from Cn×1 to Cn×1 is injective. We give
here a simple proof of the injectivity of this map instead of referring to a general result.
Let ζ1, . . . ,ζm denote the (possibly repeated) eigenvalues of Z , and let Q ∈ Cm×m be
a unitary matrix such that W := Q∗ZQ is upper-triangular with diagW = (ζ1, . . . ,ζm) .
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Let α ∈ Cn×m be such that α Z−Cα = 0. Then α QW−CαQ = 0. Let β := αQ .
If β := [β1, . . . ,βm] and W := [wi, j] , then (ζ1I −C)β1 = 0, w1,2β1 + (ζ2I −C)β2

= 0, . . . ,∑m−1
i=1 wi,mβi + (ζmI −C)βm = 0. Since none of ζ1, . . . ,ζm is an eigenvalue

of C , we see that β1 = 0,β2 = 0, . . . ,βm = 0, that is, β = 0, and so α = 0, establishing
the injectivity. �

PROPOSITION 3.4. Let E := sp(C)∪ sp(U) and Λ ⊆ sp(T ) \E . Then M(T,Λ)
and M(B,Λ) have the same dimension. Let this dimension be m, and let u ∈ Cn×m

form an ordered basis of M(B,Λ) . If Θ in Cm×m satisfies Bu = uΘ , and if x is the
unique solution of the Sylvester equation xΘ−U x = Lu, then x forms an ordered basis
of M(T,Λ) , and Kx = u.

Proof. Let u ∈ Cn×m form an ordered basis of M(B,Λ) . Since M(B,Λ) is an
invariant subspace for B , there is Θ ∈ Cm×m such that Bu = uΘ and sp(Θ) = Λ .
Since sp(Θ)∩ sp(U) = /0 , there is unique x ∈ X1×m such that xΘ−U x = Lu . (See
Proposition 1.50 of [1].) Again, since Θ and C have no common eigenvalues, part (ii)
of Proposition 3.3 (with y = 0 and Z = Θ ) shows that xΘ−T x = 0 and K x = u . Let
x := [x1, . . . ,xm] . We first show that the set {x1, . . . ,xm} is linearly independent in X .
Let c ∈ Cm×1 be such that xc = 0. Then uc = (K x)c = K(xc) = K(0) = 0. But since
u := [u1, . . . ,um] ∈ Cm×1 forms a basis of M(B,Λ) , we must have c = 0 , showing that
the set {x1, . . . ,xm} is linearly independent in X . Let Y := span{x1, . . . ,xm} . The m-
dimensional subspace Y is closed in X . Since T x = xΘ , the matrix Θ represents the
operator T|Y :Y →Y and sp(T|Y ) = sp(Θ) = Λ . Hence Y is contained in M(T,Λ) . (See
Proposition 1.28 of [1].) Thus we see that the dimension of M(T,Λ) is greater than or
equal to the dimension m of M(B,Λ) . On the other hand, Proposition 3.2 shows that
dimension of M(T,Λ) is less than or equal to the dimension of M(B,Λ) . Thus the two
dimensions are equal. �

If λ ∈ sp(T ) \ (sp(C)∪ sp(U)
)
, then the above result shows that the algebraic

multiplicity of λ as an eigenvalue of T is equal to the algebraic multiplicity of λ as
an eigenvalue of B . Since any subset of sp(T ) which does not intersect sp(C)∪ sp(U)
consists of a finite number of such λ ’s, we may as well have found an ordered basis for
the spectral subspace associated with T and each such λ , and considered their union to
obtain an ordered basis for M(T,Λ) . However, since some of these λ ’s may be close
each other, the construction of an ordered basis for each such λ can be computationally
unstable. For this reason, we have considered Λ as a cluster of spectral values of
T . If Θ ∈ C

m×m and sp(Θ)∩ sp(U) = /0 , then for every y ∈ X1×m , there is unique
x∈ X1×m such that xΘ−U x = y . If we let x := R(U ,Θ)y , then the operator R(U ,Θ)∈
BL(X1×m) is known as the block resolvent of U at Θ .

4. A Bound on the condition number of ζ I−B

Proposition 2.2 reduces the problem of solving the operator equation ζx−Tx = y
to solving the finite linear system ζu−Bu = v in C

n×1 . Let us assume that ζ I −T
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and ζ I −B are invertible in BL(X) and BL(Cn×1) respectively. We now consider the
stability of the solution of this linear system vis-a-vis the stability of the given operator
equation in X .

In this section we shall assume that the functionals f1, . . . , fn appearing in the
presentation of the finite-rank operator S are linearly independent. Then there are
e1, . . . ,en in X such that fi(e j) = δi, j for i, j = 1, . . . ,n . Consequently, the continu-
ous linear map K : X → Cn×1 is surjective.

Let λ be an eigenvalue of C . Then it is an eigenvalue of C′ as well. Since
CK = KU , we see that U ′K′ = K′C′ . Since f1, . . . , fn are linearly independent, it
follows that λ is an eigenvalue of U ′ . But sp(U ′) = sp(U) . Thus sp(C) ⊆ sp(U) , and
the condition ‘λ is not an eigenvalue of C ’ stated in the last sentences of Corollary
2.3 and Proposition 2.4 as well as in Proposition 3.1 is superfluous. Also, the set E =
sp(C)∪ sp(U) introduced in Propositions 3.2 and 3.4 reduces to sp(U) .

Let ‖·‖0 be a specified norm on C
n×1 , and let ‖·‖′0 denote the corresponding dual

norm on Cn×1 . Then the normed dual of (Cn×1,‖ ·‖0) can be identified with (Cn×1,‖ ·
‖′0) . Note that the range of K′ is equal to span{ f1, . . . , fn} . The map K′ : (Cn×1)′ →
span{ f1, . . . , fn} can be identified with the map σ : (Cn×1,‖ · ‖′0) → span{ f1, . . . , fn}
given by σ(v) := v(1) f1 + · · ·+v(n) fn for v := [v(1), . . . ,v(n)]t ∈ Cn×1 . Then the map
σ is linear, continuous and bijective, and so is σ−1 : span{ f1, . . . , fn}→ (Cn×1,‖ ·‖′0) .
If ‖σ‖ and ‖σ−1‖ denote their norms, then cond(σ) := ‖σ‖‖σ−1‖ is known as the
condition number of σ . Note that cond(σ) � 1 always.

Let ζ ∈ C . Since BK = KT , we see that (ζ I−B)K = K(ζ I−T ) , and so K′(ζ I−
B′) = (ζ I −T ′)K′ . The last equality can be written as σ(ζ I −B′) = (ζ I −T ′)σ , that
is, ζ I−B′ = σ−1(ζ I−T ′)σ . Hence

‖ζ I−B‖ = ‖ζ I−B′‖ � cond(σ)‖ζ I−T ′‖ = cond(σ)‖ζ I−T‖.
Let ζ be in the resolvent sets of B and T . Then ζ I−B′ and ζ I−T ′ are invertible

and (ζ I−B′)−1 = σ−1(ζ I −T ′)−1σ . As before,

‖(ζ I−B)−1‖ � cond(σ)‖(ζ I−T )−1‖.
Thus

cond(ζ I−B) = ‖(ζ I−B)‖‖(ζ I−B)−1‖
� [cond(σ)]2‖(ζ I−T )‖‖(ζ I−T)−1‖
= [cond(σ)]2cond(ζ I−T ).

The relative error in the solution of the operator equation ζx−Tx = y is bounded
by cond(ζ I−T ) , and the relative error in the solution of the linear system ζu−Bu = v
is bounded by cond(ζ I−B) . We have shown that the latter bound is at most [cond(σ)]2

times the former bound. Thus if cond(σ) is not too big, then the reduction procedure
involved in passing from the operator equation ζx−Tx = y to the linear system ζu−
Bu = v is fairly stable. Of course, the best possible situation occurs cond(σ) = 1. We
now give three examples (which were considered in Section 1 without any mention of
norms) wherein this holds.
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EXAMPLES 4.1. (i) Let J be a compact Hausdorff topological space. Consider
the sup norm ‖·‖∞ on X :=C(J) , the space of all complex-valued continuous functions
defined on J . Given distinct points t1, . . . ,tn in J , let fi(x) := x(ti) for i = 1, . . . ,n and
x ∈ X . By Urysohn’s lemma, there are e1, . . . ,en in X such that fi(e j) = e j(ti) = δi, j

for i, j = 1, . . . ,n . Hence the set { f1, . . . , fn} is linearly independent in X ′ . Also, it
is clear that ‖ fi‖ = 1 for each i = 1, . . . ,n . If the norm ‖ · ‖0 on C

n×1 is taken to be
the norm ‖ · ‖∞ also, then the dual norm ‖ · ‖′0 on Cn×1 is the norm ‖ · ‖1 . For v :=
[v(1), . . . ,v(n)]t ∈ Cn×1 and x ∈ X , we have |σ(v)(x)| = |v(1)x(t1)+ · · ·+v(n)x(tn)|�
‖x‖∞(|v(1)|+ · · ·+ |v(n)| = ‖x‖∞‖v‖1 , so that ‖σ(v)‖ � ‖v‖1 . On the other hand,
given v ∈ Cn×1 , we can find x ∈ X such that x(ti) = sgnv(i) for each i = 1, . . . ,n and
‖x‖∞ � 1 by Tietze’s extension theorem, and then σ(v)(x) = |v(1)|+ · · ·+ |v(n)| =
‖v‖1 . This shows that ‖σ(v)‖ = ‖v‖1 for each v ∈ Cn×1 . Thus σ is an isometry, and
so cond(σ) = 1.

(ii) Let J := [a,b] , an interval in R . Consider the essential-sup norm ‖ · ‖∞
on X := L∞([a,b]) , the space of all equivalence classes of complex-valued bounded
Lebesgue measurable functions defined on J . Given disjoint subintervals E1, . . . ,En

of positive lengths in J , let fi(x) := 1
m(Ei)

∫
Ei

xdm for i = 1, . . . ,n and x ∈ X . Let χi

denote the characteristic function of the set Ei for i = 1, . . . ,n . Then fi(χ j) = δi, j

for i, j = 1, . . . ,n . Proceeding exactly as in (i) above, we see that ‖σ(v)‖ � ‖v‖1 .
Also, given v ∈ Cn×1 , let x := sgnv(1)χ1 + · · ·+ sgnv(n)χn . Then ‖x‖∞ � 1 and
σ(v)(x) = ‖v‖1 . This shows that ‖σ(v)‖ = ‖v‖1 for each v ∈ Cn×1 . Thus σ is an
isometry, and so cond(σ) = 1.

(iii) Let 1 � p < ∞ and X := �p , the linear space of all p -summable complex
sequences. Let fi(x) := x(i) for i = 1, . . . ,n and x := (x(1),x(2), . . .) in X . Clearly,
the set { f1, . . . , fn} is linearly independent in X ′ and ‖ fi‖ = 1 for each i = 1, . . . ,n .
If the norm ‖ · ‖0 on Cn×1 is taken to be the norm ‖ · ‖p also, then the dual norm
‖ · ‖′0 on Cn×1 is the norm ‖ · ‖q , where (1/p)+ (1/q) = 1. It is routine to verify that
‖σ(v)‖ = ‖v‖q for each v ∈ Cn×1 . Thus σ is an isometry, and so cond(σ) = 1.

5. The case T = S+V

As in Section 2, we consider a finite-rank linear operator S on a linear space X
over C presented as follows: Sx = ∑n

j=1 f j(x)x j for all x∈ X , where x1, . . . ,xn are in X
and f1, . . . , fn are linear functionals on X . Consider a linear map V : X → X such that
Vxj ∈ span{x1, . . . ,xn} for each j = 1, . . . ,n . Then there are complex numbers di, j such
that Vxj = ∑n

i=1 di, jxi for each j = 1, . . . ,n . Define a linear map D : Cn×1 → Cn×1 by

Du :=
[

∑n
j=1 d1, ju( j), . . . ,∑n

j=1 dn, ju( j)
]t

for u := [u(1), . . . ,u(n)]t ∈ Cn×1 . Recalling

the maps K : X → Cn×1, L : Cn×1 → X and A : Cn×1 → Cn×1 of Section 2, we see that
S = LK, A = KL, LA = SL and LD = VL . Let

T := S+V and B := A+D.

It follows that LB = TL . As before, we wish to reduce problems involving the linear
map T to problems involving the finite dimensional linear map B . The analogue of



368 BALMOHAN V. LIMAYE

Proposition 2.2 is as follows.

PROPOSITION 5.1. Let ζ ∈ C, v ∈ Cn×1 , and define y := Lv.
(i) Let u ∈ Cn×1 satisfy ζu−Bu = v and define x := Lu. Then ζx−Tx = y and

Kx = ζu−Du− v.
(ii) Suppose ζ I −V is injective. Let x ∈ X satisfy ζx−Tx = y and let u ∈ Cn×1

satisfy Kx = ζu−Du− v. Then ζu−Bu = v and Lu = x .

Proof.
(i) Since L(ζ I−B) = (ζ I−T )L , we have ζx−Tx = y . Also, Kx = KLu = Au =

(B−D)u = ζu−Du− v .
(ii) Since LD = VL , we have (ζ I −V)Lu = L(ζ I −D)u = L(Kx+ v) = Sx+ y =

Tx−Vx + y = (ζ I −V)x . Since ζ I −V is injective, it follows that Lu = x . In turn,
ζu−Bu = (ζu−Du)−Au = (ζu−Du)−KLu = (ζu−Du)−Kx = v . �

We remark that, unlike Proposition 2.2, the above result is not suitable for reducing
the operator equation ζx−Tx = y in X to a linear system ζu−Bu = v in Cn×1 . This
is because of two reasons. First, the right side y of the operator equation in X cannot
be an arbitrary element of X ; it must be of the form Lv for some v ∈ Cn×1 . This is
too restrictive. Secondly, the boundary condition to be satisfied by the solution x of the
operator equation, namely Kx = ζu−Du−v , is rather involved and also unnatural. For
these reasons, we do not dwell any further on reducing a general operator equation in X
to a linear system in Cn×1 . However, if we let v= 0 in Proposition 5.1, then y = Lv = 0,
and the eigenvalue problem for T can very well be reduced to the eigenvalue problem
for B in the same manner as before.

COROLLARY 5.2. Suppose λ ∈ C is not an eigenvalue of D.
(i) If λ is an eigenvalue of B, then λ is an eigenvalue of T ; if u is an eigenvector

of B corresponding to λ , then Lu is an eigenvector of T corresponding to λ . The
geometric multiplicity of λ as an eigenvalue of B is less than or equal to the geometric
multiplicity of λ as an eigenvalue of T .

(ii) Suppose λ I −V is injective. Then λ is an eigenvalue of T if and only if
λ is an eigenvalue of B; if x is an eigenvector of T corresponding to λ , then u :=
(λ I−D)−1Kx is an eigenvector of B corresponding to λ . The geometric multiplicity
of λ as an eigenvalue of T is equal to the geometric multiplicity of λ as an eigenvalue
of B.

Proof. The proof is similar to the proof of Corollary 2.3. We merely mention that
L maps the the eigenspace N(λ I −B) to the eigenspace N(λ I −T ) injectively in (i),
and bijectively in (ii). �

Here is an analogue of Proposition 2.4 for the ascent of an eigenvalue.

PROPOSITION 5.3. Let λ ∈ C . For j ∈ N , let Yj := N((λ I − T ) j) and Vj :=
N((λ I−B) j) . Then L maps Vj into Yj for every j ∈N . Suppose λ is not an eigenvalue
of D.
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(i) The map L restricted to Vj is injective for every j ∈ N .
(ii) Suppose λ I −V is injective. Then the map L from Vj to Yj is bijective for

every j ∈N . Consequently, the ascent of λ as an eigenvalue of T is equal to the ascent
of λ as an eigenvalue of B.

Proof. The proof is similar to the proof of Proposition 2.4. �
In order to relate sp(T ) with sp(B) , let us assume, as in Section 3, that X is a

Banach space, the operators S and V are in BL(X) and fi ∈ X ′ for i = 1, . . . ,n .

PROPOSITION 5.4. Suppose λ ∈ C is not an eigenvalue of D, and λ �∈ sp(V ) .
Then λ ∈ sp(T ) if and only if λ ∈ sp(B) .

Let E ⊆ sp(D)∪ sp(V ) and Λ ⊆ sp(T )\E . Then Λ is a finite set, each λ ∈ Λ is
an eigenvalue of T and it is an isolated point of sp(T ) . Further, the dimension of the
spectral subspace associated with T and Λ is equal to the dimension of the spectral
subspace associated with B and Λ .

Proof. Since Sx = f1(x)x1 + · · ·+ fn(x)xn for x∈ X , the map S′ : X ′ →X ′ is given
by

S′( f ) = f (x1) f1 + · · ·+ f (xn) fn for f ∈ X ′.

Let Fi ∈ X ′′ denote the canonical embedding of the element xi ∈ X for i = 1, . . . ,n .
Then S′ is presented as follows: S′ f = F1( f ) f1 + · · ·+Fn( f ) fn for f ∈ X ′ . Thus S′ is
a finite-rank operator on X ′ and S′ = (LK)′ = K′L′ . Also, A′ = (KL)′ = L′K′ , and so
A′L′ = L′S′ . Now T ′ = S′+V ′ , B′ = A′+D′ , and since D′L′ = (LD)′ = (VL)′ = L′V ′ ,
we see that B′L′ = L′T ′ . Our hypothesis says that λ is not an eigenvalue of D′ and
λ �∈ sp(V ′) . While the map K′ is from (Cn×1)′ to X ′ , and the map L′ is from X ′ to
(Cn×1)′ , we may identify (Cn×1)′ with Cn×1 in a natural way. Replacing X , U, T, C
and B in Proposition 3.1 by X ′, V ′, T ′, D′ and B′ respectively, we see thatλ ∈ sp(T ′)
if and only if λ ∈ sp(B′) , that is, λ ∈ sp(T ) if and only if λ ∈ sp(B) .

Since Λ ⊆ sp(T )\E , we see that Λ is a finite set, sp(T )\Λ is a closed set, and so
each λ ∈ Λ is an isolated point of sp(T ) exactly as in the proof of Proposition 3.2. Let
P and Q denote the spectral projections associated with T and Λ , and with B and Λ
respectively. Then P′ and Q′ are the spectral projections associated with T ′ and Λ , and
with B′ and Λ respectively. We may replace X , sp(C)∪sp(U), T and B in Proposition
3.4 by X ′, sp(D)∪ sp(V ), T ′ and B′ respectively, and obtain rankP′ = rankQ′ , that is,
rankP = rankQ , as desired. In particular, each λ ∈ Λ is an isolated spectral value of
T of finite algebraic multiplicity, and hence it is an eigenvalue of T [1, Proposition
1.31]. �

It follows from the above proposition that if λ ∈ sp(T ) , but λ �∈ sp(D)∪ sp(V ) ,
then the algebraic multiplicity of λ as an eigenvalue of T is equal to the algebraic
multiplicity of λ as an eigenvalue of B . We remark that if the dimension of the spectral
subspace associated with B and Λ is m , and if u ∈ Cn×m forms an ordered basis, then
x := Lu forms an ordered basis of the spectral subspace associated with T and Λ .
However, we refrain from giving details of the proof.



370 BALMOHAN V. LIMAYE

Examples of elements x1, . . . ,xn in a linear space X and of linear maps V on
X such that Vx j ∈ span{x1, . . . ,xn} for each j = 1, . . . ,n can be obtained by con-
sidering the ‘dual’ situations given in Examples 2.1. For instance, we may consider
x j := (0, . . . ,0,1,0, . . . ,0) , where 1 occurs in the j th place, for j = 1, . . . ,n , and an
upper-triangular infinite matrix [vi, j] instead of a lower-triangular infinite matrix [ui, j]
in Example 2.1 (ii).
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