
Operators
and

Matrices

Volume 6, Number 2 (2012), 371–383 doi:10.7153/oam-06-27

CENTRAL AND ALMOST CONSTRAINED

SUBSPACES OF BANACH SPACES

T. S. S. R. K. RAO

Abstract. In this paper we continue the study of central subspaces initiated in [2] and its infinite
version called almost constrained subspaces. We are interested in studying situations where
these intersection properties of balls lead to the existence of a linear projection of norm one. We
show that every finite dimensional subspace is a central subspace only in Hilbert spaces. By
considering direct sums of Banach space we give examples where central subspaces are almost
constrained or one-complemented. We show that a M -ideal can fail to be a central subspace,
answering a question raised in [2].

1. Introduction

Let X be a real Banach space. Let B(x,r) denote the closed ball centered at x
and radius r > 0. Let X1 denote the closed unit ball. We say that a finite or infinite
collection {B(xi,ri)} of closed balls intersect in X if

⋂
B(xi,ri) �= /0 . We say that a

collection of balls almost intersect, if for any ε > 0, there is a xε ∈ ⋂
B(xi,ri + ε) .

In this paper we study three forms of intersection properties of balls for closed
subspaces Y ⊂ X that are related to the existence of Chebyshev centres for finite sets
and one-complementability, i.e, there exists an onto linear projection P : X → Y such
that ‖P‖ = 1.

DEFINITION 1. A closed subspace Y ⊂ X is said to be a central subspace if for
any finite set {yi}1�i�n ⊂ Y and x0 ∈ X , there exists a y0 ∈ Y such that ‖y0 − yi‖ �
‖x0− yi‖ for 1 � i � n .

It is easy to see that this is equivalent to every finite collection of balls with centres
from Y that intersect in X , also intersect in Y .

This notion was motivated by existence of Chebyshev centres for finite sets. We
recall that for a finite set {x1, ..,xn} , x0 is said to be a Chebyshev centre (relative to X),
if max1�i�n‖x0− xi‖ = infx∈X max1�i�n ‖x− xi‖ .

It is easy to see that if Y ⊂ X is a central subspace, then finite subsets of Y that
have Chebyshev centres in X have Chebyshev centres (relative to Y) in Y .

A particularly interesting situation occurs when X is a central subspace of X∗∗
under the canonical embedding. Using the weak∗ -compactness of balls in X∗∗ , it was
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proved in [2] (Proposition 2.9) that X is a central subspace of X∗∗ if and only if every
finite family of almost intersecting balls in X intersect. Clearly this happens in dual
spaces and is preserved under projections of norm one. Spaces that have this property
were called as spaces with generalized centres (GC for short) and were investigated by
Vesel ý in [20] and [19].

Lindenstrauss in [14](page 61) gave a renorming of �∞ in which there is a closed
subspace with three balls that almost intersect but do not intersect. In an equivalent for-
mulation, Konyagin [12] showed that any non-reflexive Banach space has a renorming
in which there is a hyperplanewhere a set of three elements that fails to have Chebyshev
centre.

An infinite version of central subspaces called almost constrained subspaces was
investigated in [3] and [4].

DEFINITION 2. Y ⊂ X is said to be an almost constrained subspace if every fam-
ily of closed balls in Y that intersect in X also intersect in Y .

It is easy to see that any reflexive (or a weak∗ -closed subspace when X is a dual
space) that is a central subspace is an almost constrained subspace. It is easy to see that
c0 is a central subspace of �∞ . By taking the sequence of balls {B(en,

1
2)} one can see

that they have empty intersection in c0 , where as the constant sequence { 1
2} is in their

intersection. On the other hand, it is easy to show that any finite dimensional central
subspace of c0 or �∞ is isometric to �∞(k) for some k and hence is the range of a
projection of norm one. An important problem is to find conditions on a Banach spaces
X or local conditions on the subspace Y ⊂X so that Y ⊂X is a central subspace implies
Y⊥⊥ (which is isometric to Y ∗∗ , ignoring the canonical isometry, we treat the spaces
as the same) is a central subspace of X∗∗ . We note that since Y⊥⊥ is a weak∗ -closed
subspace, that it is a central subspace of X∗∗ implies that it is an almost constrained
subspace.

A prime motivation for our study is a consequence of a result of Lindenstrauss (see
[14] Theorem 5.9) which says that if Y ⊂ X is an almost constrained subspace, then
for any x0 /∈Y there exists an onto projection P : span{Y,x0}→Y , ‖P‖= 1. See [15],
where he also gives an example (in the language of projections) of an almost constrained
subspace that is not the range of a norm-one projection. In this equivalent formulation
this property was also investigated recently in [11] where they exhibit several classes
of function spaces in which almost constrained subspaces are one-complemented. In
particular they show that any almost constrained subspace of �1 is one-complemented.
Since any finite dimensional central subspace is almost constrained we get that, for any
discrete set Γ , any finite dimensional central subspace of �1(Γ) is one-complemented,
and thus isometric to �1(k) for some k . We do not know a complete description of
central subspaces of �1(Γ) .

In this paper we investigate conditions under which the notions of central, almost
constrained and norm-one complemented coincide. We show that a Banach space is
almost constrained in every super space if and only if it is isometric to C(K) for some
compact extremally disconnected space and thus it is one-complemented in every super
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space. We show that any Banach space of dimension greater than or equal to 3, that is
not isometric to a Hilbert space has a closed subspace that is not a central subspace.

In sequence spaces, ranges of norm one projections that are of finite co-dimension
have been well investigated in [5] and [6]. The notion of generalized centres for hy-
perplanes and relation with one-complemented subspaces in c0 was studied in [20].
Motivated by this we show that in a c0 -direct sum of reflexive spaces any factor reflex-
ive (i.e, the quotient space is reflexive), proximinal subspace that is a central subspace
is an almost constrained subspace. We also show that in this set up, a proximinal factor
reflexive, subspace Y , is a central subspace if and only if its bidual is a central subspace.
When the collection of spaces is infinite, we show that no factor reflexive subspace of
the c0 -direct sum is almost constrained in the bidual. This result extends the known
result that no infinite dimensional subspace of c0 is almost constrained in �∞ .

A closed subspace Y ⊂ X is said to be an ideal ( [8]), if there is a projection
P : X∗ → X∗ such that ker(P) = Y⊥ and ‖P‖ = 1. In this paper we always consider a
Banach space X as canonically embedded in its bidual X∗∗ . We show that if Y ⊂ X is
an ideal and has the property GC , then Y is a central subspace of X∗∗ . We recall from
[9] that an ideal Y ⊂ X is said to be a M -ideal, if the projection P further satisfies,
‖x∗‖ = ‖P(x∗)‖+ ‖x∗ − P(x∗)‖ for all x∗ ∈ X∗ . Y is said to be a M -summnad, if
X = Y

⊕
∞ Z for some closed subspace Z ⊂ X . Any M -summand is a M -ideal. These

subspaces can be characterized in terms of intersection properties of balls. See Chapter
I of [9]. Classical examples include c0 ⊂ �∞ or more generally the c0 -direct sum of a
family of Banach spaces in the corresponding �∞ -direct sum.

Using simple geometric properties of M -ideals we show that any Banach space
that is a M -ideal in its bidual (under the canonical embedding), if it is almost con-
strained, then it is reflexive. We also give a simple proof using intersection properties
of balls that a M -ideal that is an almost constrained subspace is a M -summand (see
[4]). We give an example to show that intersection of two central subspaces can fail to
be a central subspace.

We show that for an extremally disconnected compact Hausdorff space Ω and
for any finite dimensional central subspace Y ⊂ X , C(Ω,Y ) is an almost constrained
subspace of C(Ω,X) .

A major part of this work was done during Rao’s stay at the University of Bologna
under the India4EU program during September, October 2010. He thanks Professor P.
L. Papini for his warm hospitality. The author was a Fulbright-Nehru Senior Research
Fellow at the Southern Illinois University at Edwardsville during a revision of the paper.

2. Classification of Banach spaces

A real Banach space X is said to be a L1 -predual, if X∗ is isometric to L1(μ) for
a positive measure μ . It follows from Lindenstrauss’ Characterization of these spaces
in terms of intersection properties of balls (see [14] Theorem 6.1) that such a space has
the property GC . It also follows from Theorem 6.1 in [14] that X is a L1 -predual space
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if and only if X∗∗ is isometric to a C(K) space for a compact extremally disconnected
space K .

It follows from [2] Theorem 3.3, that X is a L1 -predual space if and only if it
is a central subspace of every Banach space that contains it. In particular L1 -preduals
have the property GC . Our first result addresses this question for almost constrained
subspaces. For a compact Hausdorff space K , let C(K)-denote the space of real-valued
continuous functions, with the supremum norm. See Chapter 3, Section 11 of [13] for
properties of C(K) spaces for extremally disconnected compact spaces K .

PROPOSITION 3. A Banach space X is almost constrained in every super space
that contains it if and only if it is isometric to C(K) for some compact extremally
disconnected space K . Thus X is one-complemented in every super space.

Proof. Suppose X is almost constrained in every super space. As already noted
the hypothesis in particular implies that X is a central subspace of every super space
and hence X is a L1 -predual.

We next show that any family of balls {B(xi,ri)} in X that pair-wise intersect have
non-empty intersection. It then follows from [14] that X is isometric to a C(K) space
for a compact extremally disconnected space K .

Consider X as canonically embedded in X∗∗ . Since X is a L1 -predual space by
Theorem 6.1 of [14], any finite collection of balls from {B(xi.ri)} have non-empty
intersection. Now considering them as balls in X∗∗ , as they are also weak∗ -compact
set we get that {B(xi,ri)} intersects in X∗∗ . Since X is almost constrained in X∗∗ we
get that {B(xi,ri)} intersect in X . Therefore X is isometric to C(K) for some compact
extremally disconnected space K .

It is well known that for a compact extremally disconnected space K , C(K) is
one-complemented in every super space (see Chapter 3 of [13]). �

COROLLARY 4. Let X be a L1 -predual space. Y ⊂ X is a central subspace if
and only if Y⊥⊥ ⊂ X∗∗ is a one complemented subspace.

Proof. Suppose Y ⊂ X is a central subspace. Since X is a L1 -predual space, as
noted before, Y is a L1 -predual space and hence Y ∗∗ is isometric to a C(K) space for
K , compact and extremally disconnected (see [13] Chapter 3, Section 11). As Y⊥⊥ is
isometric to Y ∗∗ we have that, Y⊥⊥ is one complemented in X∗∗ .

Conversely suppose that Y⊥⊥ is a one complemented subspace of X∗∗ . Since X∗∗
is isometric to a C(K) space for a compact and extremally disconnected space K , again
by results from Chapter 3, section 11 of [13], we have that Y⊥⊥ is isometric to C(K′)
for some compact extremally disconnected space K′ . Thus Y is a L1 -predual space. It
now follows from Theorem 3.3 of [2] that Y is a central subspace. �

The subspace question is easier to settle as one only need to consider finite dimen-
sional spaces. This result is formulated for complex Banach spaces. See the monograph
by D. Amir, [1] for several characterizations of Hilbert spaces.
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THEOREM 5. Let X be a complex Banach space of dimension dim(X) � 3 . X is
isometric to a Hilbert space if and only if every finite dimensional subspace is a central
subspace.

Proof. Suppose every finite dimensional subspace F ⊂ X is a central subspace.
Let F ⊂ X be such that dim(F) � 3. We need to show that F is the Euclidean space.
Let G ⊂ F ⊂ X . Since G is a finite dimensional central subspace, clearly G is an
almost constrained subspace of X and hence in F . Let x ∈ F and x /∈ G . From our
remarks in the Introduction we have an onto projection P : span{G,x} → G such that
‖P‖= 1. Now since span{G,x} is an almost constrained subspace, this process can be
continued to get an onto projection Q : F →G such that ‖Q‖= 1. Since this is true for
every subspace of F , we conclude that F is the Euclidean space. �

3. Intersection properties in direct sums of Banach spaces

As remarked earlier, any central subspace Y of c0 is a L1 -predual. Thus if it
is finite dimensional, it is isometric to �∞(k) . By a simple application of the Hahn-
Banach theorem, it is easy to see that an isometric copy of �∞(k) is one-complemented
in any super space. Thus in c0 or �∞ , any finite dimensional central subspace is one
complemented. We do not know if finite dimensional central subspaces are always one
complemented.

In this section we consider these concepts for c0 , �∞ and �1 direct sums of Banach
spaces and certain subspaces of the direct sums. It is easy to see that being a central
subspace is preserved by finite �∞ or �1 -direct sums. In particular having the property
GC is preserved under finite �∞ -direct sums. In the following theorem, we give an easy
proof of the fact that the property GC gets preserved by c0 -sums (see [20], Theorem
4.7). We recall that c0 is not an almost constrained subspace of �∞ . In what follows
we omit writing the index set for the direct sums.

THEOREM 6. Let {Xi}{i∈I} be a family of Banach spaces having the property
GC. Then X =

⊕
c0

Xi is a central subspace of
⊕

∞ Xi . In particular for any family of
dual spaces {X∗

i }{i∈I} ,
⊕

c0
X∗

i is a central subspace of
⊕

∞ X∗
i .

Proof. We will show that any finite family of almost intersecting balls in X =⊕
c0

Xi intersect. It then follows from Proposition 2.9 in [2] that X has the property GC .
As (

⊕
c0

Xi)∗∗ =
⊕

∞ X∗∗
i and since

⊕
co

Xi ⊂ ⊕
∞ Xi ⊂ ⊕

∞ X∗∗
i under the canonical

embedding, it then follows that
⊕

c0
Xi is a central subspace of

⊕
∞ Xi .

Let {B(xi,ri)}1�i�n be any finite family of almost intersecting balls in
⊕

c0
Xi .

Let δ = min{ri} . Choose N large such that ‖xi( j)‖ � δ for all j /∈ A for some finite
set A ⊂ I and for 1 � i � n . Since the property GC is preserved under finite sums,
again by Proposition 2. 9 of [2], there exists x′ j ∈ Xj such that ‖xi( j)− x′ j‖ � ri for
j ∈ A and for 1 � i � n . Thus by taking x0( j) = x′ j for j ∈ A and x0( j) = 0 for j /∈ A ,
we have, x0 ∈ ⊕

c0
Xi . We therefore have, ‖xi− x0‖ � ri for 1 � i � n . �
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LEMMA 7. Let X = Z1
⊕

∞ Z2 and Y ⊂ X be such that Y =Y ∩Z1
⊕

∞ Z2 . Y is a
central subspace if and only if Y ∩Z1 is cental subspace of Z1 and hence of X .

Proof. Suppose Y is a central subspace of X . Let z ∈ Z1 and z1, ..,zn ∈ Y ∩Z1 .
By hypothesis there exists a y0 ∈ Y such that ‖zi − y0‖ � ‖zi − z‖ for all i . Now let
y0 = y01 + z02 where y01 ∈Y ∩Z1 , z02 ∈ Z2 . Since zi − y01 ∈ Z1 , we have,

‖zi − y01‖ � max{‖zi− y01‖,‖z02‖} = ‖zi − y0‖ � ‖zi − z‖.

Therefore Y ∩Z1 is a central subspace of Z1 . Since Z1 is the range of a projection
of norm one in X , it is a central subspace of X and thus transitivity Y ∩Z1 is a central
subspace of X .

Conversely, suppose Y ∩Z1 is a central subspace of Z1 . Then by our earlier re-
marks Y = Y ∩Z1

⊕
∞ Z2 is a central subspace of X = Z1

⊕
∞ Z2. �

We recall that a closed subspace Y ⊂ X is said to be proximinal if for every x∈ X ,
there exists a y ∈ Y such that d(x,Y ) = ‖x− y‖ .

THEOREM 8. Let {Xi}{i∈I} be an infinite family of reflexive Banach spaces. Let
X =

⊕
c0

Xi . Let Y ⊂ X be a factor reflexive, proximinal subspace. Y is a central
subspace if and only if it is almost constrained.

Proof. For any f ∈ Y⊥ = (X/Y )∗ , by reflexivity, f attains its norm and since Y
is proximinal, it is easy to see that f attains its norm on X . Thus if NA(X) denotes the
set of all norm attaining functionals in X∗ , then Y⊥ ⊂ NA(X) . Since X∗ =

⊕
�1 X∗

i ,
it is easy to see that for any f ∈ NA(X) there exist a finite index set A ⊂ I such that
f (i) = 0 for i /∈ A . As Y⊥ is a Banach space, a simple Baire category argument gives
that there is a finite index set A such that f (i) = 0 for all i /∈ A and for all f ∈ Y⊥ .
Thus under the canonical identification, Y⊥ ⊂ ⊕

i∈A X∗
i ⊂ X∗ . Also note that X =⊕

i∈A Xi
⊕

∞
⊕

i/∈A Xi (the last summand is a c0 -direct sum). Since
⊕

i/∈A Xi ⊂ Y we get
that Y = Y ∩⊕

i∈A Xi
⊕

∞
⊕

i/∈A Xi .

Since A is a finite set,
⊕

i∈A Xi is a reflexive space. Since Y is a central subspace,
by Lemma 7, Y ∩⊕

i∈A Xi is a central subspace of
⊕

i∈A Xi . By reflexivity, this is an
almost constrained subspace of

⊕
i∈A Xi . It is easy to see that Y is an almost constrained

subspace of X . �
The following corollaries are easy to prove using the arguments given during the

proof of the above theorem and the fact that any central subspace of �∞(k) is one-
complemented. See Theorem 2 in [20].

COROLLARY 9. Let Γ be a discrete set. Any proximinal subspace Y ⊂ c0(Γ) of
finite co-dimension that is a central subspace is one-complemented.

Similar arguments yield the following corollary. We note that any �∞ -sum of
reflexive spaces Xi is the dual of the corresponding �1 -sum of X∗

i .



CENTRAL AND ALMOST CONSTRAINED SUBSPACES OF BANACH SPACES 377

COROLLARY 10. Let {Xi}{i∈I} be an infinite family of reflexive Banach spaces.
Let X =

⊕
∞ Xi . Let Y ⊂ X be a factor reflexive subspace such that any f ∈ Y⊥ has

at most finitely many non-zero coordinates . Then Y is a central subspace if and only if
it is almost constrained. In this case Y is also a dual space.

We do not know if the proximinality assumption can be dropped in Theorem 8. In
the following corollary we once again use the explicit description of proximinal factor
reflexive subspaces.

COROLLARY 11. Let {Xi}{i∈I} be an infinite family of reflexive Banach spaces.
Let X =

⊕
c0

Xi . Let Y ⊂ X be a factor reflexive, proximinal subspace. Then Y⊥⊥ is
an almost constrained subspace of X∗∗ if and only if Y is a central subspace of X .

Proof. As in the proof of Theorem 8 from hypothesis we have that Y = Y ∩⊕
i∈A Xi

⊕
∞

⊕
i/∈A Xi , for some finite set A ⊂ I , where the second summand is a c0 -

direct sum . Now since Xi ’ as well as Y ∩⊕
i∈A Xi are reflexive,

Y ∗∗ = Y⊥⊥ = Y ∩
⊕

i∈A

Xi

⊕

∞

⊕

i/∈A

Xi.

Here the second summand is a �∞ -direct sum. Also X∗∗ =
⊕

i∈A Xi
⊕

∞
⊕

i/∈A Xi , where
the second direct sum is a �∞ -direct sum. We note that Y⊥⊥ ∩⊕

i∈A Xi = Y ∩⊕
i∈A Xi .

Thus by Lemma 7 again we have that Y⊥⊥ is a central subspace if and only if Y is
a central subspace. Being weak∗ -closed, Y⊥⊥ is an almost constrained subspace of
X∗∗ . �

In the following proposition we consider quotient spaces.

PROPOSITION 12. Let {Xi}{i∈I} be an infinite family of reflexive Banach spaces.
Let X =

⊕
c0

Xi . Let Y ⊂ X be a proximinal subspace. Then the quotient space X |Y is
a central subspace of X∗∗|Y . If Y is also factor reflexive, X |Y is an almost constrained
subspace of X∗∗|Y .

Proof. By Theorem 6 we have that X is a central subspace of X∗∗ . It follows from
Proposition 4. 4 in [2] that X |Y is a central subspace of X∗∗|Y . In particular if Y is
factor reflexive, X |Y is an almost constrained subspace of X∗∗|Y . �

4. Norm one projections in dual spaces

An interesting tool in the study of geometric properties is the notion of an ideal,
introduced in [8] and developed in [16].

DEFINITION 13. A closed subspace Y ⊂ X is said to be an ideal if there exists a
projection P : X∗ → X∗ such that ker(P) = Y⊥ and ‖P‖ = 1.
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For any Banach space X , since the canonical projection Q : X∗∗∗ → X∗∗∗ defined
by restricting functionals to the canonical image of X , is a projection of norm with
ker(Q) = X⊥ , we have that X is an ideal in X∗∗ .

Clearly the range of a projection of norm one is an ideal. Prime examples of ideals
that are, in general are not complemented subspaces, include the space of compact
operators K (X ,Y ) in the space of bounced operators L (X ,Y ) under the assumption
that X∗ or Y has the metric approximation property. More generally the space of
vector-valued continuous functions C(K,X) , is an ideal in the space WC(K,X) , of
functions that are continuous when X has the weak topology (see [16]). Since any
M -ideal is an ideal, the following proposition extends Proposition 2.8 in [2].

PROPOSITION 14. Let Y ⊂ X be a closed subspace with the property GC. Sup-
pose Y is an ideal in X . Then Y is a central subspace of X∗∗ and hence a central
subspace of X .

Proof. Since Y is an ideal, it is easy to see that P∗ : X∗∗ → X∗∗ is a projection
of norm one, with range Y⊥⊥ = Y ∗∗ . Now let {yi}1�i�n ⊂ Y and let Λ ∈ X∗∗ . Since
Y is a central subspace of Y ∗∗ , for P∗(Λ) ∈ Y ∗∗ , there exists a y0 ∈ Y such that ‖yi −
y0‖ � ‖yi −P∗(Λ)‖ . Since P∗ is a projection of norm one and P∗(yi) = yi for all i ,
‖yi− y0‖ � ‖yi −P∗(Λ)‖ = ‖P∗(yi −Λ)‖ � ‖yi −Λ‖ . Thus Y is a central subspace of
X∗∗ . As Y ⊂ X ⊂ X∗∗ , we also have that Y is a central subspace of X . �

REMARK 15. In [19] the author exhibits several classes of functions for which
C(K,X) has the property GC . It now follows that in all these cases, C(K,X) is a
central subspace of WC(K,X) .

It is easy to see that if Y ⊂ Z ⊂ X and Y is a M -ideal in X then it is a M -ideal in
Z . Intersection of finitely many M -ideals is a M -ideal and a finite sum is a closed space
and a M -ideal. See [9] Chapter I. These spaces are of particular interest when X under
the canonical embedding is a M -ideal in X∗∗ . See Chapter III of [9] for geometric
properties of these spaces and several examples from function theory and the theory
of operators. In particular for any infinite family {Xi}{i∈I} of reflexive Banach spaces,⊕

c0
Xi is a M -ideal in its bidual,

⊕
∞ Xi .

The next two results use the geometric structure of M -ideals in specific situations,
to give simple proofs of results indicating their relation with the intersection properties
we are considering. These two results can also be deduced from Proposition 20 below,
but we prefer to give a direct proof. We recall that X1 denotes the closed unit ball.

THEOREM 16. Let X ⊂ X∗∗ be a M-ideal. If X is an almost constrained sub-
space of X∗∗ , then X is reflexive.

Proof. Let Λ ∈ X∗∗ be a unit vector that attains its norm. Thus there exists
a x∗ ∈ X∗

1 such that Λ(x∗) = 1. Let x0 ∈ X1 be such that x∗(x0) > 1
2 . Suppose

Λ /∈ X . Since X is an almost constrained subspace, there exists a projection P :
span{Λ,X} → X with ‖P‖ = 1. Also the hypothesis implies that X is a M -ideal in
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span{Λ,X} . Thus it follows from Corollary I.1.3 in [9] that P is a M -projection (i.e.,
‖τ‖ = max{‖P(τ)‖,‖τ −P(τ)‖} ). Now 1

2 + 1 < x∗(x0) + Λ(x∗) = P(Λ + x0)(x∗) �
‖Λ+ x0‖ = max{‖Λ‖,‖x0‖} = 1. This contradiction shows that Λ ∈ X . Since X con-
tains all the norm attaining vectors in X∗∗ , we get by the Bishop-Phelps theorem (see
[10]) that X∗∗ = X . Therefore X is reflexive. �

The following corollary illustrates the limitations of Theorem 8 and generalizes
the fact that a infinite dimensional subspace of c0(Γ)(for an infinite discrete set Γ) is
not almost constrained in �∞(Γ) .

COROLLARY 17. Let {Xi}{i∈I} be an infinite family of reflexive Banach spaces.
Then a central subspace Y ⊂ X =

⊕
c0

Xi is almost constrained in X∗∗ if and only if it
is reflexive. Hence no factor reflexive subspace Y ⊂ X is almost constrained in X∗∗ .

Proof. Suppose Y is an almost constrained subspace of X∗∗ . Since Y ⊂ Y ∗∗ ⊂
X∗∗ , we have that Y is an almost constrained subspace of Y ∗∗ . As the property, being a
M -ideal in its bidual, is hereditary ( Theorem III.1.6 of [9]) we get that Y is a M -ideal
in its bidual and thus by the above result Y is reflexive. Conversely suppose Y is a
reflexive, central subspace of X . By Theorem 6 we have that X is a central subspace
of X∗∗ and thus by transitivity, Y is a central subspace of X∗∗ . Since Y is reflexive, it
is an almost constrained subspace of X∗∗ as well. Now since the collection of spaces
is infinite, Y can not be both reflexive and factor reflexive. Thus a factor reflexive
subspace Y can not be almost constrained in X∗∗ . �

The next result concerns M -ideals in the space of operators L (X ,Y ) and is related
to the well studied problem of possible one-complementability of the space of compact
operators. For x∗ ∈ X∗ and y ∈ Y , by x∗ ⊗ y we denote the rank one operator, (x∗ ⊗
y)(x) = x∗(x)y .

THEOREM 18. Let M ⊂ L (X ,Y ) be a M-ideal containing all rank one opera-
tors. If M is almost constrained in L (X ,Y ) , then M = L (X ,Y ) .

Proof. Let T ∈ L (X ,Y ) , ‖T‖ = 1 and T /∈ M . Let ‖x‖ = 1 and ‖T (x)‖ > 3
4 .

Let ‖y∗‖ = 1 and y∗(T (x)) = ‖T (x)‖ . Suppose M is almost constrained and as before
there is a M -projection P : span{M,T}→ M . By hypothesis T ∗(y∗)⊗T (x) ∈ M .

‖(T ∗(y∗)⊗T (x)+T )(x)‖ = ‖(‖T (x)‖+1)T(x)‖ = (1+‖T(x)‖)‖T (x)‖
� ‖T ∗(y∗)⊗T(x)+T‖ = max{‖T ∗(y∗)⊗T (x)‖,‖T‖} = 1

This is a contradiction since ‖T (x)‖ > 3
4 . Thus M = L (X ,Y ) �

REMARK 19. In [3] the authors use analysis of unique norm-preserving exten-
sions to conclude that any M -ideal Y ⊂ X that is almost constrained is a M -summand
(i.e, range of a M -projection). We next give a simple proof of this result using a charac-
terization of M -summands (Proposition II. 3. 4 from [9]) involving intersection prop-
erties of balls. If any family of closed balls that intersect in X and each has a point in
common with Y , intersects in Y , then Y is a M -summand.
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PROPOSITION 20. Let Y ⊂ X be a M-ideal. If Y is an almost constrained sub-
space, then it is a M-summand.

Proof. Let x be such that d(x,Y ) = 1. We show as in the proof of (ii) ⇒ (i) in
the proof of Proposition II.3.4 of [9], {B(x+ y,1+ ε)}‖y‖<1,ε>0 intersect in Y .

Since d(x,Y ) = d(x+ y,Y ) = 1, clearly each of these balls meet Y and x is in the
intersection of all of them. Since x /∈ Y , and Y is almost constrained, as before there
exists a M -projection P : span{Y,x}→Y . Clearly all the balls contain P(x) . Therefore
Y is a M -summand. �

REMARK 21. Contained in the above proof is the observation that Y ⊂ X is the
range of a M -projection if and only if, it is the range of a M -projection in span{x,Y}
for all x /∈ Y .

We next give an example to show that M -ideals in general need not be central
subspaces, and do not inherit the property GC , answering Question 2.7 in [2].

EXAMPLE 22. Let X = c0 and let Y = ker( f ) where f = (2,1,−1,1, 1
2 , 1

4 , .., ..)∈
�1 . Since ‖ f‖∞ = 2 < 1

2‖ f‖1 , and as all the coordinates are non-zero, one can show
that, Y is neither one-complemented nor proximinal. It follows from Theorem 2 in [20]
that Y fails to have property GC and hence is not a central subspace of Y ∗∗ . We recall
that c0 is a M -ideal in its bidual, �∞ and as this property is hereditary ( Theorem III.1.6
of [9]) we get that Y is a M -ideal in its bidual Y ∗∗ . Also since Y ∗∗ being a dual space,
has the property GC which is not inherited by the subspace Y .

There is a weaker notion of M -ideal called semi-M -ideals studied in [9]. These
can be characterized by intersection properties involving only 2 balls. The next propo-
sition clarifies their relation with ideals.

PROPOSITION 23. Let Y ⊂ X be a semi-M -ideal. Y is an ideal if and only if it is
a M-ideal.

Proof. Suppose Y is a semi-M -ideal and ideal. Let P : X∗ →X∗ be a projection of
norm one with kerP =Y⊥ . Since Y is a semi-M -ideal there exists a Q : X∗ → X∗ with
kerQ = Y⊥ , ‖x∗‖ = ‖Q(x∗)‖+‖x∗ −Q(x∗)‖ , Q(λx∗ +Q(y∗)) = λQ(x∗)+Q(y∗) for
all x∗,y∗ ∈X∗ . It now follows from the arguments given during the proof of Proposition
I.1.2 in [9], which does not require the projection Q to be linear, that P = Q . Thus Q
is a linear L -projection with kerQ = Y⊥ and hence Y is a M -ideal. �

In [6] the authors study conditions under which intersections of ranges of norm-
one projections is again the range of a norm one-projection. Our next example shows
that intersection of two finite dimensional central subspaces in �∞ can fail to be a central
subspace.
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EXAMPLE 24. Consider �∞(4) . Let f1 = (1,0,0,0), f2 = ( 1
2 , 1

6 , 1
6 , 1

6 ) . It is easy
to see that ker( f1) and ker( f2) are ranges of projections of norm one. Now ker( f1)∩
ker( f2) = {(0,x1,x2,−x1− x2)} . Clearly it is enough to show that Y = {(x1,x2,−x1 −
x2)} is not a central subspace of �∞(3) . Let x0 = (− 1

2 ,− 1
2 ,− 1

2 ) and let y1 = (−2,1,1) ,
y2 = (1,1,−2) , y3 = (1,−2,1) . Note that ‖x0 − yi‖ = 3

2 and is the only point in
∩3

1B(yi,
3
2 ) .

REMARK 25. There are some special situations where intersection of central sub-
spaces is again a central subspace. Let Y ⊂ X be a M -ideal and central subspace.
Suppose X = Z1

⊕
∞ Z2 . Then Y ∩Zi is a central subspace of X . To see this we note

that, by Lemma I.3.5 in [9], Y = Y ∩Z1
⊕

∞Y ∩Z2 . Thus Y ∩Zi is a central subspace
of Y and hence by transitivity, a central subspace of X .

Let M,N ⊂ X be two M -ideals, in Proposition 4.10 in [2] the authors assume
that M∩N is a reflexive space to deduce the property GC for the quotient space M +
N/(M ∩N) . In the following proposition we derive these conclusions assuming that
M∩N is a M -summand in M +N . We note that since M∩N is always a M -ideal, that
it is reflexive implies that it is a M -summand in X and hence in M +N .

PROPOSITION 26. Let M,N ⊂ X be two M-ideals having the property GC. Sup-
pose M∩N is a M-summand in M +N . Then M +N has the property GC.

Proof. Since M +N is a closed M -ideal, it is easy to see that M +N/(M∩N) =
M/(M∩N)

⊕
∞ N/(M∩N) . Now since M∩N is a M -summand in M +N , it is also a

M -summand in M and N . Thus both M/(M ∩N) and N/(M∩N) have the property
GC . Therefore M +N has the property GC . �

Our next result we give a simple proof of the ’if’ part of Theorem 5.5 from [5],
using our earlier technique of dealing with finite co-dimensional subspaces.

PROPOSITION 27. Let Y ⊂ �1 be a finite co-dimensional subspace that is an in-
tersection of hyperplanes that are ranges of projections of norm one. Then Y is the
range of a projection of norm one.

Proof. Suppose Y = ∩1�i�n ker( fi) for fi ∈ �∞ such that ker( fi) is the range of a
projection of norm one for every i . It follows from [7] that each fi has at most 2 non-
zero components. Since permutations and multiplication by ±1 are isometries we may
assume that non-zero coordinates occur consecutively . If the 2-element blocks have
no overlap then Y consists of �1 -direct sum of one-dimensional spaces and hence is
the range of a projection of norm one. It is easy to see that similar thing happens when
the 2-blocks overlap also. To illustrate this, suppose n = 2, we may assume w. l. o.
g that f1 = (x1,x2,0, ...,0) and suppose f2 = (0,y2,y3,0, ...,0) . Thus as in our earlier
arguments the problem is reduced to �1(3) and clearly Y ∩�1(3) being one-dimensional
is the range of a norm-one projection. �
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We next consider these questions in the space C(Ω,X) , the space of X -valued con-
tinuous functions defined on a extremally disconnected Hausdorff spaces Ω , equipped
with the supremum norm. The proof of the following theorem is similar to the proof of
Theorem 4.11 in [2].

THEOREM 28. Let Ω be an extremally disconnected compact Hausdorff space.
Let Y ⊂ X be a finite dimensional central subspace. Then C(Ω,Y ) is an almost con-
strained subspace of C(Ω,X) .

Proof. Let S be a discrete set. We will first prove the theorem for the Stone-
Check compactification Ω = β (S) . Since Y is finite dimensional, it is easy to see that
C(β (S),Y ) is isometric to

⊕
∞Y where the sum is taken over the cardinal |S| . Similarly

one can show that C(β (S),X) is isometric to a subspace of
⊕

∞ X . It is easy to see that⊕
∞Y is an almost constrained subspace of

⊕
∞ X and hence an almost constrained

subspace of C(β (S),X) .

Since Ω is extremally disconnected, there exists a discrete set S such that Ω is
homeomorphic to a subset of β (S) and there exists a retract φ : β (S) → Ω . Now
considering the balls in C(Ω,Y ) that intersect in C(Ω,X) and composing with φ , one
can use the result already established for β (S) . Now restricting the functions to Ω , as
φ is a retract, gives that C(Ω,Y ) is an almost constrained subspace of C(Ω,X) . �
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