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Abstract. During the last decades it turned out to be fruitful to apply certain Banach algebra
techniques in the theory of approximation of operators by matrix sequences. Here we discuss
the case of operator sequences (acting on infinite dimensional Banach spaces and which do
not necessarily converge strongly) and we derive analogous results concerning the stability and
Fredholm properties of such sequences. For this, the notions of P -Fredholmness and P -strong
convergence play an important role and are extensively studied. As an application we consider
the finite sections of band-dominated operators on l p -spaces, including the cases p ∈ {1,∞} .

Introduction

The finite section method for the approximate solution of infinite dimensional op-
erator equations is very well studied for many classes of operators. Roughly speaking,
one replaces the “big” equation Ax = b on a Banach space X with the unknown x by
its truncations PnAPnxn = Pnb , where (Pn) is a sequence of projections onto certain
subspaces of X and one hopes that these substitutes are solvable and their solutions xn

converge in some sense to the solution x of the big equation. It is well known that the
stability of the operator sequence (PnAPn) plays a crucial role for this convergence.

Undeniably, the most popular class of operators which appeared in this topic is the
set of Toplitz operators. Actually, they have been the engine for the development of
several C∗ - and Banach algebra tools throughout more than 20 years. These methods
have applications also in many other classes of operators, like convolution-type inte-
gral operators or general band-dominated operators, and even for other approximation
methods, e.g. spline Galerkin and collocation methods for integral equations, or the
collocation method for Cauchy singular integral equations (see for instance the books
[2], [8], [9], [15], [20] and the paper [11] as well as its successors).

Besides the answer for the stability problem, there are further results which de-
scribe the properties of sequences which are not stable, but not far away from being
so. More pecisely, there is a Fredholm theory for certain algebras of approximation
sequences. More than 10 years ago S. Roch and one of the autors observed the so-
called splitting phenomenon for the singular values of the matrices which constitute a
sequence in a C∗ -algebra of structured matrix sequences. A. Böttcher [1] was able to
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prove that this phenomenon is in force also for finite section sequences of Toeplitz op-
erators with piecewise continuous generating functions on l p -spaces with 1 < p < ∞
when the singular values are replaced by the approximation numbers. A more gen-
eral framework to this question was developed by A. Rogozhin and one of the authors
in [32] and [31] under the assumption that the matrix sequences converge ∗ -strongly
(i.e. the sequences and their adjoints converge strongly). Moreover, this Banach alge-
braic framework provides a formula which links the indices of all snapshots of such
sequences and, by this, provides a tool for the calculation of the index of a Fredholm
operator via its so-called limit operators. Notice that this Banach algebraic framework
encloses only sequences of matrices (that is, operators on finite dimensional spaces).

Until now, there were only a few attempts to establish a Fredholm theory for ap-
proximation sequences (An) whose elements An are operators acting on infinite dimen-
sional Banach spaces. Such sequences naturally arise when the finite section method
is applied to integral equations, for instance. One version was drawn up for the case
of C∗ -algebras in [8] (the so-called Standard algebras); H. Mascarenhas and one of the
authors [17] treated a class of convolution type operators on Lp(R2) , 1 < p < ∞ ; but
in both cases there were additional conditions, like indAn = 0, involved.

The papers [22] and [21] led, by different methods, to an index formula for a
special class of band-dominated operators of the form I +K , K being locally compact,
on Lp(R) , 1 < p < ∞ .

During all that time and in (almost) all modifications of these Banach algebra
techniques the ∗ -strong convergence of the sequences under consideration towards their
snapshots played a crucial role. That’s why, for instance, operators on l∞ - or L∞ -
spaces stayed out of the focus, because there the classical approximation methods do
not converge even strongly.

The present paper has two aims. For one thing, we want to present an approach
which completely involves the cases of infinite dimensional operator sequences in an
abstract Banach algebraic framework, so that the amenities of a Fredholm theory be-
come available there. It particularly provides results on the stability, the splitting phe-
nomenon, and an index formula. Moreover, it unifies several developments which differ
from each other, since it covers and generalizes Standard algebras (i.e. the Hilbert space
case), the Banach algebra approach of [32] for (finite dimensional) matrix sequences,
as well as the special infinite dimensional version of [17].

For another thing, the present approach shall also cover non-strongly converging
approximation methods in such a way that, for instance, the treatment of operators on
the spaces l p or Lp becomes homogeneous for all 1 � p � ∞ (including p = ∞!).

The price that we (and the reader) have to pay for this goal is to bid goodbye to the
strong convergence and to open up for a more appropriate notion of convergence. What
does “more appropriate” mean? Actually, the ideal of compact operators is a corner
stone in the former concepts since compactness turns strong convergence into uniform
convergence and Fredholmness is invertiblity modulo compact operators. These two
observations make a major contribution to large parts of the proofs. Furthermore, in
many cases one also has (and exploits) the compactness of the operators Pn . So, this



BANACH ALGEBRAS OF OPERATOR SEQUENCES 387

triple (compactness, Fredholmness and strong convergence) dictates to some extend
what kinds of approximation methods can be handled. The concept of P -strong con-
vergence now turns the tables: Here, one starts with the approximation method (for in-
stance given by a sequence P = (Pn) of projections) and introduces a matching triple
(P -compactness, P -Fredholmness and P -strong convergence) which then opens
the way to translate the classical results. In fact, the coincidences and the achieved flex-
ibility are so amazing, that one might dare to say that this gives a more natural language
for the treatment of approximation methods than the classical notions do.

The paper is organized as follows.
The first part is devoted to the introduction and a deeper study of P -strong con-

vergence, the related notions of P -compact and P -Fredholm operators, as well as
their properties. Principally, this concept already appeared in [30] and [20], and it at-
tained great attention in the theory of Fredholm band-dominated operators (see e.g.
[23], the books [25], [15] and the literature cited there). We show that, under a nat-
ural condition, P -Fredholmness coincides with invertibility at infinity, which was an
open problem for many years. Furthermore, it takes some work to embed the usual
Fredholm property into this P -concept. The key to manage this is the utilization of
P -compact projections and the introduction of the so-called P -dichotomy. Finally,
as an example, we consider band-dominated operators on l p(ZK ,X) (with X being a
Banach space and p ∈ [1,∞]) and discuss the notion and application of limit operators
there. We give some new proofs and add some further pieces of the puzzle in this topic.

The second part deals with the announced Banach algebras of structured opera-
tor sequences and extends the idea of [34]. Here, “structured” means that there are
homomorphisms which condense a given sequence (An) to single operators Wt(An)
(t ∈ T and T an index set) which appear as P -strong limits. We call these operators
snapshots of the sequence, since each of them captures certain aspects of its asymp-
totic behavior. The notion of J T -Fredholmness plays a central role, and the splitting
phenomenon for the approximation numbers as well as the index formula are derived.
Finally, in this second part we also study a general notion of Fredholm sequences (with-
out any asymptotic structure). This is motivated by the fact that the J T -Fredholmness
(which implies this general Fredholmness under a natural condition) heavily depends
on the underlying algebra which seems to be artificial in a sense. Such an abstract
notion already appeared in the much more comfortable C∗ -algebra setting in [8]. It
is further proved that (general) Fredholmness of a sequence is again equivalent to a
special behavior of the approximation numbers.

The third part is devoted to applications. Here we consider finite section sequences
of band-dominated operators acting on l p(Z,X) , with 1 � p � ∞ and X a Banach
space, and by a tricky transformation (which we borrow from [23] or [15]) also on
Lp(R) . It is worth noticing that the finite section sequence of a band-dominated opera-
tor is not a structured sequence in the sense of the second part, but the picture changes
if one switches to suitable subsequences. This is the way to prove stability, to describe
the Fredholm properties of a sequence, and even to provide an index formula for a Fred-
holm band-dominated operator which covers and extends all formulas known until now.
To be a bit more precise, we give a new proof for the known result on the stability of
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the finite section sequence (PnAPn) of a band-dominated operator A , which has grown
within lots of papers, e.g. [23], [24], [29], [26], [15], [3], [14] by V. Rabinovich, S.
Roch, M. Lindner and one of the authors, and we extend this result to the algebra which
is generated by the finite section sequences. Moreover, the Fredholm theory (including
splitting and index relations), which has only been considered for the finite sections of
band-dominated operators in the l2 -case [29] and the case of matrix sequences [34]
until now, is presented for all p ∈ [1,∞] and arbitrary Banach spaces X . The formula
which expresses the index of a band-dominated operator A = I +K (with K being lo-
cally compact) is now available for all band-dominated A . The paper ends with a note
on harmonic approximations of Fredholm Toeplitz operators and their indices.

We also mention that the present approach opens the door for the application of
localizing techniques which lead to results on the convergence of norms and condition
numbers as well as of pseudospectra for sequences (An) arising from (non-strongly
converging) approximation methods like the finite section method for band-dominated
operators. In particular, we now can extend also the results of [17] on convolution-type
operators on Lp(R2) (and on cones) to the L1 and L∞ -case. But, this will be part of
future work.

1. P -compact and P -Fredholm operators, P -strong convergence

1.1. Basic definitions

DEFINITION 1.1. Let X be a Banach space and let P = (Pn)n∈N be a bounded
sequence of operators in L (X) with the following properties:

• Pn �= 0 and Pn �= I for all n ∈ N ,

• For every m ∈ N there is an Nm ∈ N such that PnPm = PmPn = Pm if n � Nm .

Then P is referred to as an approximate projection. In all what follows we set Qn :=
I−Pn and we further write m � n if PkQl = QlPk = 0 for all k � m and all l � n .

P -compactness Let P be an approximate projection. A bounded linear oper-
ator K is called P -compact if ‖KPn−K‖ and ‖PnK−K‖ tend to zero as n → ∞ . By
K (X,P) we denote the set of all P -compact operators on X and by L (X,P) the
set of all operators A ∈ L (X) for which AK and KA are P -compact whenever K is
P -compact.

THEOREM 1.2. (see [25], Proposition 1.1.8)
Let P be an approximate projection on the Banach space X . L (X,P) is a closed
subalgebra of L (X) , it contains the identity operator, and K (X,P) is a closed ideal
of L (X,P) . An operator A ∈ L (X) belongs to L (X,P) if and only if, for every
k ∈ N ,

‖PkAQn‖→ 0 and ‖QnAPk‖→ 0 as n → ∞.
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P -Fredholmness and invertibility at infinity Here are two possible general-
izations of Fredholmness based on P -compact operators instead of compact ones.

DEFINITION 1.3. We say that A ∈ L (X) is invertible at infinity (with respect to
P ) if there is an operator B ∈ L (X) with I−AB, I−BA ∈ K (X,P) . In this case B
is referred to as a P -regularizer for A .

An operator A ∈ L (X,P) is said to be P -Fredholm if the coset A+K (X,P)
is invertible in the quotient algebra L (X,P)/K (X,P) .

Notice that invertibility at infinity is defined in L (X) , whereas for P -Fredholm-
ness we are restricted to L (X,P) , since we need that K (X,P) forms a closed two-
sided ideal in L (X,P) . It has been an open problem for a long time if these notions
coincide for A ∈ L (X,P) but we will finally tackle this question in Section 1.2.

Properly P -Fredholm operators Throughout this paper we let imA and kerA
denote the range and the kernel of the operator A ∈ L (X) , respectively, as well as
cokerA := X/ imA its cokernel. It is well known that the usual Fredholm property of
bounded linear operators can also be described in terms of compact projections, in the
sense that there are projections P,P′ with imP = kerA and kerP′ = imA . On the other
hand, a non-Fredholm operator A can be characterized by the following property: For
each l ∈N and each ε > 0 there exists a projection Q∈K (X) (where K (X) denotes
the ideal of compact operators on X) with rankQ � l and such that ‖AQ‖ < ε or
‖QA‖< ε. (see [34], Theorem 3). Before we define an analogon based on P -compact
projections, we recall a useful result on generalized invertibility:

PROPOSITION 1.4. Let A,B ∈ L (X) . Then the following are equivalent

• ABA = A

• I−BA is a bounded projection with im(I−BA) = kerA

• I−AB is a bounded projection with ker(I−AB) = imA.

Moreover, if A ∈ L (X) and P,P′ ∈ L (X) are projections with imP = kerA and
kerP′ = imA then there is an operator C ∈ L (X) with A = ACA, C = CAC and
P = I−CA, P′ = I−AC.

DEFINITION 1.5. An operator A ∈ L (X) is said to be properly P -Fredholm, if
there exist projections P,P′ ∈ K (X,P) such that imP = kerA and kerP′ = imA .

An operator A ∈ L (X) is called properly P -deficient from the right (left) if, for
each ε > 0 and each k ∈ N , there is a projection R ∈K (X,P) of rank at least k such
that ‖AR‖ < ε (‖RA‖ < ε , respectively).

From Proposition 1.4 we conclude

COROLLARY 1.6. An operator A ∈ L (X) is properly P -Fredholm if and only
if there is a P -regularizer B ∈ L (X) for A which is also a generalized inverse, that
is I−AB, I−BA ∈ K (X,P) and ABA = A, BAB = B.
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The P -dichotomy, or how to grasp Fredholmness in terms of P -compact
operators

PROPOSITION 1.7. Let P be an approximate projection and let A ∈ L (X) be
invertible at infinity.

If A is normally solvable (which means that is imA is closed) then for every k ∈N

with k � dimkerA (k � dimcokerA) there is a P -compact projection P of the rank k
such that AP = 0 (PA = 0 ).

If A is not normally solvable then A is properly P -deficient from both sides.

Proof. Let B∈ L (X) be a P -regularizer for A . For every x ∈ kerA we find that
Qnx = Qn(I−BA)x+QnBAx = Qn(I−BA)x tends to zero as n→ ∞ . Let X1 be a finite
dimensional subspace of kerA . Then we fix m ∈ N , s.t. sup{‖Qmx‖ : x ∈ X1,‖x‖ = 1}
is less than 1/2 and deduce that the operator Pm : X1 → X2 := Pm(X1) is invertible
and its inverse has norm less than 2. Let S denote its inverse and let m̃ 	 m . Since
X2 is a finite dimensional subspace of the Banach space kerQm̃ , there is a bounded
projection R ∈ L (kerQm̃) onto X2 with ‖R‖ � dimX1 (see [19], B.4.9). Now, we
define P := SRPm and we easily check that imP = X1 and P2 = SRPmP = SPmP = P ,
hence P is a projection onto X1 which obviously belongs to K (X,P) .

Assume now that A is not normally solvable and fix ε > 0 and k ∈ N . Then
there is a rank-k -projection K such that ‖AK‖ � ε (see [34], Theorem 3 for a proof).
Further, denote by d the finite number sup{‖Qn‖ : n ∈ N} and check that

‖QnK‖ � ‖Qn(I−BA)K‖+‖QnBAK‖
� ‖Qn(I−BA)‖‖K‖+d‖B‖ε � 2d‖B‖ε

for sufficiently large n . Further, for x ∈ imK ,

‖APnx‖
‖Pnx‖ � ‖Ax‖+‖A‖‖Qnx‖

‖x‖−‖Qnx‖ � 1+2d‖B‖‖A‖
1−2d‖B‖ε

ε.

This shows that for sufficiently small ε and sufficiently large l the space X3 := imPlK
is of the dimension k and it holds that ‖Az‖ � 4d‖B‖‖A‖ε‖z‖ for all z ∈ X3 . Since
X3 ⊂ kerQl̃ ⊂ kerQl̂ for l̂ 	 l̃ 	 l we can again choose a projection R ∈ L (kerQl̂)
onto X3 of the norm at most k and define P := RPl̃ . Obviously, P is a P -compact
projection of rank k and we have ‖AP‖ � 4kd(d + 1)‖B‖‖A‖ε . Since ε was chosen
arbitrarily, this proves the proper P -deficiency from the right.

Further, if A is not normally solvable, then A∗ is not normally solvable, too (see
[7], §4, Theorem 4.2, for instance), and for every prescribed ε > 0 we find a projection
T ∈ K (X∗,P∗) of the rank k with ‖A∗T‖ � ε . We show that there is a projection
P′ ∈ K (X,P) of the norm less than 2k(k+1)(d +1) such that im(P′)∗ = imT , and
hence

‖P′A‖ = ‖A∗(P′)∗‖ = ‖A∗T (P′)∗‖ � 2k(k+1)(d +1)ε.

Then, since ε was chosen arbitrarily, A proves to be properly P -deficient from the
left. For this, let l be such that ‖Q∗

l T‖ < 1/2. Then, for every f ∈ imT we have

‖ f ◦Pl‖ = ‖P∗
l f‖ � ‖ f‖−‖Q∗

l f‖ = ‖ f‖−‖(Q∗
l T ) f‖ � 1

2
‖ f‖,
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that is { f |imPl : f ∈ imT} forms a linear space of the dimension k . Hence, for l̃ 	 l ,

X1 :=
⋂

f∈imT

ker f |kerQl̃
⊂ kerQl̃

has the codimension k in kerQl̃ . Due to [19], B.4.10 we can choose a projection R
parallel to X1 onto a certain complement X2 of X1 in kerQl̃ of the norm less than
k + 1. Since the set of all restrictions g = f |X2 of the functionals f ∈ imT to X2

forms a k -dimensional space we conclude that each functional on X2 is of the form
g = f |X2 with f ∈ imT . Auerbachs Lemma [19], B.4.8 provides bases x1, . . . ,xk ∈ X2

and f1, . . . , fk ∈ imT such that ‖xi‖ = ‖g j‖ = 1 and g j(xi) = δi j (where g j := f j|X2 )
for all i, j = 1, . . . ,k . The norms ‖ f j‖ can be estimated by

2‖ f j ◦Pl‖ � 2‖ f j ◦R◦Pl‖+2‖ f j ◦ (I−R)◦Pl‖ � 2‖g j‖‖R‖‖Pl‖ < 2(k+1)(d +1),

thus, defining P′x := ∑k
i=1 fi(x)xi , we obtain a P -compact projection onto X2 of the

norm less than 2k(k+1)(d +1) . Since f j(P′x) = ∑k
i=1 fi(x) f j(xi) = f j(x) for all j and

x we find that im(P′)∗ = imT .
It remains to consider operators A which are normally solvable, hence dimcokerA

equals dimkerA∗ , and to check that for every finite number k � dimcokerA there is
a P -compact projection P′ of the rank k with P′A = 0. Since A∗ is P∗ -Fredholm,
we can apply the first part of this proof to find a P∗ -compact projection T of the rank
k onto a respective subspace of kerA∗ . Then simply apply the above argument with
ε = 0 to construct P′ . �

This justifies the following definition.

DEFINITION 1.8. An operator A ∈ L (X) is said to have the P -dichotomy if it
is either Fredholm and properly P -Fredholm, or it is properly P -deficient from at
least one side.

COROLLARY 1.9. Let P be an approximate projection and let A ∈ L (X) be
invertible at infinity. Then A has the P -dichotomy.

P -strong convergence Let P = (Pn) be an approximate projection and, for
each n ∈ N , let An ∈ L (X) . The sequence (An) converges P -strongly to A ∈ L (X)
if, for all K ∈ K (X,P) , both ‖(An−A)K‖ and ‖K(An−A)‖ tend to 0 as n → ∞ . In
this case we write An → A P -strongly or A = P-lim

n→∞
An .

Proposition 1.1.14 in [25] yields that a bounded sequence (An) in L (X) con-
verges P -strongly to A ∈ L (X) iff ‖(An −A)Pm‖ → 0 and ‖Pm(An −A)‖ → 0 for
every fixed Pm ∈ P . Unfortunately, the P -strong limit is not unique in general. Con-
sider, for instance, a projection P /∈ {0, I} and P = (Pn) given by Pn := P for all n .
Then the sequence (Pn) converges P -strongly to both P and I . Therefore we adopt
further conditions on P from [25] to guarantee the uniqueness.



392 M. SEIDEL AND B. SILBERMANN

DEFINITION 1.10. An approximate projection P is called approximate identity
if supn ‖Pnx‖ � ‖x‖ holds for each x ∈ X . An approximate projection P is said to
be symmetric if P∗ = (P∗

n ) is an approximate identity on X∗ . An important closed
subspace X0 of X is given by

X0 := {x ∈ X : ‖Qnx‖→ 0 as n → ∞}.

Obviously, the approximate projection P induces an approximate identity on X0

which tends strongly to the identity. Further, for a functional f ∈ (X0)∗ and for ε > 0
let x ∈ X0 , ‖x‖ = 1 be such that | f (x)| � ‖ f‖− ε . Then

‖P∗
n f‖ � |(P∗

n f )(x)| = | f (Pnx)| � | f (x)|− | f (Qnx)| � ‖ f‖− ε −‖ f‖‖Qnx‖,

hence supn ‖P∗
n f‖ � ‖ f‖ , that is P is even a symmetric approximate identity on X0 .

REMARK 1.11. If P is a symmetric approximate projection then it is automati-
cally an approximate identity. Indeed, assume that there is an x with supn ‖Pnx‖< ‖x‖ .
Then x /∈ X0 . Thus, there is a bounded linear functional f ∈ X∗ with | f (x)| > 0 and
f (X0) = {0} , that is f �= 0 but P∗

n f = 0 for all n . This contradicts the symmetry.

Let us come back to P -strong convergence and, in what follows, let P be an
approximate identity and set BP := supn ‖Pn‖ . Then no sequence (An) ⊂ L (X) pos-
sesses more than one P -strong limit. Indeed, assume that A,B are P -strong limits of
(An) . Then, for every m ,

‖Pm(A−B)‖� ‖Pm(A−An)‖+‖Pm(B−An)‖ → 0 as n → ∞,

hence Pm(A−B) = 0. Assume that A �= B . Then there is an x ∈ X with (A−B)x �= 0
and, since P is an approximate identity, there is also an m such that Pm(A−B)x �= 0,
a contradiction.

By F (X,P) we denote the set of all bounded sequences (An) ⊂ L (X) , which
possess a P -strong limit in L (X,P) . Notice that this slightly differs from Definition
1.1.18 in [25]. Nevertheless, [25], Proposition 1.1.17 tells us

PROPOSITION 1.12. Let P be an approximate identity and (An)⊂L (X,P) be
a sequence converging P -strongly to A ∈ L (X) . Then A belongs to L (X,P) and
(An) is bounded, that is (An) ∈ F (X,P) . Moreover, ‖A‖ � BP liminfn ‖An‖ .

THEOREM 1.13. Provided with operations α(An)+ β (Bn) := (αAn + βBn) and
(An)(Bn) := (AnBn), as well as the norm ‖(An)‖ := supn ‖An‖< ∞, F (X,P) becomes
a Banach algebra with identity I := (I) . The mapping F (X,P) → L (X,P) which
sends (An) to A = P-limAn is a unital algebra homomorphism and

‖A‖ � B2
P liminf

n→∞
‖An‖. (1.1)
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This algebra will play a fundamental role in the theory of structured operator se-
quences in Section 2.

Proof. The proof of F (X,P) being an algebra is straightforward, and we only
note that if (An),(Bn) are bounded and converge P -strongly to A,B ∈ L (X,P) ,
respectively, then

‖K(AnBn−AB)‖� ‖K(An−A)Bn‖+‖KA(Bn−B)‖→ 0

for every K ∈ K (X,P) , as n → ∞ , since A ∈ L (X,P) implies KA ∈ K (X,P) .
For A ∈ L (X,P) we have ‖A‖ � BP liminfn ‖PnA‖ , due to Proposition 1.12,

hence for given ε > 0 we can fix k such that ‖A‖� BP‖PkA‖+ε/3. For the sequence
(An) with P -strong limit A we choose N such that ‖Pk(A− AN)‖ � B−1

P ε/3 and
‖PkAN‖ � liminfn ‖PkAn‖+B−1

P ε/3. Then

‖PkA‖ � ‖PkAN‖+‖Pk(A−AN)‖ � liminf
n→∞

‖PkAn‖+2B−1
P ε/3,

hence ‖A‖� BP‖PkA‖+ ε/3 � BP liminfn ‖PkAn‖+ ε � B2
P liminfn ‖An‖+ ε. Since

ε is arbitrary, Equation (1.1) follows.
Finally, let ((Cm

n )n)m be a Cauchy sequence of sequences (Cn)n ∈ F (X,P) ,
where Cm shall denote the P -strong limit of (Cm

n )n , respectively. For every n , (Cm
n )m

converges in L (X) to an operator Dn , and the sequence (Dn) is bounded. Further,
Equation (1.1) yields that (Cm)m is a Cauchy sequence with a limit D ∈ L (X,P) .
Now one easily checks that (Dn) converges P -strongly to D , thus F (X,P) is com-
plete. �

1.2. The wonderful world of uniform approximate identities

In this section we answer the question on the coincidence of invertibility at infinity
and P -Fredholmness affirmatively under a natural condition on P which has been in
the business since the inverse closedness of L (X,P) in L (X) is known, based on
a proof of Simonenko [35]. Further some useful criteria for the somewhat mysterious
P -dichotomy are derived.

DEFINITION 1.14. Given a Banach space X with an approximate projection
P = (Pn) we set S1 := P1 and Sn := Pn−Pn−1 for n > 1. Further, for every bounded
subset U ⊂R , denote PU := ∑k∈N∩U Sk . P is called uniform if CP := sup‖PU‖< ∞ ,
the supremum over all bounded U ⊂ R .

Two approximate projections P = (Pn) and P̂ = (Fn) on X are said to be equiv-
alent if for every m ∈ N there is an n ∈ N such that

PmFn = FnPm = Pm and FmPn = PnFm = Fm.

In case of equivalent approximate projections P and P̂ , [25], Proposition 1.1.10
shows that K (X,P) = K (X,P̂) . Hence, L (X,P) = L (X,P̂) and the notions
of P -compactness, P -Fredholmness, and P -strong convergence coincide with the
respective P̂ -notions.
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THEOREM 1.15. Let P be a uniform approximate projection on the Banach
space X and A ∈ L (X,P) . Then there is an equivalent uniform approximate pro-
jection P̂ = (Fn) on X (depending on A) with CP̂ � CP such that

‖[Fn,A]‖ = ‖AFn−FnA‖→ 0 as n → ∞.

Proof. Successively choose integers 1 = j1 � i2 � j2 � i3 � j3 � . . . such that
for every l

‖PsAQjl‖ � (2l+2l)−1 ∀s � il and ‖QtAPjl‖ � (2l+5l)−1 ∀t � il+1. (1.2)

Then, set Un
k := {i2n+k−1 + 1, . . . , i2n+k} and Vn

k := { j2n+k−2 + 1, . . . , j2n+k} for all
k,n ∈ N , as well as Un

0 := {1, . . . , i2n} and Vn
0 := {1, . . . , j2n} , and find

‖PUn
k
APj2n+k−2‖ � (2k+2n)−1 and ‖PUn

k
AQj2n+k‖ � (2k+2n)−1.

Thus

‖PUn
k
AQVn

k
‖ � (2k+1n)−1, that is ∑

k∈Z+

‖PUn
k
AQVn

k
‖ � 1

n
. (1.3)

For n ∈ N we set

Fn :=
n−1

∑
k=0

(
1− k

n

)
PUn

k

and deduce that FnFn+1 = Fn+1Fn = Fn as well as

‖Fn‖ =

∥∥∥∥∥
n

∑
k=1

k
n
PUn

n−k

∥∥∥∥∥=
1
n

∥∥∥∥∥
n

∑
k=1

kPUn
n−k

∥∥∥∥∥� 1
n

n

∑
j=1

∥∥∥∥∥
n

∑
k= j

PUn
n−k

∥∥∥∥∥� CP , (1.4)

that is P̂ = (Fn) is an approximate projection. Further, P and P̂ are equivalent,
since

Pj2n−1Fn = FnPj2n−1 = Pj2n−1 and FnPj2n+n−1 = Pj2n+n−1Fn = Fn.

For bounded subsets U ⊂R we finally introduce the operators FU as in Definition
1.14 and easily check that they can be represented in the form

FU =
N−1

∑
k=0

k
N

PWk

with certain disjoint bounded sets Wk ⊂ R , k = 0, . . . ,N − 1. By an estimate similar
to (1.4) we deduce that P̂ is uniform with CP̂ � CP . It remains to consider the
commutators of A and Fn . As a start, notice that

AFn =
n

∑
k=0

PUn
k
AFn +Qi2n+nAFn

=
n

∑
k=0

PUn
k
APVn

k
Fn +

n

∑
k=0

PUn
k
AQVn

k
Fn +Qi2n+nAPj2n+n−1Fn,
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where the last term is less than CPn−1 in the norm and the middle term is not greater
than CPn−1 as well, due to the above estimate (1.3). The first one equals

n

∑
k=0

PUn
k
APVn

k

(
Fn−

(
1− k

n

)
I

)
+

n

∑
k=0

(
1− k

n

)
PUn

k
APVn

k

=
n

∑
k=0

PUn
k
APVn

k

1
n
(PUn

k−1
−PUn

k+1
)−

n

∑
k=0

(
1− k

n

)
PUn

k
AQVn

k
+FnA,

where we redefine PUn−1
= PUn

n+1
:= 0. Since the second item is smaller than n−1 in the

norm we find

‖AFn−FnA‖ � 1
n

∥∥∥∥∥
n

∑
k=0

PUn
k
A(I−QVn

k
)(PUn

k−1
−PUn

k+1
)

∥∥∥∥∥+
2CP +1

n

� 1
n

∥∥∥∥∥
n

∑
k=0

PUn
k
A(PUn

k−1
−PUn

k+1
)

∥∥∥∥∥+
2CPn−1 +2CP +1

n
.

From

∥∥∥∥∥
n

∑
k=0

PUn
k
APUn

k−1

∥∥∥∥∥�
2

∑
l=0

∥∥∥∥∥∥∥
n

∑
k=0

k≡l mod 3

PUn
k
APUn

k−1

∥∥∥∥∥∥∥
�

2

∑
l=0

⎡
⎢⎢⎣
∥∥∥∥∥∥∥∥

n

∑
k=0

k≡l(3)

PUn
k
A

⎛
⎜⎜⎝ n

∑
j=0

j≡l(3)

PUn
j−1

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

+
n

∑
k=0

k≡l(3)

∥∥∥∥∥∥∥∥
PUn

k
A

⎛
⎜⎜⎝−

n

∑
j=0, j �=k
j≡l(3)

PUn
j−1

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

⎤
⎥⎥⎦

�
2

∑
l=0

⎡
⎢⎢⎣
∥∥∥∥∥∥∥

n

∑
k=0

k≡l(3)

PUn
k

∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥
A

⎛
⎜⎜⎝ n

∑
j=0

j≡l(3)

PUn
j−1

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

+
n

∑
k=0

k≡l(3)

‖PUn
k
AQVn

k
‖

∥∥∥∥∥∥∥∥
n

∑
j=0, j �=k
j≡l(3)

PUn
j−1

∥∥∥∥∥∥∥∥

⎤
⎥⎥⎦

we conclude that∥∥∥∥∥
n

∑
k=0

PUn
k
APUn

k−1

∥∥∥∥∥�
2

∑
l=0

[
CP‖A‖CP +n−1CP

]
= 3CP(‖A‖CP +n−1).

With a similar estimate for ∑PUn
k
APUn

k+1
we finally get the assertion by

‖AFn−FnA‖ � 6CP(‖A‖CP +n−1)+2CPn−1 +2CP +1
n

. �
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P -Fredholmness and invertibility at infinity coincide

THEOREM 1.16. Let P = (Pn) be a uniform approximate projection on X . Then
A ∈ L (X,P) is P -Fredholm if and only if it is invertible at infinity. In particular,
L (X,P) is inverse closed in L (X) .

Proof. Obviously, every P -Fredholm operator A ∈ L (X,P) is invertible at in-
finity.

Conversely, let A ∈ L (X,P) be invertible at infinity, that is there is an operator
B ∈ L (X) such that P := I − BA,P′ := I − AB ∈ K (X,P) . Theorem 1.15 yields
an equivalent uniform approximate projection P̂ = (Fn) such that ‖[A,Fn]‖ → 0 as
n → ∞ . Thus, for Gn := I−Fn , we also have ‖[A,Gn]‖ → 0 as n → ∞ . We show that
‖[B,Gn]‖→ 0 as n → ∞ , and conclude, for every k , that ‖FkBGn‖ and ‖GnBFk‖ tend
to zero as n → ∞ , hence B ∈ L (X,P̂) = L (X,P) due to Theorem 1.2. For this,
notice that K (X,P̂) = K (X,P) , fix ε > 0 and choose N such that, for all n � N ,

‖PGn‖ � ε
‖B‖ , ‖GnP

′‖ � ε
‖B‖ , and ‖[A,Gn]‖ � ε

‖B‖2 .

We write p ∼ε q if ‖p−q‖� ε , and obtain

BGn ∼ε BGn(I−P′) = BGnAB ∼ε BAGnB = (I−P)GnB ∼ε GnB.

Counting the ∼ -signs, we find that ‖[B,Gn]‖ � 3ε for sufficiently large n , which fin-
ishes the proof since ε was chosen arbitrarily. �

Moreover, this theorem allows us to give a first improvement of Corollary 1.6
concerning the proper P -Fredholmness for operators A ∈ L (X,P) .

COROLLARY 1.17. Let P be a uniform approximate projection on X . Then
A ∈ L (X,P) is properly P -Fredholm if and only if A is P -Fredholm and has
a generalized inverse in L (X,P) . In this case there is a B ∈ L (X,P) which is
P -regularizer and generalized inverse at the same time.

Proof. Let A ∈ L (X,P) be properly P -Fredholm. Then there is an operator
B∈L (X) such that A = ABA , B = BAB and I−AB, I−BA∈K (X,P) (see Corollary
1.6). From Theorem 1.16 we obtain that B ∈ L (X,P) .

Let A be P -Fredholm with P -regularizer C ∈ L (X,P) and let B ∈L (X,P)
be a generalized inverse for A . The operators P := I − BA,P′ := I − AB are con-
tained in L (X,P) . Moreover, the relations P = (I −CA)P+CAP = (I −CA)P and
P′ = P′(I −AC)+ P′AC = P′(I −AC) even show that P,P′ ∈ K (X,P) , that is B is
a P -regularizer for A . In view of Corollary 1.6, this yields the proper P -Fredholm-
ness. �
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Revisiting the P -dichotomy First, let us prove an auxiliary result.

PROPOSITION 1.18. 1. The restriction A|X0 of each A ∈ L (X,P) to X0 is
contained in L (X0,P) and if K ∈ K (X,P) then K|X0 ∈ K (X0,P) .

2. Let P = (Pn) an approximate identity, A ∈ L (X,P) and BP := supn ‖Pn‖ .
Then

B−2
P ‖A‖L (X) � ‖A|X0‖L (X0) � ‖A‖L (X), (1.5)

and for every T ∈ K (X0,P) there is a lifting K ∈ K (X,P) of T , that is
K|X0 = T . The restriction (liftings) of P -compact projections are again projec-
tions of the same rank.

3. Let X1 ⊂ X0 be a finite dimensional subspace. Then there exists a projection
P ∈ K (X,P) onto X1 of the norm not greater than 2BP dimX1 .

Proof. 1. Let A ∈ L (X,P) and x ∈ X0 . Since ‖QnAx‖ � ‖QnAPl‖‖x‖ +
‖Qn‖‖A‖‖Qlx‖ , where the latter term is smaller than any prescribed ε > 0 if l is
large enough, and the first term tends to zero for any fixed l and n → ∞ , we find that
Ax ∈ X0 . Hence A|X0 ∈ L (X0,P) . If K ∈ K (X,P) then it is also clear by the
definition that K|X0 ∈ K (X0,P) .

2. For ε > 0 there is an x ∈ X , ‖x‖ = 1 such that ‖A‖ � ‖Ax‖+ ε . Since P is
an approximate identity, there is an m ∈ N such that ‖A‖ � ‖PmAx‖+ 2ε and for all
sufficiently large n we have ‖PmAQn‖ � ε .

Thus, ‖A‖ � ‖PmAPnx‖+3ε � B2
P‖A|X0‖+3ε , where ε was chosen arbitrarily.

Now (1.5) easily follows by the obvious estimate ‖A|X0‖ � ‖A‖ .
Let T ∈ K (X0,P) . From ‖T −PnTPn‖L (X0) → 0 as n → ∞ we conclude for

the sequence (PnTPn) ⊂ K (X,P) and n,m large that

‖PnTPn−PmTPm‖L (X) � B2
P‖PnTPn−PmTPm‖L (X0)

� B2
P(‖PnTPn−P‖L (X0) +‖P−PmTPm‖L (X0)),

which tends to zero as n,m → ∞ . Hence (PnTPn) ⊂ K (X,P) is a Cauchy sequence.
For its limit K ∈ K (X,P) we easily check that the restriction K|X0 coincides with
T . The rest is easy to prove.

3. Recall the projection P := SRPm from the proof of Proposition 1.7 which obvi-
ously fulfills ‖P‖ � ‖S‖‖R‖‖Pm‖ � 2kBP . �

COROLLARY 1.19. Let P be a uniform approximate projection on X and let
A ∈ L (X,P) have the P -dichotomy. Then A is Fredholm if and only if A|X0 is
Fredholm. In this case

dimkerA = dimkerA|X0 , dimcokerA = dimcokerA|X0 , and indA = indA|X0 .

Proof. If A is not Fredholm then it is properly P -deficient, which also yields the
P -deficiency of A|X0 ∈ L (X0,P) (with P regarded as approximate projection on
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X0 ) by the previous proposition. Hence A|X0 can not be Fredholm as well (see [34],
Theorem 3).

Vice versa, let A be Fredholm and properly P -Fredholm. Then Corollary 1.17
yields an operator B in L (X,P) such that ABA = A , BAB = B holds and, moreover,
P = I −BA , P′ = I −AB ∈ K (X,P) . Then P is a projection onto the kernel of A
and parallel to the range of B (see Proposition 1.4). Analogously, P′ is a projection
onto the kernel of B and parallel to the range of A . Thus, kerB is a complement of
imA , kerA = imP = imP|X0 = kerA|X0 , and kerB = imP′ = imP′|X0 = kerB|X0 . This
proves dimkerA = dimkerA|X0 . By the previous proposition we find that the compres-
sions also fulfill A|X0B|X0A|X0 = A|X0 , and the projection P′|X0 = I−A|X0B|X0 is onto
kerB|X0 and parallel to imA|X0 . Consequently, kerB|X0 is a complement of imA|X0

and we conclude that dimcokerA = dimcokerA|X0 . The rest now easily follows. �

Now we can state a result which guarantees the P -dichotomy for all situations
that are of interest within the present paper.

THEOREM 1.20. Let P be a uniform approximate identity. Then every operator
A ∈ L (X,P) has the P -dichotomy if one of the following conditions is fulfilled:

• P is symmetric.

• For every properly P -Fredholm B∈L (X0,P) the sequence (BPn)n converges
P -strongly in L (X) .

• For every bounded sequence (xn)n in X with the property that (Pkxn)n is a
Cauchy sequence for every k there is a P -strong limit x ∈ X of (xn) , that is
‖Pm(x− xn)‖→ 0 as n → ∞ for all m.

In terms of [3] the latter condition means that X is sequentially complete in the
strict topology.

Proof. Let A ∈ L (X,P) . We prepare the proof with some basic observations in
the first and a technical result in the second step.

1st step. Let P̂ = (Fn) be a uniform approximate projection given by Theorem
1.15. Notice first that if P is an approximate identity then, for every fixed k and
sufficiently large n , ‖Pkx‖ = ‖PkFnx‖� BP‖Fnx‖�CP‖Fnx‖ . Hence, we deduce that

limsup
n→∞

‖Fnx‖ � C−1
P ‖x‖ for all x ∈ X. (1.6)

Moreover, for each x∈X we have ‖Qnx‖→ 0 if and only if ‖(I−Fn)x‖→ 0 as n→∞ .
Further we write m �P̂ n if Fk(I−Fl) = (I−Fl)Fk = 0 for all k � m and all l � n .

2nd step. Suppose that, for given ε,δ > 0 and x ∈ X with ‖x‖ = 1, we have
‖Ax‖ � ε and limsupn ‖(I −Fn)x‖ � δ . Then there is an integer N0 such that, for all
n,m � N0 ,

‖AFnx‖ � ‖[A,Fn]‖+‖Fn‖‖Ax‖� 2CPε, hence ‖A(Fn−Fm)x‖ � 4CPε.
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Choose n1 	P̂ N0 such that ‖(I−Fn1)x‖ � δ/2 and m1 	P̂ n1 such that, due
to (1.6),

‖(Fm1 −Fn1)x‖ = ‖Fm1(I−Fn1)x‖ � (2CP)−1‖(I−Fn1)x‖ � (4CP)−1δ .

Set x1 :=
(Fm1−Fn1)x

‖(Fm1−Fn1)x‖ and fix N1 	P̂ m1 .

We iterate this procedure as follows: Suppose that nk,mk,Nk,xk for k = 1, . . . , l−1
are given. Then we analogously choose nl 	P̂ Nl−1 such that ‖(I−Fnl )x‖� δ/2, and

ml 	P̂ nl such that ‖(Fml −Fnl )x‖ � (4CP)−1δ , and set xl :=
(Fml−Fnl )x

‖(Fml−Fnl )x‖
as well as

Nl 	P̂ ml . By doing this, we obtain a set {x1, . . . ,xl}⊂X and integers N0, . . . ,Nl such
that (FNk −FNk−1)xi = δikxi . For y = ∑l

i=1 αixi and every k = 1, . . . , l we find

‖y‖ =

∥∥∥∥∥
l

∑
i=1

αixi

∥∥∥∥∥� 1
‖FNk −FNk−1‖

∥∥∥∥∥(FNk −FNk−1)
l

∑
i=1

αixi

∥∥∥∥∥� 1
CP

‖αkxk‖ =
1

CP
|αk|

and hence

‖Ay‖ �
l

∑
i=1

|αi|‖Axi‖ �
l

∑
i=1

CP‖y‖4CP

δ
4CPε =

16C3
P l

δ
ε‖y‖.

Let Nl+1 	P̂ Nl and choose a projection R ∈ L (ker(I−FNl+1)) onto the linear space
span{x1, . . . ,xl} ⊂ ker(I − FNl ) ⊂ ker(I − FNl+1) of the norm at most l , due to [19],

B.4.9. Then P := RFNl is a projection of the rank l and ‖AP‖ � 16C4
P l2

δ ε . Moreover,
P is P̂ -compact, hence P -compact.

3rd step. If there is an x ∈ kerA such that the norms ‖Qnx‖ do not tend to zero
then the second step yields that for every k and every γ > 0 there is a P -compact
projection P of the rank k such that ‖AP‖< γ , hence A is properly P -deficient from
the right.

If ‖Qnx‖→ 0 as n → ∞ for all x ∈ kerA , i.e. kerA ⊂ X0 then, due to Proposition
1.18, 3. we conclude that for Fredholm operators A there is always a P -compact
projection onto its kernel, and if A has an infinite dimensional kernel then it is properly
P -deficient.

4th step. Suppose that A|X0 is not normally solvable, that is for every fixed ε > 0
and k ∈ N there is a subspace X1 ⊂ X0 of the dimension k s.t. ‖A|X1‖ � ε/(2kBP) .
By Proposition 1.18, 3. we can choose a projection P∈K (X,P) onto X1 of the norm
not greater than 2kBP . Then ‖AP‖� ‖A|X1‖‖P‖� ε. Since ε and k are arbitrary, we
deduce the proper P -deficiency of A from the right.

Now suppose that A|X0 is normally solvable and A has a finite dimensional kernel
contained in X0 but A is not normally solvable. Let X2 denote a complement of kerA .
Then the operator A|X2 : X2 → X is still not normally solvable, but the compression
A|X3 : X3 → X0 to the complement X3 := {x ∈ X2 : ‖Qnx‖ → 0 as n → ∞} of kerA
in X0 is normally solvable, hence C := inf{‖Ax‖ : x ∈ X3,‖x‖ = 1} > 0. Then for
every x ∈ X2 , ‖x‖ = 1 with dist(x,X3) < 1/4min{1,C/‖A‖} we have ‖Ax‖ � C/2.
Consequently, there is a δ > 0 such that for every ε > 0 there is an x ∈ X2 with
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‖x‖ = 1, limsupn ‖(I−Fn)x‖ � δ and ‖Ax‖ � ε , and the second step again yields the
proper P -deficiency from the right.

5th step. It remains to consider operators A which are normally solvable and
dimkerA < ∞ . Notice that dimcokerA = dimkerA∗ , and due to the above A|X0 is
normally solvable, too, hence dimcokerA|X0 = dimker(A|X0)

∗ .
Since P is a uniform and symmetric approximate identity on X0 , the sequence

P∗ = (P∗
n ) still forms a uniform approximate identity on X∗

0 . Thus, we can apply
the previous steps to (A|X0)

∗ and find, for every k � dimcokerA|X0 , a P∗ -compact
projection T such that (A|X0)

∗T = 0. As in the proof of Proposition 1.7 this yields a
P -compact projection P′ of the rank k such that P′A|X0 = 0. For the lifting P̃′ which
is given by Proposition 1.18 we find that also P̃′A = 0 by the estimate

‖P̃′A‖ � ‖P̃′FnA‖+‖P̃′(I−Fn)A‖ � ‖P′AFn‖+‖P̃′‖‖[Fn,A]‖+‖P̃′(I−Fn)‖‖A‖,
(1.7)

where the first term equals zero and the second and last one tend to zero as n → ∞ .
Thus, if dimcokerA|X0 = ∞ then A|X0 and A are properly P -deficient from the left.
Moreover, if dimcokerA|X0 < ∞ then A|X0 is properly P -Fredholm, and if

dimcokerA = dimcokerA|X0

then A is properly P -Fredholm as well.
6th step. Let the second condition of the theorem be fulfilled and let dimkerA < ∞

as well as dimcokerA|X0 < ∞ . Then A|X0 is properly P -Fredholm and we can choose
a P -regularizer B for A|X0 such that P′ := I−AB∈K (X0,P) is a projection parallel
to the range of A|X0 . Then, let B̃ denote the P -strong limit of (BPn)n which is in
L (X,P) (see Proposition 1.12). Further, let P̃′ denote the lifting of P′ . By the first
step we find for large m and all x ∈ X , ‖x‖ = 1 that

‖(I− P̃′ −AB̃)x‖ � 2CP‖Fm(I− P̃′ −AB̃)‖
� 2CP‖Fm((I−P′)Pn−AB̃)‖+2CP‖Fm(I− P̃′)Qn‖
= 2CP‖FmA(BPn− B̃)‖+2CP‖Fm(I− P̃′)Qn‖.

Since both items tend to zero as n→ ∞ we see that P̃′ = I−AB̃ . Together with P̃′A = 0
due to (1.7) this yields that P̃′ is a projection parallel to imA . Hence A is Fredholm
and P -Fredholm by step 3 and the assertion of the theorem is proven.

7th step. If P is a uniform symmetric approximate identity on X then the proof
of the fifth step also works for X instead of X0 , and the assertion of the theorem is
proven as well.

8th step. Let the last condition of the theorem be fulfilled and let B ∈ L (X0,P)
be properly P -Fredholm. Then (BPn)n is bounded and (PkBPn)n is a Cauchy sequence
in L (X,P) for every fixed k , since

‖PkBPn−PkBPm‖ � ‖PkBQl‖‖Pn−Pm‖
for n,m	 l , and ‖PkBQl‖→ 0 as l →∞ , hence there are uniform limits Bk ∈L (X,P)
of (PkBPn)n∈N for each k . Moreover, for each x ∈ X , there is a P -strong limit

B̃x := P-lim
n→∞

BPnx in X,
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and the mapping x �→ B̃x defines a bounded linear operator B̃ . Obviously, B̃|X0 = B
and by

‖(PkB̃−Bk)x‖ � ‖Pk(B̃−BPn)x‖+‖PkBPn−Bk‖‖x‖→ 0 as n → 0,

for every x ∈ X , we see that PkB̃ = Bk . Hence

‖Pk(B̃−BPn)‖ = ‖Bk −PkBPn‖→ 0 as n → ∞,

‖(B̃−BPn)Pk‖ = ‖(B̃−B)Pk‖ = 0 for n 	 k.

Thus, (BPn) converges P -strongly to B̃ , that is the second condition in the theorem is
fulfilled. �

The conditions in this theorem only determine properties of the space X and
the approximate projection P and if one of them is fulfilled then every operator in
L (X,P) has the P -dichotomy. That is why one may say that a Banach space X
has the P -dichotomy if each operator A ∈ L (X,P) has the P -dichotomy. So, we
see that for uniform approximate identities P the space X has the P -dichotomy, if
X is small (in the sense that P should be symmetric) or large (in the sense of being
sequentially complete in the strict topology). Until now it is not clear if there is really a
gap between these two extremal cases. The exact formulation of this open question is
as follows:

Are there a Banach space X , a uniform approximate identity P on X and an
operator A ∈ L (X,P) which is normally solvable, and fulfills dimkerA < ∞ as well
as dimcokerA|X0 < dimcokerA?

REMARK 1.21. In the Fredholm theory for band-dominated operators on l∞ the
existence of a predual space Y and preadjoint operators Rn,B ∈ L (Y) for (Pn) and A
(i.e. Y∗ = X , R∗

n = Pn for all n ∈ N and B∗ = A) played an important role, e.g. in [15]
and [3], to ensure that the Fredholm properties of A and A|X0 coincide (for details see
Section 1.4). Now we know from Corollary 1.19 that the P -dichotomy is already suf-
ficient for this goal. Just to complete the picture, we additionally note that the existence
of such a predual setting guarantees the P -dichotomy. Indeed, (Rm) is a symmetric
uniform approximate projection (and hence a symmetric uniform approximate identity
due to Remark 1.11) since ‖(Rn−I)Rm‖= ‖Pm(Pn−I)‖ , ‖Rm(Rn−I)‖= ‖(Pn−I)Pm‖ ,
and ‖RU‖ = ‖PU‖ for all m,n and all bounded U ⊂ R . Thus, the operator B has the
(Rn)-dichotomy by Theorem 1.20 which easily implies the P -dichotomy for A .

1.3. Limit operators

Let X be a Banach space and P = (Pn) be an approximate identity. In the fol-
lowing we present an extension of [25], Section 1.2 with a special emphasis on the
importance of the new notion “P -dichotomy”.

Suppose that K is a positive integer and that there is a bounded family V =
(Vk)k∈ZK of operators Vk ∈ L (X) such that VkVl = Vk+l for all k, l ∈ Z

K and V0 = I .
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Further we assume that P and V are related as follows: For every m,n, l ∈ N and
r ∈ ZK

there is an R > 0 such that PmVkPn = 0 for all |k| > R, (1.8)

there is an i0 ∈ N such that PlVrQi = QiVrPl = 0 for all i � i0. (1.9)

The latter condition ensures that V ⊂ L (X,P) due to Theorem 1.2.
Finally, H stands for the set of all sequences h : N → ZK which tend to infinity

in the sense that for every R > 0 there is an m0 such that |h(m)| > R for all m � m0 .

DEFINITION 1.22. Let A∈L (X,P) , and let h∈H . The operator Ah ∈L (X)
is called limit operator of A w.r.t. h if Ah = P-limm→∞V−h(m)AVh(m) . The set σop(A)
of all limit operators of A is called the operator spectrum of A .

Notice that the operator spectrum σop(A) of A ∈ L (X,P) is automatically part
of L (X,P) , that an infinite subsequence g of h ∈ H again belongs to H , and
if the limit operator Ah of A ∈ L (X,P) exists then Ag exists, too, and equals Ah .
Furthermore, the operator spectrum of a P -compact operator always equals {0} , as
[25], Proposition 1.2.6 shows.

PROPOSITION 1.23. (cf. also [25], Proposition 1.2.9)
Let P be a uniform approximate identity on X and A ∈ L (X,P) be P -Fredholm.

• All limit operators of A which have the P -dichotomy are invertible and their
inverses are uniformly bounded.

• If B is a P -regularizer for A and Ag ∈ σop(A) has the P -dichotomy then Bg

exists and equals A−1
g .

Proof. Let B ∈ L (X,P) be a P -regularizer for A and let T1,T2 ∈ K (X,P)
be such that BA− I = T1 and AB− I = T2 . Further fix a sequence h ∈ H such that Ah

exists. Then, for every K ∈ K (X,P)

‖K‖ = ‖V−h(n)IVh(n)K‖ � ‖V−h(n)BVh(n)‖‖V−h(n)AVh(n)K‖+‖V−h(n)T1Vh(n)K‖,
and consequently (for a certain constant D > 0 independent from h , and n → ∞)

‖K‖ � D‖AhK‖ for all K ∈ K (X,P).

Analogously,
‖K‖ � D‖KAh‖ for all K ∈ K (X,P).

If Ah has the P -dichotomy then these estimates guarantee that Ah is not properly
P -deficient, hence Fredholm and properly P -Fredholm. Since we can choose a P -
compact projection onto kerA we conclude again from these estimates that this projec-
tion must be the zero operator. Thus Ah is injective. By the same means we find that
Ah is surjective as well, that is invertible. Since Ah ∈ L (X,P) , Theorem 1.16 yields
A−1

h ∈ L (X,P) , too.
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Fix ε > 0 and choose x∈X , ‖x‖= 1 such that ‖A−1
h ‖� ‖A−1

h x‖+ε . Further, due
to the fact that P is an approximate identity, fix m such that ‖A−1

h x‖ � ‖PmA−1
h x‖+ ε

and let n be such that ‖PmA−1
h Qn‖ � ε , by Theorem 1.2. Finally notice that for every

y∈X0 there is a projection Ry ∈K (X0,P) of the norm 1 onto span{y} , and therefore
the first of the above estimates yields for the operator A−1

h R̃y ∈ K (X,P) (where R̃y

is the lifting of Ry given by Proposition 1.18) that ‖A−1
h R̃y‖ � D‖AhA

−1
h R̃y‖ = B2

PD .
Now we conclude

‖A−1
h ‖ � ‖PmA−1

h Pnx‖+3ε � BP‖A−1
h R̃Pnx‖‖Pnx‖+3ε � B4

PD+3ε.

This proves the uniform boundedness. Furthermore, we have

V−h(n)BVh(n)− (Ah)−1

= V−h(n)BVh(n)(I−V−h(n)AVh(n)(Ah)−1)+V−h(n)T1Vh(n)(Ah)−1

= V−h(n)BVh(n)[Ah−V−h(n)AVh(n)](Ah)−1 +V−h(n)T1Vh(n)(Ah)−1

and hence ‖(V−h(n)BVh(n)− (Ah)−1)J‖→ 0 for every J ∈ K (X,P) . Analogously, we
can show that ‖J(V−h(n)BVh(n)− (Ah)−1)‖ → 0 and obtain the P -strong convergence
of V−h(n)BVh(n) to (Ah)−1 . �

COROLLARY 1.24. Let P be a uniform approximate identity on X , suppose that
X has the P -dichotomy, and let A ∈ L (X,P) . Then σ(B) ⊂ σess(A) ⊂ σ(A) for all
B ∈ σop(A) .

Proof. Let λ ∈C . Then B−λ I belongs to σop(A−λ I) if and only if B∈σop(A) .
We only note that each Fredholm operator is P -Fredholm due to the P -dichotomy,
hence its limit operators are invertible. �

Rich operators

DEFINITION 1.25. An operator A ∈ L (X,P) is called an operator with rich
operator spectrum (or simply a rich operator) if every sequence h ∈ H contains an
infinite subsequence g such that the limit operator Ag exists.

From Proposition 1.2.6 in [25] we recall that the set L $(X,P) of all rich opera-
tors forms a Banach subalgebra of L (X,P) and, moreover, K (X,P)⊂L $(X,P) .

COROLLARY 1.26. Let P be a uniform approximate identity on X and further
suppose that X has the P -dichotomy. Then every P -regularizer of a rich P -
Fredholm operator is rich. In particular, L $(X,P) is inverse closed in L (X,P)
and L (X) .

Proof. Let B ∈ L (X) be a P -regularizer for A ∈ L $(X,P) . Theorem 1.16
tells us that B belongs to L (X,P) . Let h ∈ H and g be a subsequence of h such
that Ag exists. Then Proposition 1.23 provides Bg = A−1

g . �
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1.4. An Example: l p -spaces and band-dominated operators

Let X stand for a fixed complex Banach space, K ∈ N , and let l p = l p(ZK ,X)
denote the Banach space of all functions f : Z

K → X such that

‖ f‖p
lp := ∑

x∈ZK

‖ f (x)‖p
X < ∞.

We further introduce l∞ = l∞(ZK ,X) as the Banach space of all functions f with

‖ f‖l∞ := sup
x∈ZK

‖ f (x)‖X < ∞,

and l0 = l0(ZK ,X) as the closed subspace of all functions f ∈ l∞ with

lim
|x|→∞

‖ f (x)‖X = 0.

Every function a ∈ l∞(ZK ,L (X)) gives rise to an operator aI ∈ L (l p) (a so-
called multiplication operator) via

(a f )(x) = a(x) f (x), x ∈ Z
K .

Evidently, ‖aI‖L (l p) = ‖a‖∞ . By this means, the functions in l∞(ZK ,C) induce multi-
plication operators as well.

Let Ω ⊂ RK be a compact and convex polytope with vertices in ZK and suppose
that 0 ∈ ZK is an inner point of Ω . Further, let χ̂mΩ denote the characteristic function
of mΩ∩Z

K and set
Pm := χ̂mΩI (m ∈ N).

Obviously, all Pm ∈ L (l p) are projections with ‖Pm‖ = 1 and P := (Pn)n∈N is a
uniform approximate identity. Further, notice that every two approximate projections
which are due to this definition are always equivalent, that is the classes of P -compact
or P -Fredholm operators as well as the notion of P -strong convergence do not de-
pend on the concrete choice of Ω . Finally, we introduce limit operators as in Section
1.3, based on the family V = (Vα)α∈ZK of shift operators Vα given by the rule

(Vα f )(x) = f (x−α), x ∈ Z
K .

PROPOSITION 1.27. All spaces l p have the P -dichotomy.

Proof. With the identifications (l p(ZK ,X))∗ = lq(ZK ,X∗) for 1 < p < ∞ and
1/p+ 1/q = 1, (l0(ZK ,X))∗ = l1(ZK ,X∗) , as well as (l1(ZK ,X))∗ = l∞(ZK ,X∗) we
easily deduce that P is symmetric in all cases p �= ∞ , hence Theorem 1.20 applies.
Furthermore, the spaces l∞ fulfill the last condition in Theorem 1.20 (that is they are
sequentially complete in the strict topology). �
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THEOREM 1.28. Let A ∈ L (l p,P) .

1. A is P -Fredholm if and only if it is invertible at infinity. In this case all opera-
tors B ∈ σop(A) are invertible and their inverses are uniformly bounded.

2. If A is Fredholm then A is properly P -Fredholm, hence P -Fredholm. In case
dimX < ∞ Fredholmness and P -Fredholmness are equivalent.

3. For every B ∈ σop(A) it holds that σ(B) ⊂ σess(A) ⊂ σ(A) .

4. Let p = ∞ . An operator A∈L (l∞,P) is Fredholm if and only if its compression
A|l0 to the space l0 is Fredholm. In this case

dimkerA = dimkerA|l0 , dimcokerA = dimcokerA|l0 , and indA = indA|l0 .

This is an immediate consequence of Theorem 1.16, the Corollaries 1.19 and 1.24,
and the fact that in case dimX < ∞ all P -compact operators are compact (in the usual
sense). Notice that these results, or at least parts of them, are already known, but only
under certain additional conditions, like 1 < p < ∞ , dimX < ∞ , or A being band-
dominated (see [25] or [15]). A recent discussion on the latter case can be found in [3],
Theorem 6.28. Particularly, the last assertion clarifies the open problem no. 4 which
was formulated in [3]. A very prominent example for an operator in L (l p,P) not
being band-dominated is the so-called flip operator J given by the rule (Ju)α = u−α .

DEFINITION 1.29. A band operator A is a finite sum of the form A = ∑aαVα ,
where α ∈ ZK and aα ∈ l∞(ZK ,L (X)) . An operator is called band-dominated if it
is the uniform limit of a sequence of band operators. We denote the class of all band-
dominated operators by Al p .

Here is a collection of important properties of band-dominated operators:

THEOREM 1.30. (see [25], Propositions 2.1.7 et seq.)

1. Al p ⊂ L (l p,P) ⊂ L (l p) are closed algebras as well as inverse closed.

2. The set K := K (l p,P) of all P -compact operators is a closed ideal in Al p .

3. Al p/K is inverse closed in the quotient algebra L (l p,P)/K .

THEOREM 1.31. ([25], Theorem 2.1.6 and [15], Theorem 1.42)
An operator A ∈ L (l p) is band-dominated if and only if the following holds: For
every ε > 0 , there exists an M > 0 , such that whenever F,G are subsets of Z

K with
dist(F,G) := inf{‖x− y‖ : x ∈ F, y ∈ G} > M, then ‖χFAχGI‖L (l p) < ε.

There is another equivalent characterization of the P -Fredholm property of rich
band-dominated operators which improves Theorem 1.28.

THEOREM 1.32. Let A ∈ Al p be rich. Then A is P -Fredholm if and only if all
limit operators of A are invertible and their inverses are uniformly bounded.
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The “only if” part obviously follows from Theorem 1.28. It was discussed in
[24] and [25], Theorem 2.2.1 (for 1 < p < ∞), in [15] (all p and with an additional
assumption on the existence of a predual setting in case p = ∞), and in [3], Theorem
6.28 (all p ). The proof of the “if” part is based on a construction of a P -regularizer,
which goes back to Simonenko [35] and can be found in [24] and [15]. Particularly
notice also the pioneering paper [13] of Lange and Rabinovich.

2. Sequence algebras, Fredholm sequences and approximation numbers

We now turn our attention to sequences of operators having a certain asymptotic
structure. This structure finds expression in the existence of P -strong limits which
we will call snapshots. Such sequences naturally emerge from various approximation
methods. We establish a Fredholm theory for such sequences and, besides a stability
criterion, we obtain a deeper understanding of the connections between the operators
of a sequence and its snapshots. The results in this section are generalizations of those
in [34], Section 1.2. Here we drop the assumption on the operators of the sequences to
act on finite dimensional spaces.

2.1. Sequence algebras

Let (En) be a sequence of Banach spaces and let Ln stand for the identity operator
on En , respectively. We denote by F the set of all bounded sequences {An}1 of
bounded linear operators An ∈ L (En) . Provided with the operations

α{An}+ β{Bn} := {αAn + βBn}, {An}{Bn} := {AnBn},
and the supremum norm ‖{An}‖F := supn ‖An‖L (En) < ∞, F becomes a Banach
algebra with identity I := {Ln} . The set

G := {{Gn} ∈ F : ‖Gn‖L (En) → 0 as n → ∞}
forms a closed ideal in F .

Further, let T be a (possibly infinite) index set and suppose that, for every t ∈ T ,
there is a Banach space Et with an approximate identity Pt and a bounded sequence
(Lt

n) of projections Lt
n ∈ L (Et ,Pt) tending Pt -strongly to the identity It on Et . Set

ct := sup{‖Lt
n‖L (Et) : n ∈ N} < ∞ for every t ∈ T.

Further suppose that, for every t ∈ T , there is a sequence (Et
n) of isomorphisms

Et
n : L (imLt

n) → L (En),

such that (for brevity, we write E−t
n instead of (Et

n)−1 )

Mt := sup{‖Et
n‖,‖E−t

n ‖ : n ∈ N} < ∞. (I)

1We continue to use (·) for sequences of elements in one common space, whereas the sequences in F ,
which consist of elements coming from different spaces En in general, are denoted by {·} .
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We denote by F T the collection of all sequences A = {An} ∈F , for which there exist
operators Wt(A) ∈ L (Et ,Pt) for all t ∈ T such that

A(t)
n := E−t

n (An)Lt
n →Wt(A) Pt -strongly.

These limits are uniquely determined and with the help of Theorem 1.13 it is easy
to show that F T is a closed subalgebra of F which contains the identity and the
ideal G . Both, the mappings Et

n and Wt : F T → L (Et ,Pt),A �→Wt(A) are unital
homomorphisms.

Roughly speaking, the maps Et
n allow us to transform a given sequence A ∈ F T

and to generate snapshots Wt(A) from different angles which outline several aspects
of the asymptotic behavior of A . In what follows, we will examine the connections
between the properties of A and the properties of its “snapshots at infinity”.

REMARK 2.1. The results of the subsequent sections remain true, if for some or
all t ∈ T the sequence (Lt

n) of projections converges ∗ -strongly to the identity, and we
replace Pt -Fredholmness by Fredholmness, Pt -compactness by compactness, and
Pt -strong convergence by ∗ -strong convergence. An approximate projection Pt is
not needed in this case.

Thus, the classical results for C∗ -algebras (see [8]) and for Banach algebras of
matrix sequences in [32] are completely covered by the present considerations.

2.2. J T -Fredholm sequences

In all what follows, we suppose that the separation condition

W τ{Et
n(L

t
nK

t)} =

{
Kt if t = τ
0 if t �= τ

(II)

holds for all τ, t ∈ T and every Kt ∈K t := K (Et ,Pt) . This condition is very natural,
since it guarantees that the angles from which we look at a sequence are sufficiently
different in a sense and, by this, it prevents redundant snapshots. We put

J t := {{Et
n(L

t
nK

t)}+{Gn} : Kt ∈ K t ,‖Gn‖→ 0} (∀ t ∈ T ),

J T := closFT

{
m

∑
i=1

{Jti
n} : m ∈ N, ti ∈ T, {Jti

n} ∈ J ti

}

and as in [34], Proposition 14 we check that the sets J t and J T are closed ideals in
F T .

DEFINITION 2.2. A sequence A ∈ F T is said to be J T -Fredholm, or regular-
izable with respect to J T , if the coset A+J T is invertible in the quotient algebra
F T/J T .



408 M. SEIDEL AND B. SILBERMANN

Notice that this property depends on the underlying algebra F T and the ideal
J T . It is obvious that the set of J T -Fredholm sequences is open in F T , the sum of
a J T -Fredholm sequence and a sequence from the ideal J T is J T -Fredholm and
that the product of two J T -Fredholm sequences is J T -Fredholm again.

The proof for the next result on the regularization of J T -Fredholm sequences
can again be taken from [34], Proposition 16.

PROPOSITION 2.3. Let A ∈ F T be J T -Fredholm. Then there exist finite sub-
sets {t1, ...,tm} and {τ1, ...,τl} of T and a δ > 0 such that the following holds:
For each Ã ∈ F T with ‖A− Ã‖ < δ there are sequences B,C ∈ F T and G,H ∈ G
as well as operators Kti ∈ K ti and Kτi ∈ K τi such that

BÃ = I+
m

∑
i=1

{Eti
n (Lti

nK
ti)}+G, (2.1)

ÃC = I+
l

∑
i=1

{Eτi
n (Lτi

n Kτi)}+H. (2.2)

Applying the homomorphisms Wt ,t ∈ T to the Equations (2.1) and (2.2), and
utilizing the separation condition, we see that the following theorem is in force.

THEOREM 2.4. If a sequence A ∈ F T is J T -Fredholm, then all correspond-
ing operators Wt(A) are Pt -Fredholm on Et and the number of the non-invertible
operators among them is finite.

REMARK 2.5. Let A be a J T -Fredholm sequence. Then every snapshot Wt(A)
of A is Pt -Fredholm by the previous theorem, and therefore has the Pt -dichotomy,
by Corollary 1.9. This simplifies the results of [34] in the sense, that there a J T -
Fredholm sequence automatically has the P -dichotomy.

2.2.1. The lower approximation numbers of An and the operators Wt{An}
For Banach spaces X,Y and an operator A ∈ L (X,Y) the k -th approximation

number from the right sr
k(A) and the k -th approximation number from the left sl

k(A) of
A are defined as

sr
k(A) := inf{‖A−F‖L (X,Y) : F ∈ L (X,Y),dimkerF � k},

sl
k(A) := inf{‖A−F‖L (X,Y) : F ∈ L (X,Y),dimcokerF � k},

(k = 0,1,2, ...) , respectively. It is clear that 0 = sr
0(A) � sr

1(A) � sr
2(A) � ... and that

the same holds true for the sequence (sl
k(A)) . Here is a further connection between the

operators An of a sequence {An} ∈ F T and its snapshots Wt{An} .

THEOREM 2.6. Let A = {An} ∈ F T , m ∈ N and t1, . . . ,tm ∈ T be such that all
Wti(A) are invertible at infinity. Then sr

k(An) → 0 for all k � ∑m
i=1 dimkerWti(A) and

sl
k(An) → 0 for all k � ∑m

i=1 dimcokerWti(A) as n → ∞ .
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If, for one t ∈ T , the operator Wt(A) is properly Pt -deficient from the right (left) then
sr
k(An) → 0 (or sl

k(An) → 0 , respectively) for every k ∈ N as n → ∞ .

To prepare the proof we recall a useful observation from [34], Section 1.2.4. For
t ∈ T let Pt be a Pt -compact projection. Then there is an nt ∈ N and, for every
n � nt , a Pt -compact projection Pt

n such that imPt
n ⊂ imLt

n , ‖Pt
n − Pt‖ < 1, and

‖Pt
n−Pt‖→ 0 as n → ∞ . Furthermore, by

Rt
n :=

{
Et

n(P
t
n) : n � nt

0 : n < nt

we get a sequence {Rt
n} ∈ J t of projections Rt

n with rankRt
n = rankPt

n = rankPt for
n � nt . Proposition 23 in [34] states

PROPOSITION 2.7. Let A = {An} ∈F T and Pt ∈K t be a Pt -compact projec-
tion. Then

limsup
n→∞

‖AnR
t
n‖ � Mt‖Wt(A)Pt‖, and limsup

n→∞
‖Rt

nAn‖ � Mtct‖PtWt(A)‖.

Notice that the discussion in [34] was done for rankPt < ∞ , but this condition is
redundant. Now we prove Theorem 2.6.

Proof. Proposition 1.7 reveals that, if Wti(A) are normally solvable then, for each
i = 1, ...,m and every respective non-negative integer ki � dimkerWti(A) , we can fix a
Pti -compact projection Pti onto a ki -dimensional subspace of kerWti(A) and choose
nti ,P

ti
n ,Rti

n as above. Moreover, for each i and every n � max j nt j we choose a normed

basis {xn
i,l}ki

l=1 of imRti
n , such that for arbitrary scalars αn

i, j the following hold:

|αn
i,p| �

∥∥∥∥∥
ki

∑
j=1

αn
i, jx

n
i, j

∥∥∥∥∥ for all p = 1, ...,ki. (2.3)

It is a simple consequence of Auerbach’s Lemma (see [19], B.4.8) that such a basis
always exists. In the same way as in Proposition 26 in [34] we prove that ‖Rti

nR
t j
n ‖→ 0

as n → ∞ whenever i �= j , and that there is a number N ∈ N , such that

|α j,k| � γ

∥∥∥∥∥
m

∑
i=1

ki

∑
l=1

αi,lx
n
i,l + y

∥∥∥∥∥ , where γ = 2 max
i=1,...,m

Mti‖Pti‖,

for all j = 1, ...,m , k = 1, ...,k j , n � N , all scalars αi,l , and all y ∈ Yn :=
⋂m

i=1 kerRti
n .

Obviously, En decomposes into the direct sum

En = span{xn
1,1}⊕ . . .⊕ span{xn

m,km
}⊕Yn

for n � N , and we can introduce functionals f n
i, j ∈ E∗

n by the rule

f n
i, j

(
m

∑
k=1

kk

∑
l=1

αn
k,lx

n
k,l + y

)
:= αn

i, j 1 � i � m, 1 � j � ki.
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Then we always have ‖ f n
i, j‖ � γ and f n

i, j(Yn) = {0} . As a next step, we denote by
Rn ∈ L (En) the linear operators

Rnx :=
m

∑
i=1

ki

∑
j=1

f n
i, j(x)x

n
i, j.

The operators Rn are projections of the rank dimimRn = k := ∑m
i=1 ki and they are

uniformly bounded with respect to n . Moreover, for every point x ∈ En we have (since
xn
i, j = Rti

nxn
i, j )

‖AnRnx‖ =

∥∥∥∥∥An

m

∑
i=1

ki

∑
j=1

f n
i, j(x)x

n
i, j

∥∥∥∥∥�
m

∑
i=1

ki

∑
j=1

| f n
i, j(x)|‖AnR

ti
nx

n
i, j‖

�
m

∑
i=1

ki

∑
j=1

γ‖x‖‖AnR
ti
n‖‖xn

i, j‖ = γ‖x‖
m

∑
i=1

ki‖AnR
ti
n‖.

Since ‖AnR
ti
n‖→ 0 for each i (see Proposition 2.7) it follows that

sr
k(An) = inf{‖An +F‖ : F ∈ L (En),dimkerF � k}

� ‖An−An(Ln −Rn)‖ = ‖AnRn‖ � γkmax
i

‖AnR
ti
n‖→ 0.

Due to Proposition 1.7 we can also choose Pti -compact projections P̃ti with
P̃tiWti(A) = 0 and proceed in the same way to construct the “left-hand side analogues”
k̃i � dimcokerWti(A) , P̃ti

n , R̃ti
n , x̃n

i, j , f̃ n
i, j , Ỹn and, finally, a bounded sequence (R̃n) of

projections R̃n , being of the rank k̃ = ∑m
i=1 ki . Then

‖R̃nAnx‖ =

∥∥∥∥∥
m

∑
i=1

k̃i

∑
j=1

f̃ n
i, j(Anx)x̃n

i, j

∥∥∥∥∥�
m

∑
i=1

k̃i

∑
j=1

| f̃ n
i, j(R̃

ti
nAnx)+ f̃ n

i, j((I− R̃ti
n)Anx)|‖x̃n

i, j‖

�
m

∑
i=1

k̃i

∑
j=1

(‖ f̃ n
i, j‖‖R̃ti

nAn‖+‖ f̃ n
i, j(I− R̃tin)‖‖An||

)‖x‖,
where ‖ f̃ n

i, j(I− R̃ti
n)‖→ 0 as n → ∞ due to the following observations: for each y ∈ Ỹn

we have f̃ n
i, j((I− R̃ti

n)y) = f̃ n
i, j(y) = 0, that is f̃ n

i, j(I− R̃ti
n)(I− R̃n) = 0, and further

‖ f̃ n
i, j(I− R̃ti

n)R̃n‖ �
m

∑
k=1

k̃k

∑
l=1

| f̃ n
k,l |‖ f̃ n

i, j(I− R̃ti
n)x̃

n
k,l‖→ 0

since (I − R̃ti
n)x̃n

i,l = 0 and ‖ f̃ n
i, j(I − R̃ti

n)x̃n
k,l‖ = ‖ f̃ n

i, jR̃
ti
nx̃n

k,l‖ � ‖ f̃ n
i, j‖‖R̃ti

nR̃
tk
n ‖‖x̃n

k,l‖ → 0
for k �= i as n → ∞ . Thus, we again obtain

sl
k(An) � ‖R̃nAn‖→ 0 as n → ∞.

Now, suppose that Wt(A) is properly Pt -deficient from the right (left). Then
for each k ∈ N and each ε > 0 there is a projection Q ∈ K t , rankQ = k such that
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‖Wt(A)Q‖ < ε (or ‖QWt(A)‖ < ε , respectively). Choosing again suitable sequences
of projections w.r.t. Q as above, we get from Proposition 2.7 that limsupn sr

k(An) = 0
(or limsupn sl

k(An) = 0) since ε can be chosen arbitrarily small.
Finally notice that Wti(A) being invertible at inifinity but not normally solvable

implies the Pti -deficiency from both sides by Proposition 1.7. �

Lower Bernstein and Mityagin numbers Besides the approximation numbers
there are similar geometric characteristics for bounded linear operators A ∈ L (X,Y)
on Banach spaces X,Y . Denote by UX the closed unit ball in X and by

j(A) := sup{τ � 0 : ‖Ax‖ � τ‖x‖ for all x ∈ X},
q(A) := sup{τ � 0 : A(UX) ⊃ τUY}

the injection modulus and the surjection modulus, respectively. Obviously, the relation
j(A) = inf{‖Ax‖ : x ∈ X,‖x‖ = 1} holds, and due to [19], B.3.8 we have

j(A∗) = q(A) and q(A∗) = j(A). (2.4)

Furthermore, for given closed subspaces V ⊂ X and W ⊂ Y we let JV denote the
embedding map of V into X and by QW the canonical map of Y onto the quotient
Y/W . We define the lower Bernstein and Mityagin numbers by

Bm(A) := sup{ j(AJV ) : dimX/V < m},
Mm(A) := sup{q(QWA) : dimW < m}.

These characteristics have been discussed in [27], for instance. We will show that
there are estimates that connect them to the approximation numbers defined above.
Furthermore, these estimates will allow to relate the approximation numbers to the
Fredholm property and the norm of the inverse of an operator as well as to the lower
singular values in case of a Hilbert space X . Note also that the sequences (Bm(A)) ,
(Mm(A)) are monotonically non-decreasing.

Recall the following observation which is well known, and can be proved as in
[34], Theorem 3.

PROPOSITION 2.8. Let X,Y be Banach spaces and A ∈ L (X,Y) .

1. If A is normally solvable and k � dimkerA (k � dimcokerA) then there is a
projection P ∈ L (X) (P′ ∈ L (Y)) of rank k and of the norm less than k + 2
such that AP = 0 (P′A = 0 , respectively).

2. If A is not normally solvable then, for every k ∈ N and every ε > 0 , there are
projections P∈L (X) and P′ ∈L (Y) of rank k and of the norm less than k+2
such that ‖AP‖ < ε and ‖P′A‖ < ε .

PROPOSITION 2.9. Let X,Y be Banach spaces and A ∈ L (X,Y) . Then, for all
m ∈ N ,

sr
m(A)

2m −1
� Bm(A) � sr

m(A), as well as
sl
m(A)

2m −1
� Mm(A) � sl

m(A).
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Proof. Let F ∈ L (X,Y) with dimkerF � m and let V ⊂ X be a subspace of the
codimension codimV = dimX/V < m . Then kerF∩V is at least 1-dimensional. Thus

‖A−F‖ = sup{‖(A−F)x‖ : x ∈ X, ‖x‖ = 1} � sup{‖Ax‖ : x ∈ kerF, ‖x‖ = 1}
� inf{‖Ax‖ : x ∈ (kerF ∩V ), ‖x‖ = 1} � inf{‖Ax‖ : x ∈V, ‖x‖ = 1}
= j(AJV ).

Since V was chosen arbitrarily, it follows that ‖A−F‖ � Bm(A) , and since F is ar-
bitrary, too, we find that sr

m(A) � Bm(A) . Now, let ε > 0. We inductively construct
projections Sk (k = 1, . . . ,m) and respective elements xk ∈ kerSk−1 with ‖xk‖= 1 such
that

ck−1 � ck := ‖Axk‖ < j(AJkerSk−1)+ ε,

as well as functionals fk ∈ X∗ as follows: Set S0 := 0 and c0 := 0. If the projec-
tions S0, . . . ,Sk−1 together with their corresponding elements and functionals are al-
ready given, we choose xk ∈ kerSk−1 and a functional f̃k on kerSk−1 with ‖ f̃k‖ = 1
and f̃k(xk) = 1. Furthermore, we define the functional fk := f̃k ◦ (I − Sk−1) and the
projection Skx := ∑k

i=1 fi(x)xi on X . Notice that we obviously have fi(x j) = δi j for all
i, j � k and from

‖ fk‖ � ‖I−Sk−1‖ � 1+
k−1

∑
i=1

‖ fi‖

it follows that ‖ fk‖ � 2k−1 , hence

‖ASkx‖ =

∥∥∥∥∥
k

∑
i=1

fi(x)Axi

∥∥∥∥∥�
k

∑
i=1

ci‖ fi‖‖x‖ � ck

k

∑
i=1

2i−1‖x‖ = ck(2k −1)‖x‖.

Defining V := kerSm−1 , we find

sr
m(A) = inf{‖A−F‖ : dimkerF � m}

� ‖A−A(I−Sm)‖ = ‖ASm‖ � cm(2m −1)
< (2m −1)( j(AJV )+ ε) � (2m−1)(Bm(A)+ ε),

(2.5)

which completes the proof of the first estimate, since ε is arbitrary. Next, we prove that

Mm(A) = Bm(A∗) � sr
m(A∗) � sl

m(A). (2.6)

For this let W ⊂Y be a subspace with dimW < m . Define U := { f ∈Y∗ : f (W ) = {0}}
and an operator T : U → (Y/W )∗ by T f = f̃ , f̃ (y+W ) := f (y) . T is well defined,
surjective and even an isometry, since

‖T f‖ = sup
y∈Y\W

|(T f )(QW (y))|
‖QW (y)‖ = sup

y∈Y\W
| f (y)|

infz∈W ‖y+ z‖

= sup
y∈Y\W

sup
z∈W

| f (y)|
‖y+ z‖ = sup

y∈Y\W
sup
z∈W

| f (y+ z)|
‖y+ z‖ = ‖ f‖.
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Moreover, we check that (Q∗
W (T f )) (y) = (T f )(QW y) = f (y) for all f ∈ U and all

y ∈ Y , hence the first equality in (2.6) follows with (2.4) from

q(QWA) = j(A∗Q∗
W ) = inf{‖A∗Q∗

W g‖ : g ∈ (Y/W)∗, ‖g‖ = 1}
= inf{‖A∗Q∗

W (T f )‖ : f ∈U, ‖ f‖ = 1}
= inf{‖A∗ f‖ : f ∈U, ‖ f‖ = 1} = j(A∗JU),

since every finite dimensional subspace W ⊂ Y yields a subspace U ⊂ Y∗ of the same
codimension (as above) and, conversely, every subspace U ⊂ Y∗ of finite codimension
induces a corresponding subspace W ⊂ Y via W := {x ∈ Y : f (x) = 0∀ f ∈ U}. We
now fix ε > 0 and an operator F ∈L (X,Y) of the codimension dimcokerF � m such
that ‖A−F‖ � sl

m(A)+ ε . Choose a rank m projection Q such that ‖QF‖ < ε (see
Proposition 2.8). Then the kernel of F∗(I−Q)∗ is at least m-dimensional and

sr
m(A∗) � ‖A∗−F∗(I−Q)∗‖ � ‖A∗−F∗‖+‖F∗Q∗‖= ‖A−F‖+‖QF‖� sl

m(A)+2ε

which completes the proof of (2.6) since ε was chosen arbitrarily.
For the remaining part of the second estimate in the assertion we use a construction

similar to the above one. Fix ε > 0 and set R0 := 0, d0 := 0. For k = 1, . . . ,m we
gradually choose functionals gk ∈ kerR∗

k−1 with ‖gk‖ = 1 such that

dk−1 � dk := ‖A∗gk‖ < j(A∗JkerR∗
k−1

)+ ε,

as well as elements ỹk ∈ Y with ‖ỹk‖ = 1 and |gk(ỹk)| � 1− ε , respectively. Further-
more, we always define yk := 1

gk(ỹk)
(I −Rk−1)ỹk and an operator Rky := ∑k

i=1 gi(y)yi

on Y . We easily check that gi(y j) = δi j for all i, j � k hence Rk is a projection of rank
k , and from

‖yk‖ � 1
1− ε

‖I−Rk−1‖ � 1
1− ε

(
1+

k−1

∑
i=1

‖yi‖
)

we conclude ‖yk‖ � 2k−1

(1−ε)k . Thus, for all g ∈ Y∗ and all x ∈ X ,

‖(A∗R∗
kg)(x)‖ = ‖g(RkAx)‖ =

∥∥∥∥∥
k

∑
i=1

gi(Ax)g(yi)

∥∥∥∥∥=

∥∥∥∥∥
(

k

∑
i=1

g(yi)A∗gi

)
(x)

∥∥∥∥∥
�

k

∑
i=1

‖g‖‖yi‖di‖x‖ � dk

k

∑
i=1

2i−1

(1− ε)i ‖g‖‖x‖� dk
2k −1

(1− ε)k
‖g‖‖x‖.

The assertion then follows by

sl
m(A) = inf{‖A−F‖ : dimcokerF � m} � ‖RmA‖ = ‖A∗R∗

m‖ � dm
2m−1

(1− ε)m

� 2m −1
(1− ε)m (Bm(A∗)+ ε) =

2m −1
(1− ε)m (Mm(A)+ ε)

where ε > 0 is arbitrary. �
Now we have sr

1(A) = B1(A) = j(A) and sl
1(A) = M1(A) = q(A) = j(A∗) , hence

we deduce
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COROLLARY 2.10. Let A ∈ L (X,Y) . Then

sr/l
1 (A) =

{
‖A−1‖−1 if A is invertible

0 if A is not invertible from the left/right.

With the help of Proposition 2.8 we even find more.

COROLLARY 2.11. Let A ∈ L (X,Y) .

1. If A is normally solvable and k is greater than the dimension of the kernel (co-
kernel) of A then sr

k(A) (sl
k(A) , resp.) is non-zero. Otherwise sr

k(A) (sl
k(A)) is

equal to zero.

2. If A is not normally solvable then all approximation numbers are equal to zero.

In particular, A is Fredholm if and only if the number of vanishing approximation
numbers of A is finite.

Hilbert spaces and singular values Suppose now that X,Y are Hilbert spaces
and A ∈ L (X,Y) . Let d :=

√
infσess(A∗A) denote the square root of the infimum of

the essential spectrum of A∗A and

σ1(A) � σ2(A) � . . .

be the sequence of the non-negative square roots of the eigenvalues of A∗A less than d ,
counted according to their algebraic multiplicities. If there are only N (= 0,1,2, . . .)
such eigenvalues, we put σN+1(A) = σN+2(A) = . . . = d . These numbers may be called
the lower singular values of A .

COROLLARY 2.12. Let X,Y be Hilbert spaces and A ∈ L (X,Y) . Then, for all
m,

sr
m(A) = Bm(A) = σm(A), as well as sl

m(A) = Mm(A) = σm(A∗).

Proof. Set B := A∗A and for a subspace U ⊂ X let U⊥ be its orthogonal comple-
ment. Then

(Bm(A))2 = sup{inf{‖Ax‖2 : x ∈U⊥,‖x‖ = 1} : dimU < m}
= sup{inf{〈x,Bx〉 : x ∈U⊥,‖x‖ = 1} : dimU < m}

which equals (σm(A))2 by the Min-Max Principle (see [28], Theorem XIII.1).
Moreover, for a subspace U of the dimension m and PU the orthogonal projection

onto U ,

(sr
m(A))2 � ‖APU‖2 = sup{〈Ax,Ax〉 : x ∈U,‖x‖ � 1}

= sup{〈x,Bx〉 : x ∈U, ‖x‖ � 1}
� sup{‖x‖‖Bx‖ : x ∈U, ‖x‖ � 1} � ‖BJU‖.
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If m � N , then there is an orthonormal system {xi}m
i=1 of eigenvectors, that means

Bxi = (σi(A))2xi . Set U := span{xi}m
i=1 and find that

(sr
m(A))2 � sup

{
m

∑
i=1

α2
i (σi(A))2 : x =

m

∑
k=1

αkxk, ‖x‖ � 1

}
� (σm(A))2.

For the case m > N we note that C := B−d2I is not Fredholm, since d2 ∈σess(B) . That
is, C is not normally solvable or dimkerC = dimcokerC = ∞ . Thus, by Proposition
2.8, for every ε > 0 there is a subspace U of the dimension m such that ‖CJU‖ < ε ,
hence (sr

m(A))2 � ‖BJU‖ < d2 + ε . Together with Proposition 2.9 This finishes the
proof of the first assertion and the second one follows by duality and Equation (2.6),
since sl

m(A) = sr
m(A∗) in case of Hilbert spaces. �

In this sense the approximation numbers and the results of the subsequent sections
can be regarded as generalizations for the singular values in the theory of Fredholm
sequences in so-called Standard algebras in [8], Chapters 6.1 and 6.2.

REMARK 2.13. Besides the lower approximation, Bernstein and Mityagin num-
bers there are also their much more famous “upper relatives”. For example, the upper
approximation numbers sk(A) of an operator A are given by

sk(A) := inf{‖A−F‖L (X,Y) : F ∈ L (X,Y), rankF < k}.

These numbers form a decreasing sequence ‖A‖= s0(A)� s1(A)� . . . � 0 and, roughly
speaking, they sound out the spectrum of an operator from above, and not from below
as the lower approximation numbers do. For the other characteristics the definitions
are similar. Notice that all of these “big brothers” are so-called s-numbers, for which a
well developed theory is available that provides many results on the relations between
them. We think that the modern books [18] and [5] provide a good overview on that
business. Unfortunately, we do not know such results in the literature for the lower ver-
sions in case of (infinite dimensional) Banach spaces, except those of [27], from where
we borrowed the equalities Bm(A) = σm(A) and Mm(A) = σm(A∗) .

2.2.2. Regular J T -Fredholm sequences

DEFINITION 2.14. We introduce the nullity α(A) and deficiency β (A) of a se-
quence A ∈ F T by

α(A) := ∑
t∈T

dimkerWt(A) and β (A) := ∑
t∈T

dimcokerWt(A).

A J T -Fredholm sequence A ∈ F T is said to be regular, if all operators Wt(A) are
Fredholm (in the usual sense). Of course, due to Theorem 2.4, A is regular if and only
if α(A) and β (A) are finite, hence we are in a position to introduce the index of a
regular sequence A by

indA := α(A)−β (A).
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Applying the well known properties of Fredholm operators (see [2], [20], or [7])
and Proposition 2.3 it is not hard to prove the following proposition.

PROPOSITION 2.15. Let A ∈ F T be regular and B ∈ F T .

• If ‖B‖ is sufficiently small then α(A + B) � α(A) , β (A + B) � β (A) and
ind(A+B) = ind(A) .

• If B ∈ J T has only compact snapshots then A+B is a regular J T -Fredholm
sequence and ind(A+B) = indA .

• If B ∈ G then α(A+B) = α(A) and β (A+B) = β (A) .

• If B ∈ F T is a regular J T -Fredholm sequence then ind(AB) = indA+ indB .

2.2.3. The splitting property and the index formula

In all what follows, let Pt be uniform approximate identities for all t ∈ T .

PROPOSITION 2.16. Let A = {An}∈F T be a J T -Fredholm sequence and sup-
pose that all of its snapshots Wt(A) are properly Pt -Fredholm operators, respectively.
If α(A) is a finite number then liminfn sr

α(A)+1(An) > 0 , and if β (A) is finite then

liminfn sl
β (A)+1(An) > 0 .

Proof. Assume that α(A) is finite. Due to Equation (2.1)

BA = I+
m

∑
i=1

{Eti
n (Lti

nK
ti)}+G

from Proposition 2.3, all operators Wt(A) with t ∈ T\{t1, ...,tm} have trivial kernels.
Moreover, for every i = 1, ...,m , Corollary 1.17 provides an operator Bi ∈ L (Eti ,Pti)
such that the operator Pi := Iti −BiWti(A) ∈ K ti is a projection onto the kernel of
Wti(A) . Now we prove that liminfn sr

α(A)+1(An) > 0 in the same manner as in [34],
Proposition 28, where we make use of Corollary 2.10.

If we start with Equation (2.2) we can proceed analogously to obtain the estimate
sl

β (A)+1(An) � const > 0 for all sufficiently large n . �

Since for a regular J T -Fredholm sequence A the operators Wt(A) are always
properly Pt -Fredholm, due to Corollary 1.9, and in view of Theorem 2.6 this yields
the following theorem.

THEOREM 2.17. Let A = {An} ∈ F T be a regular J T -Fredholm sequence.
Then the approximation numbers from the right have the α(A)-splitting property, i.e.

lim
n→∞

sr
α(A)(An) = 0 and liminf

n→∞
sr

α(A)+1(An) > 0.

Furthermore, the approximation numbers from the left have the β (A)-splitting prop-
erty.
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THEOREM 2.18. Let A = {An} ∈ F T be a regular J T -Fredholm sequence.
Then, for sufficiently large n, the operators An are Fredholm and their indices coincide
with indA , in other words

lim
n→∞

indAn = ∑
t∈T

indWt(A).

Proof. Theorem 2.17 shows that sr
α(A)+1(An) > 0 and sl

β (A)+1(An) > 0 for suffi-
ciently large n , that is An is Fredholm, by Corollary 2.11. Moreover, for large n there is
always an operator Fn with dimcokerFn � β (A) such that ‖An−Fn‖ � sl

β (A)(An)+ 1
n .

We can choose a projection Sn of rank β (A) and of the norm less than β (A)+2 such
that ‖SnFn‖ < 1

n (see Proposition 2.8) and we deduce from Theorem 2.17 that

‖SnAn‖
β (A)+2

<
‖SnAn‖
‖Sn‖ � ‖Sn(An−Fn)‖+‖SnFn‖

‖Sn‖ � sl
β (A)(An)+

2
n
→n→∞ 0.

We set Sn := 0 for the remaining smaller n and conclude that {SnAn} ∈ G , that is
the sequence {Ãn} := {(Ln−Sn)An} ∈ F T is J T -Fredholm with α({Ãn}) = α(A) ,
β ({Ãn}) = β (A) and ind{Ãn} = indA (cf. Proposition 2.15). Analogously, we choose
a sequence {Rn} ∈ F of projections Rn of the rank α(A) and ‖Rn‖ � α(A)+ 2 for
large n , such that {ÃnRn} ∈ G .

We now consider the sequence C = {Cn} := {(Ln−Sn)An(Ln −Rn)} and we find
that it is a regular J T -Fredholm sequence with α(C) = α(A) , β (C) = β (A) and
indC = indA . More precisely, there is an N ∈ N and a constant C > 0 such that for all
n � N

sr
α(A)(Cn) = sl

β (A)(Cn) = 0 and sr
α(A)+1(Cn),sl

β (A)+1(Cn) > C,

which shows that the Cn are Fredholm of the index α(A)− β (A) = indA . Since
Ln−Rn and Ln−Sn are Fredholm of index zero, we find that An is Fredholm of index
indA . �

REMARK 2.19. Note that there is a bounded sequence {Dn} such that for suf-
ficiently large n the operator Dn is a generalized inverse for Cn . Moreover, A−C

belongs to G , hence we find that A+G is generalized invertible in F/G , whenever
A is a regular J T -Fredholm sequence.

Furthermore, this shows that the nullity, deficiency and the index of a structured
operator sequence A being J T -Fredholm as introduced in Definition 2.14 are uni-
versal characteristics of this sequence, in the sense that if these numbers exist for the
J T -Fredholm sequence A in one setting F T then they are the same in every setting
F T̃ where A is J T̃ -Fredholm. In Section 2.4 we will recover this observation from
a more general point of view.

2.3. Stability of sequences A ∈ F T

DEFINITION 2.20. A sequence A = {An}∈F is called stable, if there is an index
n0 such that all operators An , n � n0 , are invertible and

sup
n�n0

‖A−1
n ‖ < ∞.



418 M. SEIDEL AND B. SILBERMANN

It is well known, that a sequence A ∈ F is stable if and only if the coset A+G
is invertible in F/G . Utilizing the higher structure of the given setting, namely the
existence of Pt -strong limits Wt(A) , we can prove a stronger result for the case that
all Pt are uniform.

THEOREM 2.21. A sequence A ∈ F T is stable and all Wt(A) , t ∈ T , have the
Pt -dichotomy if and only if A is J T -Fredholm and all Wt(A) , t ∈ T , are invertible.

Proof. From Corollary 2.10 we deduce that A = {An} ∈ F T is stable if and only
if

there is a constant C > 0 such that sr
1(An) � C and sl

1(An) � C for large n . (2.7)

Let A = {An} be J T -Fredholm and all Wt(A) be invertible. Then A is regular and
Theorem 2.17 tells us that (2.7) is in force.

Conversely, let A = {An} ∈ F T be stable and let all snapshots Wt(A) have the
Pt -dichotomy. Then for large n and every K ∈ K t

‖E−t
n (An)Lt

nK‖ =
‖E−t

n (A−1
n )Lt

n‖
‖E−t

n (A−1
n )Lt

n‖
‖E−t

n (An)Lt
nK‖ � 1

‖E−t
n (A−1

n )Lt
n‖

‖Lt
nK‖.

For n → ∞ , we obtain

‖Wt(A)K‖ � Ct‖K‖ and analogously ‖KWt(A)‖ � Ct‖K‖
for every K ∈K t , where Ct � 1/(Mtct sup‖A−1

n ‖)> 0 is constant. Thus, Wt(A) is not
Pt -deficient, hence properly Pt -Fredholm. Suppose that the kernel of Wt(A) is not
trivial. Then there is a projection P ∈ K t , P �= 0 s.t. 0 = ‖Wt(A)P‖ � Ct‖P‖ � Ct ,
a contradiction. Thus Wt(A) is injective. Analogously one shows that Wt(A) is sur-
jective and hence invertible, due to the Banach inverse mapping theorem. Define a
sequence {Bn} by Bn := A−1

n if An is invertible and Bn := Ln otherwise. Then one
easily checks that E−t

n (Bn)Lt
n tends Pt -strongly to (Wt(A))−1 for every t ∈ T , that is

{Bn} ∈ F T and {Bn}+J T is the inverse of A+J T . Thus, A is a J T -Fredholm
sequence. For more details see the proof of [34], Theorem 21. �

2.4. A general Fredholm property

The notion of J T -Fredholmness for structured operator sequences A ∈ F T as
it was introduced in the preceding sections depends on the underlying setting F T and
J T . On the one hand, it is convenient to work in this context because there we can
describe the Fredholm properties of a sequence A quite well in terms of Fredholm
properties of its snapshots Wt(A) . On the other hand, the main disadvantage lies in
the fact that a sequence which is Fredholm in one setting does not need to be Fredholm
in another setting. For an example see Section 2.4.5 in [34]. Thus, in what follows,
we introduce a “universal” Fredholm property for the larger framework of all bounded
operator sequences in F . This approach has been extensively studied in the case of C∗ -
algebras of operator sequences on finite dimensional spaces by S. Roch in [8], Chapter
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6.3. In particular, we will recover the mentioned universal characteristics in this larger
framework again.

To avoid degenerated cases we assume that limsupn dimEn = ∞ .

DEFINITION 2.22. A sequence {Kn}∈F is said to be of almost uniformly bounded
rank if

limsup
n→∞

rankKn < ∞.

Let I denote the closure of the set containing all sequences of almost uniformly
bounded rank. The elements of I are referred to as compact sequences.

One can easily check that I forms a proper closed two-sided ideal in F which
contains G .

DEFINITION 2.23. Now we are in a position to introduce a class of Fredholm
sequences in F by calling A = {An} ∈ F Fredholm if A+I is invertible in F/I .

Evidently, we have

• Stable sequences are Fredholm and never compact.

• Products of Fredholm sequences are Fredholm.

• The sum of a Fredholm sequence and a compact sequence is Fredholm.

• The set of all Fredholm sequences is open in F .

• If {An} is Fredholm, then {A∗
n} is of Fredholm type.

For an equivalent characterization of Fredholm sequences we need the following
definition.

DEFINITION 2.24. Let A = {An} ∈ F . If there is a finite number α ∈ Z+ with

liminf
n→∞

sr
α(An) = 0 and liminf

n→∞
sr

α+1(An) > 0,

then this number is called the α -number of A and it is denoted by α(A) . Analogously,
we introduce β (A) , the β -number of A , as the β ∈ Z+ with

liminf
n→∞

sl
β (An) = 0 and liminf

n→∞
sl

β+1(An) > 0.

Besides the well known result of Kozak [12], by applying Corollary 2.10, we
immediately get the following characterization of stability in the large algebra F .
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THEOREM 2.25. For a sequence A ∈ F the following are equivalent.

• A is stable.

• A+G is invertible in F/G .

• α(A) = β (A) = 0 .

THEOREM 2.26. For a sequence A ∈ F the following are equivalent.

• A is Fredholm.

• There are sequences B1,B2 ∈ F such that B1A− I and AB2 − I are of almost
uniformly bounded rank.

• A has an α -number and a β -number.

Proof. Let A = {An} be Fredholm. Then there are sequences D,Hi,Gi ∈ F
(with i = 1,2) such that DA = I + H1 + G1 and AD = I + H2 + G2 , where Hi are
of almost uniformly bounded rank and ‖Gi‖ < 1/2. Since I + Gi are invertible,
we can define B1 := (I + G1)−1D , K1 := (I + G1)−1H1 and B2 := D(I + G2)−1 ,
K2 := H2(I+G2)−1 . This implies the second assertion.

Now let {Kn} = {Bn}{An}− I and n0 ∈ N with k := supn�n0
rankKn < ∞ . For

each n � n0 we can introduce a projection Rn with kernel of the dimension k and norm
‖Rn‖ � k+1 such that RnKn = 0 (see [19], B4.9). Then RnBnAn = Rn . Moreover, for
each n � n0 we observe that sr

k+1(Rn) � 1, because otherwise there would exist an
operator F with dimkerF � k+1 such that ‖Rn−F‖ < 1, hence Ln −Rn +F would
be invertible, but since rank(Ln −Rn) = k this yields a contradiction. Thus

1 � sr
k+1(Rn) = inf{‖Rn−F‖ : dimkerF � k+1}

= inf{‖RnBnAn−F‖ : dimkerF � k+1}
� inf{‖RnBnAn−RnBnF‖ : dimkerF � k+1}� ‖Rn‖‖Bn‖sr

k+1(An),

hence α(A) � k +1 exists. Analogously we find a β -number for A , that is, the third
assertion holds.

Finally, let A have an α -number and a β -number and let N ∈ N be such that

inf{sr
α(A)+1(An),sl

β (A)+1(An) : n � N} > 0.

Then An , n � N , are Fredholm operators by Corollary 2.11. In view of Equation
(2.5) there are a constant C > 0 and a sequence {Rn} ∈ F of projections Rn with
kernels of the dimension α(A) such that inf{‖Anx‖ : x ∈ imRn,‖x‖ = 1} � C for
all n � N . We consider the restrictions An|imRn of An to imRn which are injective.
The spaces im(An|imRn) are of the codimension not greater than α(A)+ β (A) , hence
they are closed and we can choose projections Sn onto im(An|imRn) , which are uni-
formly bounded with respect to n � N . The operators An|imRn : imRn → imSn are
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invertible and their inverses A(−1)
n are (uniformly) bounded by C . For the operators

Bn := RnA
(−1)
n Sn we conclude that

AnBn = AnRnA
(−1)
n Sn = AnA

(−1)
n Sn = Sn,

BnAn = BnAnRn +BnAn(Ln−Rn) = RnA
(−1)
n SnAnRn +BnAn(Ln−Rn)

= Rn +BnAn(Ln −Rn).

(2.8)

Since the latter term is of uniformly bounded rank, this proves the Fredholmness of
A . �

COROLLARY 2.27. Let A = {An} ∈ F be a Fredholm sequence and let T , as
well as Et , Pt , (Lt

n) and (Et
n) be given as in Section 2.1 such that the Conditions (I),

(II) are in force. Suppose that, for one t ∈ T , a subsequence of (Et
n(An)Lt

n) converges
Pt -strongly to an operator At ∈ L (Et ,Pt) which has the Pt -dichotomy. Then At

is Fredholm. If for all t in a certain subset T̃ ⊂ T and with respect to one common
subsequence of A such operators At exist then

∑
t∈T̃

dimkerAt � α(A), ∑
t∈T̃

dimcokerAt � β (A).

Proof. The assertion immediately results from Theorem 2.6. �

For a setting F T where all Pt are uniform we get from Theorem 2.17

COROLLARY 2.28. If A ∈ F T is a regular J T -Fredholm sequence then A is
a Fredholm sequence in F , that is A is invertible modulo I . Moreover, the numbers
α(A) and β (A) in the Definitions 2.14 and 2.24 are consistent.

3. Applications

3.1. Standard finite sections of band-dominated operators on l p(Z,X)

Recall the definitions and notations from Section 1.4 and let H+ (H− ) denote
the set of all sequences h : N → N (h : N → Z\N) tending to +∞ (−∞ , respectively).
Moreover, set H := H+∪H− . For a rich band-dominated operator A ∈ L (l p(Z,X))
and a given sequence h ∈ H there is a subsequence j of h such that Aj exists. By
the same argument, j itself contains a subsequence g such that both limit operators Ag

and A−g exist.
Therefore, it seems to be feasible and valuable to consider appropriate subse-

quences for which the limit operators exist and hence the ideas of the general theory of
Section 2 apply:

For a given sequence h = (hn)n∈N ∈ H+ we define operators Lhn := χ{−hn,...,hn}I
and obtain a sequence (Lhn) of projections converging P -strongly to the identity. Fur-
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ther, set Ehn := imLhn , T := {−1,0,+1} , I0 := I , I±1 := χZ∓I and

E0 := l p(Z,X) L0
hn

:= Lhn

E0
hn

: L (imL0
hn

) → L (Ehn),B �→ B

E±1 := im I±1 L±1
hn

:= V∓hnLhnV±hn

E±1
hn

: L (imL±1
hn

) → L (Ehn),B �→V±hnBV∓hn

for every n . By Px := (Lx
n) uniform approximate identities on Ex are given and

the sequences (Lx
hn

) converge Px -strongly to the identities Ix on Ex . We let F T
h

denote the Banach algebra of all bounded sequences {Ahn} of bounded linear operators
Ahn ∈ L (Ehn) for which there exist operators Wx{Ahn} ∈ L (Ex,Px) for each x ∈ T
such that for n → ∞

E−x
hn

(Ahn)L
x
hn
→Wx{Ahn} Px-strongly.

Further, we introduce closed ideals Gh and J T
h in F T

h by

Gh := {{Ghn} : ‖Ghn‖→ 0},
J T

h := span{{Ex
hn

(Lx
hn

KLx
hn

)},{Ghn} : x ∈ T,K ∈ K x,{Ghn} ∈ Gh}.

A sequence {Ahn} ∈ F T
h is said to be J T

h -Fredholm, if {Ahn}+J T
h is invertible in

F T
h /J T

h .

The finite section algebra FAl p
Let F be the algebra of all bounded sequences

{An} of bounded linear operators An ∈ L (En) and let FAl p
denote the smallest

closed subalgebra of F containing all sequences {LnALn} with rich A ∈ Al p . For
A = {An} ∈ FAl p

and a sequence h = (hn)n∈N ∈ H+ let Ah denote the subsequence
{Ahn} . It is obvious, that for each A = {An} ∈ FAl p

and every h ∈ H+ the following
operator exists independently of the choice of h :

W (A) := P-lim
n→∞

AnLn = W 0(Ah) = P-lim
n→∞

AhnLhn .

Appropriate subsequences Let A ∈ FAl p
and h ∈ H+ . By HAh we denote

the collection of all subsequences g of h such that the following hold

• Ag ∈ F T
g (which means that the operators W (A) and W±1(Ag) exist).

• The limit operators (W (A))±g exist.

• Ag−{LgnW (A)Lgn} ∈ J T
g .

We note that for the finite section sequence A := {LnALn} of a single rich band-
dominated operator A the existence of such an appropriate subsequence is easy to
prove: Pass to a subsequence j of h , such that Aj exists. Then pass to a subsequence
g of j such that Ag exists, too. Now, the last condition is automatically fulfilled. For-
tunately, there is also an analogon for the more general FAl p

-sequences.
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PROPOSITION 3.1. Let A ∈ FAl p
and let h ∈ H+ . Then HAh is not empty. If

W (A) is P -Fredholm and g ∈ HAh then Ag is a J T
g -Fredholm sequence in F T

g

and if B is a P -regularizer for W (A) then {LgnBLgn} ∈F T
g is a J T

g -regularizer for
Ag , too.

Proof. With the help of Theorem 1.31 and Proposition 1.23 this can be proven in
the same way as [34], Proposition 63. �

Now Theorems 2.4, 2.17, 2.18, 2.6 and 2.21 provide the following result.

THEOREM 3.2. Let A = {An} ∈ FAl p
and g ∈ HA .

• If W (A) is P -Fredholm, then W±1(Ag) are P -Fredholm.

• If W (A),W±1(Ag) are Fredholm, then

lim
n→∞

indAgn = indW (A)+ indW+1(Ag)+ indW−1(Ag)

and the approximation numbers from the right/left of the entries of Ag have the
α -/β -splitting-property with

α = dimkerW (A)+dimkerW+1(Ag)+dimkerW−1(Ag),

β = dimcokerW (A)+dimcokerW+1(Ag)+dimcokerW−1(Ag).

• If one of the operators W (A) , W±1(Ag) is not Fredholm then lim
n→∞

sr
k(Agn) = 0

or lim
n→∞

sl
k(Agn) = 0 for each k ∈ N .

• Ag is stable if and only if W (A) and W±1(Ag) are invertible.

The complete sequences Theorem 3.2 provides some information on the behav-
ior of subsequences of a sequence A ∈ FAl p

. We now want to state similar results for
A itself, its Fredholm property in the sense of Definition 2.23 as well as its stability.

THEOREM 3.3. Let A = {An} ∈ FAl p
and let H̃A ⊂ H+ denote the set of all

sequences h for which W±1(Ah) exist. Then, A is a Fredholm sequence if and only if
W (A) and all operators W±1(Ah) with h∈ H̃A are Fredholm. In this case the α - and
β -number of A equal

α(A) = dimkerW (A)+ max
h∈H̃A

[
dimkerW+1(Ah)+dimkerW−1(Ah)

]
,

β (A) = dimcokerW (A)+ max
h∈H̃A

[
dimcokerW+1(Ah)+dimcokerW−1(Ah)

]
.

(3.1)

Proof. Suppose all operators W (A) and W±1(Ah) with h ∈ H̃A are Fredholm,
but for each n ∈ N there is a number hn such that hn > hn−1 and sr

n(Ahn) < 1
n . Choose

a subsequence g ∈ HAh and find a splitting number for (sr
k(Agn)) by Theorem 3.2. A
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contradiction. Thus, A has an α -number and, analogously, a β -number, and Theorem
2.26 yields the Fredholm property of A .

On the other hand, let α(A) < ∞ and β (A) < ∞ be given. Then we deduce from
Corollary 2.27 that all operators Wt(Ah) , h∈ H̃A are Fredholm as well as the relations
“�” in (3.1). Furthermore, there is a sequence h ∈ H+ such that limn sl

α(A)(Ahn) = 0.
Choose a subsequence g ∈ HAh of h . Then Theorem 3.2 applies to Ag and yields the
equalities in (3.1). �

Notice that every P -Fredholm operator is Fredholm if dimX < ∞ . Thus, Theo-
rem 3.2 reveals that the Fredholm property of W (A) is already sufficient for the Fred-
holm property of A in this case.

COROLLARY 3.4. A sequence A ∈ FAl p
is stable if and only if all operators

W (A) and W±1(Ah) with h ∈ H̃A are invertible.

This easily follows by combination of Theorems 3.3 and 2.25 and we reformulate
it as follows. For A = {An} ∈ FAl p

we denote the set of all operators Bh which are
P -strong limits of one of the sequences

(V−hn [(I−Lhn)+LhnAhnLhn ]Vhn) with h ∈ H+ (H− )

by σ+
stab(A) (or σ−

stab(A) , respectively). Of course, if Bh is in σ+
stab(A) or σ−

stab(A)
then we can pass to a subsequence g ∈ H̃A of h and identify Bh with the respective
operator W±1(Ag) .

THEOREM 3.5. A sequence A ∈ FAl p
is stable if and only if all operators in

σstab(A) := {W(A)}∪σ+
stab(A)∪σ−

stab(A)

are invertible.

REMARK 3.6. The latter result was recently proved in [14] for the finite sections
sequence (LnALn) of a single band-dominated operator A , also by studying its subse-
quences. It has a lot of predecessors, which required additional restrictions like p = 2,
1 < p < ∞ , or the existence of a predual setting (see [23], [26], [16], [15], [3], for
example).

Now having this result for sequences in the whole algebra FAl p
, we get much

more flexibility in constructing efficient algorithms for specific operators. Assume, for
example, that the operator A admits a decomposition

A =
m

∑
i=1

k

∏
j=1

Ai j

into band-dominated operators of simple structure (e.g. banded, triangular, or Toeplitz).
This structure, which could permit the application of fast algorithms, gets lost if one
applies the usual finite section method LnALn , but it can be preserved, if one uses
the composition of the finite sections LnAi jLn instead. The results above provide the
desired information on the stability and convergence also for such compositions.
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3.2. Adapted finite sections

In the preceding section the aim was to check if for arbitrarily given band-domi-
nated operators A the “standard” finite section method, based on the projections Ln

which arise from inflating the set [−1,1] in a sense, applies. Providing that A is rich,
the answer is that one has to check the Fredholm properties and the invertibility of a
possibly infinite set σstab(A) of operators. Of course, we have seen that we can pass
to subsequences to reduce the number of limit operators, but since the projections Ln

are always chosen symmetric w.r.t. Z , the limiting processes towards ∞ and −∞ are
somehow coupled, which seems to be artificial.

Now we let A ∈ Al p be fixed and we ask if there is a more adapted sequence
of projections which provides a specific “finite section like” method for this single
operator, such that we only have to check one limit operator at ∞ and one limit operator
at −∞ and such that both can be chosen independently from each other.

The idea is very natural and simple: Suppose that for A ∈ Al p (not necessarily
rich) there is a sequence l ∈ H− , such that Al exists and, independently of l , let
u ∈ H+ be another sequence such that Au exists. We show, that the properties of the
finite sections {Ll,u

n ALl,u
n } , where

Ll,u
n = χ{l(n),...,u(n)}I,

are determined by the three operators A , Al and Au .

THEOREM 3.7. Let A ∈ Al p , and let l ∈ H−,u ∈ H+ be strictly decreasing or
increasing, respectively, such that Al,Au ∈ σop(A) exist. Further let A := {Al,u

n } denote

the sequence of the operators Al,u
n := Ll,u

n ALl,u
n ∈ L (imLl,u

n ) . Then

• The operators A+ := χZ+AlχZ+I +(1−χZ+)I , A− := χZ−AuχZ−I +(1−χZ−)I
are P -Fredholm, whenever A is P -Fredholm.

• If A and A± are Fredholm then limn indAl,u
n = indA + indA+ + indA− and

the approximation numbers from the right/left of Al,u
n have the α -/β -splitting-

property with
α = dimkerA+dimkerA+ +dimkerA−,

and β w.r.t. the cokernels instead of the kernels.

• If one of the operators A, A± is not Fredholm then, for all k ∈ N , it holds
limn sr

k(A
l,u
n ) = 0 or limn sl

k(A
l,u
n ) = 0 .

• A is stable if and only if A and A± are invertible.

Proof. Notice that (Ll,u
n ) converges P -strongly to the identity and further intro-

duce T := {−1,0,+1} , homomorphisms Et
n : L (imLl,u,t

n ) → L (El,u
n ) and sequence

algebras F l,u,T , J l,u,T in the same way as in Section 3.1. Then the finite section se-
quence of each P -regularizer of A is again a J l,u,T -regularizer for A and Theorems
2.4, 2.17, 2.18, and 2.21 give the claim. �
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Of course, these two slightly different approaches can be combined to get more
appropriate methods for classes of band-dominated operators having a certain common
structure: First, one chooses the sequence (Ll,u

n ) of projections which align with the
common structure in a sense and then one proceeds as in Section 3.1 to prove Theorems
3.2 and 3.3 also in this setting.

Furthermore, [33] and [34] present an idea how one can pass to modified finite
sections which need not to be stable, but which are still generalized invertible (e.g.
Moore-Penrose invertible).

Also note that the equations Ax = y and VκAx = Vκy are equivalent for every
κ ∈ Z since Vκ is invertible, whereas at most one of them leads to a stable finite sec-
tion sequence and therefore can be solved by the finite section method. The simplest
example of an operator for which such a preconditioning procedure is indicated to get
a stable finite section sequence is the operator A = V1 itself. This method is known as
index cancellation and was already studied in [6]. A comprehensive discussion can also
be found in [10].

REMARK 3.8. Also notice, that all considerations and results of Section 3.1 re-
main the same, if we replace the finite section projections Lhn by Lhn := χ{−hn,...,hn−1}I ,
I+1 by I+1 := χ{...,−2,−1}I and E+1 by E+1 := im I+1 . To see this, use that the aris-
ing approximate identities {Lhn} are equivalent and that Ah ∈ σop(A) if and only if
V−1AhV1 ∈ σop(A) .

This observation will help us to simplify some notations within the next section.

3.3. Band-dominated operators on Lp(R)

3.3.1. Discretization and the main results

Let Pn stand for the operator of multiplication by the characteristic function of the
interval [−n,n) acting on X := Lp = Lp(R) (1 � p � ∞). Then P̂ := (Pn) forms a
uniform approximate identity. For α ∈ R we consider the operator

Uα : Lp(R) → Lp(R), (Uα f )(t) := f (t −α)

of shift by α . Let A ∈ L (Lp) and h = (hn)n∈N ⊂ Z be a sequence tending to infinity,
i.e. |hn| → ∞ as n → ∞ . The operator Ah is called limit operator of A with respect to
h if

U−hnAUhn → Ah P̂ -strongly.

The set σ(A) of all limit operators of A is again called the operator spectrum of A .

Discretization Now, let χ0 denote the characteristic function of the interval
I0 := [0,1) and set X := Lp(I0) . The mapping G which sends the function f ∈ Lp

to the sequence
Gf = ((Gf )k)k∈Z, where (Gf )k := χ0U−k f

is an isometric isomorphism from Lp onto l p(Z,X) . Thus, the mapping

Γ : L (Lp) → L (l p(Z,X)), A �→ GAG−1
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is an isometric algebra isomorphism. Further, having the definition Ln := χ{−n,...,n−1}I
for the finite section projections on l p and Remark 3.8 in mind, we have Γ(Pm) = Lm

and the sets of compact (P̂/P -compact) operators translate under the discretization
operator Γ . Hence, A ∈ L (Lp) is Fredholm (P̂ -Fredholm, properly P̂ -Fredholm,
or properly P̂ -deficient) if and only if Γ(A) is so, w.r.t P instead of P̂ . Particularly,
Lp has the P̂ -dichotomy. As in [25], Proposition 3.1.4 we find

PROPOSITION 3.9. Let A ∈ L (Lp) and h = (hn)n∈N ⊂ Z be a sequence tending
to infinity. The limit operator Ah exists if and only if the limit operator (Γ(A))h of Γ(A)
w.r.t. h exists. Then (Γ(A))h = Γ(Ah) . In particular, A is rich iff Γ(A) is rich.

DEFINITION 3.10. An operator A ∈ L (Lp) is called a band-dominated operator,
if its discretization Γ(A) is so. Let ALp denote the set of all such operators.

REMARK 3.11. For each function ϕ ∈ BUC, the algebra of all bounded and uni-
formly continuous functions on the real line, and for each t > 0, set ϕt(x) := ϕ(tx) .
By [15], Theorem 1.42 the algebra ALp coincides with the algebra of all operators
A ∈ L (Lp) with ‖[A,ϕt I]‖ → 0 for all ϕ ∈ BUC as t → 0 (For 1 < p < ∞ this can
also be found in [25], Propositions 3.1.6f). Furthermore every multiplication operator
aI with a function a ∈ L∞(R) and every shift operator Uα with α ∈ R belong to ALp .
The considerations in [15], Example 1.45 guarantee that ALp also contains all opera-
tors of convolution with a function in L1 . We will address such operators in Section
3.3.3.

Let Ên = Lp(imPn) and let FALp denote the Banach algebra which is generated
by all sequences {PnAPn} with rich A ∈ ALp . There is a natural identification of se-
quences A = {An} ∈ FALp with sequences in FAl p

via Γ and we shortly write Γ(A)
for the discrete version {LnΓ(AnPn)Ln} . Then, for A ∈ ALp also the notions of subse-
quences Ah , of appropriate subsequences Ah with h ∈ HA as well as the limit W (A)
translate to the Lp -case. Furthermore, let χ+ and χ− stand for the characteristic func-
tions of the sets R+ and R− , respectively and introduce, for h ∈ H̃A := H̃Γ(A) ,

W+1(Ah) := χ−Γ−1(W+1(Γ(Ah))I+1) on Lp(R−),

W−1(Ah) := χ+Γ−1(W−1(Γ(Ah))I−1) on Lp(R+).

Of course, for rich A ∈ ALp , A := {PnAPn} and a sequence h ∈ H+ there is a subse-
quence g ∈ HA := HΓ(A) of h such that A±g exist and then

W+1(Ag) = χ−Ag, W−1(Ag) = χ+A−g. (3.2)

Now we are in a position to reformulate Theorems 3.2 - 3.5 in terms of operators
in L (Lp(R)) . For A = {An} ∈ FALp denote the set of all operators Bh which are
P -strong limits of one of the sequences

(U−hn [(I−Phn)+PhnAhnPhn ]Uhn) with h ∈ H+ (H− )

by σ+
stab(A) (or σ−

stab(A) , resp.) and set σstab(A) := {W (A)}∪σ+
stab(A)∪σ−

stab(A) .
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THEOREM 3.12. A sequence A ∈FALp is stable iff all operators in σstab(A) are
invertible.

Also Theorems 3.2 and 3.3 for A = {An} ∈ FALp are literally the same. Let us
only discuss the index formula in more detail.

REMARK 3.13. If A = {PnAPn} is the finite section sequence of a single rich
band-dominated operator A and h∈H+ such that Ah,A−h exist (that is h∈ H̃A ), then
we particularly get the formula

lim
n→∞

indPhnAPhn = indA+ indχ−Ah + indχ+A−h (3.3)

where the latter operators are considered as operators acting on Lp(R−) or Lp(R+) ,
respectively.

If A is a (not necessarily rich) band-dominated operator and l ∈ H−,u ∈ H+
are strictly decreasing or increasing sequences, respectively, such that Al,Au ∈ σop(A)
exist, then one can also consider the adapted finite section sequence {Pl,u

n APl,u
n } with

Pl,u
n = χ[l(n),u(n))I and finds as in Theorem 3.7

lim
n→∞

indPl,u
n APl,u

n = indA+ indχ−Au + indχ+Al.

3.3.2. Locally compact operators

In [21] band-dominated operators of the form A = I +K where K is locally com-
pact were considered. At this, a band-dominated operator K is said to be locally com-
pact if ϕA and AϕI are compact operators for each function ϕ ∈ BUC with bounded
support.

The operators χ+Kχ−I and χ−Kχ+I are compact for each locally compact K (see
[21]). Thus, the operators χ+A ∈ L (Lp(R+)) and χ−A ∈ L (Lp(R−)) are Fredholm
operators, whenever A = I +K is Fredholm. We call

ind+ A := ind(χ+A) and ind−A := ind(χ−A)

the plus- and the minus-index of A and find that indA = ind+ A+ ind−A . Further notice
that the limit operators of a locally compact operator are locally compact again.

Then the main result of [21] for operators on the spaces Lp , 1 < p < ∞ reads as
follows:

THEOREM 3.14. Let A = I +K with K being a rich locally compact operator.

1. The operator A is Fredholm iff all limit operators of A are invertible and their
inverses are uniformly bounded.

2. If A is Fredholm then, for arbitrary limit operators B,C ∈ σ(A) with respect to
sequences u ∈ H+ , l ∈ H− , respectively,

ind+ A = ind+ B, ind−A = ind−C, hence indA = ind+ B+ ind−C.
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Applying the results of the present paper this can be generalized.
It is easy to check that for all band-dominated operators A = C +K with C in-

vertible and K locally compact, and for all p ∈ [1,∞] the invertibility at infinity of
A already implies its Fredholmness (see e.g. [15], Proposition 2.15). Furthermore,
the P̂ -dichotomy of A also yields the reverse implication. Consequently, for every
p ∈ [1,∞] and every rich band-dominated operator of the form A = C + K we have
that A is Fredholm iff its limit operators are invertible and their inverses are uniformly
bounded.

If A = I + K is Fredholm then ind+ B and ind−B are finite numbers for every
limit operator B of A and their sum equals zero since B is invertible. Moreover, the
finite sections of locally compact operators are compact, hence the finite sections of
A = I + K are Fredholm of index 0. Thus, Remark 3.13 covers the second part of
Theorem 3.14 and extends it to spaces Lp with p ∈ [1,∞] and to operators A = I +K
which need not to be rich but only possess at least one limit operator at +∞ and at −∞ .
Moreover, Formula (3.3) gives an extension to all band-dominated operators.

3.3.3. Convolution type operators

We turn to a further more concrete subclass of operators which were already stud-
ied by several authors. Thus, we omit repeating some details and refer the reader to e.g.
[15], Section 4.2.

With every function k ∈ L1 , we associate the operator that maps a function f ∈ Lp

to the so-called convolution k ∗ f which is given by

(k ∗ f )(x) =
∫

R

k(x− y) f (y)dy, x ∈ R.

This operator is band-dominated and bounded by ‖k‖1 , and it is usually denoted by Ca

where a , the symbol of Ca , is the Fourier transform of k . Notice further that Ca is
always shift invariant, hence rich.

Let Bp denote the Banach subalgebra which is generated by all such convolution
operators and all rich operators bI of multiplication by a function b∈L∞ . Moreover, in-
troduce B0

p , the Banach algebra generated by all operators of the form b1Cab2I where,
again, a is the Fourier transform of an L1 -function and b1I,b2I are rich multiplication
operators with functions b1,b2 ∈ L∞ .

PROPOSITION 3.15. (cf. [15], Lemma 4.10, Proposition 4.11)

• All operators in B0
p are locally compact.

• The decomposition Bp = {bI : b ∈ L∞, bI rich}⊕B0
p holds.

Hence every operator A ∈ Bp is of the form A = bI +B with B ∈ B0
p and if bI

is invertible then the assumptions of Theorem 3.14 and its generalizations which were
mentioned above hold. In particular, the Fredholm property and the Fredholm index
of A are determined by its limit operators. For this notice that A can be written in the
form A = bI(I + B̃) with B̃ ∈ B0

p .
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Further, Theorem 3.12 applies to the finite section sequence {PnAPn} and states
that the invertibility of A and all snapshots W±1{PgnAPgn} (see (3.2)) is necessary and
sufficient for its stability. This is even true for sequences in the finite section algebra.
Also Theorems 3.2 and 3.3 on the Fredholm property of a sequence and the asymptotic
behavior of the approximation numbers translate to this setting.

The paper [4] deals with several applications of these results for boundary integral
equations.

3.4. On harmonic approximation of Fredholm Toeplitz operators

If a ∈ L∞(T) and T (a) ∈ L (l2(Z+)) is the familiar Toeplitz operator with gener-
ating function a , then it is often convenient to study the family {T (hra)}0<r<1 in order
to study the Fredholm properties of T (a) , where hra is, by definition,

(hra)(eix) = ∑
l∈Z

r|l|ale
ilx, x ∈ [0,2π).

Notice that hra can also be written as

(hra)(eix) =
∫ 2π

0
kr(x− t)a(eit)dt, x ∈ [0,2π),

where

kr(x) =
1
2π

1− r2

1−2rcosx+ r2 , x ∈ R.

The family (kr)0<r<1 forms a so-called approximate identity (in the classical sense,
which differs from the notion we employed in Section 1). The study of harmonic ex-
tensions as well as the study of further approximate identities played an important role
in Toeplitz operator theory (see [2], Chapters 3 and 4, which is likely the most complete
source). Without going into great detail, we like to mention that the results of Section 2
give a slightly different understanding of this matter. The point is that {T (hra)}0<r<1

can be embedded into an algebra F T , T = {1} , of generalized sequences {Ar}0<r<1 ,
with Ar ∈ Er = l2(Z+) for every r ∈ (0,1) . It is well known that T (hra) converges
∗ -strongly to T (a) as r → 1. The ideal J T we have to deal with is the family

J T = {{K +Gr}0<r<1 : K ∈ K (l2(Z+)),{Gr} ⊂ L (l2(Z+)),‖Gr‖→ 0 as r → 1}.
Thus, if {T (hra)} is a Fredholm sequence then T (a) as well as all T (hra) , with r
sufficiently close to 1, are Fredholm and

indT (a) = lim
r→1

indT (hra) = − lim
r→1

windhra

by Theorem 2.18. Notice that the results and proofs in Section 2 translate to the case
of ∗ -strongly converging sequences (see Remark 2.1) as well as to such algebras of
generalized sequences. Alternatively, one might also pass to sequences (rn)n∈N ⊂ (0,1)
which converge (increasingly) to 1, and apply Theorem 2.18 in the present form.

There are many instances where it can be proved that {T (hra)} is a Fredholm
sequence, for instance if a is locally sectorial, or a is invertible in the algebra C+H∞ .
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Verlag, Basel, Boston, Berlin, 1992.

[8] R. HAGEN, S. ROCH, B. SILBERMANN, C∗ -Algebras and Numerical Analysis, Marcel Dekker, Inc.,
New York, Basel, 2001.

[9] R. HAGEN, S. ROCH, B. SILBERMANN, Spectral Theory of Approximation Methods for Convolution
Equations, Operator Theory: Advances and Applications, Vol. 74, Birkhäuser Verlag, Basel, 1995.
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