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Abstract. Let V be the set of n×n hermitian matrices, the set of n×n symmetric matrices, the
set of all effects, or the set of all projections of rank one. Let c be a real number. We characterize
bijective maps φ : V → V satisfying tr (AB) = c ⇐⇒ tr (φ(A)φ(B)) = c with some additional
restrictions on c , depending on the underlying set of matrices.

1. Introduction

We denote by Mn(F) the set of all n× n matrices with coefficients from F ∈
{R,C} and by Hn ⊂ Mn(C) and Sn ⊂ Mn(R) the sets of hermitian and symmetric
matrices, respectively. We further denote by En the set of all effects, by Pn the set of
all projections and P1

n the set of all projections of rank one, that is

En = {A ∈ Mn(F) : 0 � A � I},

Pn = {P ∈ En : P2 = P},
P1

n = {P ∈ Pn : rankP = 1}.
Let us remark that En may denote En(R) or En(C) , that is the set of all real effects

or the set of all complex effects. In our discussion, we sometimes consider both cases
simultaneously. The precise meaning of En will be clear from the context.

Let c be a real number. In this paper we study bijective maps φ acting on any of
the sets Hn,Sn,En , and P1

n satisfying

tr(AB) = c ⇐⇒ tr(φ(A)φ(B)) = c (1)

for a given real number c . Our motivation is twofold. Let us recall that Wigner’s
unitary-antiunitary theorem can be formulated in the following way. If φ is a bijective
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map defined on the set of all rank one projections acting on a Hilbert space H with the
property that

tr(PQ) = tr(φ(P)φ(Q)), (2)

then there is a unitary or an antiunitary operator U : H →H such that φ(P) =UPU∗ for
all rank one projections P . Identifying projections of rank one with one-dimensional
subspaces of H we can reformulate Wigner’s theorem by saying that every bijective
map on one-dimensional subspaces (rays) of H which preserves the angles between
rays is induced by a unitary or an anti-unitary operator on H . Uhlhorn’s generaliza-
tion [13] of Wigner’s theorem states that the same conclusion holds under the weaker
assumption that only the orthogonality of rays is preserved. More precisely, we get the
same conclusion if we replace (2) by the weaker condition

tr(PQ) = 0 ⇐⇒ tr(φ(P)φ(Q)) = 0. (3)

Let us mention that in the mathematical foundations of quantum mechanics projections
of rank one are called pure states and tr(PQ) corresponds to the transition probabil-
ity between P and Q . It is natural to ask what happens if we replace the transition
probability 0 in (3) by some other fixed value c , 0 < c < 1. For more information on
mathematical and physical background of this problem we refer to Molnár’s book [12].

Another motivation comes from the study of 2-local automorphisms of operator
algebras. Once again we refer to [12] for the details. Let us just mention that a main step
in the characterization of 2-local automorphisms of certain standard operator algebras
is the description of the general form of maps φ on matrix algebras satisfying the
condition

tr(φ(A)φ(B)) = tr(AB) (4)

for all matrices A and B (see Section 3.4 of [12], and in particular, (3.4.2) on page 189).
Molnár’s approach to the study of 2-local automorphisms based on maps satisfying (4)
initiated a series of papers studying spectral conditions similar to (4), see for example
[2, 3, 5, 7, 8]. We consider here a new direction by studying maps that preserve not the
trace of all products, but just those having a given fixed value.

Our study can also be viewed as a special case of the study of non-linear preserver
(also referred to as general preserver) problems, which concern the study of maps on
matrices or operators with special properties. For example, for any given function f on
matrices or operators, one seeks characterization of maps φ such that f (φ(A)φ(B)) =
f (AB) for all matrices in the domain of φ ; for example, see [1] and the references
therein. In many cases, the maps will simply be a multiplicative map composed by
a simple operation such as multiplying by scalars. In our case, we consider the trace
function of matrices, i.e., f (A) = trA , and impose a weaker condition tr(φ(A)φ(B)) =
c whenever tr(AB) = c rather than assuming that tr(φ(A)φ(B)) = tr(AB) for all (A,B)
pairs. It is interesting to note that our results show that the maps also demonstrate a
strong link with multiplicative maps. Of course, tr(A) is just the sum of eigenvalues
of the matrix A . Thus, our study can also be viewed as a refinement of the study
of maps preserving the eigenvalues or spectra of product of matrices; see [2] and the
references therein. Also, one may consider special subset S of matrices or operators,
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and consider maps φ such that φ(A)φ(B) ∈ S whenever (if and only if) AB ∈ S ; for
example, see [11]. Our problem is the special case when S is the set of matrices with
trace equal to c .

More generally, for a binary operation A ∗ B on matrices or operators such as
A ∗ B = A + B,A− B,AB,ABA,AB + BA,AB− BA , or the Schur (entrywise) product
A◦B , there is interest in characterizing maps φ such that

1) f (φ(A)∗φ(B)) = f (A∗B) for all (A,B) pairs,

2) f (φ(A)∗φ(B)) = c whenever (if and only if) f (A∗B) = c , or

3) φ(A)∗φ(B) ∈ S whenever (if and only if) A∗B∈ S ;

see [3]–[10] and the references therein.

Let us briefly explain our main results. We study bijective maps φ acting on any
of the sets Hn,Sn,En , and P1

n satisfying the property (1). The cases when φ acts
on Hn and Sn are relatively easy. We first observe that on real-linear spaces Hn and
Sn we have the usual inner product defined by 〈A,B〉 = tr(AB) . Clearly, orthogonal
transformations acting on Hn (Sn ) satisfy (1). Using the fundamental theorem of
affine geometry we can prove that there are no other maps satisfying (1) provided that
c �= 0. In the case when c = 0 every orthogonal transformation multiplied by a scalar-
valued everywhere nonzero function satisfy (1). And once again we are able to prove
that these obvious examples are the only maps satisfying our assumptions. In this case
the proof depends on the fundamental theorem of projective geometry.

The problem becomes much more intricate when we treat maps on the set of ef-
fects. First of all, it is easy to see that tr(AB)� trA for all A,B∈En . So, the assumption
(1) tells nothing about the behavior of φ on the subset of all effects whose trace is less
than c . Let c ∈ (0,1] and assume that a bijective map φ : En → En satisfies (1). We
will show that the set of all effects whose trace is not larger than c is invariant under
φ . The behavior of φ on the set of all effects whose trace is < c is arbitrary. But on
the set of all effects whose trace is larger than c the map φ has the nice expected form.
In the case of effects not only the result is more interesting, but also the proof is much
more involved than that in the case of maps on Hn and Sn .

In the context of quantum physics, it is interesting to study the case when the
underlying set of matrices is P1

n . The study of this case turns out to be very challeng-
ing. We were able to get some results only in the real case. Of course, in the case of
projections of rank one the condition (1) makes sense only for constants c satisfying
0 � c < 1. Even in the real case we were not able to solve the problem completely.
With our proof techniques we were able to cover only the cases when c � 1/2.

So, there are still a lot of open questions. Let us mention the most important ones:
the complex case when dealing with maps on P1

n , the remaining values of c when
treating the maps on effects and rank one projections, and the infinite-dimensional case.



436 C.-K. LI, L. PLEVNIK AND P. ŠEMRL

2. Maps on Hn and Sn

It is much easier to describe the general form of bijective maps satisfying (1) on
Hn and Sn than on the subsets En and P1

n . The reason is that Hn and Sn are vector
spaces. We will prove a more general result using a geometrical approach. We will start
with the case when c �= 0, and formulate the problem in terms of linear functionals.

LEMMA 2.1. Let V be a finite-dimensional real vector space of dimension at least
2 , V ′ its dual space, c a nonzero real number and τ : V → V and σ : V ′ →V ′ maps.
Then the following two statements are equivalent:

• τ and σ are bijective and for every pair x ∈V and f ∈V ′ we have

f (x) = c ⇐⇒ σ( f )(τ(x)) = c, (5)

• τ and σ are linear and

σ( f )(τ(x)) = f (x), x ∈V, f ∈V ′.

Proof. One direction is clear. So, assume that the first condition is fulfilled. Then
we have τ(0) = 0. Indeed, assume that this was not true. Then one could find a
functional g ∈ V ′ such that g(τ(0)) = c . Applying the bijectivity of σ and (5) we get
a contradiction. Similarly we show that σ(0) = 0.

We next show that if x1, . . . ,xr ∈ V are linearly independent then τ(x1), . . . ,τ(xr)
are linearly independent as well. Every linearly independent subset of V can be ex-
tended to a basis of V . Thus, we may, and we will assume that r = k = dimV .
Then there is a unique g ∈ V ′ such that g(xp) = c for every p , 1 � p � k . Using
(5) we now see that f = σ(g) is the unique linear functional with the property that
f (τ(x1)) = . . . = f (τ(xk)) = c , and consequently, τ(x1), . . . ,τ(xk) are linearly inde-
pendent as well. In the same way we see that if the functionals f1, . . . , fp ∈ V ′ are
linearly independent then σ( f1), . . . ,σ( fp) are linearly independent as well. Clearly,
the equation (5) holds with τ−1 and σ−1 instead of τ and σ . Thus, x1, . . . ,xr ∈ V
are linearly independent if and only if τ(x1), . . . ,τ(xr) are linearly independent and an
analogue holds for the map σ .

Let x,u ∈V be linearly independent. We will show that for the line L = {x+ tu :
t ∈ R} in V there exist k− 1 linearly independent functionals f1, . . . , fk−1 ∈ V ′ such
that for z ∈V we have

z ∈ L ⇐⇒ fp(z) = c, p = 1, . . . ,k−1.

Indeed, as x and u are linearly independent we can find f1 ∈ V ′ such that f1(x) = c
and f1(u) = 0. We can further find k−2 linearly independent functionals g2, . . . ,gk−1
such that g j(x) = g j(u) = 0. The functionals f1, f2 = f1 + g2, . . . , fk−1 = f1 + gk−1

are linearly independent. Clearly, if z ∈ L , then fp(z) = c , p = 1, . . . ,k− 1. Assume
next that fp(z) = c , p = 1, . . . ,k−1. Then g2(z) = . . . = gk−1(z) = 0. As the g j ’s are
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linearly independent, the intersection of their kernels is two-dimensional. Thus, this
intersection is the linear span of x and u . It follows that z = sx + tu for some real
numbers s and t . From f1(z) = c we conclude that s = 1. Hence, z ∈ L , as desired.

On the other hand, if f1, . . . , fk−1 ∈ V ′ are linearly independent functionals then
we can find x ∈ V such that f1(x) = . . . = fk−1(x) = c and a nonzero vector u which
spans the one-dimensional intersection of the kernels of these functionals. Of course, x
and u are linearly independent and the set of all vectors z ∈V satisfying f1(z) = . . . =
fk−1(z) = c is exactly the line {z = x+ tu : t ∈ R} .

Let L ⊂ V be a line that does not contain the origin of V . It follows from the
previous three paragraphs that τ(L) is a line in V such that 0 �∈ τ(L) . We already know
that vectors x,y ∈ V are linearly dependent if and only if τ(x) and τ(y) are linearly
dependent. Thus, τ maps lines through the origin (one-dimensional subspaces) to lines
of the same type.

Using the fundamental theorem of affine geometry [14] together with the fact that
the identity is the only automorphism of the field of real numbers we conclude that τ
is a bijective linear map. Similarly, σ is a bijective linear map.

The linearity together with (5) yields that

σ( f )(τ(x)) = f (x)

for every x ∈ V and every f ∈ V ′ . In other words, σ is the adjoint of the inverse of
τ . �

The desired descriptions of bijective preservers of matrix pairs with a fixed nonzero
inner product value, acting on Hn and Sn , are now straightforward consequences. All
we need is to recall that the dual of the inner product space Hn can be identified with
itself because of Riesz’s representation of linear functionals with the inner product.

THEOREM 2.2. Let n be a positive integer larger than 1 , c a nonzero real num-
ber, and φ : Hn → Hn a map. Then the following two statements are equivalent:

• φ is bijective and for every pair A,B∈Hn we have tr(AB)= c ⇐⇒ tr(φ(A)φ(B))
= c,

• φ is an orthogonal transformation on Hn with respect to the usual inner product.

THEOREM 2.3. Let n be a positive integer larger than 1 , c a nonzero real num-
ber, and φ : Sn → Sn a map. Then the following two statements are equivalent:

• φ is bijective and for every pair A,B∈Sn we have tr(AB)= c ⇐⇒ tr(φ(A)φ(B))
= c,

• φ is an orthogonal transformation on Sn with respect to the usual inner product.

To solve completely our problem for Hn and Sn we have to treat the remaining
case when c = 0. Once again we will prove a more general result considering pairs of
maps acting on a general real vector space and its dual.
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LEMMA 2.4. Let V be a finite-dimensional real vector space of dimension at least
3 , V ′ its dual space and τ : V → V and σ : V ′ → V ′ maps. Then the following two
statements are equivalent:

• τ and σ are bijective and for every pair x ∈V and f ∈V ′ we have

f (x) = 0 ⇐⇒ σ( f )(τ(x)) = 0, (6)

• there exist bijective linear maps ϕ : V → V and η : V ′ → V ′ , a nonzero real
number a and functions ξ : V → R

∗ = R\ {0} , ζ : V ′ → R
∗ such that

η( f )(ϕ(x)) = a f (x), x ∈V, f ∈V ′,

τ(x) = ξ (x)ϕ(x), x ∈V,

σ( f ) = ζ ( f )η( f ), f ∈V ′,

and functions t → tξ (tx) and t → tζ (t f ) are bijections of R onto R for every
nonzero x ∈V and every nonzero f ∈V ′ , respectively.

Proof. Clearly, τ(0) = 0 and σ(0) = 0. Set k = dimV . Functionals f1, . . . , fk ∈
V ′ are linearly independent if and only if for every x∈V we have f1(x) = . . . = fk(x) =
0 ⇐⇒ x = 0. It follows that functionals g1, . . . ,gp ∈V ′ are linearly independent if and
only if σ(g1), . . . ,σ(gp) are linearly independent. Similarly, a certain subset of vectors
in V is linearly independent if and only if its τ -image is linearly independent.

Let x ∈ V be a nonzero vector. We denote by [x] the one-dimensional subspace
of V spanned by x and by PV the projective space over V , PV = {[x] : x ∈V \ {0}} .
Let x ∈ V be any nonzero vector. Then there exist linearly independent functionals
f1, . . . , fk−1 such that f1(x) = . . . = fk−1(x) = 0. We have [x] = {z ∈V : f1(z) = . . . =
fk−1(z) = 0} . Therefore, τ([x]) = {z∈V : σ( f1)(z) = . . . = σ( fk−1)(z) = 0}= [τ(x)] .
Hence, τ induces a bijective map Pτ : PV → PV by the formula Pτ([x]) = [τ(x)] ,
x ∈V \{0} . Similarly, σ induces in a natural way the map Pσ on the projective space
PV ′ .

We will now show that for every x,y,z ∈V \ {0} we have

[x] ⊂ [y]+ [z] ⇐⇒ τ([x]) ⊂ τ([y])+ τ([z]).

We will prove only one direction, [x] ⊂ [y] + [z] ⇒ τ([x]) ⊂ τ([y])+ τ([z]) . There is
nothing to prove if y and z are linearly dependent. So, assume that y and z are linearly
independent. Then we can find linearly independent functionals f1, . . . , fk−2 such that
f1(y) = f1(z) = . . . = fk−2(y) = fk−2(z) = 0. It follows that f1(x) = . . . = fk−2(x) = 0.
Clearly, τ([y]) and τ([z]) are two linearly independent one-dimensional subspaces of V
that span the two-dimensional subspace W = {z ∈V : σ( f1)(z) = . . . = σ( fk−2)(z) =
0} . Since τ([x]) ⊂W we have τ([x]) ⊂ τ([y])+ τ([z]) , as desired.

By the fundamental theorem of projective geometry [14] there exists a bijective
linear map ϕ : V →V such that Pτ([x]) = [ϕ(x)] , x ∈ V \ {0} . Similarly, there exists
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a bijective linear map η : V ′ →V ′ such that Pσ([ f ]) = [η( f )] , f ∈V ′ \ {0} . Clearly,
for every x ∈V and f ∈V ′ we have

f (x) = 0 ⇐⇒ η( f )(ϕ(x)) = 0.

By linearity, there exists a nonzero real number a such that

η( f )(ϕ(x)) = a f (x), x ∈V, f ∈V ′,

and therefore, η = a(ϕ−1)′ .
Moreover, there exists a function ξ :V →R∗ = R\{0} such that τ(x)= ξ (x)ϕ(x) ,

x ∈ V . Bijectivity of τ implies that for every nonzero x ∈ V the function t → tξ (tx) ,
t ∈ R , is a bijection on R . Similarly, there exists a function ζ : V ′ → R∗ such that
σ( f ) = ζ ( f )η( f ) , f ∈ V ′ . The function t → tζ (t f ) , t ∈ R , is a bijection of R onto
R for every nonzero f ∈V ′ . �

We are now ready to treat our special cases Hn and Sn .

THEOREM 2.5. Let n be an integer larger than 1 , and φ : Hn → Hn a map.
Then the following two statements are equivalent:

• φ is bijective and for every pair A,B ∈ Hn we have

tr(AB) = 0 ⇐⇒ tr(φ(A)φ(B)) = 0,

• there exist an orthogonal (with respect to the usual inner product) transformation
ϕ : Hn → Hn and a function ξ : Hn → R∗ such that

φ(A) = ξ (A)ϕ(A), A ∈ Hn,

and the function
t → tξ (tA), t ∈ R,

is a bijection of R onto R for every nonzero A ∈ Hn .

Proof. We will prove the theorem using Lemma 2.4 for n2 -dimensional real vector
space Hn . We consider bijective maps τ = φ : Hn →Hn and σ : H ′

n →H ′
n , defined

by σ(B → tr(AB)) = (B → tr(φ(A)B)) . By Lemma 2.4 we have

φ(A) = ξ (A)ϕ(A), A ∈ Hn,

and
φ(A) = ζ (A)

(
ϕ−1)∗ (A), A ∈ Hn.

It follows that for every A∈Hn the matrices ϕ(A) and
(
ϕ−1

)∗ (A) are linearly depen-
dent. It is well known (and easy to check) that this yields(

ϕ−1)∗ = dϕ

for some nonzero real constant d . In other words, we have dϕϕ∗ = I . Consequently,
d > 0, and ϕ is an orthogonal transformation up to a multiplicative constant, which
can be absorbed in the function ξ . �

With almost the same proof we get the result in the real case.
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THEOREM 2.6. Let n be an integer larger than 1 , and φ : Sn →Sn a map. Then
the following two statements are equivalent:

• φ is bijective and for every pair A,B ∈ Sn we have

tr(AB) = 0 ⇐⇒ tr(φ(A)φ(B)) = 0,

• there exist an orthogonal (with respect to the usual inner product) transformation
ϕ : Sn → Sn and a function ξ : Sn → R∗ such that

φ(A) = ξ (A)ϕ(A), A ∈ Sn,

and the function
t → tξ (tA), t ∈ R,

is a bijection of R onto R for every nonzero A ∈ Sn .

3. Maps on En

In this section we will identify n×n matrices with linear operators acting on Fn ,
the space of all n× 1 matrices. For a given matrix A we denote by ImA the image
of the corresponding operator. We will deal with the real and the complex case simul-
taneously. Whenever doing so, we will simply use the term unitary matrix (operator)
U to denote a unitary matrix (operator) in the complex case and an orthogonal matrix
(operator) in the real case. Further, A∗ will denote the adjoint of operator A . Hence, in
the matrix language A∗ stands for the conjugate transpose of A in the complex case and
for the transpose in the real case. And of course, when treating scalars, μ will denote
the conjugate of μ in the complex case, while μ = μ in the real case.

We will start with the special case c = 0. Thus, we are interested in bijective maps
φ : En → En with the property that

tr(AB) = 0 ⇐⇒ tr(φ(A)φ(B)) = 0. (7)

We first observe that for A,B ∈ En the condition tr(AB) = 0 is equivalent to AB = 0.
Indeed, let us assume that tr(AB) = 0. After applying the unitary similarity we may
assume that A = diag(t1, . . . ,tr,0, . . . ,0) , where all the t j ’s are positive and r = rankA .
The diagonal entries of B are nonnegative. Hence, tr(AB) = 0 yields that the first r
diagonal entries of B are zero. All principal 2× 2 minors of B are nonnegative, and
consequently, the first r rows and the first r columns of B must be zero. In fact, we
have shown that for every pair A,B∈ En we have tr(AB) = 0 ⇐⇒ AB = 0 ⇐⇒ ImA⊥
ImB .

Clearly, if U is any n×n unitary matrix, then the map A →UAU∗ is a bijection
of En onto itself with the property (7). The same is true for the map A → At . Let now
ϕ : En → En be any bijective image preserving map, that is, for every A ∈ En we have
Imϕ(A) = ImA . Clearly, such a map also satisfies the condition (7).
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THEOREM 3.1. Let n be an integer larger than 2 , F = C , and φ : En → En a
map. Then the following conditions are equivalent:

• φ is bijective and for every pair A,B ∈ En we have

tr(AB) = 0 ⇐⇒ tr(φ(A)φ(B)) = 0,

• there exist a unitary n× n matrix U and a bijective image preserving map ϕ :
En → En such that either

– φ(A) = Uϕ(A)U∗ , A ∈ En , or

– φ(A) = Uϕ(A)tU∗ , A ∈ En .

THEOREM 3.2. Let n be an integer larger than 2 , F = R , and φ : En → En a
map. Then the following conditions are equivalent:

• φ is bijective and for every pair A,B ∈ En we have

tr(AB) = 0 ⇐⇒ tr(φ(A)φ(B)) = 0,

• there exist an orthogonal n×n matrix O and a bijective image preserving map
ϕ : En → En such that φ(A) = Oϕ(A)Ot , A ∈ En .

Note that in the complex case the map A → At ,A ∈ En , is the entrywise complex
conjugation. It is therefore not surprising that when describing the general form of
bijective maps preserving trace zero products on effects, we have two possibilities in
the complex case and only one in the real case.

Observe also that it is trivial to describe the general form of bijective image pre-
serving maps. Namely, we introduce an equivalence relation on En by A ∼ B if and
only if ImA = ImB . So, every such map has to act like bijection on each ∼ equivalence
class.

Proof of Theorems 3.1 and 3.2. We will prove both theorems simultaneously.
All we need to do is to prove that the first condition implies the second one. Ob-

viously, A ∼ B if and only if A⊥ = {C ∈ En : AC = 0} = {C ∈ En : BC = 0} = B⊥ .
By our assumption, φ(A⊥) = φ(A)⊥ . It follows that we have A ∼ B if and only if
φ(A) ∼ φ(B) .

In each equivalence class with respect to the relation ∼ there is a unique projection
P . It follows that φ induces a bijective map ψ : Pn → Pn with the property that
for every P,Q ∈ Pn we have PQ = 0 if and only if ψ(P)ψ(Q) = 0. Similarly as
above we define P⊥ = {Q ∈ Pn : PQ = 0} , P ∈ Pn . Clearly, ψ(P⊥) = ψ(P)⊥ . As
P⊥ = Pn if and only if P = 0, we have ψ(0) = 0. For a nonzero P ∈ Pn the set
P⊥ is maximal among orthogonal complements of nonzero projections if and only if
P is a rank one projection. Hence, ψ maps the set of projections of rank one onto
itself. This restriction preserves orthogonality. By Uhlhorn’s theorem [12] there exists
a unitary matrix U (let us remind here that U is an orthogonal matrix in the real case)
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such that either ψ(P) = UPU∗ for all projections of rank one, or ψ(P) = UPtU∗ for
all projections of rank one (note that in the real case these two possibilities coincide).
After composing the map φ by A →U∗AU and by the transposition, if necessary, we
may assume with no loss of generality that ψ maps every projection of rank one into
itself. Using the fact that the map ψ preserves orthogonality on Pn we conclude that
ψ(P) = P for every projection P ∈ Pn . It follows from A ∼ B ⇐⇒ ImA = ImB and
A ∼ B ⇐⇒ φ(A) ∼ φ(B) that φ is an image preserving map. �

In order to formulate the main result of this section we need some more notation.
Let c be a real number, 0 < c � 1. We set En (c−) = {A ∈ En : trA < c} , En (c+) =
{A ∈ En : trA > c} , and En(c) = {A ∈ En : trA = c} . If A ∈ En , set A(c) = {B ∈
En : tr(AB) = c} . For an arbitrary set P ⊂ En and a matrix A ∈ En denote further
P(c,A) = A(c)∩P = {P ∈ P : tr(AP) = c} .

We start with two technical lemmas. We will denote by {E11,E12, . . . ,Enn} the
standard basis of the space of n×n matrices.

LEMMA 3.3. Let n be an integer larger than 2 . Suppose that P ⊂ En is a set
such that UPU∗ = P for any unitary U . Let D ∈ En be a diagonal matrix and
0 < c � 1 . Assume that Q = [qi j] ∈ P(c,D) and qi j �= 0 for some i �= j . Then μEi j +
μEji ∈ spanP(c,D) for any μ ∈ F .

Proof. First observe that the diagonality of D yields that UP(c,D)U∗ = P(c,D)
for any diagonal unitary matrix U . Consequently, UspanP(c,D)U∗ = spanP(c,D) .

Without loss of generality, assume that (i, j) = (1,2) . Consider the diagonal matri-
ces U1 = 2E11− I and U2 = 2E11+2E22− I . We already know that U1QU1 ∈P(c,D) ,
so X = Q−U1QU1 ∈ spanP(c,D) and Y = X +U2XU2 ∈ spanP(c,D) . Since X has
nonzero entries only in the first column and in the first row, but not in the (1,1) posi-
tion, Y = γE12 + γE21 for some γ ∈ F . Note that γ �= 0 because q12 �= 0. So, for U3 =
(ν −1)E11+ I , where |ν|= 1, we have U3YU∗

3 = νγE12 +νγE21 ∈ spanP(c,D) . �

LEMMA 3.4. Let n be an integer larger than 2 , 0 < c � 1 and suppose that
φ : En → En is a bijective map such that

• tr(AB) = c ⇐⇒ tr(φ(A)φ(B)) = c, A,B ∈ En ,

• φ(P) = P for any P ∈ Pn \ {0} .

Then φ(A) = A for every A ∈ En (c+) .

Proof. Introduce the set

Λ =
{

λP : P ∈ Pn, rankP = n−1,
c

n−1
< λ � 1,

c
λ

/∈ N

}
⊂ En

(
c+) .

The first step in the proof is to show that φ (λP) = λP for every λP ∈ Λ with λ < 1
(we already know that the statement is true for λ = 1). When doing so, we may assume
with no loss of generality that P = diag(0,1, . . . ,1) .
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Recall that Pn(c,λP) = {R ∈ Pn : tr(λPR) = c} . Our aim is to prove that
spanPn(c,λP) = Hn (or Sn in the real case) with the help of Lemma 3.3 (for the set
P = Pn ). Set m =

⌈
c
λ
⌉
� n−1 (here, �t�= min{k∈Z : k � t} ) and note that 0< m−

c
λ < 1. Let Q = [qi j] be any rank m projection such that q11 = m− c

λ . Then tr(λPQ) =
λ tr(Q−(I−P)Q) = λ (m−q11) = c , so Q∈Pn(c,λP) . Now Lemma 3.3 ensures that
spanPn(c,λP) contains all hermitian matrices with zero diagonals. It is also clear that
we can find projections Q1, . . . ,Qn ∈ Pn(c,λP) with linearly independent vectors of
diagonals.

We proved that

• spanPn(c,λP) = Hn , if F = C , and

• spanPn(c,λP) = Sn , if F = R ,

which implies that tr(λPH) = tr(φ(λP)H) for every H ∈ Hn or Sn , respectively. It
is clear that φ(λP) = λP in both cases.

Denote the eigenvalues of A ∈ En by λ1(A) � . . . � λn(A) . Set I =
{

μI : c
n−1 �

μ � 1
}

and

A =

{
A ∈ En

(
c+) :

n

∑
j=2

λ j(A) � c

}
\I .

In this step we show that φ(A) = A for every A ∈ A . We will again use Lemma
3.3, this time for P = Λ . So, let A ∈ A be arbitrary. We may assume that A =
diag(a1, . . . ,an) with 1 � a1 � . . . � an � 0, a1 > an and ∑n

j=2 a j � c . Consider a

matrix X = λ (I − xxt) ∈ Λ , where x = (x1, . . . ,xn)
t ∈ Fn is a unit vector with positive

entries, c
n−1 < λ < 1 and c

λ /∈ N . Then X ∈ Λ(c,A) if and only if

trA−
n

∑
j=1

a jx
2
j =

c
λ

∈ (c,n−1)\N. (8)

Observe that trA−∑n
j=1 a jx2

j ∈
(

∑n
j=2 a j,∑n−1

j=1 a j

)
⊂ (c,n−1) . Let

S =
{
x = (x1, . . . ,xn)t ∈ F

n : x ∈ (0,1)n, ‖x‖ = 1
}

and consider the function f : S →
(

∑n
j=2 a j,∑n−1

j=1 a j

)
, given by f (x)= trA−∑n

j=1 a jx2
j .

Set U = f−1
((

∑n
j=2 a j,∑n−1

j=1 a j

)
\N

)
, which is clearly not empty. Since f is contin-

uous, U is an open set in S and consequently open in Sn−1 . We proved that for any
x∈U there exists λx ∈ ( c

n−1 ,1)\ c
N

, such that (8) holds. It is now clear that we can find
matrices X1, . . . ,Xn ∈ Λ(c,A) with all entries nonzero and linearly independent vectors
of diagonals. Now Lemma 3.3 yields that φ(A) = A .

Next, we show that φ fixes each element in the set B =
{
B∈ En (c+) : ∑n

j=2 λ j(B)
< c
}

. Let B = diag (b1, . . . ,bn) be a diagonal matrix from B with b1 � . . . � bn . Set
A = I−axxt ∈A , where x = (x1, . . . ,xn)

t ∈ F
n is a unit vector with nonnegative entries
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and 0 < a � 1. Then A ∈ A (c,B) if and only if

a
n

∑
j=1

b jx
2
j =

n

∑
j=1

b j − c = b1−
(

c−
n

∑
j=2

b j

)
. (9)

Note that ∑n
j=1 b jx2

j � b1 , where equality holds if x1 = 1. If we choose x1 large enough,
then for any choice of x2, . . . ,xn we can find a ∈ (0,1] satisfying (9). Hence, there
exist matrices A,A1, . . . ,An ∈ A (c,B) such that A has all entries nonzero and vectors
of diagonals of A1, . . . ,An are linearly independent. So, φ(B) = B .

In the last step it remains to consider the set I . We have proved so far that φ
acts like the identity on the set D = En (c+)\I . But for an arbitrary μ ∈ [ c

n−1 ,1
)

we

have D(c,μI) =
{

A ∈ En (c+) : trA = c
μ

}
\
{

c
μn I
}

. We see that spanD = Hn (or Sn

respectively) and consequently, φ(μI) = μI . This completes the proof. �

THEOREM 3.5. Let n be an integer larger than 2 , F = C , c ∈ (0,1] , and φ :
En → En a map. Then the following conditions are equivalent:

• φ is bijective and for every pair A,B ∈ En we have

tr(AB) = c ⇐⇒ tr(φ(A)φ(B)) = c, (10)

• φ maps En (c−) bijectively onto En (c−) , φ maps En(c) bijectively onto En(c) ,
and there exists a unitary n×n matrix U such that either

– φ(A) = UAU∗ for every A ∈ En (c+) and Imφ(A) = ImUAU∗ for every
A ∈ En(c) , or

– φ(A) = UAtU∗ for every A ∈ En (c+) and Imφ(A) = ImUAtU∗ for every
A ∈ En(c) .

THEOREM 3.6. Let n be an integer larger than 2 , F = R , c ∈ (0,1] , and φ :
En → En a map. Then the following conditions are equivalent:

• φ is bijective and for every pair A,B ∈ En we have

tr(AB) = c ⇐⇒ tr(φ(A)φ(B)) = c,

• φ maps En (c−) bijectively onto En (c−) , φ maps En(c) bijectively onto En(c) ,
and there exists an orthogonal n×n matrix O such that

φ(A) = OAOt

for every A ∈ En (c+) and Imφ(A) = ImOAOt for every A ∈ En(c) .
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Proof of Theorems 3.5 and 3.6. We will prove both theorems simultaneously.
We start with the assumption that φ satisfies the first condition in our theorem.

In the first step of the proof we establish that the set En(c−) is invariant for φ . Let
A,B ∈ En . When calculating tr(AB) we may always assume that A is diagonal. Of
course, all the diagonal entries of A are � 1. It follows that tr(AB) � trB . Hence, we
have B ∈ En (c−) if and only if there is no A ∈ En such that tr(AB) = c . It follows that
a bijective map φ : En → En satisfying (10) maps En (c−) bijectively onto itself (and,
of course, the behavior of such a φ on this subset is completely arbitrary).

In the next step we consider the set En(c) . Recall that for an arbitrary A ∈ En

the set A(c) was defined by A(c) = {B ∈ En : tr(AB) = c} . We claim that A(c) is
a singleton if and only if trA = c and A is strictly positive (0 is not an eigenvalue
of A). Assume first that A ∈ En is a strictly positive matrix with trA = c . There is
no loss of generality in assuming that A is diagonal, A = diag(t1, . . . ,tn) with t j > 0,
j = 1, . . . ,n , and t1 + . . .+ tn = c . Clearly, I ∈ A(c) . We have to prove that B ∈ En and
tr(AB) = c yields B = I . This is easy as the diagonal entries b11, . . . ,bnn of the matrix
B are all � 1. It follows from t1b11 + . . .+ tnbnn = c that all diagonal entries of B are
actually equal to 1. Since B � I , we necessarily have B = I . Assume next that A(c)
is a singleton. Then trA � c . We may, and we will assume that A is diagonal with the
sum of diagonal entries � c . It is straightforward to see that if trA > c or if one of the
diagonal entries of A is zero, then there are infinitely many diagonal matrices in A(c) .
Hence, A is an invertible matrix with trace c .

It follows that φ maps the set of invertible matrices with trace c onto itself. And
therefore, φ(I) = I , which further yields that φ (En(c)) = En(c) .

We now start to investigate the behavior of φ on the set Pn . In fact, we will
first show that φ induces in a natural way a bijective map ψ on Pn . When doing so,
the following sets will be of the significant importance. For every nonzero projection
P ∈ Pn we set En(P) = {A ∈ En : AP = P} . Thus, En(P) is the set of all effects A
which act like the identity on ImP . For every such effect A we conclude from AP = P
and A � I that A maps the orthogonal complement of ImP into itself. Hence, A ∈ En

belongs to En(P) if and only if Ax = x for every x ∈ ImP and Ax ∈ KerP for every
x ∈ KerP .

Let now A ∈ En be any member of En(c) . We denote by PA the orthogonal pro-
jection onto the image of A . We claim that A(c) = En (PA) . Indeed, all we need to do
is to show that A(c) ⊂ En (PA) , since the opposite inclusion trivially holds true. There
is no loss of generality in assuming that A is diagonal, A = diag (t1, . . . ,tr,0, . . . ,0) ,
t1 + . . .+ tr = c , and t j > 0, j = 1, . . . r . Then, as above, B ∈ En belongs to A(c) if and
only if the first r diagonal entries of B are equal to 1. Since B � I , we conclude that B
is a 2×2 block diagonal matrix with the upper left entry Ir , the r× r identity matrix.
As PA = diag (Ir,0) , we clearly have B ∈ En(PA) , as desired.

Recall that for A,B ∈ En we write A ∼ B if and only if ImA = ImB . For A,B ∈
En(c) we know by the previous paragraph that A ∼ B if and only if A(c) = B(c) . As
A(c) = B(c) if and only if (φ(A))(c) = (φ(B))(c) we conclude that for every pair
A,B ∈ En(c) we have

A ∼ B ⇐⇒ φ(A) ∼ φ(B).
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It follows that the map φ induces in a natural way a map ψ : Pn → Pn , namely, for
an arbitrary nonzero P ∈ Pn choose any A ∈ En(c) with P = PA and define ψ(P) =
Pφ(A) and set ψ(0) = 0. Obviously, ψ is bijective. Clearly, we have P � Q for some
P,Q ∈ Pn if and only if En(Q) ⊂ En(P) . As each En(P) , P ∈ Pn \ {0} , is equal to
A(c) for some A ∈ En(c) , we have for every pair P,Q ∈ Pn that

P � Q ⇐⇒ ψ(P) � ψ(Q).

By the fundamental theorem of projective geometry there exists a bijective semilinear
map L : Fn → Fn such that

ψ(Q) = PL(ImQ), Q ∈ Pn,

where PU denotes the orthogonal projection of Fn onto the subspace U ⊂Fn . It follows
that

φ(En(Q)) = En(PL(ImQ)), Q ∈ Pn \ {0}. (11)

Recall that the semilinearity of L means that L is additive and L(λx) = ω(λ )Lx , λ ∈F ,
x ∈ Fn , for some field automorphism ω : F → F . Note also that ω = id is the only
field automorphism of R . It is well-known (and easy to see) that there exists a unique
semilinear map L∗ : Fn → Fn such that

〈Lx,y〉 = ω(〈x,L∗y〉)

for all x,y ∈ Fn . Clearly, the automorphism of the field F that corresponds to the

semilinear map L∗ is λ → ω−1
(

λ
)

, λ ∈ F .

Our next goal is to show that the set Pn \ {0} is invariant for φ . We will achieve
this goal in a few steps. We have to distinguish two cases. We start with the case when
c = 1. Let P,Q ∈ En be nonzero projections such that rankP + rankQ = n + 1. Let
further A ∈ En(P) and B ∈ En(Q) . We claim that tr(AB) = 1 if and only if A = P ,
B = Q , and P and Q commute and PQ is a projection of rank one. Indeed, denote
R = I −Q . Then rankR = rankP− 1. From A ∈ En(P) and B ∈ En(Q) we conclude
that A = P+A1 and B = Q+B1 with PA1 = A1P = 0 and QB1 = B1Q = 0. Hence,

tr(AB) = tr(PQ+A1Q+PB1 +A1B1) � tr(PQ)

where � is an equality if and only if tr(A1Q+PB1 +A1B1) = 0 which is equivalent to
A1Q = PB1 = A1B1 = 0. Moreover,

tr(PQ) = tr(P(I−R)) = rankP− tr(PR) � rankP− tr(R) = rankP− rankR = 1,

where � is an equality if and only if tr(PR) = trR if and only if R � P . It is now clear
that tr(AB) = 1 yields that P and Q commute and that PQ is a projection of rank one.
It then follows from PA1 = 0 that A1 = QA1 . As we know that QA1 = 0 we conclude
that A1 = 0, and similarly, B1 = 0. Thus, A = P and B = Q , as desired. The converse
is trivial.
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We next claim that φ maps nonzero projections into nonzero projections and for
every pair of nonzero projections P,R we have P � R if and only if φ(P) � φ(R) .
Indeed, let P be a nonzero projection. Choose a projection Q that commutes with P
such that rankP+ rankQ = n+ 1 and PQ is a projection of rank one. It follows that
tr(φ(P)φ(Q)) = 1. As

φ(P) ∈ En
(
PL(ImP)

)
and φ(Q) ∈ En

(
PL(ImQ)

)
the previous paragraph yields that φ(P) = PL(ImP) is a projection. Moreover, φ(P)
and φ(Q) commute and rank(φ(P)φ(Q)) = 1. It is also clear that P � R if and
only if φ(P) � φ(R) , P,R ∈ Pn . Further, φ maps every projection of rank one
to a projection of rank one. Moreover, if P1 and P2 are projections of rank one,
then P1P2 = 0 if and only if φ (P1)φ (P2) = 0. Indeed, it is enough to check that
P1P2 = 0 yields φ (P1)φ (P2) = 0. Let P be a rank two projection such that P1 � P and
P2 � I−P . We have P2 � Q for every projection Q of rank n−1 satisfying PQ = QP
and rank(PQ) = 1. By what we have already proved, φ (P2) � Q′ for every projection
Q′ of rank n− 1 satisfying φ(P)Q′ = Q′φ(P) and rank(φ(P)Q′) = 1. It follows that
φ (P2) � I−φ(P) , and since φ (P1) � φ(P) , we have φ (P1)φ (P2) = 0, as desired.

Using Uhlhorn’s theorem we see that there exists a unitary operator U : Fn → Fn

such that either φ(P) = UPU∗ for every projection of rank one, or φ(P) = UPtU∗
for every projection of rank one. After composing φ with a unitary similarity and the
transposition, if necessary, we may assume that φ(P) = P for every projection of rank
one. It follows from P � Q ⇐⇒ φ(P) � φ(Q) , P,Q ∈ Pn \ {0} , that φ(P) = P for
every nonzero projection in En . For A ∈ En(1) and a projection P ∈ Pn we have
tr(AP) = 1 ⇐⇒ ImA ⊂ ImP . It follows that Imφ(A) = ImA for every A of trace 1.
Lemma 3.4 now tells us that φ(A) = A for every A ∈ En(1+) .

We now turn to the case when 0 < c < 1. In this case we will first show that φ
acts nice on the set of rank one projections. We start with some technicalities. Let
P ∈ En be a projection of rank one. Then P can be written as P = xx∗ , where x ∈ Fn is
a column vector of norm one. Let further Q ∈ En be a projection of rank n−1, that is,
Q = I− yy∗ for some y ∈ Fn of norm one. Set a =

√
1− c∈ (0,1) . We will prove that

the following two statements are equivalent:

• there exists a unique pair of matrices A ∈ En(P) and B ∈ En(Q) such that tr(AB)
= c ,

• |〈x,y〉| = a , tr(PQ) = c , and tr(AB) > c for every pair of matrices A ∈ En(P)
and B ∈ En(Q) such that A �= P or B �= Q .

In order to prove this equivalence we start with some simple observations. We have

tr(PQ) = tr(xx∗ − xx∗ yy∗) = 1−|〈x,y〉|2.

Let y,y1, . . .yn−1 ∈ Fn be an orthonormal basis, that is, the linear span of y1, . . . ,yn−1

is equal to the image of Q . Then the vectors x,y1, . . . ,yn−1 are linearly independent if
and only if x does not belong to the linear span of y1, . . . ,yn−1 which is equivalent to
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x �⊥ y . This is equivalent to tr(PQ) < 1. For A ∈ En(P) , A = P+A1 , and B ∈ En(Q) ,
B = Q+B1 , we have

tr(AB) = tr(PQ)+ tr(A1Q+PB1 +A1B1).

If tr(PQ) < 1 and A1 �= 0, then x,y1, . . . ,yn−1 are linearly independent and since the
image of A1 is orthogonal to x , it cannot be orthogonal to the image of Q which
yields that A1Q �= 0, and consequently, tr(A1Q) > 0. Similarly, if tr(PQ) < 1 and
B1 �= 0, then tr(PB1) > 0. It is clear that the second condition above implies the
first one with A = P and B = Q . So, assume that the first condition is satisfied. We
have three possibilities for tr(PQ) , namely, tr(PQ) > c , tr(PQ) < c , and tr(PQ) = c .
In the first case we would have tr(AB) > c for every pair A ∈ En(P) , B ∈ En(Q) , a
contradiction. In the second case we have P+ t(I−P) ∈ En(P) for every t ∈ [0,1] and
Q+ s(I−Q) ∈ En(Q) for every s ∈ [0,1] . The equation

c = tr((P+ t(I−P))(Q+ s(I−Q))) = tr(PQ)+ tc1 + sc2 + tsc3

is fulfilled for infinitely many pairs of real numbers t,s ∈ [0,1] because tr(PQ) < c ,
c1 = tr((I − P)Q) � n− 2 � 1 (note that both Q and I −P are projections of rank
n−1), c2 = tr(P(I−Q)) > 0, and c3 � 0. This is impossible as there exists only one
pair of matrices A ∈ En(P) and B ∈ En(Q) such that tr(AB) = c . Hence, we must have
the third possibility tr(PQ) = c . It is now straightforward to check that the second
condition holds true.

Let x,y ∈ Fn be any vectors of norm one satisfying |〈x,y〉| = a , and let P = xx∗
be a projection of rank one. We will prove that φ(P) is a projection of rank one,

φ(P) =
1

‖Lx‖2 (Lx)(Lx)∗. (12)

Set Q = I − yy∗ . Clearly, P ∈ En(P) and Q ∈ En(Q) is the unique pair of matrices
from these two sets with the property tr(PQ) = c . It follows from (11) that φ(P) ∈
En(PL(ImP)) and φ(Q) ∈ En(PL(ImQ)) is the unique pair whose product has trace c .
Hence,

φ(P) = PL(ImP) =
1

‖Lx‖2 (Lx)(Lx)∗.

Our next aim is to show that L is either linear or conjugate linear. If Q is as before, we
have

φ(Q) = PL(ImQ) = PL({y}⊥) = I− 1∥∥∥(L∗)−1 y
∥∥∥2

(
(L∗)−1 y

)(
(L∗)−1 y

)∗
.

It follows from tr(φ(P)φ(Q)) = c that∣∣∣∣∣∣
〈

1
‖Lx‖Lx,

1∥∥∥(L∗)−1 y
∥∥∥ (L∗)−1 y

〉∣∣∣∣∣∣= a,
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which yields

a =
1

‖Lx‖
∥∥∥(L∗)−1 y

∥∥∥
∣∣∣〈Lx,(L∗)−1 y

〉∣∣∣= 1

‖Lx‖
∥∥∥(L∗)−1 y

∥∥∥ |ω(〈x,y〉)|. (13)

In particular, if 〈x,y〉 = a , then

‖Lx‖
∥∥∥(L∗)−1 y

∥∥∥=
|ω(a)|

a
. (14)

Suppose now that F = C . We will prove that ω is either the identity or the complex

conjugation. Choose y = (1,0, . . . ,0)t and x(t) =
(
a,
√

1−a2eit ,0, . . . ,0
)t

. It follows

from (14) that the norm ∥∥Lx(t)‖ = ‖u+ ω(eit)v
∥∥

has a constant value independent of t . Here,

u = L
(
(a,0, . . . ,0)t

)
and v = L

(
(0,
√

1−a2,0, . . . ,0)t
)

.

We conclude that the set {ω
(
eit
)

: t ∈ R} is bounded. Recall that ω is an auto-
morphism of the complex field. Hence, for every real t the set {ω

(
eint
)

: n ∈ Z} ={(
ω
(
eit
))n

: n ∈ Z
}

is bounded, and consequently,

∣∣ω (eit)∣∣= 1

for every real t . Hence, for every real t there is a real s such that ω(cost + isin t) =
coss+ isins . But then

ω(cost − isint) = ω(
(
cost + isint)−1)= (coss+ isins)−1 = coss− isins,

and therefore, ω(cost) ∈ R , t ∈ R . As ω(nλ ) = nω(λ ) , λ ∈ C , n ∈ N , we conclude
that ω(R) ⊂ R . Hence, the restriction of ω to the subfield R is a nonzero endomor-
phism of R . It is well-known that the identity is the only nonzero endomorphism of the
real field. Thus, ω(t) = t for every real t . As ω(i) ∈ {−i, i} , we conclude that ω is
either the identity or the complex conjugation.

In the next step we prove that L is a scalar multiple of a unitary or anti-unitary
operator. It follows from (13) that x,y ∈ Fn , ‖x‖ = ‖y‖ = 1, and |〈x,y〉| = a yields

‖Lx‖
∥∥∥(L∗)−1 y

∥∥∥= 1.

Thus, if x1,x2 are two unit vectors such that there exists a unit vector y ∈ Fn satisfying
|〈x1,y〉| = |〈x2,y〉| = a , then ‖Lx1‖ = ‖Lx2‖ . If x,z ∈ Fn are any two unit vectors, we
can find two chains of unit vectors x = x1,x2, . . . ,xn−1,xn = z and y1, . . . ,yn−1 such that

|〈xk,yk〉| = |〈xk+1,yk〉| = a, k = 1, . . . ,n−1.
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Hence, ‖Lx‖ = ‖Lz‖ whenever ‖x‖ = ‖z‖ = 1. Consequently, L = pU for some
nonzero p ∈ F and some unitary or anti-unitary operator U , so

φ(P) = UPU∗

for every projection of rank one. When F = C , we further observe that every anti-
unitary operator U can be written as U = VJ , where V is a unitary operator and
J : C

n → C
n is the entry-wise complex conjugation. Thus, if U is anti-unitary, then

UPU∗ = (VJ)P(VJ)∗ = V (JPJ)V ∗ = VPtV ∗ .
After composing φ with a unitary similarity and the transposition, if necessary,

we may, and we will assume that
φ(P) = P

for every projection P of rank one.
We now show that the same is true also for projections of higher rank. Let P =

Ir ⊕On−r be a projection with 1 < r < n . Consider a rank one projection Q = xxt ,
where x = (x1, . . . ,xn)t is a unit vector with nonnegative entries. Then Q ∈ P1

n (c,P)
if and only if ∑r

j=1 x2
j = c . It is now clear that we can find rank one projections

Q,Q(1), . . . ,Q(n) ∈ P1
n (c,P) such that Q has no zero entries and vectors of diagonal

entries of Q(1), . . . ,Q(n) are linearly independent. By Lemma 3.3 we have φ(P) = P .
Furthermore, it follows from Lemma 3.4 that φ(A) = A for every A ∈ En (c+) . And
finally, if A ∈ En(c) and P ∈ Pn , then tr(AP) = c if and only if ImA ⊂ ImP . Hence,
Imφ(A) = ImA for every A ∈ En(c) .

We have proved that the first condition in our theorem implies the second one. The
other direction is easy. �

4. Maps on P1
n

In this section we will characterize bijective maps φ acting on P1
n satisfying the

property
tr(PQ) = c2 ⇐⇒ tr(φ(P)φ(Q)) = c2

under the assumptions that F = R , n � 5, and 1√
2

� c < 1.
We can translate this problem into the language of projective geometry. For x,y ∈

Rn \ {0} let P = 1
xtx xx

t and Q = 1
yty yy

t be projections onto lines [x] and [y] . Then

tr(PQ) =
〈

x
‖x‖ ,

y
‖y‖
〉2

. For arbitrary [x], [y] ∈ PRn denote {[x], [y]} =
∣∣∣〈 x

‖x‖ ,
y

‖y‖
〉∣∣∣ ,

which is obviously well-defined. So φ induces a bijective map ψ which acts on PRn

and satisfies the property

{[x] , [y]} = c ⇐⇒ {ψ([x]),ψ([y])} = c. (15)

Note that for an orthogonal transformation O : Rn → Rn and a projection P = 1
xtx xx

t

we have φ(P) = OPOt if and only if ψ([x]) = [Ox] .
Remark that we can represent {[x] , [y]} as the cosine of the angle between lines

[x] and [y] , so in the language of projective geometry condition (15) means that ψ
preserves a fixed angle ϕ ∈ (0, π

4

]
in a projective space.
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For an arbitrary subset S ⊂ PRn and a ∈ [0,1] denote

S a = {[z] ∈ PR
n : {[x], [z]} = a for every [x] ∈ S }

and for [x] ∈ PR
n let [x]a := {[x]}a .

From now on, every time we choose a vector x , which spans a line [x] , we will
suppose that ‖x‖ = 1.

We start with some technical lemmas.

LEMMA 4.1. Let n be an integer larger than 3 , 1√
2

� c < 1 and [x], [y] ∈ PRn .

• If c > 1√
2
, then

{[x], [y]} = 2c2−1 ⇐⇒ #([x]c ∩ [y]c) = 1.

• If c = 1√
2
, then

{[x], [y]} = 2c2−1 = 0 ⇐⇒ #([x]c ∩ [y]c) = 2.

REMARK 4.2. If we set c = cosϕ for a suitable ϕ ∈ (0, π
4

]
, then 2c2 − 1 is

exactly cos(2ϕ) . Although it is possible to give a computational proof of the Lemma,
we believe that we can omit tedious computations as the statement is geometrically
evident.

COROLLARY 4.3. Let n be an integer larger than 3 , 1√
2

� c < 1 and ψ : PRn →
PRn a bijective map such that

{[x], [y]} = c ⇐⇒ {ψ([x]),ψ([y])} = c, [x], [y] ∈ PR
n.

Then

{[x], [y]} = 2c2−1 ⇐⇒ {ψ([x]),ψ([y])} = 2c2−1, [x], [y] ∈ PR
n.

Denote the unit sphere in Rn by Sn−1 .

LEMMA 4.4. Let n be an integer larger than 2 , d ∈ [−1,1] , and τ : Sn−1 → Sn−1

a bijective map such that

x ⊥ y ⇐⇒ 〈τ(x),τ(y)〉 = d, x,y ∈ Sn−1. (16)

Then d = 0 .

Proof. Obviously, the possibility d = 1 contradicts the bijectivity assumption. So,
we may assume that −1 � d < 1. Let m < n and e1, . . . ,em be a collection of pairwise
orthogonal vectors in Sn−1 . Then we can find at least two vectors em+1 ∈ Sn−1 with
the property that em+1 ⊥ e j for j = 1, . . . ,m . If m = n−1, then there are exactly two
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such vectors en (say e and −e). Furthermore let e1, . . . ,en be an orthonormal system
and denote f j = −e j for j = 1, . . . ,n , so the vectors e1, . . . ,e j−1, f j,e j+1, . . . ,en are
pairwise orthogonal. Then the vectors f1, . . . , fn are also pairwise orthogonal.

When treating the collections of vectors e j with the property that
〈
e j,ek

〉
= d ,

whenever k �= j , we will distinguish a few cases. First suppose that d > − 1
n−1 . Set

e1 = (u1,0)t ,

e2 = (d1,u2,0)t ,

e3 = (d1,d2,u3,0)t ,

· · ·
en = (d1,d2, . . . ,dn−1,un)t ,

where

dk = d

√
1−d

(1+(k−2)d)(1+(k−1)d)
, k = 1, . . . ,n−1

and

uk =

√
(1−d)(1+(k−1)d)

1+(k−2)d
, k = 1, . . . ,n.

Then 〈
e j,ek

〉
=
{

d, if k �= j,
1, if k = j.

Observe that for any j ∈ {1, . . . ,n} we can find exactly one vector f j ∈ Sn−1 such that
f j �= e j and

〈
f j,ek

〉
= d , whenever k �= j . One can verify that the condition〈

f j, fk
〉

= d whenever k �= j

can be fulfilled only if d = 0.
Suppose that e1, . . . ,en ∈ Sn−1 and f1, . . . , fn are as in the second paragraph of

the proof. Then the τ−1(e j)’s and τ−1( f j)’s are vectors as in the first paragraph. In
particular, τ−1( f1), . . . ,τ−1( fn) is an orthonormal set which yields that

〈
f j, fk

〉
= d

whenever k �= j . Consequently, d = 0, as desired.
Assume now that d =− 1

m for some m∈ {1, . . . ,n−1} . If e1, . . . ,em are vectors as
in the second paragraph, then there exists exactly one e ∈ Sn−1 such that 〈e j,e〉 = − 1

m
for j = 1, . . . ,m . This contradicts (16).

Turn now to the remaining case, that is − 1
m−1 < d < − 1

m for some integer 2 �
m � n− 1. Then there does not exist a vector e ∈ Sn−1 with the property

〈
e j,e

〉
= d

for j = 1, . . . ,m . We are again in a contradiction with (16). �

LEMMA 4.5. Let n be an integer larger than 2 , x,y ∈ Rn \ {0} , λ ,μ ∈ R and
d > 0 such that |λ | < d‖x‖ . If

{z ∈ R
n : ‖z‖ = d, 〈z,x〉 = λ} ⊆ {z ∈ R

n : ‖z‖ = d, 〈z,y〉 = μ} ,

then x and y are linearly dependent.
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Proof. Denote
X = {z ∈ R

n : ‖z‖ = d, 〈z,x〉 = λ} ,

Y = {z ∈ R
n : ‖z‖ = d, 〈z,y〉 = μ} .

First suppose that λ �= 0. Since |λ |< d‖x‖ , X is an intersection of a sphere in Rn and
(n− 1)-dimensional affine space, which does not contain 0. Hence, spanX = Rn . It
follows from X ⊆Y that 〈z,μx−λy〉= 0 for every z∈X and consequently, μx−λy =
0.

If λ = 0, then it must be μ = 0 as well. Otherwise for any nonzero u ∈ [x]⊥

we would have d
‖u‖u ∈ X ⊆ Y and consequently 〈u,y〉 = ‖u‖

d

〈
d
‖u‖u,y

〉
= ‖u‖

d μ �= 0.

Hence, [x]⊥∩ [y]⊥ = {0} , contradicting the fact that n � 3. It follows from μ = 0 that
[x]⊥ ⊆ [y]⊥ and x,y are linearly dependent. �

For a given integer n larger than 2 and a real number 0 < c < 1 denote

C =
{
[c,v] ∈ PR

n : v ∈ R
n−1,‖v‖ =

√
1− c2

}
.

Note that here we have simplified the notation. However, we believe it is clear that
[c,v] denotes the one-dimensional span of the vector, whose first coordinate is c and
the other coordinates coincide with the coordinates of v .

LEMMA 4.6. Let n be an integer larger than 4 and 1√
2

< c < 1 . Suppose that ψ :

PRn → PRn is a bijective map, u ∈
(

0,
√

(1+2c)(1−c)
1+c

)
, and the following conditions

hold:

• {[x], [y]} = c ⇐⇒ {ψ([x]),ψ([y])} = c,

• ψ([1,0, . . . ,0]) = [1,0, . . . ,0] ,

• ψ([c,u,u]) = [c,u,u] for every u ∈ Rn−2 of norm
√

1− c2−u2 .

Then ψ([c, t, t]) = [c,t, t] for any [c,t, t] ∈ C , for which

0 � t <

√
(1+2c)(1− c2−u2)− cu

1+ c
. (17)

REMARK 4.7. One can easily verify that
√

(1+2c)(1−c)
1+c <

√
1− c2 . Consequently,

c2 +u2 < 1. Further, note that√
(1+2c)(1− c2−u2) > cu (18)

follows from 0 < u <
√

(1+2c)(1−c)
1+c .
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Proof. Let us start with some observations. The obvious one is that ψ(C ) = C ,
which follows from the first two assumptions in Lemma. Next, we see by definition that
for [c,v0] , [c,v]∈C we have {[c,v0] , [c,v]}= c if and only if 〈v0,v〉=±c−c2 . But ±
on the right-hand side must be + . Otherwise we would have c+c2 = |〈v0,v〉|� 1−c2 ,
contradicting c > 1√

2
. Hence,

{[c,v0] , [c,v]} = c ⇐⇒ 〈v0,v〉 = c− c2. (19)

We will show that if [c,v] ∈ C and ψ([c,v]) = [c,w] , then

ψ([c,−v]) = [c,−w]. (20)

In order to prove this we recall Corollary 4.3. So, all we need to do is to show that

[c,v]2c2−1∩C = {[c,−v]}.

Checking [c,−v] ∈ [c,v]2c2−1 ∩C is trivial. So, assume that [c,z] ∈ [c,v]2c2−1 ∩C .
Then either

〈z,v〉 = c2−1,

or
〈z,v〉 = 1−3c2.

We further know that |〈z,v〉| � 1− c2 . So, it is clear that in the first case we have
z = −v , as desired. It remains to show that the second possibility cannot occur. This is
indeed so, as

∣∣1−3c2
∣∣= 3c2−1 > 1− c2 .

In particular, if we set

A =
{
[c,u,u] ∈ PR

n : u ∈ R
n−2,‖u‖ =

√
1− c2−u2

}
⊂ C ,

and
B =

{
[c,−u,u] ∈ PR

n : u ∈ R
n−2,‖u‖ =

√
1− c2−u2

}
⊂ C ,

then because ψ acts like the identity on A , it acts like the identity on B as well.
Now fix t , for which (17) holds (one can verify that then c2+t2 < 1) and introduce

the set
D =

{
[c,t, t] ∈ PR

n : t ∈ R
n−2, ‖t‖ =

√
1− c2− t2

}
⊂ C .

Our aim is to show that ψ maps every element from D into itself. This follows easily
once we prove that for every [c,t, t] ∈ D we have

([c,t, t]c ∩ (A∪B))c ∩C = {[c,t, t]} . (21)

Clearly, [c, t, t] ∈ ([c,t, t]c ∩ (A∪B))c ∩C .
To prove the other inclusion we first show that both [c,t, t]c ∩A and [c,t, t]c ∩B

are infinite sets. Let [c,±u,u] ∈ A∪B . Then, by (19), [c,±u,u]∈ [c,t, t]c if and only if

〈t,u〉 = c− c2∓ tu. (22)
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All we need to verify is that

∣∣c− c2∓ tu
∣∣< ‖t‖ ‖u‖ =

√
(1− c2− t2)(1− c2−u2).

By squaring this inequality we get(
1− c2) t2∓2c(1− c)ut+

(
1− c2)u2− (1− c)2(1+2c) < 0,

which is (after dividing by 1− c) equivalent to

±cu−√(1+2c)(1− c2−u2)
1+ c

< t <
±cu+

√
(1+2c)(1− c2−u2)

1+ c
.

This is indeed true as the left-hand side is always negative (see (18)), and the second
inequality follows from (17).

Let further

[c,z,z] ∈ ([c,t, t]c ∩ (A∪B))c = ([c,t, t]c ∩A)c ∩ ([c,t, t]c∩B)c
,

where |z| � √
1− c2 and ‖z‖ =

√
1− c2− z2 . It follows from [c,z,z] ∈ ([c,t, t]c ∩A)c

and (22) that for every u ∈ R
n−2 of norm

√
1− c2−u2 , for which

〈t,u〉 = c− c2− tu,

we have
〈z,u〉 = c− c2− zu. (23)

Applying Lemma 4.5 we conclude that z = at for some a ∈ R .
But since [c,z,z] ∈ ([c,t, t]c ∩B)c as well, it follows that

〈z,w〉 = c− c2 + zu (24)

for every w ∈ R
n−2 with ‖w‖ =

√
1− c2−u2 and

〈t,w〉 = c− c2 + tu.

The equation z = at with (23) and (24) yield

a
(
c− c2− tu

)
= c− c2− zu

and
a
(
c− c2 + tu

)
= c− c2 + zu.

Hence, a = 1 and z = t , and the proof is completed. �

LEMMA 4.8. Let n be an integer larger than 3 , 1√
2

< c < 1 and ψ : PRn → PRn

a bijective map such that the following conditions hold:

• {[x], [y]} = c ⇐⇒ {ψ([x]),ψ([y])} = c,
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• ψ([1,0]) = [1,0] ,

• ψ([c,v]) = [c,v] for any [c,v] ∈ C .

Then ψ([x]) = [x] for every [x] ∈ PRn .

Proof. Set c = cosϕ , 0 < ϕ < π
4 . For any natural number k � 2 introduce the set

Ak =
{
[cosα,x] ∈ PR

n : 0 � α < kϕ , x ∈ R
n−1, ‖x‖ = |sinα|} .

Note that if kϕ > π
2 , then Ak = PRn . We will show by induction that φ acts like the

identity on Ak for every k � 2.
Start with k = 2. Choose an arbitrary element [cosα,x] of A2 , different from

[1,0] , that is 0 < α < 2ϕ . The induction basis will be proven once we show that(
[cosα,x]cosϕ ∩C

)cosϕ = {[cosα,x] , [1,0]} .

Show first that [cosα,x]cosϕ ∩C is an infinite set. To this end take [cosϕ ,v]∈C . Then
[cosϕ ,v] ∈ [cosα,x]cosϕ if and only if

cosϕ cosα + 〈v,x〉 = ±cosϕ . (25)

Because −ϕ < α − ϕ < ϕ , we have cosϕ < cos(α − ϕ) , or equivalently cosϕ −
cosϕ cosα < sinϕ sinα = ‖v‖‖x‖ . We proved in particular that the set

V = {v ∈ R
n−1 : ‖v‖ = sinϕ , 〈v,x〉 = cosϕ(1− cosα)}

is infinite.
It is clear that the set

(
[cosα,x]cosϕ ∩C

)cosϕ
contains [cosα,x] and [1,0] . Let

now [cosβ ,z] ∈ ([cosα,x]cosϕ ∩C
)cosϕ , where 0 < β � π

2 and z is a vector from
Rn−1 of norm sinβ . Then cosϕ cosβ + 〈v,z〉 = ±cosϕ for any v ∈ V . But actually,
there must be + on the right-hand side of this equation. Otherwise we would have

|〈v,z〉| = cosϕ(1+ cosβ ) � cosϕ

and since 0 < ϕ < π
4 ,

cosϕ > sinϕ � sinϕ sinβ = ‖v‖‖z‖,

a contradiction. Hence,

〈v,z〉 = cosϕ(1− cosβ ), v ∈V. (26)

By Lemma 4.5 there exists a∈ R such that z = ax . The equation (26) now implies that

a(1− cosα) = 1− cosβ ,

which together with sinβ = ‖z‖ = |a|‖x‖= asinα yields β = α and a = 1.
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We continue with the induction step. Let k � 2. We may assume that kϕ � π
2

(otherwise Ak = Ak+1 = PRn ). Suppose that ψ([x]) = [x] for any [x] ∈ Ak . Our aim is
to show that ψ([y]) = [y] for every [y] ∈ Ak+1 .

Let [cosα,x] ∈ Ak+1 \Ak , that is kϕ � α < (k + 1)ϕ . In order to complete the
proof we need to show that

([cosα,x]cosϕ ∩Ak)
cosϕ = {[cosα,x]}.

As before we first show that [cosα,x]cosϕ ∩Ak is an infinite set. Introduce the sets

Z′ =
{(

cosγ
y

)
∈ Sn−1 : 0 � γ < kϕ ,

〈(
cosγ

y

)
,

(
cosα

x

)〉
= cosϕ

}
,

Z =
{(

cosγ
y

)
∈ Z′ : γ � α −ϕ

}
.

We claim that Z = Z′ . Note that for

(
cosγ

y

)
∈ Z′ we have

0 = kϕ − kϕ < α − γ � α < 2kϕ � π . (27)

From
cosϕ − cosα cosγ = 〈x,y〉 � ‖x‖‖y‖= sinα sinγ

we get cosϕ � cos(α − γ) and because (27) yields that 0 < ϕ ,α − γ < π , we have
γ � α −ϕ . Hence, Z′ = Z . We are now ready to check that Z is infinite. Let α −ϕ <
γ < kϕ and set

Yγ =
{

y ∈ R
n−1 :

(
cosγ

y

)
∈ Z

}

=
{
y ∈ R

n−1 : ‖y‖ = sin γ, 〈x,y〉 = cosϕ − cosα cosγ
}

.

We have cosϕ < cos(α −γ) and therefore, cosϕ−cosα cosγ < sinα sinγ . Thus, each
Yγ is infinite. Consequently, Z is infinite and therefore [cosα,x]cosϕ ∩Ak is infinite as
well.

Let [cosβ ,z]∈ ([cosα,x]cosϕ ∩Ak)
cosϕ , where 0 � β � π , and ‖z‖= sinβ . Then〈(

cosγ
y

)
,

(
cosβ

z

)〉
= ±cosϕ (28)

for every

(
cosγ

y

)
∈ Z . Define the map f : Z → {cosϕ ,−cosϕ} by

f

(
cosγ

y

)
=
〈(

cosγ
y

)
,

(
cosβ

z

)〉
.

Observe that Z′ = Z is the intersection of Sn−1 , (cos(kϕ),∞)×Rn−1 and an (n−1)-
dimensional affine subspace in R

n , hence it is connected. Since f is continuous, f
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must be constant. In particular, if we fix γ0 ∈ (α −ϕ ,kϕ) , then the expression 〈y,z〉 is
constant, when we vary y ∈Yγ0 . By Lemma 4.5 we have z = ax for some a ∈ R .

Let again γ be an arbitrary element of (α −ϕ ,kϕ) . Then (28) yields that

cosγ(cosβ −acosα) = (±1−a)cosϕ

is independent of γ . Hence, cosβ = acosα and a =±1, so [cosβ ,z] = [cosα,x] . The
proof is completed. �

We are now ready to prove the main result of this section.

THEOREM 4.9. Let n be an integer larger than 4 , F = R , 1√
2

� c < 1 and φ :

P1
n → P1

n a map. Then the following two statements are equivalent:

• φ is bijective and for every pair P,Q ∈ P1
n we have

tr(PQ) = c2 ⇐⇒ tr(φ(P)φ(Q)) = c2,

• there exists an orthogonal transformation O : Rn → Rn such that

φ(P) = OPOt

for any P ∈ P1
n .

Proof. The second condition trivially implies the first one, so we will prove only
the other direction. Again, we will deal with the map ψ : PRn → PRn induced by φ .

First discuss the case when c = 1√
2
. Then Corollary 4.3 tells that

{[x], [y]} = 0 ⇐⇒ {ψ([x]),ψ([y])} = 0, [x], [y] ∈ PR
n.

The conclusion now follows from Uhlhorn’s theorem. Continue with the more interest-
ing case, that is c > 1√

2
.

We may assume with no loss of generality that

ψ([1,0,0, . . . ,0]) = [1,0,0, . . . ,0]. (29)

Indeed, we can achieve this by composing ψ with a suitable map induced by an or-
thogonal transformation. It follows that ψ(C ) = C .

In the next step we will find scalars c1,c2,c3,c4 such that ψ maps any element
of PR

n of the form [c1,c2,∗] into an element of the form [c3,c4,∗] . Set ψ
([

2c− 1,

2
√

c(1− c),0, . . . ,0
])

= [a1, . . . ,an] . There is no loss of generality in assuming that
a1 � 0. Moreover, after composing ψ with yet another map induced by an orthogonal
transformation, we may, and we will assume that

ψ
([

2c−1,2
√

c(1− c),0, . . . ,0
])

=
[
a,
√

1−a2,0, . . . ,0
]

(30)

for some a ∈ [0,1) .
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Introduce the set

A =
{[

c,
√

c(1− c),u
]
∈ PR

n : u ∈ R
n−2,‖u‖ =

√
1− c

}
⊂ C .

Observe that for any
[
c,
√

c(1− c),u
]
∈ A we have

{[
c,
√

c(1− c),u
]
, [1,0,0]

}
= c

and {[
c,
√

c(1− c),u
]
,
[
2c−1,2

√
c(1− c),0

]}
= c.

Applying the first equation together with (15) we see that ψ
([

c,
√

c(1− c),u
])

=

[c,bu,vu] for some |bu| �
√

1− c2 and vu ∈ Rn−2 such that ‖vu‖ =
√

1− c2−b2
u .

The second equation above yields
{
[c,bu,vu] ,

[
a,
√

1−a2,0
]}

= c , or equivalently,

bu = c
±1−a√
1−a2

. (31)

From here we get directly

b2
u + c2 =

2c2

1±a
. (32)

Now c > 1√
2

and b2
u + c2 � 1 (this follows from the fact that (c,bu,vu)t is a vector of

norm one) yield together with (32) that ± is actually + , and therefore, (31) tells that

bu = c
√

1−a
1+a for every u ∈ R

n−2 with ‖u‖ =
√

1− c.
We have thus proved that

ψ
([

c,
√

c(1− c),u
])

=

[
c,c

√
1−a
1+a

,vu

]
(33)

for any u ∈ Rn−2 with ‖u‖ =
√

1− c . Note that ‖vu‖ =
√

1− 2c2

1+a , which is different

from 0. Otherwise we would have a = 2c2−1 and consequently,{[
a,
√

1−a2,0
]
, [1,0,0]

}
= 2c2−1.

Then it follows from (29), (30) and Corollary 4.3 that 2c− 1 = ±(2c2 − 1) , which is
not the case.

Hence, ψ induces a map τ : Sn−3 → Sn−3 by

τ
(

1√
1− c

u
)

=
1√

1− 2c2

1+a

vu.

First observe that τ is bijective. The injectivity is clear since ψ is injective. In order to

check the surjectivity let v be an arbitrary vector from Rn−2 of norm
√

1− 2c2

1+a . Since
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ψ is surjective and ψ(C ) = C , there exist b ∈
[
−√

1− c2,
√

1− c2
]

and a vector

u ∈ R
n−2 of norm

√
1− c2−b2 such that

ψ([c,b,u]) =

[
c,c

√
1−a
1+a

,v

]
.

Now it follows from{[
c,c

√
1−a
1+a

,v

]
,
[
a,
√

1−a2,0
]}

= |ca+ c(1−a)|= c

and (30) that
{
[c,b,u],

[
2c−1,2

√
c(1− c),0

]}
= c . A direct computation shows that

b ∈
⎧⎨
⎩
√

c(1− c),−
√

c3

1− c

⎫⎬
⎭ .

It is easy to verify that
√

c3

1−c >
√

1− c2 , hence b =
√

c(1− c). Consequently, τ is
surjective.

Next, we will find a bijective map on PRn−2 , which preserves orthogonality. The

equation (19) yields that
{[

c,
√

c(1− c),u1

]
,
[
c,
√

c(1− c),u2

]}
= c if and only if

u1 and u2 are orthogonal. Similarly, for vectors v1 and v2 we have that{[
c,c

√
1−a
1+a

,v1

]
,

[
c,c

√
1−a
1+a

,v2

]}
= c ⇐⇒ 〈v1,v2〉 = c− 2c2

1+a
.

Hence,

x ⊥ y ⇐⇒ 〈τ(x),τ(y)〉 =
c− 2c2

1+a

1− 2c2

1+a

= c
1+a−2c
1+a−2c2 , x,y ∈ Sn−3.

It follows from Lemma 4.4 that a = 2c−1 and consequently, τ preserves orthogonal-

ity on Sn−3 . For any x ∈ Sn−3 we have
(
[x]⊥

)⊥ ∩Sn−3 = {x,−x} , which implies that
if τ(x) = y , then τ(−x) = −y . So, τ induces a bijective map σ : PRn−2 → PRn−2 ,
which preserves orthogonality. By Uhlhorn’s theorem there exists an orthogonal trans-
formation O1 : Rn−2 → Rn−2 such that σ([u]) = [O1u], [u] ∈ PRn−2 . Applying (33)
we see that after composing ψ with a map [x] → [(I2⊕Ot

1)x] we may assume that

ψ
([

c,
√

c(1− c),u
])

=
[
c,
√

c(1− c),±u
]
,
[
c,
√

c(1− c),u
]
∈ A. (34)

Observe also that (20) yields that ψ
([

c,−√c(1− c),−u
])

=
[
c,−√c(1− c),∓u

]
and

ψ
([

c,−
√

c(1− c),u
])

=
[
c,−

√
c(1− c),±u

]
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(we remark that if vectors u in the last equation and in (34) coincide, then the sign ± in
those two equations coincide as well). We will show that the sign ± in these equations
is independent of u . When achieving this goal the following set will be helpful:

O =
{
[c,0,v] : v ∈ R

n−2, ‖v‖ =
√

1− c2
}
⊂ C .

Choose an arbitrary v from the sphere S =
{

v ∈ Rn−2 : ‖v‖ =
√

1− c2
}

and introduce

the set
Uv =

{
u ∈ R

n−2 : ‖u‖ =
√

1− c, 〈u,v〉 = c(1− c)
}

.

Note that c(1− c) <
√

(1− c)(1− c2) , hence Uv is infinite. Now fix u0 ∈Uv . If we
set ψ([c,0,v]) = [c,w,w] , then it follows from{

[c,0,v],
[
c,
√

c(1− c),u0

]}
=
{

[c,0,v],
[
c,−

√
c(1− c),u0

]}
= c

that {
[c,w,w],

[
c,
√

c(1− c),±u0

]}
=
{
[c,w,w],

[
c,−

√
c(1− c),±u0

]}
= c,

which yields that w = 0. This, together with (34) implies that for any u ∈Uv we have{
[c,0,w],

[
c,
√

c(1− c),±u
]}

= c,

or equivalently
〈w,u〉 = ±c(1− c). (35)

Since Uv is an intersection of a sphere and an (n− 3)-dimensional affine subspace
in R

n−2 , it is connected. So, the expression 〈w,u〉 must be constant, when we vary
u ∈Uv . This means that the sign ± in (34) is independent of u ∈Uv . Observe that the
collection {Uv}v∈S covers the sphere

{
u ∈ Rn−2 : ‖u‖ =

√
1− c

}
. Thus, the desired

conclusion that the sign ± in (34) is constant will follow once we show that for any
other v′ ∈ S the vectors u from Uv′ give us the same sign as the vectors from Uv . This
is indeed true, because one can find z ∈ S such that Uv∩Uz �= /0 and Uv′ ∩Uz �= /0 (that
holds for any z , which is orthogonal to both v and v′ ). Finally, we may assume that ψ
maps every element of A into itself (otherwise we multiply O1 by −1).

Our next goal is to show that ψ acts like the identity on the set C . We will reach
this goal in a few steps. Introduce the set

B =
{

[c,t, t] ∈ C : 0 � t <

√
1− c

1+ c

(√
1+2c− c

√
c
)}

.

We will show that ψ maps every element of B into itself. By Lemma 4.6 (where we

choose u =
√

c(1− c)) we see that it is enough to prove that
√

c(1− c)<
√

(1+2c)(1−c)
1+c ,

which is easy to check.
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In the next step we show that ψ is the identity on the set

E =

⎧⎨
⎩
[
c,c

√
1− c
1+ c

,w

]
∈ PR

n : w ∈ R
n−2,‖w‖ =

√
1− 2c2

1+ c

⎫⎬
⎭⊂ C .

Let t ∈R be arbitrary such that 0 � t <
√

1−c
1+c

(√
1+2c− c

√
c
)

and 0 < t <
√

(1+2c)(1−c)
1+c .

Since we will again use Lemma 4.6, it remains to show that we can choose t such that
it also satisfies the following inequality

c

√
1− c
1+ c

<

√
(1+2c)(1− c2− t2)− ct

1+ c
.

This can be done, since for the continuous function f :
[
0,
√

1− c2
]
→ R , given by

f (t) =

√
(1+2c)(1−c2−t2)−ct

1+c , we have

f (0) =

√
(1+2c)(1− c2)

1+ c
=

√
(1+2c)(1− c)

1+ c
> c

√
1− c
1+ c

.

We are now ready to treat the whole set C . First let [c,v,v] ∈ Ec ∩C . Then

〈v,w〉= c−c2−vc
√

1−c
1+c for every w∈Rn−2 of norm

√
1− 2c2

1+c . After choosing w⊥
v we conclude that v =

√
1− c2 . Hence, Ec∩C =

{[
c,
√

1− c2,0
]}

and consequently

ψ
([

c,
√

1− c2,0
])

=
[
c,
√

1− c2,0
]
.

It follows from (20) that

ψ
([

c,−
√

1− c2,0
])

=
[
c,−

√
1− c2,0

]
.

In order to prove that ψ acts like the identity on C , we choose an arbitrary [c,v,v]∈C \{[
c,
√

1− c2,0
]
,
[
c,−√

1− c2,0
]}

. By (20) we see that there is no loss in generality

in assuming that v � 0. We will show that

([c,v,v]c ∩E)c ∩C =
{
[c,v,v] ,

[
c,
√

1− c2,0
]}

. (36)

We start by proving that [c,v,v]c ∩ E is an infinite set. It consists of the elements[
c,c
√

1−c
1+c ,w

]
∈ E , for which

〈w,v〉 = c− c2− vc

√
1− c
1+ c

= c

√
1− c
1+ c

(√
1− c2− v

)
. (37)

Note that v � 0 and
√

1− c2− v > 0. Clearly,

c

√
1− c
1+ c

(√
1− c2− v

)
<

√
(1+2c)(1− c)

1+ c

(√
1− c2− v

)(√
1− c2 + v

)
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=

√(
1− 2c2

1+ c

)
(1− c2− v2) = ‖w‖‖v‖.

Hence, there exist infinitely many vectors w , satisfying (37).
Let [c,z,z] ∈ ([c,v,v]c ∩E)c ∩C . Then

〈w,z〉 = c

√
1− c
1+ c

(√
1− c2− z

)
(38)

for every w ∈ Rn−2 of norm
√

1− 2c2

1+c , for which (37) holds. Now Lemma 4.5 tells
that z = av for some a ∈ R . The equations (37) and (38) yield√

1− c2− z = a
(√

1− c2− v
)

and consequently a � 0. Thus, a = ‖z‖
‖v‖ =

√
1−c2−z2

1−c2−v2 , which implies that

√
1− c2− z =

√√√√(√
1− c2− z

)(√
1− c2 + z

)(√
1− c2− v

)
√

1− c2 + v
,

from where we easily get that z =
√

1− c2 or z = v . In the first case we get a = 0,
while in the other a = 1.

We proved (36), hence ψ ([c,v]) = [c,v] for every [c,v]∈C . Now we use Lemma
4.8 to complete the proof. �
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