
Operators
and

Matrices

Volume 6, Number 3 (2012), 465–480 doi:10.7153/oam-06-30

ON AN INVERSE FORMULA OF A TRIDIAGONAL MATRIX
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(Communicated by M. Omladič)

Abstract. This paper provides an inverse formula freed of determinant expressions for a general
tridiagonal matrix. This is viewed as an alternative version of the Usmani formula, which easily
tends to blow up computationally. We discuss a number of different viewpoints regarding the
proposed and Usmani’s formulas, such as the proof method and the meaning of included terms,
although our formula itself may be obtained by a simple transformation of Usmani’s. A study of
the limit elements based on the inverse formula and a numerical experiment for comparison with
the other inverse methods are provided. In addition, we briefly discuss the inverse formula in the
case of zero minors, which is illustrated by a numerical example.

1. Inverse formula of a tridiagonal matrix

Consider the inverse Zn = (zi j)n
i, j=1 = Y−1

n of a general n×n tridiagonal matrix,

Yn = (yi j)n
i, j=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 γ1 0 · · · 0

β2 α2 γ2
. . .

...

0 β3
. . .

. . . 0
...

. . .
. . .

. . . γn−1

0 · · · 0 βn αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

This subject has been studied by many authors [2, 6, 16, 17, 10, 11, 3, 1, 4, 5, 12, etc.].
Let us classify several expressions for Zn into the three characteristics: (i) convenience
or simplicity of a formula itself, (ii) numerical aspects that the algorithm is fast in
computation or has less numerical errors and (iii) asymptotic aspects for studying the
limit form. The Usmani formula [16, 17] provides an elegant solution for Zn ,

zi j =

⎧⎨
⎩

(−1)i+ jγi · · ·γ j−1θi−1φ j+1/θn, i < j
θi−1φi+1/θn, i = j
(−1)i+ jβ j+1 · · ·βiθ j−1φi+1/θn, i > j

, (2)

where θi ’s are θi = αiθi−1 − γi−1βiθi−2 , i = 2, . . . ,n with θ1 = α1 and θ0 = 1, while
φi ’s are φi = αiφi+1−γiβi+1φi+2 , i = n−1, . . . ,1 with φn = αn and φn+1 = 1. Usmani’s
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formula has the advantage of (i), and in addition realizes a stable numerical computation
for many cases if n is not too large or the entries (αi , etc.) seldom influence n .

However, (2) encounters problems as follows: for example, let αi = 2n and βi =
γi−1 = n temporarily to consider the case of αi = O(n) and βi = O(n) depending on n .
Such a condition often occurs for the Fisher information matrix, which is well-known
in statistics, in high-dimensional statistical model estimation [15]. If n becomes larger
than 150, θn easily tends to infinity computationally in home programming software
with the maximum length of about 300 in digits of the decimal numbers. Then, (2) and
the other determinant-based formula [6, 10, e.g.] fail to obtain Zn numerically, although
|zi j| is not greater than O(1) , because of maxi zii = 1/4 + 1/2n by θk = φn−k+1 =
(k+1)nk . The LU factorization [3, 1, e.g.] and cyclic reduction method [9], which are
in general preferred than (2) for numerical computation, have the advantage of (ii) in
this example.

Further, to discuss (iii), consider a derivation of limn→∞ zi j under some αi , βi and
γi . Because θi solved using the recursive relation is expressed as a sum of product
integrals [8], it will be generally difficult to formulate the limit form of θi , that is, to
investigate the limit of zi j using (2). Also, the explicit form obtained based on the LU
factorization and cyclic reduction is usually complicated, which makes studying the
limit of zi j difficult.

To deal with these three aspects (i)-(iii), we consider an alternative expression of
(2).

THEOREM 1. For a tridiagonal matrix Yn of (1), define sequences f� and g� by

f� =
−γ�

f�−1β� + α�
, � = 1,2, . . . ,n (β1 = 0), (3a)

g� =
−β�

g�+1γ� + α�
, � = n,n−1, . . . ,1 (γn = 0) (3b)

with f0 = 0 and gn+1 = 0 , and a product integral pki by

pki =

⎧⎨
⎩

∏i−1
�=k f� if k < i,

1 if k = i,
∏k

�=i+1 g� if k > i.
(4)

Then, the (i, j)-th element of Zn =Y−1
n is

zi j = vi j/(viiv j j),

where
vi j = pi j (βi pi−1,i + αi + γi pi+1,i) . (5)

In advance, note that (5) means

vi j = pi jvii and vii = βi fi−1 + αi + γigi+1, (5’)

because a special case of (4) is

pi−1,i = fi−1, pii = 1, pi+1,i = gi+1. (4’)
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Theorem 1 provides some different viewpoints to (2); for example, it is free of the
determinant expressions which easily tend to blow up computationally, so that it leads
to more stable computation (ii) than a direct use of (2), similar to the LU factorization
and cyclic reduction method. This advantage also appears to work well in a theoretical
regard, such as (iii). In addition, because (3a) and (3b) are expressed by nonlinear
Volterra integral equations closely related to an extended Fibonacci sequence, it is often
easy to find their solution expressions for specified αi , βi and γi . Given such solutions,
we will be able to study the limit form of a linear combination of zi j . In order to support
and compare several findings from Theorem1, in particular on (iii), we provide a further
formula derived in the case of symmetric matrix below.

COROLLARY 1. Assume that Yn of (1) is a symmetric tridiagonal matrix given by
γi = βi+1 , i = 1, . . . ,n−1 . Then, there are μi and δi , i = 1, . . . ,n which provide

αi =
μi

(qi−1−qi)2 +
μi+1

(qi−qi+1)2 +
δi

q2
i

and βi+1 = − μi+1

(qi−qi+1)2 , (6)

where μn+1 = 0 (μn+1/(qn−qn+1)2 = 0 ),

qi = ∏i
�=1 (1− μ�/r�) and ri = ∑n

�=i(μ� + δ�), i = 1, . . . ,n.

Using the sequences {μi}n
i=1 and {δi}n

i=1 , the (i, j)-th element of Zn is expressed as

zi j = qiq j ∑min(i, j)
�=1 μ�/{r�(r� − μ�)}.

Corollary 1 may not be derived so directly from Theorem 1, but is located as a
special case of Theorem 1 (see [15, Lemma 5]). Corollary 1 may be more convenient
for studying (iii) than Theorem 1, if Yn is at least symmetric. Note, however, that
the sequences {μi}n

i=1 and {δi}n
i=1 satisfying (6) are not unique with no restriction,

because δi and μi , i = n, . . . ,1 are obtained automatically from any non-zero value
of qn . For these backgrounds, in this paper, we focus on Theorem 1 and establish
the knowledge obtained from Theorem 1. A further investigation on the relationship
between Theorem 1 and Corollary 1 is placed in a future study which follows this
work.

The formulas as Theorem 1 and Corollary 1 had not been studied. However, when
this paper was under reviewing, [7, Algorithms 4.1 and 4.2] proposed algorithms even-
tually arranged to Theorem 1, and they showed that the algorithms have a relatively
smaller number of computational steps. This study was performed and approached
from a different viewpoint, completely independently of [7]. Also, the advantages of
Theorem 1 are not necessarily investigated fully yet, so that it is worth investigating
how this formula is characterized in terms of (ii)-(iii). In Section 2, a motivated exam-
ple for Theorem 1 is shown. In Section 3, the proofs of Theorem 1 and Corollary 1
are provided. We find out the advantages of (iii) in addition to (ii) on Theorem 1. This
example is discussed in Section 4. Section 5 is helpful for explaining how Theorem 1
is adaptable when Yn has zero minors and, as this result, why the algorithm proposed in
this paper can be applied numerically without requiring the symbolic computation such
as Algorithm 2 of [7].
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2. A motivated example and symmetric tridiagonal case

In this section, we will examine the origin of Theorem 1 in order to discuss an
implication of f� and g� . For simplicity, the subject is restricted to the symmetric
tridiagonal case. An alternative expression of Theorem 1 is also given.

Assume that Yn is a negative definite symmetric tridiagonal matrix given by γ� =
β�+1 , � = 1, . . . ,n . We considered the derivatives of a function G such that

G(xi) = maxx1,...,xi−1,xi+1,...,xn F(x) for F(x) = 1
2xTYnx− xTu,

where x = (x1, . . . ,xn)T and u = (u1, . . . ,un)T . Let F�(x) = ∂F(x)/∂x� . Because the
condition to obtain G from F is

F�(x) = β�x�−1 + α�x� + β�+1x�+1−u� = 0 for � = 1, . . . , i−1, i+1, . . .,n,

the first derivative of G is

dG(xi)/dxi = ∑n
j=1

∂F(x)
∂x j

dx j
dxi

= Fi(x) = βixi−1 + αixi + βi+1xi+1 −ui,

so that the second derivative of G is expressed by

d2G(xi)
dx2

i

= βi
dxi−1

dxi
+ αi + βi+1

dxi+1

dxi
(7a)

or =
n

∑
j=1

dx j

dxi

{
β j

dx j−1

dxi
+ α j

dx j

dxi
+ β j+1

dx j+1

dxi

}
(7b)

with dx0/dxi = dxn+1/dxi = 0. Here, (7a) and (7b) are derived from the fact that

d2G(xi)
dx2

i
= d

dxi

{
∑n

j=1
∂F(x)

∂x j

dx j
dxi

}
or = ∑ j,l

{
∂ 2F(x)
∂x j∂xl

dx j
dxi

dxl
dxi

+ ∂F(x)
∂x j

d2x j

dx2
i

}
.

Next, we consider the derivatives dx j/dxi . This is usually obtained by applying the
implicit mapping theorem to the condition Fj(x) = ∂F(x)/∂x j = 0 for j �= i . However,
there is a recursive relation that does not depend on a matrix expression. For example,
given F1(x) = 0, i.e. α1x1 + β2x2 = 0, x1 is a function of x2 . Hence,

dx1

dx2
= −dF1/dx2

dF1/dx1
=

−β2

α1
= f1.

In addition, for � � 2, given F�(x) = β�x�−1 +α�x� +β�+1x�+1 = 0, since x� is a func-
tion of (x�−1,x�+1) under the relation x�−1 = x�−1(x�) already obtained by F�−1(x) = 0,
we have

dx�

dx�+1
= −dF�/dx�+1

dF�/dx�
=

−dF�/dx�+1
∂F�
∂x�

+ ∂F�
∂x�−1

dx�−1
dx�

=
−β�+1

α� + β� f�−1
= f�. (8)

Inversely, gn means dxn/dxn−1 computed by Fn(x) = 0. Hence, by starting from
gn+1 = 0, we recursively obtain

dx�

dx�−1
= −dF�/dx�−1

dF�/dx�
=

−dF�/dx�−1
∂F�
∂x�

+ ∂F�
∂x�+1

dx�+1
dx�

=
−β�

α� + β�+1g�+1
= g�. (9)
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Therefore, by the chain rule of differentiations, dx j/dxi is computed as

dx j

dxi
=

⎧⎪⎪⎨
⎪⎪⎩

dx j

dx j+1

dx j+1

dx j+2
· · · dxi−1

dxi
if j � i−1

dx j

dx j−1

dx j−1

dx j−2
· · · dxi+1

dxi
if j � i+1

.

From (8) and (9), it is found that p ji defined by (4) means dx j/dxi . This makes us
understand that vi j is obtained by pi jvii =(dxi/dx j)(dFi(x)/dxi)= dFi(x)/dx j because
Fi(x) is equal to dG(xi)/dxi and then we have vii = dFi(x)/dxi from (7a).

Finally, we consider the meaning of 1/vii . Note that the Jacobian matrix of func-
tions (F1(x), . . . ,Fn(x)) is Yn . If det(Yn) �= 0, we have the inverse functions denoted by
x1(F1, . . . ,Fn), · · · ,xn(F1, . . . ,Fn) . Then, by the derivative formula of the inverse func-
tion of several variables,

the (i, i)-th element zii of Zn = Y−1
n means

∂xi(F1, . . . ,Fn)
∂Fi

. (10)

On the other hand, because of vii = dFi(x)/dxi , by the derivative formula of the inverse
function of single variable, we have

dxi

dFi(x)
=

1
dFi(x)/dxi

=
1
vii

,

which provides the same result as (10).
A shortcoming of the form zi j = pi j/v j j obtained from Theorem 1 is that it is

not immediately clear how to achieve a symmetry between zi j and z ji , which should
be obtained in the case of a symmetric tridiagonal matrix. Lemma 1 below provides a
transformation of vi j to see such a symmetry easily. In addition, the proof of Lemma
1 shows that (7a) is equivalent to (7b) even in a general symmetric tridiagonal matrix
without having to be negative or positive definite. The expression of vi j in Lemma
1 was originally found by the covariance structure of a superposition of forward and
backward Gaussian martingale processes [14].

LEMMA 1. Assume that Yn is symmetric, i.e. γ� = β�+1 , � = 1, . . . ,n− 1 . Then,
vi j defined by (4) is expressed as

vi j = −∑n
k=2 βk(pki − pk−1,i)(pk j − pk−1, j)+ ∑n

k=1(αk + βk + βk+1)pki pk j

with β1 = 0 and βn+1 = 0 .

Proof of Lemma 1. The expression of vi j in Lemma 1 is provided by a simple
transformation of (7b) as follows:

vi j = −∑n
k=2 βk{pkipk j − pkipk−1, j − pk−1,i pk, j + pk−1,ipk−1, j}

+∑n
k=1(αk + βk + βk+1)pki pk j

= ∑n
k=1{βkpki pk−1, j + βk+1pkipk+1, j + αk pki pk j},
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which corresponds to (7b). Next, we show that this reduces to (7a), i.e., it is equivalent
to the definition of (4). Note the relation

βk pk−1, j + αk pk j = −βk+1pk+1, j if k �= j,

as provided further below in (13a) and (13b). Applying this relation to vi j decomposed
into

vi j = ∑ j−1
k=1

{
βk pk−1, j + αk pk j

}
pki +

(
β j p j−1, j + α j p j j

)
p ji

+∑n
k= j+1

{
βk pk−1, j + αkpk j

}
pki + ∑n

k=1 βk+1pkipk+1, j,

we obtain the form of (4) as

vi j = −
j−1

∑
k=1

βk+1pk+1, j pki+
(
β j p j−1, j+α j

)
p ji−

n

∑
k= j+1

βk+1pk+1, j pki+
n

∑
k=1

βk+1pkipk+1, j

=
(
β j p j−1, j + α j p j j + β j+1p j+1, j

)
p ji. �

3. Theoretical justification of the main result

This section provides a proof of Theorem 1 and the related results.

Proof of Theorem 1. Letting (si j)n
i, j=1 = YnZn , we will then show that

si j = βizi−1, j + αizi j + γizi+1, j =
{

1 if i = j
0 if i �= j

.

By the definition zi j = vi j/(viiv j j) , the (i, j)-th element of YnZn is written as

si j =
s(1)
i j

s(2)
i j

=
βivi−1, jviivi+1,i+1 + αivi jvi−1,i−1vi+1,i+1 + γivi+1, jvi−1,i−1vii

vi−1,i−1viivi+1,i+1v j j
.

We discuss shrinkage of the numerator s(1)
i j below.

Applying (5’), i.e. vk j = pk jvkk for k = i−1, i, i+1 to s(1)
i j , we have

s(1)
i j = (βi pi−1, j + αi pi j + γi pi+1, j)vi−1,i−1viivi+1,i+1. (11)

Consider the case of i = j in (11). Then, using (5), we can show that

s(1)
ii = (βi pi−1,i + αi + γi pi+1,i)vi−1,i−1viivi+1,i+1 = vi−1,i−1v

2
iivi+1,i+1.

This leads to sii = 1. Next, consider the case of i �= j in (11). Using (4), we find that

βi pi−1, j + αi pi j + γi pi+1, j =
{

(βi fi−1 fi + αi fi + γi) pi+1, j if i+1 � j
(βi + αigi + γigigi+1) pi−1, j if j � i−1

. (12)
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Further, note that equations (3a) and (3b) defining f� and g� are translated to

β� f� f�−1 + α� f� + γ� = 0, � = 1,2, . . . ,n, (13a)

γ�g�g�+1 + α�g� + β� = 0, � = n, . . . ,2,1. (13b)

Applying (13a) and (13b) to (12), we can show that βi pi−1, j + αi pi j + γi pi+1, j = 0 in
(11) if i �= j . This leads to si j = 0 for i �= j . Therefore, it is proved that si j = 1 if i = j
and si j = 0 otherwise. �

Theorem 1 does not state a relationship between pi j and p ji . To clarify this point
and supplement how v ji is related to vi j , we provide the following lemma.

LEMMA 2. The product integrals pi j and p ji defined by (4) are connected with

p ji =

⎧⎪⎪⎨
⎪⎪⎩

pi j
vii

v j j
∏ j−1

�=i
β�+1

γ�
if i < j

pi j
v j j

vii
∏i−1

�= j
γ�

β�+1
if j < i

.

Lemma 2 is motivated easily by Usmani’s result [16]. A proof of Lemma 2 can be
immediately completed using [16, Section 4], provided Theorem 1 is true. However, to
see a simple proof, here we prove Lemma 2 independently of these results.

Proof of Lemma 2. First, for simplicity, we will show that

vi+1,i+1

vii
=

fi
gi+1

βi+1

γi
,

which is the case of j = i+ 1 in this lemma because of (4’). This equation is demon-
strated as follows:

gi+1vi+1,i+1γi − fiviiβi+1

= gi+1{ fiβi+1 + αi+1 +gi+2γi+1}γi− fi{ fi−1βi + αi +gi+1γi}βi+1 (using (5′))
= {gi+1 fiβi+1−βi+1}γi −{−γi + figi+1γi}βi+1 (by (13a), (13b))
= 0.

Since an arbitrary i can be replaced by i+ ξ (ξ � 1) , we also have

vi+ξ+1,i+ξ+1

vi+ξ ,i+ξ
=

fi+ξ βi+ξ+1

gi+ξ+1γi+ξ
for ξ � 0. (14)

Hence, repeatedly using (14) if i < j , part of this lemma can be shown as

v j j

vii
=

vi+1,i+1

vii

vi+2,i+2

vi+1,i+1
· · · v j j

v j−1, j−1
=

j−i−1

∏
ξ=0

fi+ξ βi+ξ+1

gi+ξ+1γi+ξ
=

pi j

p ji

j−1

∏
�=i

β�+1

γ�
.
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Using a similar method, the results in the case of j < i can be also demonstrated. Then,
for example, we can show

vi−η−1,i−η−1

vi−η,i−η
=

gi−ηγi−η−1

fi−η−1βi−η
for η � 0. (15)

A more immediate proof of (15) is achieved by replacing i in (14) with j . �

The following lemma gives the relationship between f� , g� and minors, which
clarifies how Theorem 1 is related to the Usmani formula.

LEMMA 3. f� and g� are related to the minors θ� and φ� as follows

f� = −γ�
θ�−1

θ�
and g� = −β�+1

φ�+1

φ�
. (16)

Proof of Lemma 3. We can translate the relation θ� = α�θ�−1 − γ�−1β�θ�−2 as
follows

1
θ�

θ�−1

=
1

α� − γ�−1β�
θ�−2
θ�−1

⇒ −γ�
θ�−1

θ�
=

−γ�

α� + β�

(
−γ�−1

θ�−2
θ�−1

) ,

which yields (3a) using (16). Also, the relation φ� = α�φ�+1− γ�β�+1φ�+2 can be trans-
lated to

1
φ�

φ�+1

=
1

α�− γ�β�+1
φ�+2
φ�+1

⇒ −β�+1
φ�+1

φ�
=

−β�+1

α� + γ�+1

(
−β�+1

θ�+2
θ�+1

) ⇒ (3b). �

Proof of Corollary 1. Note that a matrix expression of Zn is Zn = QnTnQn in
Corollary 1, where

Qn = diag(q1, . . . ,qn), Tn =

⎛
⎜⎜⎜⎝

τ1 · · · τ1 τ1
...

. . .
τ1 τn−1 τn−1

τ1 τn−1 τn

⎞
⎟⎟⎟⎠ and τ j =

j

∑
�=1

μ�

r�(r� − μ�)
.

Let ρi = 1/(τi − τi−1) . The inverse of Tn with a martingale covariance structure is the
following tridiagonal matrix

T−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 + ρ2 −ρ2 0 · · · 0

−ρ2 ρ2 + ρ3 −ρ2
. . .

...

0 −ρ3
. . .

. . . 0
...

. . .
. . . ρn−1 + ρn −ρn

0 · · · 0 −ρn ρn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Then, by the relations 1−qi−1/qi = −μi/(ri − μi) and 1−qi/qi−1 = μi/ri , we have

ρi = μi

(
ri

μi

)2 (
1− μi

ri

)
= μi

(
1− qi

qi−1

)−2( qi

qi−1

)
= qi−1qi

μi

(qi−qi−1)
2 .

Using this result and the above relations, we further obtain

ρi + ρi+1−q2
i

{
μi

(qi−qi−1)2 +
μi+1

(qi+1−qi)2

}
= − μi

(1−qi−1/qi)
+

μi+1

(qi+1/qi−1)
= δi.

Therefore, we can show that Z−1
n = Q−1

n T−1
n Q−1

n is equal to Yn . �

4. A study of the limit of an inverse matrix

EXAMPLE 1. Consider the limit form of the inverse of

Yn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2n+ cn −n 0 · · · 0

−n 2n+ cn −n
. . .

...

0 −n
. . .

. . . 0
...

. . .
. . .

. . . −n
0 · · · 0 −n 2n+ cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for some cn > 0.

A stationary case of (3a) and (3b) gives the equation

x(n) =
n

−nx(n) +2n+ cn

whose solutions x(n)
1 and x(n)

2 are

x(n)
1 = (2n+ cn +

√
cn(4n+ cn))/2n and x(n)

2 = (2n+ cn−
√

cn(4n+ cn))/2n.

Throughout this section, let a and b be constants bounded away from 0 and 1 and
independent of n , and put i = �an� and j = �bn� , where �u� is the largest integer not

greater than u . Then, as n → ∞ , fi and gi converge to x(∞)
1 (i.e., the limit of x(n)

1 )
satisfying

f� =
{x(n)

1 }�−{x(n)
2 }�

{x(n)
1 }�+1−{x(n)

2 }�+1
and g� =

{x(n)
1 }n−�+1−{x(n)

2 }n−�+1

{x(n)
1 }n−�+2−{x(n)

2 }n−�+2
, (17)

� = 1,2, . . . ,n , by Binet’s formula (see [16, Section 3]). Based on these results, we can
study the limits of vi j and zi j . Assume cn = c2/n for some c independent of n . Then,
according to (17), we can show

lim
n→∞

n(1− fnt−1) = lim
n→∞

n

(
1− x

(n)nt−1
1 −x

(n)nt−1
2

x
(n)nt
1 −x

(n)nt
2

)
= λ (t;c),

lim
n→∞

n(1−gn(1−s)+1) = lim
n→∞

n

(
1− x

(n)ns
1 −x

(n)ns
2

x(n)ns+1
1 −x(n)ns+1

2

)
= λ (s;c)

(18)
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for t and 1− s between a and b , where λ (t;c) = c(e2ct + 1)/(e2ct − 1) . Hence, we
have

lim
n→∞

v j j = lim
n→∞

(
n(1− f j−1)+ c2/n+n(1−g j+1)

)
from (5′)

= λ (b;c)+ λ (1−b;c)

using (18). Further, we obtain

lim
n→∞

pi j =

⎧⎨
⎩

if i � j, exp
{
− lim

n→∞

∫ b
a n(1− fnt)dt

}
if i > j, exp

{− lim
n→∞

∫ 1−b
1−a n(1−gn(1−s))ds

} =

⎧⎨
⎩

exp
(
−∫ b

a λ (t;c)dt
)

exp
(−∫ 1−b

1−a λ (s;c)ds
)

because, e.g. if i < j , we have

lim
n→∞

∏ j−1
�=i f� = lim

n→∞
exp{−n−1 ∑ j−1

�=i n(1− f�)} = lim
n→∞

exp
{
−∫ b

a n(1− fnt)dt
}

by the property of the product integral based on (4) and f� → 1. Thus, we conclude
that

lim
n→∞

zi j = lim
n→∞

pi j

v j j
=

{
exp(−∫ b

a λ (t;c)dt)/{λ (b;c)+ λ (1−b;c)} if a � b,

exp(−∫ a
b λ (1− t;c)dt)/{λ (b;c)+ λ (1−b;c)} if a > b.

EXAMPLE 2. Extending Example 1, we discuss the inverse of

Yn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n(d2
0 +d2

1 )+c2
1/n −nd2

1 0 · · · 0

−nd2
1 n(d2

1 +d2
2)+c2

2/n −nd2
2

. . .
...

0 −nd2
2

. . .
. . . 0

...
. . .

. . .
. . . −nd2

n−1
0 · · · 0 −nd2

n−1 n(d2
n−1 +d2

n )+c2
n/n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose that d� ’s and c� ’s are discrete approximations of continuous functions d(t)
and c(t) on t ∈ [0,1] such that d� = d(�/n) and c� = c(�/n) , where d(t) is bounded
away from zero. Referring to Example 1, let S f (b;a) = exp(−∫ b

a limn→∞ n(1− fnt)dt)
and Sg(b;a) = exp(−∫ a

b limn→∞ n(1−gnt)dt) . These are the limit forms of pi j (for i =
�an� , j = �bn�) if Lebesgue’s convergence theorem can be applied to integrals of n(1−
fnt) and n(1−gnt) . Using Theorem 1, as n is larger, we can examine computationally
how n(1− fnt) and n(1−gnt) behave in order to know a domain of a and b in which
pi j can be well approximated by S f (b;a) or Sg(b;a) . On the other hand, even if
the limits of n(1− fnt) and n(1− gnt) produced by non-constant d(t) and c(t) are
expressed using some well-known functions, it may be difficult in many cases that
the corresponding S f (b;a) and Sg(b;a) have the closed forms. However, we can still
investigate S f (b;a) , Sg(b;a) and limits of zi j computationally using pi j or a numerical
integration. For limits of diagonal zii , it is necessary only to evaluate n(1− fna) and
n(1− gna) . We consider an approach to evaluate limits of n(1− fnt) and n(1− gnt)
below.
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Stationary cases of (3a) and (3b) give the equations of x(n)
�/m ,

x(n)
�/m =

d(�0/m)2

−d(�1/m)2x(n)
�/m +{d((�−1)/m)2 +d(�/m)2}+ c(�/m)2/n2

under m = n , where (�0, �1) = (�,�−1) in the case of (3a) and (�0, �1) = (�−1, �) in

(3b). Let x(n)h
�/m,1 and x(n)h

�/m,2 , h = f ,g be the above solutions

2−1d(�h/m)−2
[
d((�−1)/m)2 +d(�/m)2 + c(�/m)2/n2

±
√
{d((�−1)/m)2 +d(�/m)2 + c(�/m)2/n2}2−4d((�−1)/m)2d(�/m)2

]

and assume x(n)h
�/m,1 > x(n)h

�/m,2 , where � f = �−1 and �g = � . To separate m and n formally,

we introduce a function ε(t) such that

d((�−1)/m) = d(�/m)− ε(�/m)/n. (19)

In addition, letting f (�/m)
� = f� and g(�/m)

� = g� , as m → ∞ and �/m → t , consider the

sequences f (t)
i and g(t)

i which follow Binet’s formula

lim
m→∞

f (�/m)
i =

{x(n) f
t,1 }i −{x(n) f

t,2 }i

{x(n) f
t,1 }i+1−{x(n) f

t,2 }i+1

and lim
m→∞

g(�/m)
i =

{x(n)g
t,1 }n−i+1−{x(n)g

t,2 }n−i+1

{x(n)g
t,1 }n−i+2−{x(n)g

t,2 }n−i+2
.

By taking limn into the both sides, we have

lim
n→∞

n(1− f (t)
nt ) = λ f (t;c,d,ε) = A(t)

(
e2A(t)t +1

e2A(t)t −1

)
+

ε(t)
d(t)

and lim
n→∞

n(1−g(t)
nt ) = λg(1− t;c,d,ε) = A(t)

(
e2A(t)(1−t) +1

e2A(t)(1−t)−1

)
− ε(t)

d(t)
,

where A(t) =
√

d(t)2(c(t)2 + ε(t)2)/d(t)2 . Hence, using the epsilon-delta proof, we
can show that limn=m→∞ n(1− fnt) exists and is λ f (t;c,d,ε) , because

limn→∞ limm→∞ n(1− f (�/m)
nt ) and limm→∞ n(1− f (�/m)

nt ) do exist.

Also, a similar discussion leads to limn=m→∞ n(1−gnt) = λg(1− t;c,d,ε) . Therefore,
under these settings, for i = �an� and j = �bn� , it is obtained that

lim
n→∞

zi j =

{
S f (b;a)/

[
d(b)2{λ f (b;c,d,ε)+ λg(1−b;c,d,ε)}] if a � b,

Sg(b;a)/
[
d(b)2{λ f (b;c,d,ε)+ λg(1−b;c,d,ε)}] if a > b.
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The important problem still left here is how to determine ε(t) , but this is not provided
in this paper (however, if we consider the case of Example 3, ε(t) can be analyzed
at least using (20)). Generally, it is not true that ε(t) is the first derivative d′(t) of
d(t) , because (19) is not a complete equation to determine ε(·) and, for example, some
dependence between m and n to justify the above-mentioned two step of limit oper-
ations is required in addition to (19). However, if all d� ’s are constant, we can say
ε(t) = 0. We tried many cases of d(t) and c(t) , so that n(1− fnt) was observed
between λ f (t;c,d,ε)|ε(t)=−d′(t) and λ f (t;c,d,ε)|ε(t)=0 (similarly, n(1− gnt) was be-
tween λg(1− t;c,d,−d′) and λg(1− t;c,d,0)).

EXAMPLE 3 (Numerical experiment). We here perform a numerical experiment
to invert a symmetric tridiagonal matrix (γi = βi+1 ). The performance of Theorem 1 is
compared with the LU factorization methods [3, 1] and the cyclic reduction method [9]
freed of determinant expressions. For this experiment, we create a case where the limit
of zi j is known using Corollary 1. Let {h�}n

�=1 and {r�}n
�=1 be discrete approximations

of continuous functions h(t) and r(t) on [0,1] such that h� = h(�/n) and r� = r(�/n) .
Put rn+1 = 0,

μi = n−1hiri and δi = (ri − ri+1)− μi, i = 1, . . . ,n,

and then the sequences {αi}n
i=1 and {βi}n

i=2 are obtained from (6), where

qi = ∏i
�=1 (1−h�/n) .

Since we have zi j = qiq j ∑min(i, j)
�=1 n−1h�/(r� − μ�) applying Corollary 1 to Yn made like

this, we can obtain the limit form of zi j for i = �an� and j = �bn�

lim
n→∞

zi j = q(a)q(b)
∫ min(a,b)

0

h(t)
r(t)

dt, where q(t) = exp(−∫ t
0 h(s)ds). (20)

Let zP
i j , zC

i j , zA
i j and zE

i j be numerical values of zi j computed by the methods of
Theorem 1, the cyclic reduction, [1] and [3], respectively. All algorithms for these
methods are written in the Fortran language, and Compaq Visual Fortran 6.5 is used
as the compiler. For the cyclic reduction method, the subroutine DSLR of the IMSL
library is used. Considering the patterns of n = 500, 1000, 2000, 5000 and 10000, we
observe computational times (until zM

i j , i, j = 1, . . . ,n are obtained) and the following
numerical errors

SEM = ∑n
i=1 ∑n

j=1{log(zM
i j /z(∞)

i j )}2,

AEM = supi, j=1,...,n | log(zM
i j /z(∞)

i j )|, M = P,C,A,E,

where z(∞)
i j = q(i/n)q( j/n)

∫min(i/n, j/n)
0 h(t)r(t)−1dt from (20).

We provide the result of this experiment when h(t) = 1+ cos(2πt) and r(t) = 1
in Table 1, where the computation for [3] was stopped when n = 5000 and 10000,
because the computational time was too long. This result shows that the method of
Theorem 1 has a faster computation than not only the LU factorization methods, but
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Table 1: Result of the numerical experiment when h(t) = 1+cos(2πt) and r(t) = 1 .
n

Method: M 500 1000 2000 5000 10000

P 0.6 7.7 13.4 61.7 257.6
Times C 1.8 4.7 18.7 116.0 465.8
(sec.) A 1.3 5.0 24.9 291.7 2114.8

E 184 2908 46258 – –

P 7.47×10−20 2.94×10−17 0.78×10−16 5.91×10−10 0.65×10−12

SEM C 10.7×10−20 0.45×10−17 7.72×10−16 5.84×10−10 2.92×10−12

A 0.25×10−20 6.67×10−17 2.91×10−16 5.80×10−10 10.7×10−12

E 1.22×10−20 2.15×10−17 4.18×10−16 – –

P 12.6×10−13 7.26×10−12 0.97×10−11 5.55×10−9 1.69×10−10

AEM C 8.58×10−13 2.96×10−12 1.63×10−11 5.51×10−9 2.01×10−10

A 3.13×10−13 9.43×10−12 1.05×10−11 5.49×10−9 3.61×10−10

E 3.69×10−13 5.31×10−12 1.16×10−11 – –

the cyclic reduction method if n is sufficiently large. However, in the two numerical
errors, the method of Theorem 1 are not inferior to the LU factorization methods and the
cyclic reduction method. Similar tendency to Table 1 is obtained for the other functions
of h(t) and r(t) . For these experiments we used a computer with an Intel Core2 Quad
processor with 3GHz and with 8GBytes of main memory.

5. Remark in the case of zero minors

GENERAL. Theorem 1 usually gives a stable computation, but a number of points
must be dealt with cautiously when minors θη or φξ are zeros. Consider the case of

fη−1βη + αη = 0, η ∈ I, (21a)

and/or gξ+1γξ + αξ = 0, ξ ∈ J, (21b)

where I and J are subsets of indices {1, . . . ,n} .

LEMMA 4. For η ∈ I and ξ ∈ J , (21a) and (21b) are equivalent to θη = 0
and φξ = 0 , respectively. Condition (21a) under θn �= 0 provides γη �= 0 , βη+1 �= 0 ,
φη+2 �= 0 , θη−1 �= 0 and θη+1 �= 0 . Also, (21b) under θn �= 0 leads to γξ−1 �= 0 ,
βξ �= 0 , θξ−2 �= 0 , φξ−1 �= 0 and φξ+1 �= 0 .

Proof of Lemma 4. By (21a) and Lemma 3, we have

fη−1 = −αη/βη = −γη−1θη−2/θη−1.
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This leads to θη = αη θη−1 − βηγη−1θη−2 = 0. Similarly, φξ = 0 can be shown by
(21b) and Lemma 3. In addition, any of γη = 0, βη+1 = 0 or φη+2 = 0 under θη = 0
provides θn = 0 by [16, (1.5)]. Similarly, φξ = 0 and θn �= 0 result in γξ−1 �= 0,
βξ �= 0 and θξ−2 �= 0. The conditions θη−1 �= 0, θη+1 �= 0, φξ−1 �= 0 and φξ+1 �= 0
hold clearly by [16, Lemma 1]. �

Suppose (21a) and/or (21b) (i.e. θη = 0 and/or φξ = 0). Simultaneously, γη �= 0,
βη+1 �= 0 and φη+2 �= 0, and/or γξ−1 �= 0, βξ �= 0 and θξ−2 �= 0 are assumed according
to Lemma 4. For simplicity, we set θ� �= 0, � � η − 1 and φ� �= 0, � � ξ + 1 in the
following contents. By Lemma 4, (21a) means that | fη | = ∞ and fη+1 = 0, which
provides

fη fη+1 = − γη+1

βη+1 + αη+1/ fη
→− γη+1

βη+1
as | fη | → ∞.

Similarly, (21b) leads to |gξ | = ∞ and gξ−1 = 0, which provides

gξ−1gξ = − βξ−1

γξ−1 + αξ−1/gξ
→−βξ−1

γξ−1
as |gξ | → ∞.

Hence, pi j is computed as

pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

piη fη = ±∞ if j = η +1, i < j

piη (−γη+1/βη+1) pη+2, j if j � η +2, i < j

gξ piξ = ±∞ if j = ξ −1, i > j

pξ−2, j

(−βξ−1/γξ−1

)
piξ if j � ξ −2, i > j

(22)

and as usual otherwise (i.e. j � η and i � j or j � ξ and i � j ), satisfying pii = 1.
Therefore, if j �= η + 1 or j �= ξ − 1, zi j is computed by zi j = pi j/v j j , using pi j of
(22); otherwise this is

zi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 (= 1
βη+1 fη +αη+1+γη gη+2

) if j = η +1 and i = j

piη/βη+1 (= piη fη
βη+1 fη +αη+1+γη gη+2

) if j = η +1 and i < j

0 (= 1
βξ−1 fξ−2+αξ−1+γξ−1gξ

) if j = ξ −1 and i = j

piξ /γξ−1 (=
gξ p(ξ )

i
βξ−1 fξ−2+αξ−1+γξ−1gξ

) if j = ξ −1 and i > j

(23)

by zi,η+1 = lim| fη |→∞ pi,η+1/vη+1,η+1 and zi,ξ−1 = lim|gξ |→∞ pi,ξ−1/vξ−1,ξ−1 .

A NUMERICAL EXAMPLE. As a numerical example of Theorem 1, we consider
the inverse of the matrix

Y6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
−1 −2

√
3 0 0 0

0 −√
3 2 2 0 0

0 0 −1 2 1 0
0 0 0 0 2 2
0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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A special feature of Y6 is that the minor θ3 = 0. This leads to f2β3 + α3 = 0, which
gives f3 = −∞ , I = {3} and J = { /0} . It is easy to verify that

( f1, f2, f3, f4, f5) =
(
−1/2,2/

√
3,−∞,0,−1

)
,

(g2,g3,g4,g5,g6) =
(
−1,1/

√
3,1/2,0,1/2

)
.

Therefore, noting that −γ4/β4 = 1 and the zero-minors version (22) of (4), the matrix
expression of pi j is

(pi j)6
i, j=1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1/2 −1/
√

3 ∞ −1/
√

3 1/
√

3
−1 1 2/

√
3 −∞ 2/

√
3 −2/

√
3

−1/
√

3 1/
√

3 1 −∞ 1 −1
−1/2

√
3 1/2

√
3 1/2 1 0 0

0 0 0 0 1 −1
0 0 0 0 1/2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

while the list of v j j is

v11 = 2+g2 = 1, v44 = − f3 −2+g5 = ∞,

v22 = − f1−2+
√

3g3 = −1
2
, v55 = 0 f4 +2+2g6 = 3

v33 = −√
3 f2 +2+2g4 = 1, v66 = − f5 +2 = 3.

Using Theorem 1 and its zero-minors version (23) applied to the case of η = 3, we
have

Z6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 −1/
√

3 1/
√

3 −1/3
√

3 1/3
√

3
−1 −2 2/

√
3 −2/

√
3 2/3

√
3 −2/3

√
3

−1/
√

3 −2/
√

3 1 −1 1/3 −1/3
−1/2

√
3 −1/

√
3 1/2 0 0 0

0 0 0 0 1/3 −1/3
0 0 0 0 1/6 1/3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This example shows that we can have infinite values in the intermediate computations
without symbolic handling such as Algorithm 2 of [7]. If we apply the algorithm in
the floating point arithmetic that supports IEEE standards which can handle ∞ , the
automatic computation will be performed.
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