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Abstract. Let N be a nest on a real or complex Banach space X and let AlgN be the as-
sociated nest algebra. Ω ∈ AlgN is called an additively all-derivable point if for any additive
map δ : AlgN →AlgN , δ (AB) = δ (A)B+Aδ (B) holds for any A,B ∈ AlgN with AB = Ω
implies that δ is an additive derivation. Assume that P is an idempotent operator with range
ran(P) = N0 for some nontrivial N0 ∈ N . Let Ω ∈ AlgN be any operator satisfying that
PΩP = Ω (or (I−P)Ω(I−P) = Ω ). We show that, if Ω|ran(P) (or Ω|ran(I−P) ) is injective or has
dense range, then Ω is an additively all-derivable point. Moreover, if X is infinite dimensional,
then every additive map derivable at such an Ω is an inner derivation.

1. Introduction

Let A be an (operator) algebra. Recall that a linear (or an additive) map δ from
A into itself is called a derivation if δ (AB) = δ (A)B+Aδ (B) for all A,B ∈ A . The
class of derivations is one of the most important kinds of linear (or additive) maps
both in theory and applications, and this topic has been studied intensively (Ref. [2]).
The question of under what conditions that a linear (or an additive) map becomes a
derivation attracted much attention of mathematicians (for instance, see [1], [4], [5],
[9], [10] and the references therein). We say that a map δ : A → A is derivable at a
point Ω if δ (A)B +Aδ (B) = δ (Ω) for any A,B ∈ A with AB = Ω , and such Ω is
called a derivable point of δ . It is obvious that a linear map is a derivation if and only if
it is derivable at all point. It is natural and interesting to ask the question whether or not
a linear (an additive) map is a derivation if it is derivable only at one given point (Ref.
[8]). Such points, if exist, are called linearly (additively) all-derivable points. The topic
of characterizing the all-derivable points for various algebras has been studied by many
authors and some all-derivable points have been found. However the set of all-derivable
points is still far from being determined completely for almost all algebras.

Let N be a complete nest on a complex separable Hilbert space H . Suppose that
M belongs to N with {0} �= M �= H and write M̂ for M or M⊥ and P(M̂) be the
orthogonal projection on M̂ . Let NM̂ = {N ∩ M̂ : N ∈ N } , which is a nest on M̂ . It

was shown in [8] that, for any Ω ∈ AlgN with Ω = P(M̂)ΩP(M̂) , if Ω|M̂ is invertible
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in AlgNM̂ , then Ω is a linearly all-derivable point in AlgN for the strong operator
topology, that is, every strongly continuous linear map from AlgN into itself derivable
at Ω is a derivation.

The purpose of this paper is to discuss a similar question for nest algebras on Ba-
nach spaces. Let N be a nest on a real or complex Banach space X and let AlgN
be the associated nest algebra. Assume that dimX = ∞ and N is a nest in X . For
an N0 ∈ N which is complemented and for any idempotent operator P with range
ran(P) = N0 , we show that, if Ω ∈ AlgN satisfies that PΩP = Ω with Ω|ran(P) injec-
tive or of dense range as an operator on ran(P) , or (I −P)Ω(I−P) = Ω with Ω|kerP
injective or of dense range as an operator on kerP , then Ω is an additively all-derivable
point of AlgN . In fact, every additive map derivable at Ω is a linear derivation and
hence, an inner derivation. Comparing our result with the main result obtained in [8],
we remark that, (1) we do not assume that the Banach space is separable or complex,
and our result holds for any real or complex infinite dimensional Banach spaces; (2) the
assumption on the nest is quite weak, and all nests on Hilbert spaces satisfy the assump-
tion since every subspace in a Hilbert space is complemented; (3) we do not assume that
the map is continuous under any topology, and the continuity is included in the conclu-
sion; (4) we do not assume that Ω|ran(P) (Ω|kerP ) is invertible in AlgNM̂ , while only
assume that it is injective or with dense range; (5) we do not assume that the map is
linear, while only the additivity is assumed. Thus, our result generalizes the result of
[8] remarkably. Our result is also a generalization of the main result of [5], in which it
was shown that, if N satisfies that each N ∈ N with N− = N is complemented, then
the above idempotent P as well as injective operators and operators with dense range
in AlgN are linearly all-derivable points. Here N− = ∨{L : L ∈ N and L ⊂ N} .

2. Main Results

The following is our main result in this paper, which gives some new kinds of
all-derivable points of nest algebras on Banach spaces. Recall that a map φ : AlgN →
AlgN is called an inner derivation if there exists T ∈ AlgN such that φ(A) = AT −
TA for all A ∈ AlgN . Inner derivations are linear.

THEOREM 2.1. Let N be a nest on a real or complex Banach space X and
let AlgN be the associated nest algebra. Assume that N0 ∈ N is non-trivial and
complemented in X and P is any bounded idempotent operator on X with range N0 .
Let δ : AlgN → AlgN be an additive map.

(a) For any operator Ω ∈ AlgN with PΩP = Ω , if Ω|ran(P) is injective or has
dense range as an operator on ran(P) , then δ (AB) = δ (A)B +Aδ (B) holds for any
A,B ∈ AlgN with AB = Ω implies that δ is an additive derivation.

(b) For any operator Ω ∈ AlgN with (I−P)Ω(I−P) = Ω , if Ω|kerP is injective
or has dense range as an operator on kerP, then δ (AB) = δ (A)B+Aδ (B) holds for
any A,B ∈ AlgN with AB = Ω implies that δ is an additive derivation.

Furthermore, if X is infinite-dimensional, then δ is an inner derivation.

The last assertion is not valid for finite dimensional case. In fact, every additive
derivation on the algebra Tn(F) of upper triangularmatrix has the form A 	→AT −TA+



ALL-DERIVABLE POINTS OF NEST ALGEBRAS 483

( f (ai j)) for any A = (ai j) ∈ Tn(F) , where T ∈ Tn(F) and f is an additive derivation
on the complex field F = R or C (ref. [7]). By [6], there exist many nontrivial additive
derivations on F .

Note that, every subspace of a Hilbert space is complemented. Hence as a conse-
quence of Theorem 2.1, the following corollary is obvious, which is a generalization of
the main result in [8].

COROLLARY 2.2. Let N be a nest on a real or complex Hilbert space H . For
any nontrivial M ∈ N , write M̂ for M or M⊥ and let P(M̂) be the orthogonal pro-
jection on M̂ . Let Ω ∈ AlgN be an operator such that Ω = P(M̂)ΩP(M̂) and Ω|M̂ is

injective or of dense range as an operator on M̂ . Let δ : AlgN → AlgN be an addi-
tive map. If δ is derivable at Ω , that is, δ (AB) = δ (A)B+Aδ (B) holds for any A,B
with AB = Ω , then δ is an additive derivation. In addition, if H is infinite-dimensional,
then δ is inner.

3. Proof of the main result

Proof of Theorem 2.1. Because N0 ∈ N is non-trivial, it follows from ran(P) =
N0 that P is nontrivial and P ∈ AlgN . Let N1 = {N | N ∈ N ,N ⊆ N0} , N2 =
{N∩ (kerP) | N ∈ N } . Then

AlgN = {
(

C W
0 D

)
: C ∈ AlgN1,W ∈ B(kerP,N0),D ∈ AlgN2}.

For any C ∈ A11 = AlgN1 , W ∈ A12 = B(kerP,N0) , D ∈ A22 = AlgN2 , if δ :
AlgN → AlgN is additive, then we can write

δ
((

C W
0 D

))
=

(
δ11(C)+ τ11(W )+ ϕ11(D) δ12(C)+ τ12(W )+ ϕ12(D)

0 δ22(C)+ τ22(W )+ ϕ22(D)

)
,

where δi j : A11 →Ai j , τi j : A12 →Ai j , ϕi j : A22 →Ai j are additive maps, i, j ∈ {1,2}
with i � j . Denote by Ii the unit of Aii , i = 1,2.

(a) Assume that Ω ∈ AlgN satisfies the conditions that PΩP = Ω , Ω|ran(P) is

injective or has dense range as an operator on ran(P) . Then Ω =
(

Ω1 0
0 0

)
with Ω1 is

injective or of dense range. We shall show that Ω is an all-derivable point of the nest
algebra.

In the sequel we assume that δ is an additive map that is derivable at Ω .

Case 1. Ω1 is injective. We will show that δ is a derivation step by step.

Step 1.1. δ11(I1) = 0, δ22(Ω1) = 0, and for any C1,C2 ∈ A11 with C1C2 = I1 , we
have C1δ12(C2) = δ12(I1) .
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For any C1,C2 ∈ A11 with C1C2 = I1 , any D1,D2 ∈ A22 with D1D2 = 0, take

S =
(

Ω1C1 0
0 D1

)
and T =

(
C2 0
0 D2

)
; then ST = Ω . So we have

(
δ11(Ω1) δ12(Ω1)

0 δ22(Ω1)

)
= δ (S)T +Sδ (T)

=
(

δ11(Ω1C1)+ ϕ11(D1) δ12(Ω1C1)+ ϕ12(D1)
0 δ22(Ω1C1)+ ϕ22(D1)

)(
C2 0
0 D2

)
+

(
Ω1C1 0

0 D1

)(
δ11(C2)+ ϕ11(D2) δ12(C2)+ ϕ12(D2)

0 δ22(C2)+ ϕ22(D2)

)
=

(
T1 δ12(Ω1C1)D2 + ϕ12(D1)D2 + Ω1C1δ12(C2)+ Ω1C1ϕ12(D2)
0 δ22(Ω1C1)D2 + ϕ22(D1)D2 +D1δ22(C2)+D1ϕ22(D2)

)
,

where T1 = δ11(Ω1C1)C2 + ϕ11(D1)C2 + Ω1C1δ11(C2)+ Ω1C1ϕ11(D2). It follows that

δ11(Ω1) = δ11(Ω1C1)C2 + ϕ11(D1)C2 + Ω1C1δ11(C2)+ Ω1C1ϕ11(D2), (3.1)

δ12(Ω1) = δ12(Ω1C1)D2 + ϕ12(D1)D2 + Ω1C1δ12(C2)+ Ω1C1ϕ12(D2), (3.2)

and
δ22(Ω1) = δ22(Ω1C1)D2 + ϕ22(D1)D2 +D1δ22(C2)+D1ϕ22(D2). (3.3)

Letting D1 = D2 = 0, by Eqs.(3.2) and (3.3), one gets δ12(Ω1) = Ω1C1δ12(C2)
and δ22(Ω1) = 0. Letting C1 = C2 = I1,D1 = D2 = 0, by Eqs.(3.1) and (3.2), one gets
Ω1δ11(I1) = 0 and δ12(Ω1) = Ω1δ12(I1) . It follows from the injectivity of Ω1 that

δ11(I1) = 0, C1δ12(C2) = δ12(I1), δ22(Ω1) = 0. (3.4)

Step 1.2. δ12(C) = CB holds for all C ∈ A11 , where B = δ12(I1) .
Taking any C0 ∈ A11 which is invertible as an element in A11 and letting C2 =

C0,C1 = C−1
0 , by Step 1.1, we get that δ12(C0) = C0δ12(I1) holds for all invertible

C0 ∈ A11 . For any C ∈A11 , take n ∈ N so that n > ‖C‖ . Then nI1−C is an invertible
operator with its inverse still in A11 . Thus we have δ12(nI1−C) = (nI1−C)δ12(I1) . It
follows that nδ12(I1)− δ12(C) = nδ12(I1)−Cδ12(I1) as δ is additive. Hence

δ12(C) = CB (3.5)

for all C ∈ A11 .

Step 1.3. δ22 = 0.
Taking any invertible operator C0 ∈ A11 and letting C2 =C0,C1 =C−1

0 and D1 =
I2,D2 = 0 in Eqs.(3.3), and by (3.4), we get δ22(C2) = 0. Particularly, when C1 =C2 =
I1 , we get δ22(I1) = 0. For any C ∈ A11 , we can take n ∈ N so that n > ‖C‖ . Then
nI1−C is invertible with its inverse still in A11 . Hence δ22(nI1 −C) = 0. Since δ is
additive, we have

δ22(C) = nδ22(I1) = 0 (3.6)

holds for all C ∈ A11 . Hence δ22 = 0, as desired.
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Step 1.4. ϕ11 = 0 and ϕ12(D) = −BD for all D ∈ A22 .
Letting C1 =C2 = I1,D1 = 0,D2 = I2 in Eq.(3.2) we get Ω1δ12(I1)+Ω1ϕ12(I2) =

0. Because Ω1 is injective, it follows that ϕ12(I2)=−δ12(I1)=−B . Letting C1 =C2 =
I1,D2 = 0 in Eqs.(3.1) and (3.4), we get ϕ11(D1) = 0. Thus we have

ϕ11(D) = 0 (3.7)

for all D ∈ A22 .
Letting C1 =C2 = I1,D1 = 0 in Eqs.(3.2) and (3.5)we have Ω1BD2 =−Ω1ϕ12(D2) .

Then ϕ12(D2) = −BD2 as Ω1 is injective. Thus for any D ∈ A22 , we have

ϕ12(D) = −BD. (3.8)

Step 1.5. τ11 = 0 and τ22 = 0.

For any W ∈ A12 , take S =
(

Ω1 W
0 0

)
and T =

(
I1 0
0 0

)
. Then ST = Ω . So, by

Step 1.3,(
δ11(Ω1) δ12(Ω1)

0 0

)
= δ (S)T +Sδ (T )

=
(

δ11(Ω1)+ τ11(W ) δ12(Ω1)+ τ12(W )
0 τ22(W )

)(
I1 0
0 0

)
+

(
Ω1 W
0 0

)(
0 δ12(I1)
0 0

)
=

(
δ11(Ω1)+ τ11(W ) Ω1δ12(I1)

0 0

)
.

It follows that δ11(Ω1) = δ11(Ω1)+ τ11(W ) for all W ∈ A12 . Hence

τ11(W ) = 0 (3.9)

holds for all W ∈ A12 , that is, τ11 = 0.

For any W ∈ A12 , take S =
(

I1 −W
0 0

)
and T =

(
Ω1 W
0 I2

)
; then ST = Ω . Thus

by Steps 1.1-1.4 (Eqs.(3.4)-(3.8)) and Eq.(3.9), we obtain that(
δ11(Ω1) δ12(Ω1)

0 0

)
= δ (S)T +Sδ (T )

=
(

0 δ12(I1)− τ12(W )
0 −τ22(W )

)(
Ω1 W
0 I2

)
+

(
I1 −W
0 0

)(
δ11(Ω1) δ12(Ω1)+ τ12(W )+ ϕ12(I2)

0 τ22(W )+ ϕ22(I2)

)
=

(
δ11(Ω1) δ12(I1)+ δ12(Ω1)+ ϕ12(I2)−Wτ22(W )−Wϕ22(I2)

0 −τ22(W )

)
.

This entails that
τ22(W ) = 0 (3.10)

for all W ∈ A12 , i.e., τ22 = 0.
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Step 1.6. τ12(WD) = τ12(W )D+Wϕ22(D) holds for all W ∈ A12 and D ∈ A22 .

To see this, take S =
(

I1 W
0 0

)
and T =

(
Ω1 −WD
0 D

)
, where W ∈ A12 and D ∈

A22 . As ST = Ω , by what proved in steps 1-5, we have

(
δ11(Ω1) δ12(Ω1)

0 0

)
= δ (S)T +Sδ (T)

=
(

0 δ12(I1)+ τ12(W )
0 0

)(
Ω1 −WD
0 D

)
+

(
I1 W
0 0

)(
δ11(Ω1) δ12(Ω1)− τ12(WD)+ ϕ12(D)

0 ϕ22(D)

)
=

(
δ11(Ω1) δ12(I1)D+ τ12(W )D+ δ12(Ω1)− τ12(WD)+ ϕ12(D)+Wϕ22(D)

0 −τ22(W )

)
.

Therefore,

δ12(Ω1) = δ12(I1)D+ τ12(W )D+ δ12(Ω1)− τ12(WD)+ ϕ12(D)+Wϕ22(D). (3.11)

By Eqs.(3.5), (3.8) and (3.11), we get τ12(W )D− τ12(WD)+Wϕ22(D) = 0. Thus

τ12(WD) = τ12(W )D+Wϕ22(D) (3.12)

holds for any W ∈ A12 and D ∈ A22 .

Step 1.7. ϕ22 is a derivation.

The assertion of Step 1.6 implies that, for any W ∈ A12 and D1,D2 ∈ A22 , we
have

τ12(W )D1D2 +Wϕ22(D1D2)
= τ12(WD1D2) = τ12(WD1)D2 +WD1ϕ22(D2)
= τ12(W )D1D2 +Wϕ22(D1)D2 +WD1ϕ22(D2).

Thus one gets

W (ϕ22(D1D2)−ϕ22(D1)D2 −D1ϕ22(D2)) = 0.

Because W is arbitrary, we see that

ϕ22(D1D2) = ϕ22(D1)D2 +D1ϕ22(D2) (3.13)

holds for all D1,D2 ∈ A22 , that is, ϕ22 is a derivation.

Step 1.8. τ12(CW ) = Cτ12(W )+ δ11(C)W holds for all C ∈ A11 and W ∈ A12 .

For any W ∈ A12 and any invertible operator C1 ∈ A11 , let S =
(

C1 −C1W
0 0

)
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and T =
(

C−1
1 Ω1 W
0 I2

)
; then ST = Ω . By Eqs. (3.4)-(3.13),

(
δ11(Ω1) δ12(Ω1)

0 0

)
= δ (S)T +Sδ (T)

=
(

δ11(C1) δ12(C1)− τ12(C1W )
0 0

)(
C−1

1 Ω1 W
0 I2

)
+

(
C1 −C1W
0 0

)(
δ11(C−1

1 Ω1) δ12(C−1
1 Ω1)+ τ12(W )+ ϕ12(I2)

0 0

)
=

(
δ11(C1)C−1

1 Ω1 +C1δ11(C−1
1 Ω1) T2

0 0

)
,

where

T2 = δ11(C1)W + δ12(C1)− τ12(C1W )+C1δ12(C−1
1 Ω1)+C1τ12(W )+C1ϕ12(I2).

Hence we have

δ12(Ω1) = δ11(C1)W +δ12(C1)− τ12(C1W )+C1δ12(C−1
1 Ω1)+C1τ12(W )+C1ϕ12(I2).

By Eqs.(3.5) and (3.8), we see that

τ12(C1W ) = δ11(C1)W +C1τ12(W ) (3.14)

holds for all invertible C1 ∈ A11 and all W ∈ A12 . For any C ∈ A11 , substitute C1 =
nI1 −C with n ∈ N and n > ‖C‖ in Eq.(3.14). Then we get δ11(nI1 −C)W +(nI1 −
C)τ12(W ) = τ12((nI1−C)W ) . Thus

nδ11(I1)W − δ11(C)W +nτ12(W )−Cτ12(W ) = nτ12(W )− τ12(CW ).

Comparing the two sides of the above equation and applying Eq.(3.4), one sees that

τ12(CW ) = Cτ12(W )+ δ11(C)W (3.15)

holds for all C ∈ A11 and W ∈ A12 .

Step 1.9. δ11 is a derivation.
For any W ∈ A12 and C1,C2 ∈ A11 , it follows from Eq.(3.15) that

C1C2τ12(W )+ δ11(C1C2)W
= τ12(C1C2W ) = C1τ12(C2W )+ δ11(C1)C2W
= C1C2τ12(W )+C1δ11(C2)W + δ11(C1)C2W,

which implies that
δ11(C1C2) = C1δ11(C2)+ δ11(C1)C2 (3.16)

for all C1,C2 ∈ A11 , that is, δ11 is a derivation.

Step 1.10. δ is a derivation.
Now we are in a position to check that δ is a derivation.
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For any

(
C1 W1

0 D1

)
,

(
C2 W2

0 D2

)
∈ AlgN , where C1,C2 ∈ A11 , W1,W2 ∈ A12 ,

D1,D2 ∈ A22 , by steps 1.1-1.9, we have

δ
((

C1 W1

0 D1

)(
C2 W2

0 D2

))
= δ

(
C1C2 C1W2 +W1D2

0 D1D2

)
=

(
δ11(C1)C2 +C1δ11(C2) C1C2B−BD1D2 + τ12(C1W2)+ τ12(W1D2)

0 ϕ22(D1)D2 +D1ϕ22(D2)

)
and

δ
((

C1 W1

0 D1

))(
C2 W2

0 D2

)
+

(
C1 W1

0 D1

)
δ

((
C2 W2

0 D2

))
=

(
δ11(C1) C1B−BD1 + τ12(W1)

0 ϕ22(D1)

)(
C2 W2

0 D2

)
+

(
C1 W1

0 D1

)(
δ11(C2) C2B−BD2 + τ12(W2)

0 ϕ22(D2)

)
=

(
δ11(C1)C2 +C1δ11(C2) T3

0 ϕ22(D1)D2 +D1ϕ22(D2)

)
,

where

T3 = δ11(C1)W2 +C1BD2−BD1D2

+τ12(W1)D2 +C1C2B−C1BD2 +C1τ12(W2)+W1ϕ22(D2)
= C1C2B−BD1D2 + τ12(C1W2)+ τ12(W1D2).

Thus we get

δ
((

C1 W1

0 D1

)(
C2 W2

0 D2

))
= δ

((
C1 W1

0 D1

))(
C2 W2

0 D2

)
+

(
C1 W1

0 D1

)
δ

((
C2 W2

0 D2

))
,

i.e., δ is a derivation if Ω1 is injective, as desired.

Case 2. Ω1 has dense range. Let us check that δ is still a derivation step by step.

Step 2.1. δ11(I1) = 0, δ22(Ω1) = 0, and δ12(Ω1) = C1δ12(C2Ω1) holds for any
C1,C2 ∈ A11 with C1C2 = I1 .

For any C1,C2 ∈ A11 with C1C2 = I1 and any D1,D2 ∈ A22 with D1D2 = 0, let

S =
(

C1 0
0 D1

)
and T =

(
C2Ω1 0

0 D2

)
; then ST = Ω . As δ is derivable at Ω , we have

(
δ11(Ω1) δ12(Ω1)

0 δ22(Ω1)

)
= δ (S)T +Sδ (T)

=
(

δ11(C1)+ ϕ11(D1) δ12(C1)+ ϕ12(D1)
0 δ22(C1)+ ϕ22(D1)

)(
C2Ω1 0

0 D2

)
+

(
C1 0
0 D1

)(
δ11(C2Ω1)+ ϕ11(D2) δ12(C2Ω1)+ ϕ12(D2)

0 δ22(C2Ω1)+ ϕ22(D2)

)
=

(
T4 δ12(C1)D2 + ϕ12(D1)D2 +C1δ12(C2Ω1)+C1ϕ12(D2)
0 δ22(C1)D2 + ϕ22(D1)D2 +D1δ22(C2Ω1)+D1ϕ22(D2)

)
,



ALL-DERIVABLE POINTS OF NEST ALGEBRAS 489

where

T4 = δ11(C1)C2Ω1 + ϕ11(D1)C2Ω1 +C1δ11(C2Ω1)+C1ϕ11(D2).

Therefore,

δ11(Ω1) = δ11(C1)C2Ω1 + ϕ11(D1)C2Ω1 +C1δ11(C2Ω1)+C1ϕ11(D2), (3.17)

δ12(Ω1) = δ12(C1)D2 + ϕ12(D1)D2 +C1δ12(C2Ω1)+C1ϕ12(D2), (3.18)

and

δ22(Ω1) = δ22(C1)D2 + ϕ22(D1)D2 +D1δ22(C2Ω1)+D1ϕ22(D2). (3.19)

Letting D1 = D2 = 0, by Eqs.(3.18) and (3.19), we get δ12(Ω1) = C1δ12(C2Ω1)
and δ22(Ω1)= 0 respectively. When C1 =C2 = I1 , by Eq.(3.17), we get δ11(I1)Ω1 = 0.
Because operator Ω1 has dense range, we must have δ11(I1) = 0. Thus we have shown
that

δ11(I1) = 0, δ12(Ω1) =C1δ12(C2Ω1), δ22(Ω1) = 0 (3.20)

holds for any C1,C2 ∈ A11 with C1C2 = I1 .

Step 2.2. δ22 = 0 and δ12(C) = CB′ for all C ∈ A11 , where B′ = δ12(I1) .
Letting C1 =C2 = I1,D1 = 0,D2 = I2 , by Eqs.(3.18) and (3.20), we get δ12(I1)+

ϕ12(I2) = 0; by Eqs.(3.19) and (3.20), we get δ22(I1) = 0. Thus ϕ12(I2) = −B′ , where
B′ = δ12(I1) . Hence

δ12(I1) = B′,δ22(I1) = 0,ϕ12(I2) = −B′. (3.21)

Letting D1 = 0,D2 = I2 , by Eqs.(3.18) and (3.20), we have δ12(C1)=−C1ϕ12(I2) ;
by Eqs.(3.19) and (3.20), we get δ22(C1) = δ22(Ω1) = 0. For any C ∈A11 , we can take
positive integer n such that n > ‖C‖ . Then nI1−C is invertible with its inverse still in
A11 . Thus we get δ12(nI1−C) = −(nI1−C)ϕ12(I2) , and δ22(nI1−C )=0. Because δ
is an additive map, nδ12(I1)− δ12(C) = −nϕ12(I2)+Cϕ12(I2) . By Eq.(3.21) we have
δ12(C) = CB′ and δ22(C) = nδ22(I1) = 0. Thus

δ12(C) = CB′,δ22(C) = 0 (3.22)

holds for all C ∈ A11 .

Step 2.3. ϕ11 = 0, ϕ12(D) = −B′D for all D ∈ A22 .
Letting C1 = C2 = I1 , D2 = 0, by Eqs.(3.17) and (3.20), we get ϕ11(D1)Ω1 = 0.

Letting C1 =C2 = I1 , D1 = 0, by Eqs.(3.18) and (3.20), we get ϕ12(D2)=−δ12(I1)D2 =
−B′D2 . Since the operator Ω1 has dense range, it follows that

ϕ11(D) = 0,ϕ12(D) = −B′D (3.23)

holds for any D ∈ A22 .

Step 2.4. τ11 = 0 and τ22 = 0.
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For any W ∈ A12 , we take S =
(

Ω1 W
0 0

)
and T =

(
I1 0
0 0

)
, then ST = Ω . By

Steps 2.1-2.3,(
δ11(Ω1) δ12(Ω1)

0 0

)
= δ (S)T +Sδ (T )

=
(

δ11(Ω1)+ τ11(W ) δ12(Ω1)+ τ12(W )
0 τ22(W )

)(
I1 0
0 0

)
+

(
Ω1 W
0 0

)(
0 δ12(I1)
0 0

)
=

(
δ11(Ω1)+ τ11(W ) Ω1δ12(I1)

0 0

)
.

Thus we get that δ11(Ω1) = δ11(Ω1)+ τ11(W ) . It follows that

τ11(W ) = 0 (3.24)

holds for any W ∈ A12 .

Taking S =
(

I1 −W
0 0

)
and T =

(
Ω1 W
0 I2

)
yields

τ22(W ) = 0 (3.25)

for all W ∈ A12 .

Step 2.5. τ12(WD) = τ12(W )D+Wϕ22(D) holds for all W ∈ A12 and D ∈ A22 .

Taking S =
(

I1 W
0 0

)
and T =

(
Ω1 −WD
0 D

)
leads to that

δ12(Ω1) = δ12(I1)D+ τ12(W )D+ δ12(Ω1)− τ12(WD)+ ϕ12(D)+Wϕ22(D) (3.26)

are true for any W ∈ A12 and D ∈ A22 . Then by Eqs.(3.22) and (3.23), we get that
τ12(W )D− τ12(WD)+Wϕ22(D) = 0, that is,

τ12(WD) = τ12(W )D+Wϕ22(D) (3.27)

holds for any W and D .

Step 2.6. ϕ22 is a derivation.
By Eq. (3.27) and a similar argument to that in Step 1.7 of Case 1, one can show

that
ϕ22(D1D2) = ϕ22(D1)D2 +D1ϕ22(D2) (3.28)

holds for all D1,D2 ∈ A22 and hence ϕ22 is derivation.

Step 2.7. τ12(CW ) = Cτ12(W )+ δ11(C)W holds for all C ∈ A11 and W ∈ A12 ,
and δ11 is a derivation.

Taking S =
(

C1 −C1W
0 0

)
and T =

(
C−1

1 Ω1 W
0 I2

)
one can get that

δ12(Ω1) = δ11(C1)W + δ12(C1)− τ12(C1W )+C1δ12(C−1
1 Ω1)+C1τ12(W )+C1ϕ12(I2)
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It follows from Eqs.(3.22) and (3.23) that

τ12(CW ) = Cτ12(W )+ δ11(C)W (3.29)

holds for any C ∈ A11 and W ∈ A12 . Now, by use of Eq.(2.29) it is easily checked that
δ11 is a derivation.

Step 2.8. δ is a derivation.
Now, by use of Step 2.1-2.7, a similar argument to that in Step 1.10 of Case 1, one

shows that δ is a derivation.
If dimX = ∞ , by [3], every additive derivation of AlgN is linear. Hence, if δ is

additive and derivable at Ω , then δ is a linear derivation and thus an inner derivation,
that is, there exists an operator T ∈ AlgN such that δ (A) = AT −TA for every A ∈
AlgN . This completes the proof of (a).

(b) Assume that (I−P)Ω(I−P) = Ω .

In this case Ω has the form Ω =
(

0 0
0 Ω2

)
, where Ω2 is injective or has dense

range as an operator acting on kerP . By a similar approach as that in Case 1 and Case
2 of (a), one can show that, if δ is derivable at Ω , then δ is again a derivation. We
omit its proof here. �
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