ALL-DERIVABLE POINTS OF NEST ALGEBRAS ON BANACH SPACES

Weishun Xue and Jinchuan Hou

(Communicated by N.-C. Wong)

Abstract

Let \mathscr{N} be a nest on a real or complex Banach space X and let $\operatorname{Alg} \mathscr{N}$ be the associated nest algebra. $\Omega \in \operatorname{Alg} \mathscr{N}$ is called an additively all-derivable point if for any additive map $\delta: \operatorname{Alg} \mathscr{N} \rightarrow \operatorname{Alg} \mathscr{N}, \delta(A B)=\delta(A) B+A \delta(B)$ holds for any $A, B \in \operatorname{Alg} \mathscr{N}$ with $A B=\Omega$ implies that δ is an additive derivation. Assume that P is an idempotent operator with range $\operatorname{ran}(P)=N_{0}$ for some nontrivial $N_{0} \in \mathscr{N}$. Let $\Omega \in \operatorname{Alg} \mathscr{N}$ be any operator satisfying that $P \Omega P=\Omega($ or $(I-P) \Omega(I-P)=\Omega)$. We show that, if $\left.\Omega\right|_{\operatorname{ran}(P)}\left(\right.$ or $\left.\left.\Omega\right|_{\operatorname{ran}(I-P)}\right)$ is injective or has dense range, then Ω is an additively all-derivable point. Moreover, if X is infinite dimensional, then every additive map derivable at such an Ω is an inner derivation.

1. Introduction

Let \mathscr{A} be an (operator) algebra. Recall that a linear (or an additive) map δ from \mathscr{A} into itself is called a derivation if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $A, B \in \mathscr{A}$. The class of derivations is one of the most important kinds of linear (or additive) maps both in theory and applications, and this topic has been studied intensively (Ref. [2]). The question of under what conditions that a linear (or an additive) map becomes a derivation attracted much attention of mathematicians (for instance, see [1], [4], [5], [9], [10] and the references therein). We say that a map $\delta: \mathscr{A} \rightarrow \mathscr{A}$ is derivable at a point Ω if $\delta(A) B+A \delta(B)=\delta(\Omega)$ for any $A, B \in \mathscr{A}$ with $A B=\Omega$, and such Ω is called a derivable point of δ. It is obvious that a linear map is a derivation if and only if it is derivable at all point. It is natural and interesting to ask the question whether or not a linear (an additive) map is a derivation if it is derivable only at one given point (Ref. [8]). Such points, if exist, are called linearly (additively) all-derivable points. The topic of characterizing the all-derivable points for various algebras has been studied by many authors and some all-derivable points have been found. However the set of all-derivable points is still far from being determined completely for almost all algebras.

Let \mathscr{N} be a complete nest on a complex separable Hilbert space H. Suppose that M belongs to \mathscr{N} with $\{0\} \neq M \neq H$ and write \widehat{M} for M or M^{\perp} and $P(\widehat{M})$ be the orthogonal projection on \widehat{M}. Let $\mathscr{N}_{\widehat{M}}=\{N \cap \widehat{M}: N \in \mathscr{N}\}$, which is a nest on \widehat{M}. It was shown in [8] that, for any $\Omega \in \operatorname{Alg} \mathscr{N}$ with $\Omega=P(\widehat{M}) \Omega P(\widehat{M})$, if $\left.\Omega\right|_{\widehat{M}}$ is invertible

[^0]in $\operatorname{Alg} \mathscr{N}_{\widehat{M}}$, then Ω is a linearly all-derivable point in $\operatorname{Alg} \mathscr{N}$ for the strong operator topology, that is, every strongly continuous linear map from Alg \mathscr{N} into itself derivable at Ω is a derivation.

The purpose of this paper is to discuss a similar question for nest algebras on Ba nach spaces. Let \mathscr{N} be a nest on a real or complex Banach space X and let Alg \mathscr{N} be the associated nest algebra. Assume that $\operatorname{dim} X=\infty$ and \mathscr{N} is a nest in X. For an $N_{0} \in \mathscr{N}$ which is complemented and for any idempotent operator P with range $\operatorname{ran}(P)=N_{0}$, we show that, if $\Omega \in \operatorname{Alg} \mathscr{N}$ satisfies that $P \Omega P=\Omega$ with $\left.\Omega\right|_{\operatorname{ran}(P)}$ injective or of dense range as an operator on $\operatorname{ran}(P)$, or $(I-P) \Omega(I-P)=\Omega$ with $\left.\Omega\right|_{\operatorname{ker} P}$ injective or of dense range as an operator on $\operatorname{ker} P$, then Ω is an additively all-derivable point of $\operatorname{Alg} \mathscr{N}$. In fact, every additive map derivable at Ω is a linear derivation and hence, an inner derivation. Comparing our result with the main result obtained in [8], we remark that, (1) we do not assume that the Banach space is separable or complex, and our result holds for any real or complex infinite dimensional Banach spaces; (2) the assumption on the nest is quite weak, and all nests on Hilbert spaces satisfy the assumption since every subspace in a Hilbert space is complemented; (3) we do not assume that the map is continuous under any topology, and the continuity is included in the conclusion; (4) we do not assume that $\left.\Omega\right|_{\operatorname{ran}(P)}\left(\left.\Omega\right|_{\operatorname{ker} P}\right)$ is invertible in $\operatorname{Alg} \mathscr{N}_{\widehat{M}}$, while only assume that it is injective or with dense range; (5) we do not assume that the map is linear, while only the additivity is assumed. Thus, our result generalizes the result of [8] remarkably. Our result is also a generalization of the main result of [5], in which it was shown that, if \mathscr{N} satisfies that each $N \in \mathscr{N}$ with $N_{-}=N$ is complemented, then the above idempotent P as well as injective operators and operators with dense range in $\operatorname{Alg} \mathscr{N}$ are linearly all-derivable points. Here $N_{-}=\vee\{L: L \in \mathscr{N}$ and $L \subset N\}$.

2. Main Results

The following is our main result in this paper, which gives some new kinds of all-derivable points of nest algebras on Banach spaces. Recall that a map $\phi: \operatorname{Alg} \mathscr{N} \rightarrow$ $\operatorname{Alg} \mathscr{N}$ is called an inner derivation if there exists $T \in \operatorname{Alg} \mathscr{N}$ such that $\phi(A)=A T-$ $T A$ for all $A \in \operatorname{Alg} \mathscr{N}$. Inner derivations are linear.

THEOREM 2.1. Let \mathscr{N} be a nest on a real or complex Banach space X and let Alg \mathscr{N} be the associated nest algebra. Assume that $N_{0} \in \mathscr{N}$ is non-trivial and complemented in X and P is any bounded idempotent operator on X with range N_{0}. Let $\delta: \operatorname{Alg} \mathscr{N} \rightarrow \operatorname{Alg} \mathscr{N}$ be an additive map.
(a) For any operator $\Omega \in \operatorname{Alg} \mathscr{N}$ with $P \Omega P=\Omega$, if $\left.\Omega\right|_{\operatorname{ran}(P)}$ is injective or has dense range as an operator on $\operatorname{ran}(P)$, then $\delta(A B)=\delta(A) B+A \delta(B)$ holds for any $A, B \in \operatorname{Alg} \mathscr{N}$ with $A B=\Omega$ implies that δ is an additive derivation.
(b) For any operator $\Omega \in \operatorname{Alg} \mathscr{N}$ with $(I-P) \Omega(I-P)=\Omega$, if $\left.\Omega\right|_{\text {ker } P}$ is injective or has dense range as an operator on $\operatorname{ker} P$, then $\delta(A B)=\delta(A) B+A \delta(B)$ holds for any $A, B \in \operatorname{Alg} \mathscr{N}$ with $A B=\Omega$ implies that δ is an additive derivation.

Furthermore, if X is infinite-dimensional, then δ is an inner derivation.
The last assertion is not valid for finite dimensional case. In fact, every additive derivation on the algebra $\mathscr{T}_{n}(\mathbb{F})$ of upper triangular matrix has the form $A \mapsto A T-T A+$
$\left(f\left(a_{i j}\right)\right)$ for any $A=\left(a_{i j}\right) \in \mathscr{T}_{n}(\mathbb{F})$, where $T \in \mathscr{T}_{n}(\mathbb{F})$ and f is an additive derivation on the complex field $\mathbb{F}=\mathbb{R}$ or \mathbb{C} (ref. [7]). By [6], there exist many nontrivial additive derivations on \mathbb{F}.

Note that, every subspace of a Hilbert space is complemented. Hence as a consequence of Theorem 2.1, the following corollary is obvious, which is a generalization of the main result in [8].

Corollary 2.2. Let \mathscr{N} be a nest on a real or complex Hilbert space H. For any nontrivial $M \in \mathscr{N}$, write \widehat{M} for M or M^{\perp} and let $P(\widehat{M})$ be the orthogonal projection on \widehat{M}. Let $\Omega \in \operatorname{Alg} \mathscr{N}$ be an operator such that $\Omega=P(\widehat{M}) \Omega P(\widehat{M})$ and $\left.\Omega\right|_{\widehat{M}}$ is injective or of dense range as an operator on \widehat{M}. Let $\delta: \operatorname{Alg} \mathscr{N} \rightarrow \operatorname{Alg} \mathscr{N}$ be an additive map. If δ is derivable at Ω, that is, $\delta(A B)=\delta(A) B+A \delta(B)$ holds for any A, B with $A B=\Omega$, then δ is an additive derivation. In addition, if H is infinite-dimensional, then δ is inner.

3. Proof of the main result

Proof of Theorem 2.1. Because $N_{0} \in \mathscr{N}$ is non-trivial, it follows from $\operatorname{ran}(P)=$ N_{0} that P is nontrivial and $P \in \operatorname{Alg} \mathscr{N}$. Let $\mathscr{N}_{1}=\left\{N \mid N \in \mathscr{N}, N \subseteq N_{0}\right\}, \mathscr{N}_{2}=$ $\{N \cap(\operatorname{ker} P) \mid N \in \mathscr{N}\}$. Then

$$
\operatorname{Alg} \mathscr{N}=\left\{\left(\begin{array}{ll}
C & W \\
0 & D
\end{array}\right): C \in \operatorname{Alg} \mathscr{N}_{1}, W \in \mathscr{B}\left(\operatorname{ker} P, N_{0}\right), D \in \operatorname{Alg} \mathscr{N}_{2}\right\}
$$

For any $C \in \mathscr{A}_{11}=\operatorname{Alg} \mathscr{N}_{1}, W \in \mathscr{A}_{12}=\mathscr{B}\left(\operatorname{ker} P, N_{0}\right), D \in \mathscr{A}_{22}=\operatorname{Alg} \mathscr{N}_{2}$, if $\delta:$ $\operatorname{Alg} \mathscr{N} \rightarrow \operatorname{Alg} \mathscr{N}$ is additive, then we can write

$$
\delta\left(\left(\begin{array}{ll}
C & W \\
0 & D
\end{array}\right)\right)=\left(\begin{array}{cc}
\delta_{11}(C)+\tau_{11}(W)+\varphi_{11}(D) & \delta_{12}(C)+\tau_{12}(W)+\varphi_{12}(D) \\
0 & \delta_{22}(C)+\tau_{22}(W)+\varphi_{22}(D)
\end{array}\right)
$$

where $\delta_{i j}: \mathscr{A}_{11} \rightarrow \mathscr{A}_{i j}, \tau_{i j}: \mathscr{A}_{12} \rightarrow \mathscr{A}_{i j}, \varphi_{i j}: \mathscr{A}_{22} \rightarrow \mathscr{A}_{i j}$ are additive maps, $i, j \in\{1,2\}$ with $i \leqslant j$. Denote by I_{i} the unit of $\mathscr{A}_{i i}, i=1,2$.
(a) Assume that $\Omega \in \operatorname{Alg} \mathscr{N}$ satisfies the conditions that $P \Omega P=\Omega,\left.\Omega\right|_{\operatorname{ran}(P)}$ is injective or has dense range as an operator on $\operatorname{ran}(P)$. Then $\Omega=\left(\begin{array}{rr}\Omega_{1} & 0 \\ 0 & 0\end{array}\right)$ with Ω_{1} is injective or of dense range. We shall show that Ω is an all-derivable point of the nest algebra.

In the sequel we assume that δ is an additive map that is derivable at Ω.

Case 1. Ω_{1} is injective. We will show that δ is a derivation step by step.
Step 1.1. $\delta_{11}\left(I_{1}\right)=0, \delta_{22}\left(\Omega_{1}\right)=0$, and for any $C_{1}, C_{2} \in \mathscr{A}_{11}$ with $C_{1} C_{2}=I_{1}$, we have $C_{1} \delta_{12}\left(C_{2}\right)=\delta_{12}\left(I_{1}\right)$.

For any $C_{1}, C_{2} \in \mathscr{A}_{11}$ with $C_{1} C_{2}=I_{1}$, any $D_{1}, D_{2} \in \mathscr{A}_{22}$ with $D_{1} D_{2}=0$, take $S=\left(\begin{array}{cc}\Omega_{1} C_{1} & 0 \\ 0 & D_{1}\end{array}\right)$ and $T=\left(\begin{array}{cc}C_{2} & 0 \\ 0 & D_{2}\end{array}\right)$; then $S T=\Omega$. So we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & \delta_{22}\left(\Omega_{1}\right)
\end{array}\right)=\delta(S) T+S \delta(T) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1} C_{1}\right)+\varphi_{11}\left(D_{1}\right) & \delta_{12}\left(\Omega_{1} C_{1}\right)+\varphi_{12}\left(D_{1}\right) \\
0 & \delta_{22}\left(\Omega_{1} C_{1}\right)+\varphi_{22}\left(D_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
C_{2} & 0 \\
0 & D_{2}
\end{array}\right) \\
& +\left(\begin{array}{cc}
\Omega_{1} C_{1} & 0 \\
0 & D_{1}
\end{array}\right)\left(\begin{array}{cc}
\delta_{11}\left(C_{2}\right)+\varphi_{11}\left(D_{2}\right) & \delta_{12}\left(C_{2}\right)+\varphi_{12}\left(D_{2}\right) \\
0 & \delta_{22}\left(C_{2}\right)+\varphi_{22}\left(D_{2}\right)
\end{array}\right) \\
= & \left(\begin{array}{cc}
T_{1} & \delta_{12}\left(\Omega_{1} C_{1}\right) D_{2}+\varphi_{12}\left(D_{1}\right) D_{2}+\Omega_{1} C_{1} \delta_{12}\left(C_{2}\right)+\Omega_{1} C_{1} \varphi_{12}\left(D_{2}\right) \\
0 & \delta_{22}\left(\Omega_{1} C_{1}\right) D_{2}+\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \delta_{22}\left(C_{2}\right)+D_{1} \varphi_{22}\left(D_{2}\right)
\end{array}\right),
\end{aligned}
$$

where $T_{1}=\delta_{11}\left(\Omega_{1} C_{1}\right) C_{2}+\varphi_{11}\left(D_{1}\right) C_{2}+\Omega_{1} C_{1} \delta_{11}\left(C_{2}\right)+\Omega_{1} C_{1} \varphi_{11}\left(D_{2}\right)$. It follows that

$$
\begin{align*}
& \delta_{11}\left(\Omega_{1}\right)=\delta_{11}\left(\Omega_{1} C_{1}\right) C_{2}+\varphi_{11}\left(D_{1}\right) C_{2}+\Omega_{1} C_{1} \delta_{11}\left(C_{2}\right)+\Omega_{1} C_{1} \varphi_{11}\left(D_{2}\right) \tag{3.1}\\
& \delta_{12}\left(\Omega_{1}\right)=\delta_{12}\left(\Omega_{1} C_{1}\right) D_{2}+\varphi_{12}\left(D_{1}\right) D_{2}+\Omega_{1} C_{1} \delta_{12}\left(C_{2}\right)+\Omega_{1} C_{1} \varphi_{12}\left(D_{2}\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{22}\left(\Omega_{1}\right)=\delta_{22}\left(\Omega_{1} C_{1}\right) D_{2}+\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \delta_{22}\left(C_{2}\right)+D_{1} \varphi_{22}\left(D_{2}\right) \tag{3.3}
\end{equation*}
$$

Letting $D_{1}=D_{2}=0$, by Eqs.(3.2) and (3.3), one gets $\delta_{12}\left(\Omega_{1}\right)=\Omega_{1} C_{1} \delta_{12}\left(C_{2}\right)$ and $\delta_{22}\left(\Omega_{1}\right)=0$. Letting $C_{1}=C_{2}=I_{1}, D_{1}=D_{2}=0$, by Eqs.(3.1) and (3.2), one gets $\Omega_{1} \delta_{11}\left(I_{1}\right)=0$ and $\delta_{12}\left(\Omega_{1}\right)=\Omega_{1} \delta_{12}\left(I_{1}\right)$. It follows from the injectivity of Ω_{1} that

$$
\begin{equation*}
\delta_{11}\left(I_{1}\right)=0, C_{1} \delta_{12}\left(C_{2}\right)=\delta_{12}\left(I_{1}\right), \delta_{22}\left(\Omega_{1}\right)=0 \tag{3.4}
\end{equation*}
$$

Step 1.2. $\delta_{12}(C)=C B$ holds for all $C \in \mathscr{A}_{11}$, where $B=\delta_{12}\left(I_{1}\right)$.
Taking any $C_{0} \in \mathscr{A}_{11}$ which is invertible as an element in \mathscr{A}_{11} and letting $C_{2}=$ $C_{0}, C_{1}=C_{0}^{-1}$, by Step 1.1, we get that $\delta_{12}\left(C_{0}\right)=C_{0} \delta_{12}\left(I_{1}\right)$ holds for all invertible $C_{0} \in \mathscr{A}_{11}$. For any $C \in \mathscr{A}_{11}$, take $n \in \mathbb{N}$ so that $n>\|C\|$. Then $n I_{1}-C$ is an invertible operator with its inverse still in \mathscr{A}_{11}. Thus we have $\delta_{12}\left(n I_{1}-C\right)=\left(n I_{1}-C\right) \delta_{12}\left(I_{1}\right)$. It follows that $n \delta_{12}\left(I_{1}\right)-\delta_{12}(C)=n \delta_{12}\left(I_{1}\right)-C \delta_{12}\left(I_{1}\right)$ as δ is additive. Hence

$$
\begin{equation*}
\delta_{12}(C)=C B \tag{3.5}
\end{equation*}
$$

for all $C \in \mathscr{A}_{11}$.
Step 1.3. $\delta_{22}=0$.
Taking any invertible operator $C_{0} \in \mathscr{A}_{11}$ and letting $C_{2}=C_{0}, C_{1}=C_{0}^{-1}$ and $D_{1}=$ $I_{2}, D_{2}=0$ in Eqs.(3.3), and by (3.4), we get $\delta_{22}\left(C_{2}\right)=0$. Particularly, when $C_{1}=C_{2}=$ I_{1}, we get $\delta_{22}\left(I_{1}\right)=0$. For any $C \in \mathscr{A}_{11}$, we can take $n \in \mathbb{N}$ so that $n>\|C\|$. Then $n I_{1}-C$ is invertible with its inverse still in \mathscr{A}_{11}. Hence $\delta_{22}\left(n I_{1}-C\right)=0$. Since δ is additive, we have

$$
\begin{equation*}
\delta_{22}(C)=n \delta_{22}\left(I_{1}\right)=0 \tag{3.6}
\end{equation*}
$$

holds for all $C \in \mathscr{A}_{11}$. Hence $\delta_{22}=0$, as desired.

Step 1.4. $\varphi_{11}=0$ and $\varphi_{12}(D)=-B D$ for all $D \in \mathscr{A}_{22}$.
Letting $C_{1}=C_{2}=I_{1}, D_{1}=0, D_{2}=I_{2}$ in Eq.(3.2) we get $\Omega_{1} \delta_{12}\left(I_{1}\right)+\Omega_{1} \varphi_{12}\left(I_{2}\right)=$ 0 . Because Ω_{1} is injective, it follows that $\varphi_{12}\left(I_{2}\right)=-\delta_{12}\left(I_{1}\right)=-B$. Letting $C_{1}=C_{2}=$ $I_{1}, D_{2}=0$ in Eqs.(3.1) and (3.4), we get $\varphi_{11}\left(D_{1}\right)=0$. Thus we have

$$
\begin{equation*}
\varphi_{11}(D)=0 \tag{3.7}
\end{equation*}
$$

for all $D \in \mathscr{A}_{22}$.
Letting $C_{1}=C_{2}=I_{1}, D_{1}=0$ in Eqs.(3.2) and (3.5) we have $\Omega_{1} B D_{2}=-\Omega_{1} \varphi_{12}\left(D_{2}\right)$. Then $\varphi_{12}\left(D_{2}\right)=-B D_{2}$ as Ω_{1} is injective. Thus for any $D \in \mathscr{A}_{22}$, we have

$$
\begin{equation*}
\varphi_{12}(D)=-B D \tag{3.8}
\end{equation*}
$$

Step 1.5. $\tau_{11}=0$ and $\tau_{22}=0$.
For any $W \in \mathscr{A}_{12}$, take $S=\left(\begin{array}{rr}\Omega_{1} & W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}I_{1} & 0 \\ 0 & 0\end{array}\right)$. Then $S T=\Omega$. So, by Step 1.3,

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & 0
\end{array}\right)=\delta(S) T+S \delta(T) \\
& =\left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W) & \delta_{12}\left(\Omega_{1}\right)+\tau_{12}(W) \\
0 & \tau_{22}(W)
\end{array}\right)\left(\begin{array}{cc}
I_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
\Omega_{1} & W \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \delta_{12}\left(I_{1}\right) \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W) & \Omega_{1} \delta_{12}\left(I_{1}\right) \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

It follows that $\delta_{11}\left(\Omega_{1}\right)=\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W)$ for all $W \in \mathscr{A}_{12}$. Hence

$$
\begin{equation*}
\tau_{11}(W)=0 \tag{3.9}
\end{equation*}
$$

holds for all $W \in \mathscr{A}_{12}$, that is, $\tau_{11}=0$.
For any $W \in \mathscr{A}_{12}$, take $S=\left(\begin{array}{cc}I_{1} & -W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}\Omega_{1} & W \\ 0 & I_{2}\end{array}\right)$; then $S T=\Omega$. Thus by Steps 1.1-1.4 (Eqs.(3.4)-(3.8)) and Eq.(3.9), we obtain that

$$
\left.\begin{array}{rl}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & 0
\end{array}\right)=\delta(S) T+S \delta(T) \\
0 & \delta_{12}\left(I_{1}\right)-\tau_{12}(W) \\
0 & -\tau_{22}(W)
\end{array}\right)\left(\begin{array}{cc}
\Omega_{1} & W \\
0 & I_{2}
\end{array}\right) .
$$

This entails that

$$
\begin{equation*}
\tau_{22}(W)=0 \tag{3.10}
\end{equation*}
$$

for all $W \in \mathscr{A}_{12}$, i.e., $\tau_{22}=0$.

Step 1.6. $\tau_{12}(W D)=\tau_{12}(W) D+W \varphi_{22}(D)$ holds for all $W \in \mathscr{A}_{12}$ and $D \in \mathscr{A}_{22}$. To see this, take $S=\left(\begin{array}{cc}I_{1} & W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}\Omega_{1} & -W D \\ 0 & D\end{array}\right)$, where $W \in \mathscr{A}_{12}$ and $D \in$ \mathscr{A}_{22}. As $S T=\Omega$, by what proved in steps $1-5$, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & 0
\end{array}\right)=\delta(S) T+S \delta(T) \\
= & \left(\begin{array}{cc}
0 & \delta_{12}\left(I_{1}\right)+\tau_{12}(W) \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Omega_{1}-W D \\
0 & D
\end{array}\right) \\
& +\left(\begin{array}{cc}
I_{1} & W \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right)-\tau_{12}(W D)+\varphi_{12}(D) \\
0 & \varphi_{22}(D)
\end{array}\right) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(I_{1}\right) D+\tau_{12}(W) D+\delta_{12}\left(\Omega_{1}\right)-\tau_{12}(W D)+\varphi_{12}(D)+W \varphi_{22}(D) \\
0 & -\tau_{22}(W)
\end{array}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\delta_{12}\left(\Omega_{1}\right)=\delta_{12}\left(I_{1}\right) D+\tau_{12}(W) D+\delta_{12}\left(\Omega_{1}\right)-\tau_{12}(W D)+\varphi_{12}(D)+W \varphi_{22}(D) \tag{3.11}
\end{equation*}
$$

By Eqs.(3.5), (3.8) and (3.11), we get $\tau_{12}(W) D-\tau_{12}(W D)+W \varphi_{22}(D)=0$. Thus

$$
\begin{equation*}
\tau_{12}(W D)=\tau_{12}(W) D+W \varphi_{22}(D) \tag{3.12}
\end{equation*}
$$

holds for any $W \in \mathscr{A}_{12}$ and $D \in \mathscr{A}_{22}$.
Step 1.7. φ_{22} is a derivation.
The assertion of Step 1.6 implies that, for any $W \in \mathscr{A}_{12}$ and $D_{1}, D_{2} \in \mathscr{A}_{22}$, we have

$$
\begin{aligned}
& \tau_{12}(W) D_{1} D_{2}+W \varphi_{22}\left(D_{1} D_{2}\right) \\
= & \tau_{12}\left(W D_{1} D_{2}\right)=\tau_{12}\left(W D_{1}\right) D_{2}+W D_{1} \varphi_{22}\left(D_{2}\right) \\
= & \tau_{12}(W) D_{1} D_{2}+W \varphi_{22}\left(D_{1}\right) D_{2}+W D_{1} \varphi_{22}\left(D_{2}\right)
\end{aligned}
$$

Thus one gets

$$
W\left(\varphi_{22}\left(D_{1} D_{2}\right)-\varphi_{22}\left(D_{1}\right) D_{2}-D_{1} \varphi_{22}\left(D_{2}\right)\right)=0
$$

Because W is arbitrary, we see that

$$
\begin{equation*}
\varphi_{22}\left(D_{1} D_{2}\right)=\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \varphi_{22}\left(D_{2}\right) \tag{3.13}
\end{equation*}
$$

holds for all $D_{1}, D_{2} \in \mathscr{A}_{22}$, that is, φ_{22} is a derivation.
Step 1.8. $\tau_{12}(C W)=C \tau_{12}(W)+\delta_{11}(C) W$ holds for all $C \in \mathscr{A}_{11}$ and $W \in \mathscr{A}_{12}$.
For any $W \in \mathscr{A}_{12}$ and any invertible operator $C_{1} \in \mathscr{A}_{11}$, let $S=\left(\begin{array}{cc}C_{1} & -C_{1} W \\ 0 & 0\end{array}\right)$
and $T=\left(\begin{array}{ccc}C_{1}^{-1} \Omega_{1} & W \\ 0 & I_{2}\end{array}\right)$; then $S T=\Omega$. By Eqs. (3.4)-(3.13),

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & 0
\end{array}\right)=\delta(S) T+S \delta(T) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right) & \delta_{12}\left(C_{1}\right)-\tau_{12}\left(C_{1} W\right) \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
C_{1}^{-1} \Omega_{1} & W \\
0 & I_{2}
\end{array}\right) \\
& +\left(\begin{array}{cc}
C_{1}-C_{1} W \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\delta_{11}\left(C_{1}^{-1} \Omega_{1}\right) & \delta_{12}\left(C_{1}^{-1} \Omega_{1}\right)+\tau_{12}(W)+\varphi_{12}\left(I_{2}\right) \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right) C_{1}^{-1} \Omega_{1}+C_{1} \delta_{11}\left(C_{1}^{-1} \Omega_{1}\right) & T_{2} \\
0 & 0
\end{array}\right),
\end{aligned}
$$

where

$$
T_{2}=\delta_{11}\left(C_{1}\right) W+\delta_{12}\left(C_{1}\right)-\tau_{12}\left(C_{1} W\right)+C_{1} \delta_{12}\left(C_{1}^{-1} \Omega_{1}\right)+C_{1} \tau_{12}(W)+C_{1} \varphi_{12}\left(I_{2}\right)
$$

Hence we have
$\delta_{12}\left(\Omega_{1}\right)=\delta_{11}\left(C_{1}\right) W+\delta_{12}\left(C_{1}\right)-\tau_{12}\left(C_{1} W\right)+C_{1} \delta_{12}\left(C_{1}^{-1} \Omega_{1}\right)+C_{1} \tau_{12}(W)+C_{1} \varphi_{12}\left(I_{2}\right)$.
By Eqs.(3.5) and (3.8), we see that

$$
\begin{equation*}
\tau_{12}\left(C_{1} W\right)=\delta_{11}\left(C_{1}\right) W+C_{1} \tau_{12}(W) \tag{3.14}
\end{equation*}
$$

holds for all invertible $C_{1} \in \mathscr{A}_{11}$ and all $W \in \mathscr{A}_{12}$. For any $C \in \mathscr{A}_{11}$, substitute $C_{1}=$ $n I_{1}-C$ with $n \in \mathbb{N}$ and $n>\|C\|$ in Eq.(3.14). Then we get $\delta_{11}\left(n I_{1}-C\right) W+\left(n I_{1}-\right.$ C) $\tau_{12}(W)=\tau_{12}\left(\left(n I_{1}-C\right) W\right)$. Thus

$$
n \delta_{11}\left(I_{1}\right) W-\delta_{11}(C) W+n \tau_{12}(W)-C \tau_{12}(W)=n \tau_{12}(W)-\tau_{12}(C W)
$$

Comparing the two sides of the above equation and applying Eq.(3.4), one sees that

$$
\begin{equation*}
\tau_{12}(C W)=C \tau_{12}(W)+\delta_{11}(C) W \tag{3.15}
\end{equation*}
$$

holds for all $C \in \mathscr{A}_{11}$ and $W \in \mathscr{A}_{12}$.
Step 1.9. δ_{11} is a derivation.
For any $W \in \mathscr{A}_{12}$ and $C_{1}, C_{2} \in \mathscr{A}_{11}$, it follows from Eq.(3.15) that

$$
\begin{aligned}
& C_{1} C_{2} \tau_{12}(W)+\delta_{11}\left(C_{1} C_{2}\right) W \\
= & \tau_{12}\left(C_{1} C_{2} W\right)=C_{1} \tau_{12}\left(C_{2} W\right)+\delta_{11}\left(C_{1}\right) C_{2} W \\
= & C_{1} C_{2} \tau_{12}(W)+C_{1} \delta_{11}\left(C_{2}\right) W+\delta_{11}\left(C_{1}\right) C_{2} W
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\delta_{11}\left(C_{1} C_{2}\right)=C_{1} \delta_{11}\left(C_{2}\right)+\delta_{11}\left(C_{1}\right) C_{2} \tag{3.16}
\end{equation*}
$$

for all $C_{1}, C_{2} \in \mathscr{A}_{11}$, that is, δ_{11} is a derivation.
Step 1.10. δ is a derivation.
Now we are in a position to check that δ is a derivation.

For any $\left(\begin{array}{cc}C_{1} & W_{1} \\ 0 & D_{1}\end{array}\right),\left(\begin{array}{cc}C_{2} & W_{2} \\ 0 & D_{2}\end{array}\right) \in \operatorname{Alg} \mathscr{N}$, where $C_{1}, C_{2} \in \mathscr{A}_{11}, W_{1}, W_{2} \in \mathscr{A}_{12}$, $D_{1}, D_{2} \in \mathscr{A}_{22}$, by steps 1.1-1.9, we have

$$
\begin{aligned}
& \delta\left(\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right)\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)\right)=\delta\left(\begin{array}{cc}
C_{1} C_{2} & C_{1} W_{2}+W_{1} D_{2} \\
0 & D_{1} D_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right) C_{2}+C_{1} \delta_{11}\left(C_{2}\right) & C_{1} C_{2} B-B D_{1} D_{2}+\tau_{12}\left(C_{1} W_{2}\right)+\tau_{12}\left(W_{1} D_{2}\right) \\
0 & \varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \varphi_{22}\left(D_{2}\right)
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta\left(\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right)\right)\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)+\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right) \delta\left(\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)\right) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right) C_{1} B-B D_{1}+\tau_{12}\left(W_{1}\right) \\
0 & \varphi_{22}\left(D_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right) \\
& +\left(\begin{array}{cc}
C_{1} W_{1} \\
0 & D_{1}
\end{array}\right)\left(\begin{array}{cc}
\delta_{11}\left(C_{2}\right) C_{2} B-B D_{2}+\tau_{12}\left(W_{2}\right) \\
0 & \varphi_{22}\left(D_{2}\right)
\end{array}\right) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right) C_{2}+C_{1} \delta_{11}\left(C_{2}\right) & T_{3} \\
0 & \varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \varphi_{22}\left(D_{2}\right)
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
T_{3}= & \delta_{11}\left(C_{1}\right) W_{2}+C_{1} B D_{2}-B D_{1} D_{2} \\
& +\tau_{12}\left(W_{1}\right) D_{2}+C_{1} C_{2} B-C_{1} B D_{2}+C_{1} \tau_{12}\left(W_{2}\right)+W_{1} \varphi_{22}\left(D_{2}\right) \\
= & C_{1} C_{2} B-B D_{1} D_{2}+\tau_{12}\left(C_{1} W_{2}\right)+\tau_{12}\left(W_{1} D_{2}\right) .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \delta\left(\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right)\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)\right) \\
& =\delta\left(\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right)\right)\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)+\left(\begin{array}{cc}
C_{1} & W_{1} \\
0 & D_{1}
\end{array}\right) \delta\left(\left(\begin{array}{cc}
C_{2} & W_{2} \\
0 & D_{2}
\end{array}\right)\right)
\end{aligned}
$$

i.e., δ is a derivation if Ω_{1} is injective, as desired.

Case 2. Ω_{1} has dense range. Let us check that δ is still a derivation step by step.
Step 2.1. $\delta_{11}\left(I_{1}\right)=0, \delta_{22}\left(\Omega_{1}\right)=0$, and $\delta_{12}\left(\Omega_{1}\right)=C_{1} \delta_{12}\left(C_{2} \Omega_{1}\right)$ holds for any $C_{1}, C_{2} \in \mathscr{A}_{11}$ with $C_{1} C_{2}=I_{1}$.

For any $C_{1}, C_{2} \in \mathscr{A}_{11}$ with $C_{1} C_{2}=I_{1}$ and any $D_{1}, D_{2} \in \mathscr{A}_{22}$ with $D_{1} D_{2}=0$, let $S=\left(\begin{array}{cc}C_{1} & 0 \\ 0 & D_{1}\end{array}\right)$ and $T=\left(\begin{array}{cc}C_{2} \Omega_{1} & 0 \\ 0 & D_{2}\end{array}\right)$; then $S T=\Omega$. As δ is derivable at Ω, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & \delta_{22}\left(\Omega_{1}\right)
\end{array}\right)=\delta(S) T+S \delta(T) \\
= & \left(\begin{array}{cc}
\delta_{11}\left(C_{1}\right)+\varphi_{11}\left(D_{1}\right) & \delta_{12}\left(C_{1}\right)+\varphi_{12}\left(D_{1}\right) \\
0 & \delta_{22}\left(C_{1}\right)+\varphi_{22}\left(D_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
C_{2} \Omega_{1} & 0 \\
0 & D_{2}
\end{array}\right) \\
& +\left(\begin{array}{cc}
C_{1} & 0 \\
0 & D_{1}
\end{array}\right)\left(\begin{array}{cc}
\delta_{11}\left(C_{2} \Omega_{1}\right)+\varphi_{11}\left(D_{2}\right) & \delta_{12}\left(C_{2} \Omega_{1}\right)+\varphi_{12}\left(D_{2}\right) \\
0 & \delta_{22}\left(C_{2} \Omega_{1}\right)+\varphi_{22}\left(D_{2}\right)
\end{array}\right) \\
= & \left(\begin{array}{cc}
T_{4} & \delta_{12}\left(C_{1}\right) D_{2}+\varphi_{12}\left(D_{1}\right) D_{2}+C_{1} \delta_{12}\left(C_{2} \Omega_{1}\right)+C_{1} \varphi_{12}\left(D_{2}\right) \\
0 & \delta_{22}\left(C_{1}\right) D_{2}+\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \delta_{22}\left(C_{2} \Omega_{1}\right)+D_{1} \varphi_{22}\left(D_{2}\right)
\end{array}\right),
\end{aligned}
$$

where

$$
T_{4}=\delta_{11}\left(C_{1}\right) C_{2} \Omega_{1}+\varphi_{11}\left(D_{1}\right) C_{2} \Omega_{1}+C_{1} \delta_{11}\left(C_{2} \Omega_{1}\right)+C_{1} \varphi_{11}\left(D_{2}\right)
$$

Therefore,

$$
\begin{gather*}
\delta_{11}\left(\Omega_{1}\right)=\delta_{11}\left(C_{1}\right) C_{2} \Omega_{1}+\varphi_{11}\left(D_{1}\right) C_{2} \Omega_{1}+C_{1} \delta_{11}\left(C_{2} \Omega_{1}\right)+C_{1} \varphi_{11}\left(D_{2}\right) \tag{3.17}\\
\delta_{12}\left(\Omega_{1}\right)=\delta_{12}\left(C_{1}\right) D_{2}+\varphi_{12}\left(D_{1}\right) D_{2}+C_{1} \delta_{12}\left(C_{2} \Omega_{1}\right)+C_{1} \varphi_{12}\left(D_{2}\right) \tag{3.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\delta_{22}\left(\Omega_{1}\right)=\delta_{22}\left(C_{1}\right) D_{2}+\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \delta_{22}\left(C_{2} \Omega_{1}\right)+D_{1} \varphi_{22}\left(D_{2}\right) \tag{3.19}
\end{equation*}
$$

Letting $D_{1}=D_{2}=0$, by Eqs.(3.18) and (3.19), we get $\delta_{12}\left(\Omega_{1}\right)=C_{1} \delta_{12}\left(C_{2} \Omega_{1}\right)$ and $\delta_{22}\left(\Omega_{1}\right)=0$ respectively. When $C_{1}=C_{2}=I_{1}$, by Eq.(3.17), we get $\delta_{11}\left(I_{1}\right) \Omega_{1}=0$. Because operator Ω_{1} has dense range, we must have $\delta_{11}\left(I_{1}\right)=0$. Thus we have shown that

$$
\begin{equation*}
\delta_{11}\left(I_{1}\right)=0, \delta_{12}\left(\Omega_{1}\right)=C_{1} \delta_{12}\left(C_{2} \Omega_{1}\right), \delta_{22}\left(\Omega_{1}\right)=0 \tag{3.20}
\end{equation*}
$$

holds for any $C_{1}, C_{2} \in \mathscr{A}_{11}$ with $C_{1} C_{2}=I_{1}$.
Step 2.2. $\delta_{22}=0$ and $\delta_{12}(C)=C B^{\prime}$ for all $C \in \mathscr{A}_{11}$, where $B^{\prime}=\delta_{12}\left(I_{1}\right)$.
Letting $C_{1}=C_{2}=I_{1}, D_{1}=0, D_{2}=I_{2}$, by Eqs.(3.18) and (3.20), we get $\delta_{12}\left(I_{1}\right)+$ $\varphi_{12}\left(I_{2}\right)=0$; by Eqs.(3.19) and (3.20), we get $\delta_{22}\left(I_{1}\right)=0$. Thus $\varphi_{12}\left(I_{2}\right)=-B^{\prime}$, where $B^{\prime}=\delta_{12}\left(I_{1}\right)$. Hence

$$
\begin{equation*}
\delta_{12}\left(I_{1}\right)=B^{\prime}, \delta_{22}\left(I_{1}\right)=0, \varphi_{12}\left(I_{2}\right)=-B^{\prime} \tag{3.21}
\end{equation*}
$$

Letting $D_{1}=0, D_{2}=I_{2}$, by Eqs.(3.18) and (3.20), we have $\delta_{12}\left(C_{1}\right)=-C_{1} \varphi_{12}\left(I_{2}\right)$; by Eqs.(3.19) and (3.20), we get $\delta_{22}\left(C_{1}\right)=\delta_{22}\left(\Omega_{1}\right)=0$. For any $C \in \mathscr{A}_{11}$, we can take positive integer n such that $n>\|C\|$. Then $n I_{1}-C$ is invertible with its inverse still in \mathscr{A}_{11}. Thus we get $\delta_{12}\left(n I_{1}-C\right)=-\left(n I_{1}-C\right) \varphi_{12}\left(I_{2}\right)$, and $\delta_{22}\left(n I_{1}-C\right)=0$. Because δ is an additive map, $n \delta_{12}\left(I_{1}\right)-\delta_{12}(C)=-n \varphi_{12}\left(I_{2}\right)+C \varphi_{12}\left(I_{2}\right)$. By Eq.(3.21) we have $\delta_{12}(C)=C B^{\prime}$ and $\delta_{22}(C)=n \delta_{22}\left(I_{1}\right)=0$. Thus

$$
\begin{equation*}
\delta_{12}(C)=C B^{\prime}, \delta_{22}(C)=0 \tag{3.22}
\end{equation*}
$$

holds for all $C \in \mathscr{A}_{11}$.
Step 2.3. $\varphi_{11}=0, \varphi_{12}(D)=-B^{\prime} D$ for all $D \in \mathscr{A}_{22}$.
Letting $C_{1}=C_{2}=I_{1}, D_{2}=0$, by Eqs.(3.17) and (3.20), we get $\varphi_{11}\left(D_{1}\right) \Omega_{1}=0$. Letting $C_{1}=C_{2}=I_{1}, D_{1}=0$, by Eqs.(3.18) and (3.20), we get $\varphi_{12}\left(D_{2}\right)=-\delta_{12}\left(I_{1}\right) D_{2}=$ $-B^{\prime} D_{2}$. Since the operator Ω_{1} has dense range, it follows that

$$
\begin{equation*}
\varphi_{11}(D)=0, \varphi_{12}(D)=-B^{\prime} D \tag{3.23}
\end{equation*}
$$

holds for any $D \in \mathscr{A}_{22}$.
Step 2.4. $\tau_{11}=0$ and $\tau_{22}=0$.

For any $W \in \mathscr{A}_{12}$, we take $S=\left(\begin{array}{cc}\Omega_{1} & W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}I_{1} & 0 \\ 0 & 0\end{array}\right)$, then $S T=\Omega$. By Steps 2.1-2.3,

$$
\begin{aligned}
& \left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right) & \delta_{12}\left(\Omega_{1}\right) \\
0 & 0
\end{array}\right)=\delta(S) T+S \delta(T) \\
& =\left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W) & \delta_{12}\left(\Omega_{1}\right)+\tau_{12}(W) \\
0 & \tau_{22}(W)
\end{array}\right)\left(\begin{array}{cc}
I_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
\Omega_{1} & W \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \delta_{12}\left(I_{1}\right) \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W) & \Omega_{1} \delta_{12}\left(I_{1}\right) \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus we get that $\delta_{11}\left(\Omega_{1}\right)=\delta_{11}\left(\Omega_{1}\right)+\tau_{11}(W)$. It follows that

$$
\begin{equation*}
\tau_{11}(W)=0 \tag{3.24}
\end{equation*}
$$

holds for any $W \in \mathscr{A}_{12}$.
Taking $S=\left(\begin{array}{cc}I_{1} & -W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}\Omega_{1} & W \\ 0 & I_{2}\end{array}\right)$ yields

$$
\begin{equation*}
\tau_{22}(W)=0 \tag{3.25}
\end{equation*}
$$

for all $W \in \mathscr{A}_{12}$.
Step 2.5. $\tau_{12}(W D)=\tau_{12}(W) D+W \varphi_{22}(D)$ holds for all $W \in \mathscr{A}_{12}$ and $D \in \mathscr{A}_{22}$.
Taking $S=\left(\begin{array}{cc}I_{1} & W \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}\Omega_{1} & -W D \\ 0 & D\end{array}\right)$ leads to that

$$
\begin{equation*}
\delta_{12}\left(\Omega_{1}\right)=\delta_{12}\left(I_{1}\right) D+\tau_{12}(W) D+\delta_{12}\left(\Omega_{1}\right)-\tau_{12}(W D)+\varphi_{12}(D)+W \varphi_{22}(D) \tag{3.26}
\end{equation*}
$$

are true for any $W \in \mathscr{A}_{12}$ and $D \in \mathscr{A}_{22}$. Then by Eqs.(3.22) and (3.23), we get that $\tau_{12}(W) D-\tau_{12}(W D)+W \varphi_{22}(D)=0$, that is,

$$
\begin{equation*}
\tau_{12}(W D)=\tau_{12}(W) D+W \varphi_{22}(D) \tag{3.27}
\end{equation*}
$$

holds for any W and D.
Step 2.6. φ_{22} is a derivation.
By Eq. (3.27) and a similar argument to that in Step 1.7 of Case 1, one can show that

$$
\begin{equation*}
\varphi_{22}\left(D_{1} D_{2}\right)=\varphi_{22}\left(D_{1}\right) D_{2}+D_{1} \varphi_{22}\left(D_{2}\right) \tag{3.28}
\end{equation*}
$$

holds for all $D_{1}, D_{2} \in \mathscr{A}_{22}$ and hence φ_{22} is derivation.
Step 2.7. $\tau_{12}(C W)=C \tau_{12}(W)+\delta_{11}(C) W$ holds for all $C \in \mathscr{A}_{11}$ and $W \in \mathscr{A}_{12}$, and δ_{11} is a derivation.

$$
\begin{aligned}
& \text { Taking } S=\left(\begin{array}{cc}
C_{1} & -C_{1} W \\
0 & 0
\end{array}\right) \text { and } T=\left(\begin{array}{cc}
C_{1}^{-1} \Omega_{1} & W \\
0 & I_{2}
\end{array}\right) \text { one can get that } \\
& \delta_{12}\left(\Omega_{1}\right)=\delta_{11}\left(C_{1}\right) W+\delta_{12}\left(C_{1}\right)-\tau_{12}\left(C_{1} W\right)+C_{1} \delta_{12}\left(C_{1}^{-1} \Omega_{1}\right)+C_{1} \tau_{12}(W)+C_{1} \varphi_{12}\left(I_{2}\right)
\end{aligned}
$$

It follows from Eqs.(3.22) and (3.23) that

$$
\begin{equation*}
\tau_{12}(C W)=C \tau_{12}(W)+\delta_{11}(C) W \tag{3.29}
\end{equation*}
$$

holds for any $C \in \mathscr{A}_{11}$ and $W \in \mathscr{A}_{12}$. Now, by use of Eq.(2.29) it is easily checked that δ_{11} is a derivation.

Step 2.8. δ is a derivation.
Now, by use of Step 2.1-2.7, a similar argument to that in Step 1.10 of Case 1, one shows that δ is a derivation.

If $\operatorname{dim} X=\infty$, by [3], every additive derivation of $\operatorname{Alg} \mathscr{N}$ is linear. Hence, if δ is additive and derivable at Ω, then δ is a linear derivation and thus an inner derivation, that is, there exists an operator $T \in \operatorname{Alg} \mathscr{N}$ such that $\delta(A)=A T-T A$ for every $A \in$ $\operatorname{Alg} \mathscr{N}$. This completes the proof of (a).
(b) Assume that $(I-P) \Omega(I-P)=\Omega$.

In this case Ω has the form $\Omega=\left(\begin{array}{cc}0 & 0 \\ 0 & \Omega_{2}\end{array}\right)$, where Ω_{2} is injective or has dense range as an operator acting on $\operatorname{ker} P$. By a similar approach as that in Case 1 and Case 2 of (a), one can show that, if δ is derivable at Ω, then δ is again a derivation. We omit its proof here.

REFERENCES

[1] R.-L. An, J.-C. Hou, Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Alg. Appl. 432 (2010), 1070-1080.
[2] E. Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), 155-161.
[3] D.-G. Han, Continuity and linearity of nest algebras on Banach space, Chinese Ann. Math. 17B, 2 (1996), 227-236.
[4] M.-Y. Jiao, J.-C. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Alg. Appl. 432 (2010), 2984-2994.
[5] X.-F. Qi, J.-C. Hou, Characterizations of derivations of Banach space nest alegbras: All-derrivable points, Linear Alg. Appl. 432 (2010), 3183-3200.
[6] P. Samuel, O. Zariski, Commutative Algebra, Van Nostrand, New York, 1958.
[7] P. SEmRL, Additive derivations of some operator algebras, Illinois Journal of Math. 35 (1991), 234240.
[8] L. Zhang, J. Zhu, J. Wu, All-derivable point in nest algebras, Linear Alg. Appl. 433 (2010), 91-100.
[9] J. ZHU, Alle-derivable points of operator algebres, Linear Alg. Appl. 427 (2007), 1-5.
[10] J. Zhu, C. Xiong, All-derivable points in continuous nest algebras, J. Math. Anal. Appl. 340 (2008), 845-853.

[^0]: Mathematics subject classification (2010): 47L35, 47B47.
 Keywords and phrases: Banach space nest algebras, derivations, all-derivable points.
 This work is partially supported by National Natural Science Foundation of China $(11171249,10871111)$ and a joint Slovene-Chinese Grant BI-CN/11-13/9-2.

 This paper has been presented in the fifth workshop of Matrices and Operators, Taiyuan, July, 2010.

