perators
nd
atfrices
Volume 6, Number 3 (2012), 493-501 "doi:10.7153/0am-06-32

IDEALS OF COMPACT OPERATORS WITH
NAKANO TYPE NORMS IN A HILBERT SPACE
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(Communicated by R. Bhatia)

Abstract. Let H be a separable Hilbert space with a norm |||y . For a compact linear operator
A acting in H, let A (A) be the eigenvalues, sg(A) (k= 1,2,...) singular values and [|A||g =
supeey [|Ax||a /||x|| 7 - Let @ = {pr};_, be a nondecreasing sequence of numbers py > 1. Put

We investigate the ideal X of operators satisfying ¥ (fA) < oo for all 7 > 0. In particular, it is
proved that for any A € X; we have

i l A Pk
I A,
k=1 PkVa

where vy = ||Al|g if ||A|lg > 1 and vy =1 if ||A||lg < 1.

1. Introduction and preliminaries

Let H be a separable Hilbert space with a scalar product (.,.), the identity operator
I and norm ||.||z = +/(.,.). For a compact linear operator A acting in H, A* is the
adjoint, A;(A) are the eigenvalues and s;(A) = /A (A*A) (k=1,2,...) are the singular
values taken with their multiplicities and ordered in the decreasing way: |A;(A)| >
| A1 (A)|, sk(A) =51 (A). Let m = {pi}7., be anondecreasing sequence of numbers
pr = 1. Put

1(4)
Pj

Yr(A) := 2

J=1

assuming that the series converges. We take the positive roots only. Denote by X, the
set of compact operators in H, such that y;(fA) < e forall > 0.

Let SN, (1 < p <o) be the Schatten-von Neumann ideal of operators A with the
finite norm N,(A) := [Trace(A*A)P/?]'/P 1t is well-known that for any A € SN,,

3 14(A)[? < NI(A). (L1)
k=1
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We will say that a compact operator in H is of infinite order if it does not belong to
any Schatten-von Neumann ideal. Such operators arise in various applications. Many
fundamental results on infinite order compact linear operators can be found in the well-
known book [12, Section 3.1]. The literature on the ideals of compact operators and
their applications is very rich, cf. the very interesting recent papers [1, 3, 5, 14, 17]
and references cited therein. Especially, the Schatten-von Neumann ideals were deeply
investigated [4, 8, 9, 15, 18, 20, 22]. Applications of the theory of the Schatten-von
Neumann can be found in the papers [2, 7, 13, 21, 23]. About the classical results see
[6, 10, 11]. Certainly we could not survey the whole subject here and refer the reader
to the above listed publications and references given therein.

At the same time to the best of our knowledge, bounds for the eigenvalues of
infinite order operators were almost not investigated in the available literature. The
motivation of this paper is to generalize inequality (1.1) to the operators from Xj.

LEMMA 1.1. Xy is a linear space.

Proof. Indeed, vy (ctA) < ¥z(|c|tA) < e forall A € X, and ¢ € C. In addition, as
it is well-known, sp;_ 1(A +B) < sk(A)+sk(B) (B € Xg), cf. [11]. So

(A +B)/2) = it ((A+B)/2) sg,gk((A +B)/2)

k=1 P2k—1 P2k

(sk(A) +sx(B))P2~.

A B))P2k—1
(s5(4) + 5i(B)) P21 o

Take into account that
(a+b)? <2P7Ya? +b") (p > 1;a,b>0). (1.2)
Then

Z;(siﬂc I(A)—l—sfz"*l(B))—l— 1 (sfz"(A)—l—ska(B))

1
A+B)/2 —
Tl D)< 2 &5 P P2k

But, for all sufficiently large k, we have si(A) < 1 and therefore s;* ' (A) < st*(A).
Thus the series in the right-hand part of the latter inequality converge, since Yz (A),
Yz(B) < oo. So Yr((A+ B)/2) < e. Now replacing (A+ B)/2 by t(A+ B) we have
Yz (t(A+ B)) < oo. This proves the result. [J

LEMMA 1.2. Forall A € X5 and ¢ € C we have Yz (cA) <|c|yz(A) if |c| < 1 and
Ya(cA) 2 le|yz(A) if e > 1.

Proof. Indeed, for all p > 1 we have s¥ (cA) =|c|Ps} (A) < |c[st (A) if |¢[ < 1 and
st (cA) = |c|sF (A) if |c| > 1. This proves the lemma. [

Let Y be an arbitrary vector space over C. A functional m : ¥ — [0,e0) is called
a modular, if it satisfies the properties: a) m(x) = 0 iff x =0, b) m(ox) = m(x) for
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o € C with || =1, ¢) m(ox+ By) <m(x) +m(y) if a,f >0 with o+ 3 =1 for all
x,yeY,cf. [19].
Now let Y be a space of sequences x = (xx);_, and m(x) = m(x1,x2,...) a mod-
ular on Y. For example,
i xk|1’k

is a modular, cf. [19].
For a compact operator A in H put

F(A) :=m(s1(A),52(A)....).

Then §(A) will be called a modular of A. So ¥z(A) is a modular of A.
For an A € X put

|||z = inf{A >0: yz(A4/A) < 1}.

LEMMA 1.3. ||A||x is a norm in X.

Proof. In the Nakano space of sequences {x; };"_, satisfying

> X Pk
|t _

1.3
k=1 Pk ()
for all # > 0, introduce the (Luxemburg) norm
o Pk
L=infdas0: 3 AN
k=1 Pk
cf. [19, Theorems 44.8 and 43.6]. We have
1Allz = [{se(A)}H 7L (1.4)

This proves the result. [

Let us check that y;(rA) is continuous in > 0 for any A € X;. Indeed, for an
integer p, t >0 and 0 < A <t, we have

1
_ _ P
S ——ay<i
Hence,
= sU (A1) [tPi — (t — A)Pi]
_ J
Tr(tA) = Ya(( —g Pip; < Ye(tA).

Hence by the Lebesgue theorem, ¥z (fA) — ¥z ((r —A)A) — 0 as A — 0.
Since yz(A/A) is continuous and decreases in A > 0, we have

Yu(A/||Allx) = 1. (L.5)

For a bounded linear operator T acting in H put ||T'||g := sup,cy | Tx||a/||x]|a -
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LEMMA 1.4. The set Xy with the norm ||A||x is a closed normed two-sided ideal
in the algebra of all bounded linear operators on H. That is, if A€ Xz and T is a
bounded linear operator, then

IAT ||z < [|Allz 1T lles [ TAllz < [T e [[Allz-

Proof. It is well known that 5;(AT) < s;(A)||T||x forall j (seee.g. [11, Chapter
II, Section 2]). Assume that ||A]|z >0 and ||T||z > 0 (otherwise the proof is obvious).
Then the definition of the norm || - || it follows that

= sUK(AT) = sTR(A)
Ya(AT /|| Allz (| T]|a) = n <Y <
" - 2 G TATETTIE < 2 plAle

But by (1.5) vz(AT/||AT||z) = 1. Thus ||AT||z < ||A||z||T ||z . The second inequality
is similarly proved. [J

LEMMA 1.5. Theinequalities ||A|x < 1 and Yz (A) < ||A||x are fulfilled iff ¥ (A) <
1. In addition, we have ||A||z > 1 and Yz(A) = ||A|lx iff v=(A) > 1.

Proof. Clearly, yz(A) > 1, iff ||Al|z > 1, since ¥z(A/|/Al|z) = 1. Hence by
Lemma 1.2 ||A||z'7z(A) > 1, as claimed. The rest of the proof is left to the reader. [J

2. The main result
Put

v iffAla <,
A7V Alm if [JA]lg > 1

THEOREM 2.1. Let A be compact. Then

A _ & s 4)

< e (k=1,2,...)
j=1 Va'Pj  j=1 VA Pj
In particular, if A € Xz, then
A (A)|PI
3 BT av.
j=1 V4 Pj

To prove this theorem, introduce the set Q of operators A € X, satisfying s;(A) =
IA]la < 1.
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LEMMA 2.2. Let A € Q. Then

k )|Pi kosPT(A
2 | 2 ! ( ) (k_1727 )
j=1 j=1 p./
and therefore,
©° AA Pj
S @
=1 Pi
Proof. Introduce the function
n xPi
F(x1,X2,.,%0) = 3, == (2.1)
=17
for1>x>x>...2x,>0. Then
JoF JoF

Pk k+1 __
Xpk— =X, = xZ 11 = Xk .
ox OXpr1

Now Theorem I1.3.2 [11] implies the required result. [J

Replacing A by A/||Al|i, by the previous lemma, we get the following result.

COROLLARY 2.3. Let A be compact. Then

Pj
2' A 5@ (k=1,2,..).
‘A”Hpj j= l”AHHpJ
In particular, if A € Xz, then
Z < YA/ A 1)
HAII

Proof of Theorem 2.1. If |A||g < 1, then Theorem 2.1 is valid due to Lemma 2.2.
If ||Al|g > 1, then required result is valid due to the previous corollary. [J

Let us show that Theorem 2.1 really generalizes inequality (1.1). Indeed, let p; =
> 1. Then y(A) = N5(A)/p and by Theorem 2.1,

1 1
AL(A)]” < =NE(A/va) = ——NE(A).
VXPkE vip ¥

”E

So we have obtained (1.1).
Thanks to Theorem 2.1 and Lemma 1.5 we get.
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COROLLARY 2.4. Let ||Al|z < 1. Then

< |A;(A)[P
> L=< Al
=t P

J

The following result shows that €, is a convex set.

LEMMA 2.5. Let A,B € Q. Then

kst (A+B)/2) ks (A)+57(B
g WAEBR) WG
j=1 Pj j=1 2pj
and therefore
1
Yx((A+B)/2) < E(Yn(A) +7z(B)).

Proof. Using the function defined by (2.1) we have

3_F:x§k—l >

8xk

since x; < 1. Now Lemma II.3.5 and Remark I1.3.3 from [1 1], imply

=

in view of the inequality

P .
;' ((A+B)/2) i 5;j(A) +5;(B))Pi
Pj =1 2Pip;

i (A+B) < i A)+s;(B (2:2)

Hence, applying inequality (1.2), we get the result. [J

3. Dual ideals

In this section again 7 = {p;};"_, is nondecreasing, but it is assumed that p; > 1
(k=1,2,...). A non-increasing sequence m* = {qx};_, of positive numbers g > 1
satisfying 1/g;+ 1/pr = 1 will be called the sequence dual to w. For a compact
operators B acting in H put

Yn*(B)::i : —

provided the series converges. Denote by X7+ the set of compact operators B in H,
such that yz+(¢B) < e for all # > 0. It is not hard to check that Xz is a linear space.
We will call space X+ dual to Xy
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Furthermore, by the Young inequality [16], we arrive at the inequality

Ms

Si(A)sk(B) < Yu(A) + Yo+ (B) (A € Xg,B € Xp). (3.1)

k=1

Introduce the quantity

Nz(A) := sup Z se(A)si(B) = sup
BEX e, Ypx (B)=1k=1 BeX. Yr+ (

! 5 Y s(4)se(B)
k=1

Clearly, Nz(A) =0 iff A=0; Ng(cA) = |c|Nz(A) for all ¢ € C. In addition, since
sg(B) (k=1,2,...) decrease, according to (2.2), we obtain

i A—|—A1 Sk 2,4 +5k Al)) ( )

k=1

and therefore

=

Nz(A+A)) = sup Z(Sk(A)—FSk(Al))Sk(B)
BEXR* Yo+ (B)=1k:1

< sup D si(A)si(B) + sup > si(Ar)se(Br)
BEX”*,}/”* (B):lkzl BIEX”*,’)/R* (Bl):1k=1

=Nz (A)+Nz(Ay).
So Ng(.) is a norm. Similarly the norm Ng+(B) for a B € Xz+ is defined.

LEMMA 3.1. Space Xp with norm Ng(.) is a two-sided ideal in the space of
linear bounded operators in H. Moreover, Ny(TA) < ||T||gNz(A) and Nn(AT) <
IT||zNz(A) for any linear bounded operator T in H and any A € Xy.

Proof. Indeed,

Nz (TA) := sup 2 sx(TA)si(B)
Bex;vylr* (B):1k=1

< sup Y ITase(TA)sk(B) = | T[Nz (A).
BEXN* Yk (B):l k=1

Similarly, the second inequality is checked. [J
LEMMA 3.2. The generalized Hélder inequality

S s:(A)se(B) < Na(A)|Blx (A € Xp.B € Xe:) (3.2)
k=1

is true.
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Proof. We have

oo

5k(A)si(B) = ||Blz Y, sc(A)si(B1)

1 k=1

M s

k
where By = B/||B||z+(B). So ||Bi||z+ = 1. Hence ¥+(B;) < 1 and

oo

M

k=1 B1E€Xg Y+ (B1)< k=1

as claimed. [
Due to (3.1),

gmMﬁ% -ﬁz& Yse(B) < 1(1(Ar) + 7 (B)).

We thus have
Nz(A) < t(yr(Arh) +1)
for an arbitrary ¢ > 0.

THEOREM 3.3. The inequalities ||A||x < Nx(A) < 2||Al|x are true.

Proof. Take in (3.3) t = ||A||z. Then by (1.5)
Nz (A) < Az (v (AllAlIz") + 1) < 2[|A]|-

Furthermore, take an operator B with si(B) = st*~ '(A). Then

Yo (B 2ﬂ”1>=§$w=mm
=1

and

Esk = Yz (A).
Hence, by the previous lemma
Yo+ (B) = Yu(A) < ||Bl|z Nz (A).
Now take A; =A/||A||x and s¢(By) = sP*~ "(A1). Then according to (3.5),

V(A1) < |[Bilz+ Nz (A1)

But
1 =[[A1l[z = Yx(A1) = Ya+ (B1) = || B1 ||+
So
1< Nzr(Al) :NE(A)/”AH?T'
This and (3.4) prove the theorem. [
The previous result and Corollary 2.4 imply

5k(A)sk(B) < ||B||z- sup D sk(A)sk(B1) = ||Bl|x- N (A),
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COROLLARY 3.4. Let Ng(A) < 1. Then

< Ne(A).

L
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