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NAKANO TYPE NORMS IN A HILBERT SPACE
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(Communicated by R. Bhatia)

Abstract. Let H be a separable Hilbert space with a norm ‖.‖H . For a compact linear operator
A acting in H , let λk(A) be the eigenvalues, sk(A) (k = 1,2, ...) singular values and ‖A‖H =
supx∈H ‖Ax‖H/‖x‖H . Let π = {pk}∞

k=1 be a nondecreasing sequence of numbers pk � 1 . Put

γπ (A) :=
∞

∑
j=1

s
p j
j (A)

pj
.

We investigate the ideal Xπ of operators satisfying γπ (tA) < ∞ for all t > 0 . In particular, it is
proved that for any A ∈ Xπ we have

∞

∑
k=1

|λk(A)|pk

pkν pk
A

� γπ (A/νA),

where νA = ‖A‖H if ‖A‖H > 1 and νA = 1 if ‖A‖H � 1 .

1. Introduction and preliminaries

Let H be a separable Hilbert space with a scalar product (., .) , the identity operator
I and norm ‖.‖H =

√
(., .) . For a compact linear operator A acting in H , A∗ is the

adjoint, λk(A) are the eigenvalues and sk(A) =
√

λk(A∗A) (k = 1,2, ...) are the singular
values taken with their multiplicities and ordered in the decreasing way: |λk(A)| �
|λk+1(A)| , sk(A) � sk+1(A) . Let π = {pk}∞

k=1 be a nondecreasing sequence of numbers
pk � 1. Put

γπ(A) :=
∞

∑
j=1

s
p j
j (A)
p j

assuming that the series converges. We take the positive roots only. Denote by Xπ the
set of compact operators in H , such that γπ(tA) < ∞ for all t > 0.

Let SNp (1 < p < ∞) be the Schatten-von Neumann ideal of operators A with the
finite norm Np(A) := [Trace(A∗A)p/2]1/p . It is well-known that for any A ∈ SNp ,

∞

∑
k=1

|λk(A)|p � Np
p (A). (1.1)
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We will say that a compact operator in H is of infinite order if it does not belong to
any Schatten-von Neumann ideal. Such operators arise in various applications. Many
fundamental results on infinite order compact linear operators can be found in the well-
known book [12, Section 3.1]. The literature on the ideals of compact operators and
their applications is very rich, cf. the very interesting recent papers [1, 3, 5, 14, 17]
and references cited therein. Especially, the Schatten-von Neumann ideals were deeply
investigated [4, 8, 9, 15, 18, 20, 22]. Applications of the theory of the Schatten-von
Neumann can be found in the papers [2, 7, 13, 21, 23]. About the classical results see
[6, 10, 11]. Certainly we could not survey the whole subject here and refer the reader
to the above listed publications and references given therein.

At the same time to the best of our knowledge, bounds for the eigenvalues of
infinite order operators were almost not investigated in the available literature. The
motivation of this paper is to generalize inequality (1.1) to the operators from Xπ .

LEMMA 1.1. Xπ is a linear space.

Proof. Indeed, γπ(ctA) � γπ(|c|tA) < ∞ for all A ∈ Xπ and c ∈ C . In addition, as
it is well-known, s2k−1(A+B) � sk(A)+ sk(B) (B ∈ Xπ) , cf. [11]. So

γπ((A+B)/2) =
∞

∑
j=1

s
p j
j ((A+B)/2)

p j
=

∞

∑
k=1

s
p2k−1
2k−1 ((A+B)/2)

p2k−1
+

sp2k
2k ((A+B)/2)

p2k

�
∞

∑
k=1

1
p2k−12p2k−1

(sk(A)+ sk(B))p2k−1 +
1

p2k2p2k
(sk(A)+ sk(B))p2k .

Take into account that

(a+b)p � 2p−1(ap +bp) (p � 1;a,b > 0). (1.2)

Then

γπ((A+B)/2) � 1
2

∞

∑
k=1

1
p2k−1

(sp2k−1
k (A)+ s

p2k−1
k (B))+

1
p2k

(sp2k
k (A)+ sp2k

k (B)).

But, for all sufficiently large k , we have sk(A) � 1 and therefore s
p2k−1
k (A) � spk

k (A) .
Thus the series in the right-hand part of the latter inequality converge, since γπ(A) ,
γπ(B) < ∞ . So γπ((A+B)/2) < ∞ . Now replacing (A+B)/2 by t(A+B) we have
γπ(t(A+B)) < ∞ . This proves the result. �

LEMMA 1.2. For all A∈ Xπ and c∈C we have γπ(cA) � |c|γπ(A) if |c|� 1 and
γπ(cA) � |c|γπ(A) if |c| � 1 .

Proof. Indeed, for all p � 1 we have sp
k (cA) = |c|psp

k (A) � |c|sp
k (A) if |c|� 1 and

sp
k (cA) � |c|sp

k (A) if |c| � 1. This proves the lemma. �
Let Y be an arbitrary vector space over C . A functional m : Y → [0,∞) is called

a modular, if it satisfies the properties: a) m(x) = 0 iff x = 0, b) m(αx) = m(x) for
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α ∈ C with |α| = 1, c) m(αx+βy) � m(x)+m(y) if α,β > 0 with α +β = 1 for all
x,y ∈ Y , cf. [19].

Now let Y be a space of sequences x = (xk)∞
k=1 , and m(x) = m(x1,x2, ...) a mod-

ular on Y . For example,

m(x) =
∞

∑
k=1

|xk|pk

pk

is a modular, cf. [19].
For a compact operator A in H put

γ̂(A) := m(s1(A),s2(A),...).

Then γ̂(A) will be called a modular of A . So γπ(A) is a modular of A .
For an A ∈ Xπ put

‖A‖π = inf{λ > 0 : γπ(A/λ ) � 1}.

LEMMA 1.3. ‖A‖π is a norm in Xπ .

Proof. In the Nakano space of sequences {xk}∞
k=1 satisfying

∞

∑
k=1

|txk|pk

pk
< ∞ (1.3)

for all t > 0, introduce the (Luxemburg) norm

‖{xk}‖π ,L = inf

{
λ > 0 :

∞

∑
k=1

|xk/λ |pk

pk
� 1

}

cf. [19, Theorems 44.8 and 43.6]. We have

‖A‖π = ‖{sk(A)}‖π ,L. (1.4)

This proves the result. �
Let us check that γπ(tA) is continuous in t > 0 for any A ∈ Xπ . Indeed, for an

integer p , t > 0 and 0 < Δ < t , we have

1
t p [t p− (t−Δ)p] � 1.

Hence,

γπ(tA)− γπ((t −Δ)A) =
∞

∑
j=1

s
p j
j (At)[t p j − (t−Δ)p j ]

t p j p j
� γπ(tA).

Hence by the Lebesgue theorem, γπ(tA)− γπ((t−Δ)A) → 0 as Δ → 0.
Since γπ(A/λ ) is continuous and decreases in λ > 0, we have

γπ(A/‖A‖π) = 1. (1.5)

For a bounded linear operator T acting in H put ‖T‖H := supx∈H ‖Tx‖H/‖x‖H .
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LEMMA 1.4. The set Xπ with the norm ‖A‖π is a closed normed two-sided ideal
in the algebra of all bounded linear operators on H . That is, if A ∈ Xπ and T is a
bounded linear operator, then

‖AT‖π � ‖A‖π ‖T‖H , ‖TA‖π � ‖T‖H ‖A‖π .

Proof. It is well known that s j(AT ) � s j(A)‖T‖H for all j (see e.g. [11, Chapter
II, Section 2]). Assume that ‖A‖π > 0 and ‖T‖H > 0 (otherwise the proof is obvious).
Then the definition of the norm ‖ · ‖π it follows that

γπ(AT/‖A‖π‖T‖H) =
∞

∑
j=1

spk
j (AT )

pk‖A‖pk
π ‖T‖pk

H

�
∞

∑
j=1

spk
j (A)

pk‖A‖pk
π

� 1.

But by (1.5) γπ(AT/‖AT‖π) = 1. Thus ‖AT‖π � ‖A‖π‖T‖H . The second inequality
is similarly proved. �

LEMMA 1.5. The inequalities ‖A‖π � 1 and γπ(A)� ‖A‖π are fulfilled iff γπ(A)�
1 . In addition, we have ‖A‖π � 1 and γπ(A) � ‖A‖π iff γπ(A) � 1 .

Proof. Clearly, γπ(A) � 1, iff ‖A‖π � 1, since γπ(A/‖A‖π) = 1. Hence by
Lemma 1.2 ‖A‖−1

π γπ(A) � 1, as claimed. The rest of the proof is left to the reader. �

2. The main result

Put

νA =
{

1 if ‖A‖H � 1,
‖A‖H if ‖A‖H > 1

.

THEOREM 2.1. Let A be compact. Then

k

∑
j=1

|λ j(A)|p j

ν p j
A p j

�
k

∑
j=1

s
p j
j (A)

ν p j
A p j

(k = 1,2, ...).

In particular, if A ∈ Xπ , then

∞

∑
j=1

|λ j(A)|p j

ν p j
A p j

� γπ(A/νA).

To prove this theorem, introduce the set Ωπ of operators A∈Xπ satisfying s1(A)=
‖A‖H � 1.
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LEMMA 2.2. Let A ∈ Ωπ . Then

k

∑
j=1

|λ j(A)|p j

p j
�

k

∑
j=1

s
p j
j (A)

p j
(k = 1,2, ...)

and therefore,
∞

∑
j=1

|λ j(A)|p j

p j
� γπ(A).

Proof. Introduce the function

F(x1,x2, ...,xn) =
n

∑
j=1

x
p j
j

p j
(2.1)

for 1 � x1 � x2 � ... � xn � 0. Then

xk
∂F
∂xk

= xpk
k � x

pk+1
k+1 = xk+1

∂F
∂xk+1

.

Now Theorem II.3.2 [11] implies the required result. �

Replacing A by A/‖A‖H , by the previous lemma, we get the following result.

COROLLARY 2.3. Let A be compact. Then

k

∑
j=1

|λ j(A)|p j

‖A‖p j
H p j

�
k

∑
j=1

s
p j
j (A)

‖A‖p j
H p j

(k = 1,2, ...).

In particular, if A ∈ Xπ , then

∞

∑
j=1

|λ j(A)|p j

‖A‖p j
H p j

� γπ(A/‖A‖H).

Proof of Theorem 2.1. If ‖A‖H � 1, then Theorem 2.1 is valid due to Lemma 2.2.
If ‖A‖H � 1, then required result is valid due to the previous corollary. �

Let us show that Theorem 2.1 really generalizes inequality (1.1). Indeed, let pk ≡
p � 1. Then γ(A) = Np

p (A)/p and by Theorem 2.1,

1
ν p

A p

∞

∑
k=1

|λk(A)|p � 1
p
Np

p (A/νA) =
1

ν p
A p

Np
p (A).

So we have obtained (1.1).
Thanks to Theorem 2.1 and Lemma 1.5 we get.
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COROLLARY 2.4. Let ‖A‖π � 1 . Then

∞

∑
j=1

|λ j(A)|p j

p j
� ‖A‖π .

The following result shows that Ωπ is a convex set.

LEMMA 2.5. Let A,B ∈ Ωπ . Then

k

∑
j=1

s
p j
j ((A+B)/2)

p j
�

k

∑
j=1

s
p j
j (A)+ s

p j
j (B)

2p j
(k = 1,2, ...)

and therefore

γπ((A+B)/2) � 1
2
(γπ(A)+ γπ(B)).

Proof. Using the function defined by (2.1) we have

∂F
∂xk

= xpk−1
k � xpk

k

since xk � 1. Now Lemma II.3.5 and Remark II.3.3 from [11], imply

k

∑
j=1

s
p j
j ((A+B)/2)

p j
�

k

∑
j=1

(s j(A)+ s j(B))p j

2p j p j

in view of the inequality

k

∑
j=1

s j(A+B) �
k

∑
j=1

s j(A)+ s j(B). (2.2)

Hence, applying inequality (1.2), we get the result. �

3. Dual ideals

In this section again π = {pk}∞
k=1 is nondecreasing, but it is assumed that pk > 1

(k = 1,2, ...) . A non-increasing sequence π∗ = {qk}∞
k=1 of positive numbers qk � 1

satisfying 1/qk + 1/pk = 1 will be called the sequence dual to π . For a compact
operators B acting in H put

γπ∗(B) :=
∞

∑
j=1

s
q j
j (B)

q j
,

provided the series converges. Denote by Xπ∗ the set of compact operators B in H ,
such that γπ∗(tB) < ∞ for all t > 0. It is not hard to check that Xπ∗ is a linear space.
We will call space Xπ∗ dual to Xπ .
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Furthermore, by the Young inequality [16], we arrive at the inequality

∞

∑
k=1

sk(A)sk(B) � γπ(A)+ γπ∗(B) (A ∈ Xπ ,B ∈ Xπ∗). (3.1)

Introduce the quantity

Nπ(A) := sup
B∈Xπ∗ ,γπ∗ (B)=1

∞

∑
k=1

sk(A)sk(B) = sup
B∈Xπ∗

1
γπ∗(B)

∞

∑
k=1

sk(A)sk(B).

Clearly, Nπ(A) = 0 iff A = 0; Nπ(cA) = |c|Nπ(A) for all c ∈ C . In addition, since
sk(B) (k = 1,2, ...) decrease, according to (2.2), we obtain

j

∑
k=1

sk(A+A1)sk(B) �
j

∑
k=1

(sk(A)+ sk(A1))sk(B),

and therefore

Nπ(A+A1) = sup
B∈Xπ∗ ,γπ∗ (B)=1

∞

∑
k=1

(sk(A)+ sk(A1))sk(B)

� sup
B∈Xπ∗ ,γπ∗ (B)=1

∞

∑
k=1

sk(A)sk(B)+ sup
B1∈Xπ∗ ,γπ∗ (B1)=1

∞

∑
k=1

sk(A1)sk(B1)

= Nπ (A)+Nπ(A1).

So Nπ(.) is a norm. Similarly the norm Nπ∗(B) for a B ∈ Xπ∗ is defined.

LEMMA 3.1. Space Xπ with norm Nπ(.) is a two-sided ideal in the space of
linear bounded operators in H . Moreover, Nπ (TA) � ‖T‖HNπ(A) and Nπ(AT ) �
‖T‖HNπ(A) for any linear bounded operator T in H and any A ∈ Xπ .

Proof. Indeed,

Nπ(TA) := sup
B∈X∗

π ,γπ∗ (B)=1

∞

∑
k=1

sk(TA)sk(B)

� sup
B∈Xπ∗ ,γπ∗ (B)=1

∞

∑
k=1

‖T‖Hsk(TA)sk(B) = ‖T‖HNπ(A).

Similarly, the second inequality is checked. �

LEMMA 3.2. The generalized Hőlder inequality

∞

∑
k=1

sk(A)sk(B) � Nπ(A)‖B‖π∗ (A ∈ Xπ ,B ∈ Xπ∗) (3.2)

is true.
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Proof. We have

∞

∑
k=1

sk(A)sk(B) = ‖B‖π∗
∞

∑
k=1

sk(A)sk(B1)

where B1 = B/‖B‖π∗(B) . So ‖B1‖π∗ = 1. Hence γπ∗(B1) � 1 and

∞

∑
k=1

sk(A)sk(B) � ‖B‖π∗ sup
B1∈X∗

π ,γπ∗ (B1)�1

∞

∑
k=1

sk(A)sk(B1) = ‖B‖π∗Nπ(A),

as claimed. �
Due to (3.1),

j

∑
k=1

tsk(A)t−1sk(B) = t
j

∑
k=1

sk(At−1)sk(B) � t(γπ(At−1)+ γπ∗(B)).

We thus have
Nπ(A) � t(γπ(At−1)+1) (3.3)

for an arbitrary t > 0.

THEOREM 3.3. The inequalities ‖A‖π � Nπ(A) � 2‖A‖π are true.

Proof. Take in (3.3) t = ‖A‖π . Then by (1.5)

Nπ(A) � ‖A‖π(γπ(A‖A‖−1
π )+1) � 2‖A‖π . (3.4)

Furthermore, take an operator B with sk(B) = spk−1
k (A) . Then

γπ∗(B) =
∞

∑
k=1

sqk(pk−1)
k (A) =

∞

∑
k=1

spk
k (A) = γπ(A)

and
∞

∑
k=1

sk(A)sk(B) = γπ(A).

Hence, by the previous lemma

γπ∗(B) = γπ(A) � ‖B‖π∗Nπ(A). (3.5)

Now take A1 = A/‖A‖π and sk(B1) = spk−1
k (A1) . Then according to (3.5),

γπ(A1) � ‖B1‖π∗Nπ(A1).

But
1 = ‖A1‖π = γπ(A1) = γπ∗(B1) = ‖B1‖π∗ .

So
1 � Nπ (A1) = Nπ(A)/‖A‖π .

This and (3.4) prove the theorem. �
The previous result and Corollary 2.4 imply
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COROLLARY 3.4. Let Nπ(A) � 1 . Then

∞

∑
j=1

|λ j(A)|p j

p j
� Nπ(A).
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[14] T. KÜHN, AND M. MASTYŁO, Products of operator ideals and extensions of Schatten classes, Math.

Nachr. 283, 6 (2010), 891–901.
[15] C. LE MERDY, E. RICARD AND J. ROYDOR, Completely 1-complemented subspaces of Schatten

spaces, Trans. Am. Math. Soc. 361, 2 (2009), 849–887.
[16] J. LINDENSTRAUSS,AND L. TZAFRIRI, Classical Banach Spaces I. Sequence Spaces, Springer,

Berlin, 1977.
[17] S. MECHERI, Another version of Anderson’s inequality in the ideal of all compact operators, JIPAM,

J. Inequal. Pure Appl. Math. 6, 3 (2005), Paper No. 90, 7 p., electronic only.
[18] S. MECHERI, On the orthogonality in von Neumann-Schatten class, Int. J. Appl. Math. 8, 4 (2002),

441–447.
[19] H. NAKANO, Modulared Semi-ordered Linear Spaces, Tokyo Math. Book Series, I, Tokyo, 1950.
[20] M. SIGG, A Minkowski-type inequality for the Schatten norm, J. Inequal. Pure Appl. Math. 6, 3 (2005),

Paper No. 87, 7 p.
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