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ON JOINT SPECTRUM OF INFINITE DIRECT SUMS

SHUILIN JIN, QINGHUA JIANG, YADONG WANG AND GUANGREN DUAN

(Communicated by R. Curto)

Abstract. For families of uniformly bounded n -tuples Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · of com-
muting operators on H , the joint spectrum of ⊕∞

k=1Tk is considered.

Let H be an infinite dimensional complex separable Hilbert space and B(H )
denote the algebra of all bounded linear operators acting on H . By Sp(T ) we denote
the joint Taylor [5][6] spectrum of T = (T1, · · · ,Tn) , an n -tuple of commuting operators
on H . Recall that Sp(T ) consists of all points λ = (λ1, · · · ,λn) in Cn such that the
Koszul complex K∗(T −λ ,H ) of the operators (T1−λ1, · · · ,Tn−λn) is not exact. Let
Spp(T ) denote the joint point spectrum of T = (T1, · · · ,Tn) , i.e.,

Spp(T ) = {λ = (λ1, · · · ,λn); there exists x ∈ H ,x �= 0,

such that (λiI−Ti)x = 0, i = 1,2, · · · ,n}.
J. Pushpa and S. M. Patel [4] showed for two n -tuples A = (A1, · · · ,An) and B =

(B1, · · · ,Bn) of commuting bounded operators on H , the joint spectrum of A⊕B =
(A1⊕B1, · · · ,An⊕Bn) equals to the union of the joint spectrum of A and B .

A natural question is: For families of uniformly bounded n -tuples Tk = (T 1
k , · · · ,Tn

k )
of commuting operators on H , is the joint spectrum of ⊕∞

k=1Tk the union of the joint
spectrum of Tk ?

Unfortunately, that is false.

EXAMPLE 1. Let Tk = (T 1
k ,T 2

k ) , and T 1
k = T 2

k =

⎡
⎢⎢⎣

0 1

0
. . .
. . .

⎤
⎥⎥⎦

n×n

.

Then we have:

{(λ ,λ ), |λ | � 1} = Sp(⊕∞
k=1Tk) �=

∞⋃
k=1

Sp(Tk) = {(0,0)}.

However, by considering the joint point spectrum, we obtain the following theo-
rem:
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THEOREM 2. Let Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · be families of uniformly bounded
n-tuples of commuting operators on H , then:

Spp(⊕∞
k=1Tk) =

∞⋃
k=1

Spp(Tk).

Proof. The fact ⊕∞
k=1T

i
k is bounded on H̃ , for each i = 1, · · · ,n , follows from

the fact (Tk)∞
k=1 are uniformly bounded operator tuples, i.e., there is M � 0, such that

||T i
k || � M, i = 1,2, · · · ,n; k = 1,2, · · · ,

where H̃ = H ⊕H ⊕H ⊕·· · .
Let x = ⊕∞

k=1xk ∈ H̃ , λ = (λ1, · · · ,λn) ∈ Cn , and assume that:

(λ −⊕∞
k=1Tk)x = ⊕∞

k=1((λ1−T 1
k )x, · · · ,(λn−Tn

k )x) = 0.

Therefore, either x = 0 or λ ∈ Spp(⊕∞
k=1Tk) , hence

Spp(⊕∞
k=1Tk) =

∞⋃
k=1

Spp(Tk). �

REMARK 3. By Theorem 2, the condition of Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · being
n -tuples of commuting operators is not necessary. However we do not know much
about the non-commutative operator tuples. The theorem can be seen as some work on
non-commutative operator tuples.

To get the relation between Sp(⊕∞
k=1Tk) and

⋃∞
k=1 Sp(Tk) in details, we need study

the Koszul complex K∗(T,H ) .
Let nk be a sequence of nonnegative numbers with nk = 0, for k < 0, Hk =

H ⊗Cnk and dk ∈ B(Hk,Hk−1) such that for all k , dk ◦dk+1 = 0. Then the complex
is

· · · dk+1 �� Hk
dk �� Hk−1

dk−1 �� · · · d2 �� H1
d1 �� H0

�� 0 .

If T = (T1, · · · ,Tn) is an n -tuple of commuting operators on H , the Koszul com-

plex K∗(T,H ) is the one we get by taking nk =
(

n
k

)
and

dk(x⊗ e j1 ∧·· ·∧ e jk) =
k

∑
i=1

(−1)i+1Tjix⊗ e j1 ∧·· ·∧ e ji ∧·· ·∧ e jk .

R. Curto [1] introduced an operator matrix corresponding to T = (T1, · · · ,Tn) ,
defined as:

T̂ =

⎛
⎜⎝

d1

d∗
2 d3

. . .
. . .

⎞
⎟⎠ ∈ B(H ⊗C

2n−1
).
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LEMMA 4. Let T = (T1, · · · ,Tn) be an n-tuple of commuting operators on H ,
then λ = (λ1, · · · ,λn) ∈ Sp(T ) if and only if (T −λ )ˆ is not invertible.

LEMMA 5. Let Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · be families of uniformly bounded
n-tuples of commuting operators on H , then (⊕∞

k=1Tk) ˆ is unitarily equivalent to
⊕∞

k=1(Tk)ˆ .

Proof. Since (⊕∞
k=1Tk)ˆ is a bounded operator in B(H̃ ⊗C2n−1

) and ⊕∞
k=1(Tk)ˆ

is a bounded operator in B(H̃ ) , where H̃ = H ⊕H ⊕H ⊕·· · , then let

U : H̃ ⊗C
2n−1 → H̃ ,

U : (ξ 1
1 ,ξ 1

2 , · · · ,ξ 2
1 ,ξ 2

2 , · · · ,ξ 2n−1

1 ,ξ 2n−1

2 , · · ·) 
→ (ξ 1
1 ,ξ 2

1 , · · · ,ξ 2n−1

1 ,ξ 1
2 ,ξ 2

2 , · · · ,ξ 2n−1

2 , · · ·) ,
where ξ i

j ∈ H , i = 1, · · · ,2n−1; j = 1,2, · · · , thus we have that UU∗ = I,U∗U = I
and U(⊕∞

k=1Tk) ˆU∗ = ⊕∞
k=1(Tk) ˆ , therefore (⊕∞

k=1Tk) ˆ is unitarily equivalent to
⊕∞

k=1(Tk)ˆ . �
THEOREM 6. Let Tk = (T 1

k , · · · ,Tn
k ),k = 1,2, · · · be families of uniformly bounded

n-tuples of commuting operators on H , then:

Sp(⊕∞
k=1Tk) =

∞⋃
k=1

Sp(Tk)∪σ ,

where σ = {λ /∈ Sp(Tk); there exists nk , such that ||((λ −Tnk)
−1)ˆ || → ∞} .

Proof. For λ ∈ Sp(Tk) , it follows from Lemma 4 that (λ − Tk) ˆ is not invert-
ible, thus ⊕∞

k=1(λ −Tk) ˆ is not invertible, then by Lemma 5, (⊕∞
k=1(λ −Tk)) ˆ is not

invertible, that is λ ∈ Sp(⊕∞
k=1Tk) . Thus we get the inclusion

∞⋃
k=1

Sp(Tk) ⊆ Sp(⊕∞
k=1Tk).

If λ ∈ σ , then there is a sequence {xnk}∞
k=1,xnk ∈ H ⊗C2n−1

, ||xnk || = 1, such
that

||(λ −Tnk)ˆ xnk || → 0,

thus if uk = ⊕nk−1
i=1 0⊕ xnk ⊕∞

i=nk+1 0, then ||uk|| = 1,uk ∈ H̃ , and

||(λ −Tk)ˆ uk|| → 0,

that is ⊕∞
k=1(λ −Tk)ˆ is not invertible, by Lemma 5, (⊕∞

k=1(λ −Tk))ˆ is not invertible.
Hence

Sp(⊕∞
k=1Tk) ⊇

∞⋃
k=1

Sp(Tk)∪σ .

For all λ /∈ ⋃∞
k=1 Sp(Tk)∪σ , then there is d > 0, such that for all k ,

||((λ −Tk)−1)ˆ || � d,
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thus ⊕∞
k=1(λ − Tk) ˆ is invertible, it follows by Lemma 5 that (⊕∞

k=1(λ − Tk)) ˆ is
invertible, therefore λ /∈ Sp(⊕∞

k=1Tk) , hence

Sp(⊕∞
k=1Tk) =

∞⋃
k=1

Sp(Tk)∪σ . �

M. Chō and M. Takaguchi [3] showed that the joint spectrum of an n -tuple of
commuting operators on finite Hilbert space is the joint point spectrum. The following
corollary is a generalization of their result by Theorem 2.

COROLLARY 7. Let Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · be families of uniformly bounded
n-tuples of commuting operators on Cn , then

Spp(⊕∞
k=1Tk) =

∞⋃
k=1

Sp(Tk).

The next corollary is a generalization of a special case of R. Curto and K. Yan [2] .

COROLLARY 8. Let Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · be families of uniformly bounded
n-tuples of commuting operators on H , if for all k, λ /∈ Sp(Tk) , where k = 1,2, · · · ,
there is d > 0 , such that ||((λ −Tk)−1)ˆ || � d , then:

Sp(⊕∞
k=1Tk) =

∞⋃
k=1

Sp(Tk).

COROLLARY 9. Let Tk = (T 1
k , · · · ,Tn

k ),k = 1,2, · · · ,m be families of uniformly
bounded n-tuples of commuting operators on H , then

Sp(⊕m
k=1Tk) =

m⋃
k=1

Sp(Tk).

It is noted that by using the Curto matrix, λ /∈ Sp(⊕m
k=1Tk) ⇔ (⊕m

k=1(λ − Tk))ˆ
is invertible ⇔ (λ − Tk)ˆ is invertible for all k = 1, · · · ,m ⇔ λ /∈ Sp(Tk) for all k =
1, · · · ,m ⇔ λ /∈ ⋃m

k=1 Sp(Tk) .
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