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Abstract. Let A and B be completely decomposable nonnegative matrices such that the com-
mutator AB− BA is also a nonnegative matrix. We prove that the set {A,B} is completely
decomposable, i.e., there exists a permutation matrix P such that PAP−1 and PBP−1 are upper
triangular matrices. We show similar results for collections of completely decomposable non-
negative matrices. We also find conditions on commutators under which a given operator on a
Riesz space is necessarily scalar.

1. Introduction

A collection C of real (resp. complex) n×n matrices is reducible if there exists
a common invariant subspace other than the trivial ones {0} and IRn (resp. Cn ), or
equivalently, there exists an invertible matrix S such that the collection SC S−1 has a
block upper-triangular form; otherwise, the collection C is said to be irreducible. If
the matrix S can be chosen to be a permutation matrix, then the collection C is said to
be decomposable; otherwise, it is called indecomposable or ideal-irreducible.

If there is an invertible matrix S such that the collection SC S−1 even consists of
upper triangular matrices, then the collection C is said to be triangularizable. If the
matrix S can be chosen to be a permutation matrix, then the collection C is said to be
completely decomposable or ideal-triangularizable.

In a (real) partially ordered vector space E , we say that a vector x ∈ E is of
constant-sign if either x or −x is a nonnegative vector. In particular, a real matrix A is
of constant-sign if either A or −A is a nonnegative matrix. We now recall three results
on nonnegative matrices (see [2, Theorem 2.1], [4, Lemma 5.1.5] and [4, Theorem
5.1.2]). We will use their trivial generalization to matrices of constant-sign.

THEOREM 1.1. Let A and B be matrices of constant-sign such that the commuta-
tor C = AB−BA is of constant-sign as well. Then, up to similarity with a permutation
matrix, C is a strictly upper triangular matrix, and so it is nilpotent.

LEMMA 1.2. A (multiplicative) semigroup S of matrices of constant-sign is de-
composable if some non-zero ideal of S is decomposable.
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THEOREM 1.3. A (multiplicative) semigroup of nilpotent matrices of constant-
sign is completely decomposable.

In this paper we find some conditions under which a collection of completely
decomposable matrices of constant-sign is completely decomposable (Section 2), and
some conditions implying that a given operator on a Riesz space is necessarily scalar
(Section 3).

2. From local to global complete decomposability

It is known and easy to prove that every commutative collection of complex ma-
trices is triangularizable (see [4, Theorem 1.1.5]). In this section we seek for order
analogs of this fact. We begin with a pair of nonnegative matrices.

THEOREM 2.1. Let A and B be completely decomposable n×n nonnegative ma-
trices such that AB � BA. Then the set {A,B} is also completely decomposable, or
equivalently, the sum A+B is completely decomposable.

Proof. After a permutation similarity, the matrix C = A+B can be decomposed
into a block triangular form whose diagonal blocks are indecomposable matrices. Since
C � A and C � B , the matrices A and B have the same block triangular form, and each
of their diagonal blocks is completely decomposable. The latter fact follows easily
from the theorem asserting that a nonnegative matrix is completely decomposable if
and only if it becomes nilpotent upon replacement of its diagonal entries by zeros (see
[4, Theorem 5.1.7]).

We want to prove that all diagonal blocks of C are one-dimensional. Assume the
contrary. With no loss of generality we may assume that C is an indecomposablematrix
of size n � 2. Since an indecomposable matrix is not nilpotent, we may also assume
that the spectral radius of C equals 1.

By Perron-FrobeniusTheorem [4, Corollary 5.2.13], there are strictly positive vec-
tors u and v , unique up to a scalar multiple, such that Cu = u and CT v = v . Since
BA � AB , the vector (BA−AB)u = (CA−AC)u =CAu−Au is nonnegative. However,
vT (CAu−Au) = 0, so that CAu−Au = 0, as the vector v is strictly positive. This
means that Au is an eigenvector of C corresponding to 1, and so there exists λ � 0
such that Au = λu . In fact, λ > 0, since A �= 0 and the vector u is strictly positive.
Similarly, the vector (ATCT −CT AT )v = AT v−CTAT v is nonnegative, and it follows
from uT (AT v−CT AT v) = 0 that CT AT v = AT v , so that there exists μ > 0 such that
AT v = μv . Since

λvT u = vT Au = (AT v)T u = μvT u

and vT u > 0, we have λ = μ .
Now, we may assume that the matrix A = (ai, j)n

i, j=1 is upper triangular. The equal-

ities Au = λu and ATv = λv give 2n scalar equalities:
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a1,1u1 +a1,2u2 + · · ·+a1,nun = λu1

a2,2u2 + · · ·+a2,nun = λu2
. . .

...
...

...
an,nun = λun

a1,1v1 = λv1

a1,2v1 +a2,2v2 = λv2
...

. . .
...

...
a1,nv1 +a2,nv2 + · · ·+an,nvn = λvn

Having in mind that both vectors u and v are strictly positive, we conclude from
them successively an,n = λ , a1,1 = λ , a1,2 = a1,3 = . . . = a1,n = 0, a1,n = a2,n =
an−1,n = 0, a2,2 = λ , an−1,n−1 = λ , etc. Thus, A = λ I , so that B = C−A =C−λ I is
indecomposable. This contradiction completes the proof. �

This theorem can be stated for general real matrices as follows. Here the absolute
value |A| of a real matrix A is taken entry-wise.

COROLLARY 2.2. Let A and B be completely decomposable n×n real matrices
such that |A||B| � |B||A| . Then |A|+ |B| is completely decomposable. In particular,
the set {A,B} is completely decomposable.

In the case of collection of matrices we first consider the commutative case.

THEOREM 2.3. A commutative collection C of matrices of constant-sign is com-
pletely decomposable if and only if each member of C is completely decomposable.

Proof. We must only show that the condition is sufficient. Clearly, |A||B|= |B||A|
for every A,B ∈ C . Let {C1,C2, . . . ,Cm} ⊆ C be the basis of the linear span of C .
By Corollary 2.2 and an easy induction, the sum |C1|+ |C2|+ . . .+ |Cm| is completely
decomposable. This implies easily that the whole collection is completely decompos-
able. �

THEOREM 2.4. Let S be a semigroup of completely decomposable n× n ma-
trices of constant-sign such that for every A,B ∈ S the commutator AB− BA is of
constant-sign. Then the semigroup S is completely decomposable.

Proof. It suffices to show that the semigroup S is decomposable, because we can
then apply induction on n or the Ideal-triangularization Lemma (see [3]).

By Theorem 2.3, we may assume that S is not commutative. Let A and B be
matrices in S with the property AB �= BA and AB−BA � 0. Since the commutator
of any pair of matrices from S is nilpotent by Theorem 1.1, the semigroup S is
triangularizable by [4, Theorem 4.4.12]. This trivially implies that the semigroup S1
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generated by the semigroup S and the nonnegative nonzero matrix AB−BA is also
triangularizable. Let J be the semigroup ideal generated by the matrix AB− BA
in S1. Since the spectral radius is submultiplicative on triangularizable families of
matrices, every matrix in J is nilpotent. By Theorem 1.3, the semigroup ideal J is
completely decomposable, and so the semigroup S1 is decomposable by Lemma 1.2.
We finish the proof by noticing S ⊆ S1. �

The following example shows that Theorem 2.4 (for n � 3) does not hold without
the assumption that the collection is a semigroup.

EXAMPLE 2.5. Let e1 , e2 , . . . , en be the standard basis vectors of IRn , where
n � 3. Define completely decomposable nilpotent matrices by Ai = eieT

i+1 for i =
1,2, . . . ,n− 1, and An = eneT

1 . Then the collection {A1,A2, . . . ,An} has the property
that either AiA j � AjAi or AiA j � AjAi for every i, j ∈{1,2, . . . ,n} , since either AiA j =
0 or AjAi = 0. We now show that this collection is not completely decomposable.
Assume the contrary. Then the sum S = A1+A2+ . . .+An is completely decomposable.
Since all the diagonal entries of S are zero, S must be nilpotent which contradicts the
fact that Sn = I .

The following theorem and its corollaries could be seen as extensions of [4, Corol-
lary 1.7.5] in the setting of matrices of constant-sign. A collection C of matrices is
called a Lie set if it is closed under commutation, i.e., AB−BA is in C whenever A
and B are in C .

THEOREM 2.6. A collection C of completely decomposable n× n matrices of
constant-sign is completely decomposable if the Lie set L generated by C consists of
matrices of constant-sign.

Proof. If the collection C is commutative, then C is completely decomposable
by Theorem 2.3. Suppose now that C is not commutative. Then there exist matrices
A,B ∈ C such that AB � BA and AB �= BA. By Theorem 1.1, every commutator of
matrices from L is a nilpotent matrix. Therefore, the Lie set L is triangularizable by
[4, Corollary 1.7.8]. Let S be the (multiplicative) semigroup generated by L and let
J be the semigroup ideal in S generated by the nonzero nonnegative nilpotent matrix
AB−BA . Since the spectral radius is submultiplicative on triangularizable families of
matrices, the semigroup ideal J consists of nilpotent matrices of constant-sign, and
so it follows from [4, Theorem 5.1.2] that it is completely decomposable. Applying
Lemma 1.2, we see that the semigroup S is decomposable, and so is the collection C
as C ⊆ S . To finish the proof we apply Ideal-triangularization Lemma (see [3]) or we
use induction on n . �

COROLLARY 2.7. A collection C of completely decomposable matrices of con-
stant-sign is completely decomposable if for every pair {A,B} ⊆ C at least one of the
commutators AB−BA and BA−AB is contained in C .

In view of Theorem 1.3 we have the following.
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COROLLARY 2.8. A Lie set of nilpotent matrices of constant-sign is completely
decomposable.

Recall that a Lie algebra of matrices is a Lie set that is also a linear space. The
following result can be considered as an order analog of Engel’s theorem asserting that
a Lie algebra of nilpotent matrices is triangularizable (see [4, Corollary 1.7.6]).

THEOREM 2.9. If a Lie algebra of nilpotent matrices is generated by the set of
nonnegative matrices, then it is completely decomposable.

Proof. Let A be a Lie algebra of nilpotent matrices generated by the set F of
nonnegative matrices. By Engel’s theorem [4, Corollary 1.7.6], A is triangularizable.
It follows that in an appropriate basis all the matrices in F are strictly upper triangular.
Therefore, the same is true for the semigroup S generated by F . Hence, all the
matrices in S are nilpotent and nonnegative (w.r.t. the original basis), so that S is
completely decomposable by Theorem 1.3. Therefore, the (associative) algebra A1

generated by F is completely decomposable, because A1 is the linear span of S .
Since A ⊆ A1 , the Lie algebra A is completely decomposable as well. �

3. Conditions implying that an operator is scalar

It is well-known that only scalar operators (= multiples of the identity operator)
commute with all (linear) operators on a vector space. Moreover, they are the only
operators commuting with all rank-one operators. In this section we consider order
analogs of this fact.

Let E be a real Riesz space, and let E+ denote the positive cone of E . Denote by
˜E the order dual of E , that is the vector space generated by positive linear functionals
on E .

For operators A and T on E we write [A,T ] = AT −TA . If T = x⊗ϕ with x∈ E
and ϕ ∈ ˜E , then [A,T ] = Ax⊗ϕ − x⊗A∗ϕ .

LEMMA 3.1. Let A be an operator on a Riesz space E , and x ∈ E+ a nonzero
vector. Let Φ be a Riesz subspace of ˜E that separates the points of E . If for every
functional ϕ ∈ Φ+ the vector

[A,x⊗ϕ ]x = ϕ(x)Ax−ϕ(Ax)x

is of constant-sign, then x in an eigenvector of A.

Proof. Define the sets

P = {ϕ ∈ Φ+ : ϕ(x)Ax � ϕ(Ax)x},
N = {ψ ∈ Φ+ : ψ(x)Ax � ψ(Ax)x}.
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For any ϕ1 , ϕ2 ∈ P , we have

ϕ1(x)ϕ2(Ax) � ϕ1(Ax)ϕ2(x).

If we change the role of these two functionals, we get

ϕ1(x)ϕ2(Ax) = ϕ1(Ax)ϕ2(x) (1)

for all ϕ1 , ϕ2 ∈ P . The same holds for pairs of functionals in N .
Since Φ+ = P∪N and Φ separates the points of E , there exists ϕ0 ∈ Φ+ such

that ϕ0(x) > 0. Suppose that ϕ0 ∈ P (the case ϕ0 ∈ N is similar). If λ = ϕ0(Ax)
ϕ0(x)

,

then the equality (1) implies that ϕ(Ax) = λ ϕ(x) for all ϕ ∈ P . Let us prove that also
ψ(Ax) = λ ψ(x) for all ψ ∈ N . We must consider two cases.

• There exists ψ0 ∈ N with ψ0(x) > 0: If we denote μ = ψ0(Ax)
ψ0(x)

, then the equality

(1) for the set N gives that ψ(Ax) = μψ(x) for all ψ ∈ N . Suppose that the
functional ϕ0 + ψ0 is an element of P (the case when it belongs to N can be
treated analogously). Then we have

(ϕ0 + ψ0)(Ax) = λ (ϕ0 + ψ0)(x).

Since
ϕ0(Ax)+ ψ0(Ax) = λ ϕ0(x)+ μψ0(x),

we obtain that λ = μ , and so

ψ(Ax) = λ ψ(x)

for all ψ ∈ N .

• For every ψ ∈ N it holds that ψ(x) = 0: Choose any ψ ∈ N . The positive
functional ϕ0 + ψ cannot be an element of N , since (ϕ0 + ψ)(x) = ϕ0(x) �= 0.
Therefore, we have ϕ0 + ψ ∈ P , and so

(ϕ0 + ψ)(Ax) = λ (ϕ0 + ψ)(x) = λ ϕ0(x) = ϕ0(Ax).

Hence
ψ(Ax) = 0 = λ ψ(x).

We have proved that ϕ(Ax)= λ ϕ(x) for all ϕ ∈Φ+ which implies that ϕ(Ax−λx)= 0
for all ϕ ∈ Φ . Since Φ separates the points of E , we conclude that Ax = λx . This
completes the proof. �

THEOREM 3.2. Let A be an operator on a Riesz space E . Let Φ be a Riesz
subspace of ˜E that separates the points of E . If the commutator [A,T ] is of constant-
sign for every positive rank-one operator T = x⊗ϕ with x ∈ E and ϕ ∈ Φ , then A is
a scalar operator.
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Proof. If x ∈ E+ is a nonzero vector, then for every functional ϕ ∈ Φ+ the vector

[A,x⊗ϕ ]x = ϕ(x)Ax−ϕ(Ax)x

is of constant-sign. Therefore, x in an eigenvector of A by Lemma 3.1. It is not difficult
to show that A is necessarily a scalar operator. �

COROLLARY 3.3. Let A be an operator on a normed Riesz space E . If the com-
mutator [A,T ] is of constant-sign for every continuous positive rank-one operator T
on E , then A is a scalar operator.

Proof. Since the topological dual E ′ is an ideal of ˜E (see [1, Theorem 3.49]) and
it separates the points of E (see [1, Theorem 3.7]), we can apply Theorem 3.2. �

To define higher commutators, we introduce the notation CT (A) = [A,T ] = AT −
TA , where A and T are operators on E . We now define inductively

C1
T (A) = CT (A), Cn+1

T (A) = CT (Cn
T (A)) = [Cn

T (A),T ] for n ∈ N.

If T = x⊗ϕ where x ∈ E and ϕ ∈ ˜E , then it can be easily proved by induction that

Cn
x⊗ϕ(A)x = ϕ(x)n−1 (ϕ(x)Ax−ϕ(Ax)x) .

We conclude the paper with slight extensions of Lemma 3.1 and Theorem 3.2.

LEMMA 3.4. Let A be an operator on a Riesz space E , and x ∈ E+ a nonzero
vector. Let Φ be a Riesz subspace of ˜E that separates the points of E . If for every
functional ϕ ∈ Φ+ there exists n ∈ N such that Cn

x⊗ϕ(A)x is of constant-sign, then x
in an eigenvector of A.

Proof. The assumption on commutators implies that if ϕ(x) > 0 then the vector

ϕ(x)Ax−ϕ(Ax)x

is of constant-sign. Since this clearly holds also in the case when ϕ(x) = 0, x must be
an eigenvector of A by Lemma 3.1. �

THEOREM 3.5. Let A be an operator on a Riesz space E . Let Φ be a Riesz
subspace of ˜E that separates the points of E . Suppose that, for each positive rank-one
operator T = x⊗ϕ with x ∈ E and ϕ ∈ Φ , there exists n ∈ N such that the operator
Cn

T (A) is of constant-sign. Then A is a scalar operator.
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[2] J. BRAČIČ, R. DRNOVŠEK, Y. B. FARFOROVSKAYA, E. L. RABKIN, J. ZEMÁNEK, On positive
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[3] R. DRNOVŠEK, M. KANDIĆ, Ideal-triangularizability of semigroups of positive operators, Integral

Equations Operator Theory 64, 4 (2009), 539–552.
[4] H. RADJAVI, P. ROSENTHAL, Simultaneous Triangularization, Springer-Verlag, New York, 2000.

(Received December 20, 2010) Roman Drnovšek
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