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POSITIVE COMMUTATORS AND COLLECTIONS OF OPERATORS
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(Communicated by H. Radjavi)

Abstract. Let A and B be completely decomposable nonnegative matrices such that the com-
mutator AB — BA is also a nonnegative matrix. We prove that the set {A,B} is completely
decomposable, i.e., there exists a permutation matrix P such that PAP~! and PBP~! are upper
triangular matrices. We show similar results for collections of completely decomposable non-
negative matrices. We also find conditions on commutators under which a given operator on a
Riesz space is necessarily scalar.

1. Introduction

A collection € of real (resp. complex) n x n matrices is reducible if there exists
a common invariant subspace other than the trivial ones {0} and R" (resp. C"), or
equivalently, there exists an invertible matrix S such that the collection SZS~! has a
block upper-triangular form; otherwise, the collection % is said to be irreducible. If
the matrix S can be chosen to be a permutation matrix, then the collection ¢ is said to
be decomposable; otherwise, it is called indecomposable or ideal-irreducible.

If there is an invertible matrix S such that the collection SZ'S~! even consists of
upper triangular matrices, then the collection % is said to be triangularizable. 1f the
matrix S can be chosen to be a permutation matrix, then the collection % is said to be
completely decomposable or ideal-triangularizable.

In a (real) partially ordered vector space E, we say that a vector x € E is of
constant-sign if either x or —x is a nonnegative vector. In particular, a real matrix A is
of constant-sign if either A or —A is a nonnegative matrix. We now recall three results
on nonnegative matrices (see [2, Theorem 2.1], [4, Lemma 5.1.5] and [4, Theorem
5.1.2]). We will use their trivial generalization to matrices of constant-sign.

THEOREM 1.1. Let A and B be matrices of constant-sign such that the commuta-
tor C = AB — BA is of constant-sign as well. Then, up to similarity with a permutation
matrix, C is a strictly upper triangular matrix, and so it is nilpotent.

LEMMA 1.2. A (multiplicative) semigroup . of matrices of constant-sign is de-
composable if some non-zero ideal of . is decomposable.
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THEOREM 1.3. A (multiplicative) semigroup of nilpotent matrices of constant-
sign is completely decomposable.

In this paper we find some conditions under which a collection of completely
decomposable matrices of constant-sign is completely decomposable (Section 2), and
some conditions implying that a given operator on a Riesz space is necessarily scalar
(Section 3).

2. From local to global complete decomposability

It is known and easy to prove that every commutative collection of complex ma-
trices is triangularizable (see [4, Theorem 1.1.5]). In this section we seek for order
analogs of this fact. We begin with a pair of nonnegative matrices.

THEOREM 2.1. Let A and B be completely decomposable n X n nonnegative ma-
trices such that AB < BA. Then the set {A,B} is also completely decomposable, or
equivalently, the sum A+ B is completely decomposable.

Proof. After a permutation similarity, the matrix C = A+ B can be decomposed
into a block triangular form whose diagonal blocks are indecomposable matrices. Since
C > A and C > B, the matrices A and B have the same block triangular form, and each
of their diagonal blocks is completely decomposable. The latter fact follows easily
from the theorem asserting that a nonnegative matrix is completely decomposable if
and only if it becomes nilpotent upon replacement of its diagonal entries by zeros (see
[4, Theorem 5.1.7]).

We want to prove that all diagonal blocks of C are one-dimensional. Assume the
contrary. With no loss of generality we may assume that C is an indecomposable matrix
of size n > 2. Since an indecomposable matrix is not nilpotent, we may also assume
that the spectral radius of C equals 1.

By Perron-Frobenius Theorem [4, Corollary 5.2.13], there are strictly positive vec-
tors u and v, unique up to a scalar multiple, such that Cu = u and CTv = v. Since
BA > AB, the vector (BA —AB)u = (CA — AC)u = CAu — Au is nonnegative. However,
vI'(CAu — Au) = 0, so that CAu — Au = 0, as the vector v is strictly positive. This
means that Au is an eigenvector of C corresponding to 1, and so there exists A > 0
such that Au = Au. In fact, A > 0, since A # 0 and the vector u is strictly positive.
Similarly, the vector (ATCT — CTAT)v = ATy — CTATv is nonnegative, and it follows
from u” (ATv —CTATv) =0 that CTATv = ATy, so that there exists g > 0 such that
ATy = uv. Since

wTu=vAu= (ATV)Tu= v u
and vIu >0, wehave A = 1.

Now, we may assume that the matrix A = (a; ;) j—1 is upper triangular. The equal-
ities Au = Au and ATv = Av give 2n scalar equalities:
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ajuy+apuy+ -+ apply = Aug
azpuy + -+ ax py = Auy

apnlUn = Aun

ap,vi = A,Vl
ajavi+az v = Awn

arpvi+ayva+ -+ apave = Ay

Having in mind that both vectors u and v are strictly positive, we conclude from
them successively a,, = A, a1 =4, ajpo=a13=...=a1, =0, aj, =ay, =
n1n=0, a0 =L, ay_1y,—1=»~,etc. Thus, A=AI,sothat B=C—-A=C—Al is
indecomposable. This contradiction completes the proof. [

This theorem can be stated for general real matrices as follows. Here the absolute
value |A| of a real matrix A is taken entry-wise.

COROLLARY 2.2. Let A and B be completely decomposable n X n real matrices
such that |A||B| < |B||A|. Then |A|+ |B| is completely decomposable. In particular,
the set {A,B} is completely decomposable.

In the case of collection of matrices we first consider the commutative case.

THEOREM 2.3. A commutative collection € of matrices of constant-sign is com-
pletely decomposable if and only if each member of € is completely decomposable.

Proof. We must only show that the condition is sufficient. Clearly, |A||B| = |B||A|
for every A,B € €. Let {C|,C,,...,Cy} C € be the basis of the linear span of % .
By Corollary 2.2 and an easy induction, the sum |C;|+ |C2| + ... +|Cy| is completely
decomposable. This implies easily that the whole collection is completely decompos-
able. O

THEOREM 2.4. Let . be a semigroup of completely decomposable n x n ma-
trices of constant-sign such that for every A,B € . the commutator AB — BA is of
constant-sign. Then the semigroup . is completely decomposable.

Proof. It suffices to show that the semigroup . is decomposable, because we can
then apply induction on 7 or the Ideal-triangularization Lemma (see [3]).

By Theorem 2.3, we may assume that .% is not commutative. Let A and B be
matrices in . with the property AB # BA and AB — BA > 0. Since the commutator
of any pair of matrices from .% is nilpotent by Theorem 1.1, the semigroup . is
triangularizable by [4, Theorem 4.4.12]. This trivially implies that the semigroup .%}
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generated by the semigroup . and the nonnegative nonzero matrix AB — BA is also
triangularizable. Let ¢ be the semigroup ideal generated by the matrix AB — BA
in ;. Since the spectral radius is submultiplicative on triangularizable families of
matrices, every matrix in _¢ is nilpotent. By Theorem 1.3, the semigroup ideal ¢ is
completely decomposable, and so the semigroup %] is decomposable by Lemma 1.2.
We finish the proof by noticing . C.7. [

The following example shows that Theorem 2.4 (for n > 3) does not hold without
the assumption that the collection is a semigroup.

EXAMPLE 2.5. Let e;, es, ..., e, be the standard basis vectors of IR", where
n > 3. Define completely decomposable nilpotent matrices by A; = e,-eiTJr | fori=
1,2,...,n—1, and A, = e el . Then the collection {A,As,...,A,} has the property
that either A;A; > AjA; or A;/A; <AjA; forevery i,j € {1,2,...,n}, since either A;A; =
0 or AjA; = 0. We now show that this collection is not completely decomposable.
Assume the contrary. Then the sum S=A; +As+...4+A, is completely decomposable.
Since all the diagonal entries of S are zero, S must be nilpotent which contradicts the
fact that S" =1.

The following theorem and its corollaries could be seen as extensions of [4, Corol-
lary 1.7.5] in the setting of matrices of constant-sign. A collection € of matrices is
called a Lie set if it is closed under commutation, i.e., AB — BA is in ¥ whenever A
and B arein ¢ .

THEOREM 2.6. A collection € of completely decomposable n x n matrices of
constant-sign is completely decomposable if the Lie set £ generated by € consists of
matrices of constant-sign.

Proof. If the collection % is commutative, then % is completely decomposable
by Theorem 2.3. Suppose now that % is not commutative. Then there exist matrices
A,B € € such that AB > BA and AB # BA. By Theorem 1.1, every commutator of
matrices from Z is a nilpotent matrix. Therefore, the Lie set . is triangularizable by
[4, Corollary 1.7.8]. Let . be the (multiplicative) semigroup generated by . and let
# be the semigroup ideal in . generated by the nonzero nonnegative nilpotent matrix
AB — BA. Since the spectral radius is submultiplicative on triangularizable families of
matrices, the semigroup ideal _# consists of nilpotent matrices of constant-sign, and
so it follows from [4, Theorem 5.1.2] that it is completely decomposable. Applying
Lemma 1.2, we see that the semigroup .¥ is decomposable, and so is the collection €
as ¢ C .. To finish the proof we apply Ideal-triangularization Lemma (see [3]) or we
use inductionon n. [J

COROLLARY 2.7. A collection € of completely decomposable matrices of con-
stant-sign is completely decomposable if for every pair {A,B} C € at least one of the
commutators AB — BA and BA — AB is contained in € .

In view of Theorem 1.3 we have the following.
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COROLLARY 2.8. A Lie set of nilpotent matrices of constant-sign is completely
decomposable.

Recall that a Lie algebra of matrices is a Lie set that is also a linear space. The
following result can be considered as an order analog of Engel’s theorem asserting that
a Lie algebra of nilpotent matrices is triangularizable (see [4, Corollary 1.7.6]).

THEOREM 2.9. If a Lie algebra of nilpotent matrices is generated by the set of
nonnegative matrices, then it is completely decomposable.

Proof. Let <7 be a Lie algebra of nilpotent matrices generated by the set .# of
nonnegative matrices. By Engel’s theorem [4, Corollary 1.7.6], < is triangularizable.
It follows that in an appropriate basis all the matrices in .%# are strictly upper triangular.
Therefore, the same is true for the semigroup . generated by .%. Hence, all the
matrices in . are nilpotent and nonnegative (w.r.t. the original basis), so that . is
completely decomposable by Theorem 1.3. Therefore, the (associative) algebra <7}
generated by .Z is completely decomposable, because 7 is the linear span of .7 .
Since &/ C @7, the Lie algebra o7 is completely decomposable as well. [

3. Conditions implying that an operator is scalar

It is well-known that only scalar operators (= multiples of the identity operator)
commute with all (linear) operators on a vector space. Moreover, they are the only
operators commuting with all rank-one operators. In this section we consider order
analogs of this fact.

_ Let E be areal Riesz space, and let E T denote the positive cone of E. Denote by
E the order dual of E, that is the vector space generated by positive linear functionals
on E.

For operators A and T on E we write [A,T] =AT —TA. If T =x® ¢ with x € E

and @ € E, then [A,T] =Ax®@ @0 —x@A*¢.

LEMMA 3.1. Let A be an operator on a Riesz space E, and x € E™ a nonzero
vector. Let ® be a Riesz subspace of E that separates the points of E. If for every
functional @ € ®* the vector

[A,x® @]x = @(x)Ax — @ (Ax)x

is of constant-sign, then x in an eigenvector of A.

Proof. Define the sets

P={pecd :p(x)Ax> @(Ax)x},
N ={yecd: y(x)Ax < y(Ax)x}.
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For any ¢, ¢, € P, we have

@1 (x)P2(Ax) = @1 (Ax) @2 (x).

If we change the role of these two functionals, we get

@1 (%) P2(Ax) = @1 (Ax) @2 (x) (1)

for all ¢;, ¢, € P. The same holds for pairs of functionals in N.
Since ®* = PUN and @ separates the points of E, there exists ¢y € ®* such

that @(x) > 0. Suppose that ¢y € P (the case ¢y € N is similar). If A = "’(go(éc’;),

then the equality (1) implies that ¢(Ax) = A@(x) for all ¢ € P. Let us prove that also
W(Ax) = Ay(x) forall v € N. We must consider two cases.

e There exists Yy € N with yp(x) > 0: If we denote u = WWOO(—’(‘:C);) , then the equality

(1) for the set N gives that w(Ax) = py(x) for all ¥ € N. Suppose that the
functional ¢y + yp is an element of P (the case when it belongs to N can be
treated analogously). Then we have

(90 + wo)(Ax) = A (o + Wo) (x)-
Since
@0 (Ax) + Yo (Ax) = Ao (x) + Ly (x),

we obtain that A = u, and so

y(Ax) = Ay(x)
forall y € N.

e For every y € N it holds that w(x) = 0: Choose any v € N. The positive
functional @y+ y cannot be an element of N, since (@o+ y)(x) = @op(x) # 0.
Therefore, we have ¢y + v € P, and so

(@0 + W) (Ax) = (@0 + ¥)(x) = Ao (x) = @o(Ax).

Hence

Y(Ax) =0=Ay(x).

We have proved that ¢(Ax) = A¢(x) forall ¢ € ®" which implies that ¢(Ax—Ax) =0
for all ¢ € ®. Since ® separates the points of E, we conclude that Ax = Ax. This
completes the proof. [

THEOREM 3.2. Let A be an operator on a Riesz space E. Let ® be a Riesz
subspace of E that separates the points of E. If the commutator [A,T| is of constant-
sign for every positive rank-one operator T =x® @ with x € E and ¢ € @, then A is
a scalar operator.
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Proof. If x € E* is a nonzero vector, then for every functional ¢ € ®* the vector
[A,x® plx = @(x)Ax— @(Ax)x

is of constant-sign. Therefore, x in an eigenvector of A by Lemma 3.1. It is not difficult
to show that A is necessarily a scalar operator. [

COROLLARY 3.3. Let A be an operator on a normed Riesz space E. If the com-
mutator [A,T] is of constant-sign for every continuous positive rank-one operator T
on E, then A is a scalar operator.

Proof. Since the topological dual E’ is an ideal of E (see [1, Theorem 3.49]) and
it separates the points of E (see [1, Theorem 3.7]), we can apply Theorem 3.2. [

To define higher commutators, we introduce the notation Cr(A) = [A,T] = AT —
TA, where A and T are operators on E. We now define inductively

CH(A) = Cr(A), C}TH(A) = Cr (C}(A)) = [C}(A),T] for neN.
If T=x®¢ where x€ E and ¢ € E, then it can be easily proved by induction that

Crap(A)x = @(x)"™" (@(x)Ax — @(Ax)x).

We conclude the paper with slight extensions of Lemma 3.1 and Theorem 3.2.

LEMMA 3.4. Let A be an operator on a Riesz space E, and x € E™ a nonzero
vector. Let ® be a Riesz subspace of E that separates the points of E. If for every
functional ¢ € ®" there exists n € N such that C;’®(P(A)x is of constant-sign, then x
in an eigenvector of A.

Proof. The assumption on commutators implies that if @(x) > 0 then the vector

@(x)Ax — @(Ax)x

is of constant-sign. Since this clearly holds also in the case when ¢(x) =0, x must be
an eigenvector of A by Lemma 3.1. [

THEOREM 3.5. Let A be an operator on a Riesz space E. Let ® be a Riesz
subspace of E that separates the points of E. Suppose that, for each positive rank-one
operator T =x® @ with x € E and ¢ € @, there exists n € N such that the operator
C.(A) is of constant-sign. Then A is a scalar operator.
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