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ELEMENTARY MODELS OF UNBOUNDED JACOBI MATRICES

WITH A FEW BOUNDED GAPS IN THE ESSENTIAL SPECTRUM

ANNE BOUTET DE MONVEL, JAN JANAS AND SERGUEI NABOKO

(Communicated by Fritz Gesztesy)

Abstract. This work contains a constructive example of a class of Jacobi operators with an ar-
bitrary finite number of gaps in its unbounded essential spectrum. The construction of this class
is based on elementary ideas of gluing finite-dimensional Jacobi matrices whose sizes grow to
infinity. The precise analysis of the finite-dimensional pieces leads to a new “finite essential
spectrum” besides the natural essential spectrum of two explicit infinite Jacobi matrices, deter-
mined by the above finite dimensional ones. This new finite essential spectrum is calculated
explicitly. A connection to the ideas of the recent paper [12] is also given.

1. Introduction

The behaviour of the essential spectrum of unbounded Jacobi operators in com-
parison to bounded ones is more delicate. This phenomenon was already observed in
earlier works [3, 6, 9, 10, 12, 13]. In particular in [6, 9, 10, 13] the first explicit exam-
ples of unbounded Jacobi operators with one gap in the essential spectrum were shown.
These examples will be recalled briefly below. In turn, in [3] a class of unbounded
Jacobi matrices with a bounded essential spectrum E such that R\E consists of an ar-
bitrary finite number of intervals was constructed. However, no constructive examples
of Jacobi operators are known with unbounded essential spectra having a finite (greater
than one) number of gaps.

The main purpose of the present paper is the construction of Jacobi operators with
this property of the essential spectrum.

For given real sequences {ak}∞
1 , ak �= 0 for all k and {bk}∞

1 the Jacobi operator
J 0 acts in the space �2

0 = �2
0(N) of sequences f = { fk}∞

k=1 having only a finite number
of nonzero terms by the formula

(J 0 f )k = ak−1 fk−1 +bk fk +ak fk+1,

where k = 1,2, . . . and a0 := f0 := 0. The ak ’s are called the “weights” of the Jacobi
operator.

One can extend J 0 to a unique self-adjoint operator J = J ({ak},{bk}) act-
ing in �2 = �2(N) provided that ∑k

1
|ak| = +∞ [1]. Denote by σess(J ) the essential
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spectrum of J . Surely for any given X = X ⊂ R one can trivially construct a class

of Jacobi matrices J̃ such that σess(J̃ ) = X . Indeed, for any sequence {an}∞
n=1 of

positive numbers such that an → 0 take a dense sequence {bn}∞
n=1 in X . This con-

struction is not so interesting (even useless) from our point of view. In fact this choice
of {bn}∞

n=1 defines irregular behaviour and cannot be used for example to produce a
second order phase transition, as it was done in [10] in the case an = nα + cn f (nγ ) ,
0 < γ < 1−α

2 , α ∈ (0,1) , {ck}∞
k=1 is 2-periodic, f is continuous and periodic of pe-

riod T , and bn ≡ 0.
We should also recall a general construction of J with σess(J ) = X due to

Stone [1]. This construction gives no information on matrix entries of J , however.
The idea of construction of our class of examples of Jacobi operators can be ex-

plained as follows. For two given sequences {J 1s} , {J 2s} of finite-dimensional
Jacobi matrices whose sizes tend to infinity and a sequence {dk}∞

k=1 of different from
zero, real numbers such that ds → 0; define the infinite Jacobi matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J 11 d1

d1 J 21 d2

d2 J 12 d3

d3 J 22 d4

d4
. . .. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

We treat such infinite matrix as J = J ({ak},{bk}) defined on page 1 with {ak},{bk}
being the weights and diagonals of the Jacobi matrix, respectively. Using Weyl theo-
rem [11], one can describe σess(J ) in terms of the accumulation points of the union
∪s�1
(
σ(J 1s)∪σ(J 2s)

)
, where σ(J js) denotes the spectrum of J js , ( j = 1,2)

and each point of the union is counted with its multiplicity.
This idea will be made concrete below by choosing suitable blocks J 1s and J 2s

which allow to find σess(J) having the desired property (σess(J ) is unbounded and
R \σess(J ) is the union of a finite number of intervals). Our choice of {J 1s} and
{J 2s} is strongly related to the repetition of the pieces of two infinite Jacobi operators
J c and J z in the sense described in the next sentences.

More precisely, J c is the Jacobi operator defined by an := nα +cn , where {ck}∞
k=1

is a 2-periodic sequence (c1,c2,c1,c2, . . . ), α ∈ (0,1) and bn ≡ 0. This is the well
known Jacobi operator studied in [5, 6, 10, 9, 13]. In particular if c1 > c2 then σac(J c)=
(−∞,−c]∪ [c,+∞) , c := c1 − c2 , and the spectrum is purely absolutely continuous in
this set. Moreover, in the interval (−c,c) there is no spectrum provided that c2 �
−(2−2α) , see [5, Theorem 3.3].

In turn, J z is determined by an N-periodic positive sequence

(ak)∞
1 = (z1,z2, . . . ,zN ;z1,z2, . . . ,zN ; . . .),
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i.e., ak := zr , for k = l ·N + r , 1 � r � N where l = 0,1, . . . , and bk ≡ 0. We also
denote z0 := zN and z−1 := zN−1 .

With the above notations we define our basic models as follows. Fix natural num-
bers N > 1 and r ∈ [0,N − 1] . Consider a sequence of natural numbers {ks} such
that

i) k2s−1 = ms ·N + r , where natural numbers ms → +∞ , as s → +∞ ;

ii) k2s are even and k2s → +∞ , as s → +∞ .

Then J 1s := J z(k2s−1) , where J z(k2s−1) is the k2s−1 -dimensional Jacobi matrix
given by the k2s−1 − 1 weights (z1,z2, . . . ,zN ;z1,z2, . . . ,zN ; . . . ;z1, . . . ,zr−1) , and the
main diagonal bk ≡ 0.

Define J 2s as the k2s -dimensional Jacobi matrix J c(k2s) with

ap = pα + cp, p = 1, . . . ,k2s−1, bp ≡ 0,

where

(a) {cn} is 2-periodic, c1 > c2 , and 2−2α + c2 > 0.

Observe that this condition on cn forces: pα + cp > 0 for all p ∈ N.
Note that J is a compact perturbation of

J sp :=
⊕
s�1

J s, (2)

where J s coincides either with J z(ks) or with J c(ks) , depending on the parity of
s .

Before we formulate the main result of this work, let us recall a few basic no-
tions and results related to infinite periodic matrix J z and finite-dimensional matrices
J z(k) defined above. Some of these results will be used later in the work. Recall that
the infinite matrix J z acts in the standard way in the space of all scalar sequences.
If {wn} is an arbitrary scalar sequence then we shall denote byJ z w the sequence
{an−1wn−1 + anwn} . For a given λ ∈ R denote by Bs = Bs(λ ) the transfer matrix of
J z

Bs =
(

0 1
− zs−1

zs
λ
zs

)
,s � 1.

Then for λ ∈ R the system of equations (J z u)n = λun , n > 1, can be written in the
form which will be used below many times

�un+1 = Bn�un,

where �un :=
(un−1

un

)
=: (un−1,un)t .

Let
M(λ ) := B1 ·BN ·BN−1 · · ·B2
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be the monodromy matrix of the periodic problem. Note that detM(λ ) = 1. It is well
known that the absolutely continuous spectrum σac(J z) of J z is given by {λ ∈ R |
|TrM(λ )| � 2} and has only a finite point spectrum in R\σac(J z) , (see [4]).

By a C2 -generalized eigenvector �u(λ ) = {�un(λ )}∞
2 of J z , corresponding to λ ∈

R , we mean any nontrivial solution of the equations �un+1 = Bn�un , n = 2,3, . . . .
In the case λ ∈ “Int“[σ(J z)] := {x ∈ R | |TrM(x)| < 2} this C2 -generalized

eigenvector �u(λ ) satisfies the estimates

0 < c < ‖�un(λ )‖ <C for any n = 2,3, . . . , (3)

for some constants c , C depending on λ and the initial conditions only, ([15, Theorem
7.3]). Generically the set “ Int“[σ(J z)] coincides with the interior of σac(J z) .

Now fix λ /∈ σac(J z) . It follows that |TrM(λ )| > 2 and M(λ ) has two real
eigenvalues μ± such that 0 < |μ−| < 1 < |μ+| . Let P± be the Riesz projections onto
the eigenspaces corresponding to μ± . We have

M(λ ) = μ+P+ + μ−P−. (4)

Choose
−→p (λ ) :=

(
1
λ
z1

)
.

Let the sequence {k2s−1}∞
1 be determined by N and r (see the condition i)described in

the definition of J c(k2s)). The set TN,r which appears for the first time in Theorem 1
below is defined as follows

TN,r :=
{

λ ∈ R | λ /∈ σ(J z) and
(
Br+1 · · ·B2P+

−→p (λ )
)
1 = 0
}
, (5)

where for a given vector v ∈ C2 we denote by v1 its first coordinate. In the above
Bs · · ·Bt := I when t > s . In particular for r = 0 the above means

(
P+

−→p (λ )
)
1 = 0.

Note that TN,r is finite being a subset of the zero set of a polynomial. Special role of the
set TN,r will be discussed later. Recall that for real λ the sequence of the orthogonal
polynomials Pn(λ ) of the first kind related to J z is defined by the recurrence relation

an−1Pn−1(λ )+anPn+1(λ ) = λPn(λ ), n = 1,2, . . . ,

where P0(λ ) ≡ 0, P1(λ ) ≡ 1 and ak is the k-th weight of J z .

REMARK 1. Observe that λ ∈ σp(J z) (the point spectrum) if and only if λ �∈
σess(J z) and P+(1,P2(λ ))t = 0. Indeed, assume that λ ∈ σp(J z) and J z u = λu
with u1 = 1 (u1 must be �= 0). It follows that un = Pn(λ ) and {PlN+r(λ )}∞

l=1 ∈ l2 .
Using (4) we see that P+(1,P2(λ ))t = 0.

On the other hand if λ �∈ σess(J z) and P+(1,P2(λ ))t = 0 then again (4) implies
that {PlN+r(λ )}∞

l=1 ∈ l2 . Thus the whole sequence {Pn(λ )} ∈ l2 (remember that all
matrices Bs are invertible with uniformly bounded norms of their inverses).

The main result of this work is given by
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THEOREM 1. Let N and r ∈ [0,N−1] be natural numbers. For a given sequence
{ms} of natural numbers which tend to infinity let k2s−1 = ms ·N + r and let {k2s} be
a sequence of even numbers with k2s → +∞ , as s → +∞ . Fix a sequence {ds} of
real nonzero numbers with lims→∞ ds = 0. Fix any α ∈ (0,1). Suppose we are given a
sequence {cn} of real numbers such that

(a) {cn} is 2 -periodic, c1 > c2 , and 2−2α + c2 > 0 .

Let J 2s be the k2s -dimensional Jacobi matrix J c(k2s) with

ap = pα + cp, p = 1, . . . ,k2s−1, bp ≡ 0.

Denote by J 1s := J z(k2s−1) , where J z(k2s−1) is the k2s−1 -dimensional Jacobi ma-
trix given by the k2s−1−1 positive weights (z1,z2, . . . ,zN ;z1,z2, . . . ,zN ; . . . ;z1, . . . ,zr−1) ,
and the main diagonal is equal to zero. If

c1− c2 > 2 max
1�s�N

zs,

then for the operator J defined in (1) we have

σess(J ) = σ(J c)∪σ(J z)∪TN,r.

REMARK 2. The matrix J considered in this theorem is defined ad hoc, as a
compact perturbation of the direct sum ⊕J s , of finite-dimensional Jacobi matrices.
Using this representation of J and the Kato–Rosenblum theorem, we know that the
absolutely continuous spectrum σac(J ) of J is empty. Indeed, due to our assump-
tions one can choose a sequence ln → +∞ such that {dln}∞

1 ∈ �1 and this defines the
decomposition of J as the sum

⊕
s Ls +K , where Ls are finite dimensional blocks of

varying dimensions and K is a trace class operator.

We plan to construct in a forthcoming paper, using a different strategy, unbounded
Jacobi operators with a finite number of bounded gaps in the essential spectrum and
non-trivial absolutely continuous spectrum. In particular this strategy is partially based
on the paper of Last-Simon [12], and will be discussed in Section 4 of this work.

2. Preparatory results

In this section we formulate and prove some results concerning the above men-
tioned finite Jacobi matrices J c(k) and J z(k) for arbitrary size k. We start by prov-
ing uniform (in k) estimates from below of the operator modulus |J c(k)| of J c(k) .

LEMMA 1. If the sequence {cn}∞
1 satisfies (c) and if k ∈ N is even then

‖J c(k)u‖ � (c1− c2)‖u‖, u ∈ C
k. (6)
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Proof. The proof is based on the trick of Dombrowski used in [5] to show essen-
tially the same inequality for the infinite matrix J c . For u ∈ Ck denote by

ueven =
k/2

∑
t=1

u2te2t ,

uodd =
k/2

∑
t=1

u2t−1e2t−1,

where {es}k
1 is the canonical basis in Ck . Denote T := J c(k) which is hermitian.

Let V be the diagonal matrix diag{(−1)p+1}k
1 in the basis {ep}k

1 . It is easy to check
that TV = −VT . By straightforward observation we verify that T is invertible due to
the fact that k is even. Let λ be the least positive eigenvalue of T . If Tv = λv then
(v,Vv) = 0 which is equivalent to

‖veven‖2 = ‖vodd‖2. (7)

But Tv is also eigenvector of T for the eigenvalue λ , hence

‖(Tv)even‖2 = ‖(Tv)odd‖2. (8)

We claim that
‖(Tv)even‖2 � (c1 − c2)2‖vodd‖2. (9)

We have

‖(Tv)even‖2 =
k/2

∑
s=1

|(Tv)2s|2

= ∑
s
|a2s−1v2s−1 +a2sv2s+1|2

= ∑
s

∣∣[(2s−1)α + c2]v2s−1 +[(2s)α + c2]v2s+1 +(c1− c2)v2s−1
∣∣2

= ∑
s

∣∣[(2s−1)α + c2]v2s−1 +[(2s)α + c2]v2s+1
∣∣2 +(c1− c2)2 ∑

s
|v2s−1|2

+2Re∑
s

[(
(2s−1)α + c2

)
v2s−1 +

(
(2s)α + c2

)
v2s+1
]
v2s−1(c1− c2),

where vk+1 := 0. Note that

2Re∑
s

[(
(2s−1)α + c2

)
v2s−1 +

(
(2s)α + c2

)
v2s+1
]
v2s−1 � 0.

Indeed, the last sum is bounded from below by

2∑
s

[(
(2s−1)α + c2

)|v2s−1|2 − 1
2

(
(2s)α + c2

)(|v2s+1|2 + |v2s−1|2
)]

= ∑
s

[
2(2s−1)α +2c2−

(
(2s)α + c2

)]|v2s−1|2−∑
s

(
(2s)α + c2

)|v2s+1|2

= ∑
s

[
2(2s−1)α − (2s)α − (2s−2)α]|v2s−1|2 +(2−2α + c2)|v1|2 � 0,
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due to condition (c) and to concavity of nα (α < 1). Combining (7), (8) and (9) we get
the desired inequality (6). �

REMARK 3. Note that for odd k the matrix J c(k) is never invertible. Actually,
since TV = −VT and detV = −1 so detT = 0. We also emphasize that the above
proof does not follow from the infinite-dimensional one because the truncation anihi-
lates large an .

Now we recall general result which will be used in the proof of the next Lemma
and also in other proofs of the next section.

LEMMA 2. If A is a selfadjoint operator in a Hilbert space, λ ∈ R and ‖(A−
λ I)x‖ < ε for some ε > 0 and x in the domain of A with ‖x‖ = 1 , then there exists
μ ∈ σ(A) such that |λ − μ | < ε .

LEMMA 3.
TN,r ⊂ σess(J ).

Proof. Let λ ∈ TN,r . By definition of the monodromy matrix M(λ ) we can write(
Pk2s−1+1(λ )
Pk2s−1+2(λ )

)
= (Br+1Br · · ·B2)[M(λ )]ms−→u2(λ )

= (Br+1 · · ·B2)
(
μms

+ P+
−→u2(λ )+ μms− P−−→u2(λ )

)
, (10)

where k2s−1 = ms ·N + r . Since
(
Br+1 · · ·B2P+

−→u2(λ )
)
1 = 0 (by definition of TN,r ),

(10) implies that
Pk2s−1+1(λ ) = O(μms− ), as ms → +∞. (11)

Consider the sequence of Ck2s−1 vectors

−→ws :=
(
1,P2(λ ), . . . ,Pk2s−1(λ )

)t
.

Using (11), we obtain∥∥[J z(k2s−1)−λ
]−→ws
∥∥=
∥∥(0, . . . ,0,−ak2s−1Pk2s−1+1(λ )

)t∥∥= O(μms− ), as ms → +∞.

Hence
‖[J z(k2s−1)−λ ]−→ws‖

‖−→ws‖ = O(μms− ), as ms → +∞,

where a j is the j− th weight of J z . Using Lemma 2 we deduce that there exists an

eigenvalue ρs ∈ σ
(
J z(k2s−1)

)
with an eigenvector �fms (‖�fms‖ = 1) such that

|ρs −λ |= O(μms− ), as ms → +∞.

Define the sequence of �2 -vectors of the norm one written in the block form corre-
sponding to the decomposition (2)

Fms = (�0000, . . . ,�0000, �fms ,�0000,�0000, . . .),
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here the position of the non-zero vector term equals 2s− 1. By definition Fms ⇀ 0
weakly as ms → ∞ , and∥∥(J sp−λ )Fms

∥∥=
∥∥[J z(k2s−1)−λ

]
�fms

∥∥
�
∥∥(J z(k2s−1)−ρs

)
�fms

∥∥+ |ρs−λ |
= |ρs −λ |= O(μms− ), as ms → +∞.

Thus λ ∈ σess(J sp) and the proof is complete. �
It is convenient to reformulate the definition of TN,r . Assume that λ /∈ σess(J z)

then λ ∈ TN,r if and only if

(i) P+
−→u2(λ ) �= 0,

(ii) Br+1 · · ·B2P+
−→u2(λ ) =

(
0

w(λ )

)
, for a certain w(λ ) �= 0.

In other words

P+
−→u2(λ ) = w(λ )(Br+1 · · ·B2)−1

(
0
1

)
=:

(
R1(λ )
R2(λ )

)
.

Since P+
−→u2(λ ) should be a nonzero eigenvector of M(λ )≡ (Mij(λ )

)2
i, j=1 correspond-

ing to μ+ it follows that

M(λ )
(

R1(λ )
R2(λ )

)
= μ+

(
R1(λ )
R2(λ )

)
,

which can be written in an equivalent form:

1. R2(λ )[M11(λ )R1(λ )+M12(λ )R2(λ )] = R1(λ )[M21(λ )R1(λ )+M22(λ )R2(λ )] ,

2.
∣∣∣〈M(λ )

(
R1(λ )
R2(λ )

)
,
(

R1(λ )
R2(λ )

)〉∣∣∣> ∥∥∥(R1(λ )
R2(λ )

)∥∥∥2 ,

because |μ+| > 1.
Since we know the monodromy matrix, the above equation is easy to solve(as

a quadratic equation in R1(λ )/R2(λ )). On the other hand to verify the condition
P+

−→u2(λ ) �= 0 is not easy to check cause P+ is not known. Note that condition (ii)
leads to the third restriction

(iii) (
(Br+1 · · ·B2)(R1(λ ),R2(λ ))t

)
1 = 0.

In other words one can say that λ /∈ σess(J z) belongs to TN,r if and only if the
conditions (i),(ii) and (iii) are satisfied.

We shall find more efficient form of these conditions for r = 0,1,2 in Section 5,
see Remark 4.
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3. Proof of the main result

Let the 2-periodic sequence {ck} satisfy condition (c) (see Section 1) and the
sequence {ks} fulfills conditions of Theorem 1. The condition limds = 0 implies that
σess(J sp) = σess(J ) . The infinite block matrix J sp is defined by (2). The proof of
Theorem 1 will be complete if we check the following two inclusions:

(i) First inclusion:
σ(J c)∪σ(J z)∪TN,r ⊂ σess(J sp). (12)

(ii) Second inclusion:

σess(J sp) ⊂ σ(J c)∪σ(J z)∪TN,r. (13)

Proof of the first inclusion (12). Due to Lemma 3 it is enough to verify that

σ(J c)∪σ(J z) ⊂ σess(J sp). (14)

Fix λ ∈ (−∞,−c)∪ (c,+∞) ⊂ σ(J c) , c := c1− c2 . We may assume without loss of
generality that λ �= ±c . For this λ any nonzero generalized eigenvector {un}∞

1 of J c
satisfies the estimates

dn−α/2 � ‖�un‖ � Dn−α/2, (15)

for some positive constants d,D and n = 2,3, ... . See for instance [9] or [10].
We define a new sequence of complex numbers {vn}∞

1 with finite supports – whose
location and lengths are determined by {ks}∞

1 – as follows. Let

Δs :=
k2s

2
.

Recalling the standard trick of ”linear cut-off of Weyl sequences” given for example in
[12], we define the sequence

vs(n) =

⎧⎪⎨⎪⎩
un[1+ 1

Δs
(n−Δs)], 0 < n � Δs,

un[1− 1
Δs

(n−Δs−1)], Δs < n � 2Δs

0, n > k2s.

Since the sequence vs( ·) has at most 2Δs values different from zero we can estimate
the �2 -norm of vs( ·) from below as follows (assuming that s 
 1)

‖vs‖2 � ∑
−Δs/4�k−Δs�Δs/4

‖�uk‖2 (16)

� 1
2 ∑
−Δs/8�k−Δs�Δs/8

‖�uk‖2 � 1
2

min
−Δs/8�k−Δs�Δs/8

‖�uk‖2Δs/4.

Combining the last inequality with (15) we obtain

‖vs‖2 � 1
16

d2Δs
1−α =: pΔs

1−α . (17)
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In the reasoning given in this part of the proof ak denotes k− th weight of J c . For
the k2s -dimensional vector sequence

−→gs := (vs(1), . . . ,vs(2Δs))t

we compute

‖[J c(k2s)−λ ]−→gs‖2 = Δs
−2‖(2a1u2−λu1, · · · ,±(arur+1−ar−1ur−1), (18)

· · ·ak2s−2uk2s−2−ak2s−1uk2s , ak2s−1uk2s−1 −ak2suk2s+1)t‖2.

The sign ± means + if r � Δs and − for r > Δs .
The above identity can be easily checked by definition of vs( ·) and the recurrence

equations satisfied by the generalized eigenvector {un}∞
1 . Indeed, the r− th coordinate

(for r > Δs ) of the vector (J c(k2s)−λ )−→gs equals

− r−1−Δs

Δs
(arur+1 +ar−1ur−1−λur)+

(ar−1ur−1−arur+1)
Δs

=
(ar−1ur−1−arur+1)

Δs
.

Now the norm ‖[J c(k2s)−λ ]−→gs‖2 can be estimated from above by

1
Δ2

s

(|2a1u2−λu1|2 +
k2s

∑
t=2

(|at−1ut−1|+ |atut+1|
)2)

.

The last estimate and (15), prove that ‖[J c(k2s)−λ ]−→gs‖2 is less than MΔs
α−1 ,

for a certain constant M > 0. Combining this and (17) we obtain

‖[J c(k2s)−λ ]−→gs‖2

‖−→gs‖2 � K Δs
2α−2,

where K := M/p.
Since α < 1

Δs
2α−2 → 0, as s → +∞

and the above ‖[J c(k2s)−λ ]−→gs‖2

‖−→gs‖2 tends to zero as s → +∞.

Now define
Gs := (0000, . . . ,0000,−→gs ,0000, . . .) ∈ �2,

where 0000 are zero vectors of dimensions corresponding to the decomposition (2), and−→gs occupies 2s coordinate of Gs . Therefore

‖(J sp−λ )Gs‖2

‖Gs‖2 =
‖[J c(k2s)−λ ]−→gs‖2

‖−→gs‖2 −−−−→
s→+∞

0.

Surely Gs
‖Gs‖ tends weakly to zero, so λ ∈ σess(J sp) = σess(J ) .

Consider now

y ∈ “Int“[σ(J z)] = {x ∈ R | |TrM(x)| < 2}.
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We claim that there exists C = C(y) > 0 and μs ∈ σ
(
J z(k2s−1)

)
such that

|y− μs| � C√
k2s−1

. (19)

Letting s → +∞ in (19) we see that y is an accumulation point of ∪s σ
(
J z(k2s−1)

)
counted with multiplicity, thus y belongs to σess(J sp) = σess(J ) .

To prove the above claim, let us consider the vectors −→xs := (1,P2(y), . . . ,Pk2s−1(y))
t .

In this part of the proof ak will denote the k− th weight of J z . Using (3) we have∥∥(J z(k2s−1)− y)−→xs
∥∥=
∥∥(0, . . . ,0,ak2s−1−1Pk2s−1−1(y)− yPk2s−1(y)

)t∥∥
=
∥∥(0, . . . ,0,−zrPk2s−1+1(y)

)t∥∥� D

for some D = D(y) and all s = 1,2, . . . The last equation is derived from the relation
ak2s−1−1Pk2s−1−1(y) + ak2s−1Pk2s−1+1(y) = yPk2s−1(y) , and k2s−1 = ms ·N + r . Evoking
(3) one can check that

‖−→xs‖ � q
√

k2s−1, for some q = q(y) > 0.

Thus ∥∥(J z(k2s−1)− y)−→xs
∥∥

‖−→xs‖ � D
q

1√
k2s−1

→ 0, as s → +∞

and (19) holds with C := D
q . Applying again Lemma 2 we can find an eigenvalue

μs ∈ σ
(
J z(k2s−1)

)
which satisfies (19). Therefore y ∈ σess(J sp) . Since TrM(λ ) is

a polynomial ”Int σac(J z)” differs from σac(J z) by a finite number of real points
we have obtained to the desired inclusion σac(J z) ⊂ σess(J sp) .

Finally consider σp(J z) . Remind that σ(J z)= σac(J z)∪σp(J z) and σp(J z)
is finite and lies outside of σac(J z) , [4]. Let w∈ σp(J z) . The eigenvector

(
1,P2(w),

P3(w), . . .
)t

is in �2 . Similarly as above for the sequence −→xs := (1,P2(w), . . . ,Pk2s−1(w))t

we have ∥∥[J z(k2s−1)−w]−→xs
∥∥=
∥∥(0, . . . ,0,zrPk2s−1+1(w))t

∥∥.
Since Pk2s−1(w) → 0 as s → +∞ and ‖−→xs ‖ � 1, so w ∈ σess(J sp) by the same rea-
soning as above for y ∈ “Int“[σac(J z)] .

This completes the proof of (12). �

Proof of the second inclusion (13). To prove the opposite inclusion (13) suppose
that there exists λ0 ∈ σess(J sp) which does not belong to σ(J c)∪σ(J z)∪TN,r .
Since σ(J c) , σ(J z) are closed and TN,r is finite (by (5)) we can choose ε > 0 so
small that the interval around λ0 with radius ε is contained in the set

Zε :=
{
w ∈ R | dist

(
w,σ (J c)∪σ(J z)∪TN,r

)
> ε
}
.

We claim that there exists a number k(ε) ∈ N such that for all k2s−1 > k(ε) ,

Zε ∩σ
(
J z(k2s−1)

)
= ∅. (20)
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Assume for a while that (20) is satisfied for all k2s−1 > k(ε) . This leads to a contradic-
tion because then

(λ0− ε,λ0 + ε)∩σ
(
J z(k2s−1)

)
= ∅

for k2s−1 > k(ε) but λ0 as a point of σess(J sp) must be an accumulation point

of ∪s σ
(
J z(k2s−1)

)
counted with multiplicity. Remember that σ

(
J c(k2s)

) ⊂ R \
(c2 − c1,c1 − c2) (for all s) due to Lemma 1, and therefore does not contribute to
the part of spectrum under consideration. Therefore it remains to prove (20). Sup-
pose on the contrary that for a certain sequence wi ∈ Zε there exists a subsequence
{k2si−1} growing to infinity such that wi ∈ σ

(
J z(k2si−1)

)
, for i = 1,2, . . . , with

k2si−1 = msi ·N + r . It follows (see the reasoning in the proof of Lemma 3) that for
−→gs (wi) :=

(
1,P2(wi), . . . ,Pk2si−1(wi)

)t
,

[
J z(k2si−1)−wi

]−→gs (wi) = 0,

Pk2si−1+1(wi) = 0.

Using (10) we get(
Pk2si−1+1(wi)
Pk2si−1+2(wi)

)
= μmsi

+ Br+1(wi) · · ·B2(wi)P+
−→u2(wi)

+ μmsi− Br+1(wi) . . .B2(wi)P−−→u2(wi)

Looking at the first components of the last expression we obtain

0 = Pk2si−1+1(wi)

= μ+
msi
(
Br+1(wi) . . .B2(wi)P+

−→u2(wi)
)
1 + μ−msi

(
Br+1(wi) . . .B2(wi)P−−→u2(wi)

)
1.

We can assume that wi → w0 ∈ Zε , as i → +∞. Note that μ−,P+ and Bk depend on
wi and converge to μ−(w0) , P+(w0) and Bk(w0) , as i → +∞. Therefore we arrive at
uniform in the index i estimate(

Br+1(wi) . . .B2(wi)P+
−→u2(wi)

)
1 = O(μ−2msi ), as i → +∞.

Since |μ−(w0)| < 1 and μ+(w0) = 1/μ−(w0) the last relation implies that(
Br+1(w0) . . .B2(w0)P+

−→u2(w0)
)
1 = 0,

and by definition of TN,r we conclude that w0 ∈ TN,r . This contradicts the inclusion
w0 ∈ Zε .

The proofs of inclusions (13) and (12) are complete. �
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4. The essential spectrum by Last–Simon approach: heuristics

In recent years have appeared works concerning band dominated operators and
their essential spectra, [7], [14]. In particular, in [14] the notion of limit operator is
used to describe essential spectra of various classes of bounded operators. However, in
what follows we shall use the ideas of the paper by Last–Simon [12] only, where for a
bounded Jacobi matrix K was defined a right limit point of K . By definition a right
limit point of K = K({an},{bn}) is a double-sided Jacobi matrix K(r) acting in �2(Z)
with the entries {a(r)

n ,b(r)
n }∞

n=−∞ such that there is a sequence of natural numbers {n j}
with n j → +∞ which for each fixed l ∈ Z satisfies the relation

anj+l −−−→
j→∞

a(r)
l ,

bnj+l −−−→
j→∞

b(r)
l .

(21)

THEOREM 2. (Last–Simon [12, Theorem 1.7]) If R denotes the set of right limit
points, then

σess(K) =
⋃
r∈R

σ(K(r)). (22)

Unfortunately, this description cannot be extended to general unbounded Jacobi
matrices. Nevertheless, it inspired us in searching for another representation of σess(J )
by using heuristic arguments in the style of Last–Simon paper.

By applying formally the definition of J (r) for our unbounded J we arrive at
the following three classes of J (r) , i.e., R is divided into three subsets. Each of them
is determined by one Jacobi matrix (up to a translation of the entries which does not
change its spectrum). One may prove that there are no more reasonable new right limit
point matrices, besides the three ones considered below.

First class

Fix s ∈ Z , and define the subsequence

n j = k1 + k2 + . . .+ k2 j +Nτ j + s, with τ j :=
⌊

k2 j+1
2N

⌋
,

where  ·� denotes the integer part. This choice of n j is motivated by our requirement
to place these integers strictly inside the “zs“ part of our definition of the entries of
J . It allows to prevent an influence of the “c“ parts on the definition of the right limit

matrix. The right limit matrix J̃ is a periodic one and is defined by periodic blocks
[z1, . . . ,zN ] and the main diagonal equal to 0 (up to a translation depending on s). It is
well known that σ(J̃ ) is purely absolutely continuous and consists of a finite number
of intervals, see [15]. In particular, the Last–Simon result suggests the inclusion

σ(J̃ ) ⊂ σess(J ). (23)

Note that due to the Glazman spliting lemma, see [2], σ(J̃ ) = σess(J̃ ) = σess(J z).
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Second class

Fix s ∈ Z , and define the subsequence

n j = k1 + k2 + . . .+ k2 j−1 + s.

Now the right limit matrix J̃ is given (again up to a translation) by the weight se-
quence

(. . . , [z1, . . . ,zN ], [z1, . . . ,zN ],z1, . . . ,zr−1,0,1α + c1, . . . ,n
α + cn, . . .).

The dots at the left mean an infinite sequence of blocks [z1, . . . ,zN ] whereas at the right
they mean the infinite sequence (n+ 1)α + cn+1,(n+ 2)α + cn+2, . . . . Hence one can
decompose

J̃ = T1⊕T2, (24)

where T2 := J c and Jacobi matrix T1 is defined on �2(Z−) where Z− = {n∈ Z | n <
0} with the weights given by

(. . . , [z1, . . . ,zN ], [z1, . . . ,zN ],z1, . . . ,zr−2,zr−1).

Observe that T1 is unitary equivalent by the reflection map to the Jacobi matrix J ′
1

acting in �2(N) and defined by the sequence of weights

(zr−1,zr−2, . . . ,z1, [zN , . . . ,z1], [zN , . . . ,z1], . . .).

The dots at the right end mean infinitely many repeated blocks [zN , . . . ,z1] . Indeed, if
R : e−k → ek,k = 1,2, ... is the reflection map, then using definitions of T1 and J ′

1 one
can check that

RT1 = J ′
1 R. (25)

Again, the Last–Simon theorem “gives” (by using its easier inclusion) the relation

σ(J̃ ) = σ(J c)∪σ(T1) ⊂ σess(J ).

Third class

Note that by choosing j → ∞ in the definition

n j := k1 + . . .+ k2 j + s

we obtain formally (up to a translation) the Jacobi matrix generated by the weight se-
quence

(. . . ,∞,∞,0, [z1, . . . ,zN ], [z1, . . . ,zN ], . . .).

The appearance of 0 here (as well as above for the second class) is determined by
d j → 0. Similarly as above, this suggests that

σ(J z) ⊂ σess(J ).
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In Theorem 1 we have proved

σess(J ) = σ(J c)∪σess(J z)∪σp(J z)∪TN,r.

Therefore the first class produces σess(J z) . The second one — by Glazman splitting
lemma — gives σ(J c)∪σess(J z)∪σp(T1) .

Note that J ′
1 can be written as the sum F + J̃ z , where F is the finite rank

Jacobi matrix defined by zr−1, . . . ,z1 and J̃ z is the Jacobi matrix given by the weights

(0,0, . . . ,0, [zN , . . . ,z1], [zN , . . . ,z1], . . .),

and the main diagonal equal to zero. Due to Theorem 2 it is easy to check that σess(J̃ z)=
σess(J z) . Thus

σess(T1) = σess(J ′
1) = σess(J̃ z) = σess(J z). (26)

Therefore the third class adds only σ (J z) which contains as a new part σp(J z) .
Note that the reasoning given in Section 3 allows to prove (by constructing suitable
Weyl sequences) the inclusion

σ(J c)∪σ(J z)∪σp(J ′
1) ⊂ σess(J ). (27)

This inclusion justifies the simpler inclusion of the “Last–Simon theorem” for our un-
bounded J . Using formally the opposite (more difficult) inclusion of the Last–Simon
formula, we should obtain

σess(J ) = σ(J c)∪σ(J z)∪σp(J ′
1). (28)

In turn (26) entails σp(J ′
1)∩ σess(J z) = ∅. Combining Theorem 1 and (28) we

should expect that TN,r = σp(J ′
1)\σp(J z) .

Consequently, to prove (28) rigorously we shall establish below the last relation
between σp(J ′

1) and TN,r .

THEOREM 3. TN,r = σp(J ′
1)\σp(J z) .

Proof. First note that for real λ /∈ σ(J z) = σp(J z)∪σess(J z) , P+
( 1

λ/z1

) �=�0.

Thus Br+1 . . .B2P+
( 1

λ/z1

) �=�0. If moreover λ ∈ TN,r then by definition of TN,r

Br+1 . . .B2P+

(
1

λ/z1

)
=
(

0
x

)
, with x �= 0. (29)

Multiply (29) by B1BN . . .Br+2 , then using the definition of M(λ ) and M(λ )P+ =
μ+P+ we obtain

P+

(
1

λ/z1

)
= B1BN . . .Br+2

(
0
1

)
· x/μ+. (30)
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Since P−P+ = 0 so (30) implies that

P−B1BN . . .Br+2

(
0
1

)
=�0. (31)

Conversely, if (31) holds then B1BN . . .Br+2
(0
1

) �=�0 is in the range of P+ . But R(P+) ={
c ·P+
( 1

λ/z1

)
, c ∈ C

}
for λ /∈ σ(J z) (because P+ is of rank 1 and P+

( 1
λ/z1

) �=�0) we
get

B1BN . . .Br+2

(
0
1

)
= c1P+

(
1

λ/z1

)
, c1 �= 0,

which is equivalent to λ ∈ TN,r (see (30)). In this way we have found another descrip-
tion of TN,r :

TN,r =
{

λ ∈ R | λ /∈ σ(J z) and P−B1BN . . .Br+2

(
0
1

)
=�0

}
. (32)

Using (32), we shall complete the proof below. Consider the extension of T1 to the
periodic Jacobi matrix J ex on �2(Z) (with the standard ordered enumeration of zk ).
One can check that λ ∈ σp(T1) if and only if the formal nontrivial solution u of the
spectral equation

J ex u = λu, (33)

is square summable at −∞ , and λ /∈ σac(J ex) . Note that the condition u1 = 0 is
necessary and sufficient for the possibility to extend the eigenvector of T1 to a solution
of (33) (remind that all zk �= 0). These requirements say that λ ∈ σp(T1) if and only if
the nonzero solution u of the spectral equation (33) satisfies the following conditions:

i) u1 = 0 (continuation condition).

ii) λ /∈ σac(J ex) ≡ σess(J z) (hyperbolic condition).

iii) P−�uN−r+2 =�0 (condition of exponential decay of u at −∞).

Concerning the condition of exponential decay at −∞ note that, for any � ∈ Z ,

�uN−r+2+�·N = M� ·�uN−r+2 = μ�
+P+�uN−r+2 + μ�

−P−�uN−r+2.

Therefore �uk is exponentially decaying as k →−∞(or equivalently as l →−∞) if and
only if P−�uN−r+2 =�0. Remind that |μ−| < 1, |μ+| > 1 provided that condition ii)
is satisfied. If Bs(ex) denotes the transfer matrix of J ex at the above λ then using
definition of J ex we can write

�uN−r+2 = BN−r+1(ex) . . .B2(ex)�u2 = B1BN . . .Br+2�u2. (34)

By our choice �u2 =
(0
1

)
, see condition i). Using (32) and (34), we have

TN,r = σp(T1)\σp(J z) = σp(J ′
1)\σp(J z). �
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Theorem 3 being proved rigorously leads to the useful formula

σess(J ) = σ(J c)∪σ(J z)∪σp(J ′
1). (35)

Observe that this formula follows “formally“ from Last–Simon theorem provided we
enlisted all cases of right limits.

5. Final results and examples

In this section we calculate a few examples of the new essential spectrum TN,r and
locate it as a subset of the spectrum of a certain natural (N−1)×(N−1) Jacobi matrix
J̃ r . This Jacobi matrix is defined by

J̃ r =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 zr+2 0
zr+2 0 zr+3

0 zr+3 0

. . .

. . .

. . .

0 0 0
0 0 0
0 0 0

...
...

...
...

...
...

...
0 0 0
0 0 0
0 0 0

. . .

. . .

. . .

0 zN+r−2 0
zN+r−2 0 zN+r−1

0 zN+r−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(36)

Let λ ∈ TN,r . Since the polynomials {Pk(λ )}∞
1 satisfy the recurrence relation

zk−1Pk−1(λ )+ zkPk+1(λ ) = λPk(λ ),

k = 1,2, . . . , by repeating the reasoning given in the proof of Lemma 3 we have(
Pk+1(λ )
Pk+2(λ )

)
= μ l

+(Br+1 . . .B2P+
−→u2(λ ))+ μ l

−(Br+1 . . .B2P−−→u2(λ )), (37)

for k = l ·N + r , l = 1,2, . . . . Using (37) and the definition of TN,r , (5), we have the
estimate

Pk+1(λ ) = O(|μ−|l), as l → +∞, with k = l ·N + r. (38)

On the other hand P+
−→u2(λ ) �= 0, see Remark 1, and the matrix Br+1 . . .B2 is invertible.

So, applying (37) once more we find that

|Pk+2(λ )| � c(λ )|μ+|l, (39)

for some positive c(λ ) and k = l ·N + r . By shifting the index l → l +1 we have

Pk+N+1(λ ) = O(|μ−|l), (40)

as l → +∞ , k = l ·N + r . These estimates enable us to prove

LEMMA 4. Let J̃ r be defined by (36). Then TN,r ⊂ σ(J̃ r) .
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Proof. Assume that N > 2 and fix λ ∈ TN,r . Define the sequence of vectors

−→
Hk(λ ) :=

(
Pk+2(λ ),Pk+3(λ ), . . . ,Pk+N(λ )

)t
,

where k = l ·N + r . Using the recurrence relations we obtain the equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 zk+2 0
zk+2 0 zk+3

0 zk+3 0

. . .

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . .

. . .

. . .

0 zk+N−2 0
zk+N−2 0 zk+N−1

0 zk+N−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→
Hk(λ )−λ−→Hk(λ )

=

⎛⎜⎜⎜⎜⎜⎝
zk+2Pk+3(λ )−λPk+2(λ )

0
...
0

zk+N−1Pk+N−1(λ )−λPk+N(λ )

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎝
−zk+1Pk+1(λ )

0
...
0

−zk+NPk+N+1(λ )

⎞⎟⎟⎟⎟⎟⎠ .

Applying (38), (39), (40) and the last equation we can estimate ‖(J̃ r −λ I)
−→
Hk‖

from above and ‖−→Hk‖ from below. In other words one can find positive constants C̃(λ )
and c̃(λ ) such that

‖(J̃ r −λ I)
−→
Hk‖

‖−→Hk‖
� C̃(λ )|μ−|l

c̃(λ )|μ+|l −−→
l→∞

0,

with k = l ·N + r . It follows that dist(λ ,σ(J̃ r)) = 0, which completes the proof in
the case N > 2.

If N = 2, then using again the estimates (38), (39), (40) and the recurrence relation
zk+1Pk+1(λ )+ zk+2Pk+3(λ ) = λPk+2(λ ) we conclude that λ = 0. �

At the end of this work we describe σp(J z) and TN,r in terms of the monodromy
matrix M( ·) and compute examples of TN,r for N = 2,3,4, to illustrate the situation.
We start with a characterization of TN,r for r = 0,1,2, in terms of the entries of the
monodromy matrix M(λ ) .

THEOREM 4. Let M( ·) be the monodromy matrix, and λ ∈ R . Then λ ∈ TN,0 if
and only if the following conditions are satisfied:

(i) M12(λ ) = 0 ,

(ii) |M11(λ )| < |M22(λ )| ,
(iii) λ

z1

(
M11(λ )−M22(λ )

) �= M21(λ ) .
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Proof. Using the definition of TN,0 (see (5)), we know that λ ∈ TN,0 if and only if
λ /∈ σess(J z) and

• (P+
−→u2(λ )

)
1 = 0,

• λ /∈ σp(J z ).

By Remark 1 this is equivalent to the condition

• P+
−→u2(λ ) =

(
0

w(λ )

)
, w(λ ) �= 0,

provided that λ /∈σess(J z) . Thus assuming that P+
−→u2(λ )=

(
0

w(λ )

)
and λ �∈σess(J z)

we have w(λ ) �= 0 if and only if −→u2(λ ) is not an eigenvector of M(λ ) . In other words,
if λ /∈ σess(J z) , then λ ∈ TN,0 if and only if

• M12(λ ) = 0, M11(λ ) = μ− , M22(λ ) = μ+ ,

• λ
z1

(
M11(λ )+ λ

z1
M12(λ )

) �= M21(λ )+ λ
z1

M22(λ ) .

This completes the proof. �

REMARK 4. A similar reasoning shows that

a) λ ∈ TN,1 if and only if

(i) |M11(λ )| > |M22(λ )| ,
(ii) M21(λ ) = 0,

(iii) M11(λ )+ λ
z1

M12(λ ) �= M22(λ ) .

b) λ ∈ TN,2 if and only if

(i) z1
(
M11(λ ) ·λ +M12(λ )z1

)
= λ
(
M21(λ ) ·λ +M22(λ )z1

)
,

(ii)
∣∣M21(λ ) λ

z1
+M22(λ )

∣∣> 1,

(iii) λ
z1

(
M11(λ )+ λ

z1
M12(λ )

) �= M21(λ )+ λ
z1

M22(λ ) or in the case λ
z1

(
M11(λ )+

λ
z1

M12(λ )
)

= M21(λ )+ λ
z1

M22(λ ) then
∣∣M12(λ ) λ

z1
+M11(λ )

∣∣> 1.

Applying Theorem 4 and Remark 4 we have calculated T2,r , T3,r and T4,r for
r = 0,1,2 (see below). We omit straightforward reasoning behind these calculations
because they are boring and we also have an easier method of finding all these sets
by using Theorem 3. This easier method will be presented at the end of the work in
calculation of T4,3 .

T2,0 = ∅.
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T2,1 =

{
∅, if z1 � z2

{0}, if z1 > z2.

T3,0 =

{
∅, if z1 � z3 or z1 = z2,

{±z2}, if z1 < z3 and z1 �= z2.

T3,1 =

{
∅, if z1 � z2 or z1 = z3,

{±z3}, if z1 > z2 and z1 �= z3.

T3,2 =

{
{±z1}, if z2 > z3,

∅, if z2 � z3.

Similarly, for T4,r and r = 0,1,2:

T4,0 =

{
∅, iff z1 = z3 or z1z2 � z3z4,

{±
√

z2
2 + z2

3}, iff z1z2 < z3z4 and z1 �= z3.

T4,1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅, iff z1z3 � z2z4 and (z1z4 � z2z3 or z2
1 + z2

2 = z2
3 + z2

4,)

{0,±
√

z2
3 + z2

4}, iff z1z3 > z2z4, z1z4 > z2z3, and z2
1 + z2

2 �= z2
3 + z2

4,

{0}, iff z1z3 > z2z4, and (z1z4 � z2z3 or z2
1 + z2

2 = z2
3 + z2

4,)

{±
√

z2
3 + z2

4}, iff z2z4 � z1z3, z1z4 > z2z3 and z2
1 + z2

2 �= z2
3 + z2

4.

T4,2 =

{
{±
√

z2
1 + z2

4}, if z1z2 > z3z4 and z2 �= z4

∅, otherwise.

The above formulas for T4,r are related to the following one

T4,r ⊂
{

0,±
√

z2
r+2 + z2

r+3

}
= σ(J̃ r).

which can checked by direct calculations, see Lemma 4 also.
Note that Lemma 4 is also useful tool in calculations of TN,r for N not too large.

REMARK 5. The above description of T3,r and T4,r shows that the inclusion TN,r ⊂
σ(J̃ r) can be strict. However, we may also have the equality TN,r = σ(J̃ r) . This
can be seen from the relation

T4,1 =
{

0,±
√

z2
3 + z2

4

}
= σ(J̃ 1),

by a suitable choice of (z1,z2,z3,z4) .

In order to apply Theorem 3 we need the following elementary characterization of
σp(J z) for arbitrary N. The same characterization holds for arbitrary periodic Jacobi
matrix with nontrivial main diagonal {bn} . One should only replace in (41) and (42)
λ by λ −b1 .
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THEOREM 5. λ ∈ σp(J z) if and only if the following two conditions are satis-
fied:

λ
z1

[
M11(λ )+

λ
z1

M12(λ )
]

= M21(λ )+
λ
z1

M22(λ ), (41)

and ∣∣∣M11(λ )+
λ
z1

M12(λ )
∣∣∣< 1. (42)

Proof. We have λ ∈σp(J z) if and only if P+
−→u2(λ )= 0. In other words P−−→u2(λ )=−→u2(λ ) or M(λ )−→u2(λ ) = μ−−→u2(λ ) . The last equation implies that

M21(λ )+ λ
z1

M22(λ )

M11(λ )+M12(λ ) · λ
z1

=
λ
z1

,

which verifies (41). On the other hand,

|〈M(λ )−→u2(λ ),−→u2(λ 〉| =
[
1+
(λ

z1

)2]∣∣∣M11(λ )+
λ
z1

M12(λ )
∣∣∣

= |μ−|‖−→u2(λ )‖2

< ‖−→u2(λ )‖2 = 1+
(λ

z1

)2

proves (42).
Conversely, (41) gives

M(λ )−→u2(λ ) =
[
M11(λ )+

λ
z1

M12(λ )
]−→u2(λ )

which combined with (42) leads to M11(λ ) + λ
z1

M12(λ ) = μ− , i.e., M(λ )−→u2(λ ) =
μ−−→u2(λ ) . Hence (1,P2(λ ),P3(λ ), . . .)t ∈ �2 because |μ−| < 1 and therefore λ �∈
σess(J z) . Indeed, (

PlN+1(λ )
PlN+2(λ )

)
= M(λ )l−→u2(λ ), l = 1,2, ... �

Using Theorem 5 for N = 3 we have

σp(J z) =

{
∅, if z3 � z2,

{±z1}, if z2 < z3,

Similarly for N = 4 by straightforward calculation we get

σp(J z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{0,±
√

z2
1 + z2

2}, if z1z3 < z2z4 and z2z3 < z1z4,

{±
√

z2
1 + z2

2}, if z1z3 � z2z4 and z2z3 < z1z4,

{0}, if z1z3 < z2z4 and z1z4 � z2z3,

∅, z1z3 � z2z4 and z2z3 � z1z4.
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Observe that σp(J z) ⊂ σ(J̃ N−1) for any N. However, there is no equality between

σp(J z) and σ(J̃ r) in general.
The last example of this work concerning TN,r illustrates an application of The-

orem 5 and Theorem 3 for simpler calculations of TN,r . Let us demonstrate this by
finding T4,3 = σp(J ′

1)\σp(J z) . First calculate σp(J z) . Explicit calculations give
the following expressions of the entries Mij(λ ) of the monodromy matrix:

M11(λ ) =
z1z3

z2z4
− λ 2z1

z2z3z4
,

M12(λ ) =
λ 3

z2z3z4
−λ
( z3

z2z4
+

z2

z3z4

)
,

M21(λ ) = − λ 3

z2z3z4
+ λ
( z3

z2z4
+

z4

z2z3

)
,

M22(λ ) =
λ 4

z1z2z3z4
−λ 2 z2

2 + z2
3 + z2

4

z1z2z3z4
+

z2z4

z1z3
.

A straightforward application of Theorem 5 allows us to calculate the point spectrum

of J z : σp(J z) ⊂ {0,±
√

z2
1 + z2

2} . Moreover, 0 ∈ σp(J z) iff z1z3 < z2z4 , and

±
√

z2
1 + z2

2 ∈ σp(J z) iff z2z3 < z1z4 . The permutation (z1,z2,z3,z4) → (z2,z1,z4,z3)

immediately gives the same inclusion σp(J ′
1) ⊂ {0,±

√
z2
1 + z2

2} . Now 0 ∈ σp(J ′
1)

iff z1z3 > z2z4 , and ±
√

z2
1 + z2

2 ∈ σp(J ′
1) iff z1z4 < z2z3 . In turn applying Theorem 3

we see that 0∈ T4,3 iff z1z3 > z2z4 and z1z3 � z2z4 , which reduces to the only condition

z1z3 > z2z4 . On the other hand, ±
√

z2
1 + z2

2 ∈ T4,3 iff z1z4 < z2z3 and z2z3 � z1z4 ,
which again reduces to the only condition z1z4 < z2z3 . Combining all these results we
obtain

T4,3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ iff z1z3 � z2z4 and z1z4 � z2z3,

{0} iff z1z3 > z2z4 and z1z4 � z2z3,

{±
√

z2
1 + z2

2} iff z1z3 � z2z4 and z1z4 < z2z3,

{0,±
√

z2
1 + z2

2} iff z1z3 > z2z4 and z1z4 < z2z3.

It is easy to see that all four options can be realized for suitable choice of the z’s.
Similar calculations of TN,r can be done for arbitrary values of N and r provided one
can explicitly calculate σp(J z) .

Acknowledgments

The two last authors were supported by MSHE through grant N N201 426533, and
S. N. was also partially supported by RFBR grant 09-01-00515a.

We are grateful to anonymous referee for many useful and essential comments
which helped us to improve substantially this work.



JACOBI MATRICES WITH A FEW GAPS IN THE ESSENTIAL SPECTRUM 565

RE F ER EN C ES

[1] N. I. AKHIEZER, The classical moment problem and some related questions in analysis, Translated
by N. Kemmer. Hafner Publishing Co., New York, 1965.

[2] M. S. BIRMAN AND M. Z. SOLOMJAK, Spectral theory of selfadjoint operators in Hilbert space,
Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987.

[3] A. BOUTET DE MONVEL, J. JANAS, AND S. NABOKO, Unbounded Jacobi matrices with a few gaps
in the essential spectrum. Constructive examples, Integral Equations Operator Theory, 69(2):151–170,
2011.

[4] P. A. COJUHARI, Discrete spectrum in the gaps for perturbations of periodic Jacobi matrices, Jour.
Comput. Appl. Math., 225:374–386, 2009.

[5] J. DOMBROWSKI,Eigenvalues and spectral gaps related to periodic perturbations of Jacobi matrices,
In Spectral methods for operators of mathematical physics, volume 154 of Oper. Theory Adv. Appl.,
pages 91–100. Birkhäuser, Basel, 2004.
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