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Abstract. We introduce and study the notion of null-orbit reflexivity, which is a slight perturba-
tion of the notion of orbit-reflexivity. Positive results for orbit reflexivity and the recent notion of
C -orbit reflexivity both extend to null-orbit reflexivity. Of the two known examples of operators
that are not orbit-reflexive, one is null-orbit reflexive and the other is not. The class of null-orbit
reflexive operators includes the classes of hyponormal, algebraic, compact, strictly block-upper
(lower) triangular operators, and operators whose spectral radius is not 1. We also prove that
every polynomially bounded operator on a Hilbert space is both orbit-reflexive and null-orbit
reflexive.

1. Introduction

In a recent paper [3] the authors and M. McHugh introduced a new notion of
reflexivity for operators, C-orbit reflexivity as well as its linear-algebraic analogue.
This notion is related to the notion of orbit reflexivity [5]. Examples of Hilbert space
operators that are not orbit reflexive can be found in two very remarkable papers; the
first example was given by S. Grivaux and M. Roginskaya [1], and the second, much
simpler, example was given by V. Müller and J. Vršovský [11].

Although even in finite-dimensions there is an ample supply of operators that are
not C-orbit reflexive, it was easy to show that operators that are strictly block-upper
(or lower)-triangular are C-orbit reflexive. This fact combined with the example of a
non-orbit-reflexive operator in [11], led us naturally to a new version of orbit reflexivity,
null-orbit reflexivity, that includes all of the previously-proved orbit-reflexive operators
but excludes the counterexample in [1].

Suppose T is a linear transformation on a vector space. We define the null-orbit
of T as

nullOrb(T ) =
{
0,1,T,T 2, . . .

}
.

The orbit of T is Orb(T ) =
{
1,T,T 2, . . .

}
. We define nullOrbRef0 (T ) to be the set of

all linear transformations S such that for every vector x

Sx ∈ null-Orb(T )x
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and we say that T is algebraically null-orbit reflexive if

nullOrbRef0 (T ) = nullOrb(T ) .

If T is a bounded operator on a Banach space, we define nullOrbRef(T ) to be the set
of all operators S such that, for every vector x

Sx ∈ [nullOrb(T )x]− ,

and we say that T is null-orbit reflexive if nullOrbRef(T ) is the strong-operator clo-
sure of nullOrb(T ) . Orbit reflexivity is defined as in the above definition replacing
nullOrb(T ) with Orb(T ) . The slight change in definitions causes drastic changes in
the two notions.

In this paper we extend all of the positive known results for orbit reflexivity to null-
orbit reflexivity, and we show that most of the positive results for C-orbit reflexivity
extend to null orbit reflexivity. Moreover, for the example in [11] of a Hilbert space
operator T , that is not orbit reflexive, we show that T is null-orbit reflexive. In the
example in [1] of a Hilbert space operator that is not orbit reflexive, the proof shows
that the operator is also not null-orbit reflexive.

We first prove a number of results in the purely algebraic case, and we use these to
prove several results for operators on a normed space or a Hilbert space. We next extend
the results of [5] and [11] to the null-orbit reflexivity case. We finish with a new result
that every polynomially bounded operator on a Hilbert space is both orbit-reflexive and
null-orbit reflexive.

Suppose X is a normed space and A is an algebra of (bounded linear) operators
on X . A (closed linear) subspace M of X is A -invariant if A(M) ⊆ M for every
A ∈ A . We let LatA denote the set of all invariant subspaces for A , and we let
AlgLatA denote the algebra of all operators that leave invariant every A -invariant
subspace. The algebra A is reflexive if A =AlgLatA . If the algebra A contains
the identity operator 1, then S ∈AlgLatA if and only if, for every x ∈ X , Sx is in
the closure of A x . This characterization works equally well for a linear subspace
S of B(X) (the set of all operators on X ), i.e., we define refS to be the set of all
operators A such that, for every x ∈ X , we have Ax is in the closure of S x , and
we say that S is reflexive if S = refS . If we let T be a single operator and let
S = Orb(T ) = {Tn : n � 0} , we apply the same process to obtain the notion of orbit
reflexivity. (Note that in this case S is not a linear space.) We define OrbRef(T ) to be
the set of all operators A such that, for every vector x, we have Ax is in the closure of
Orb(T,x) = Orb(T )x . We say that T is orbit reflexive if OrbRef(T ) is the closure of
Orb(T ) in the strong operator topology (SOT). In the same context, the operator T on
X is called C-orbit reflexive if C-Orb(T ) = C-Orb(T )–SOT , where

C-Orb(T ) = {αTn |α ∈ C,n � 0}
and

C-OrbRef(T ) = {A ∈ B(X) |∀x ∈ X : Ax ∈ {αTn
X |α ∈ C,n � 0}−}

In case F is an arbitrary field and X is a vector space over F , we define algebraically
F-orbit reflexivity in the obvious way, omitting the closures (see [3]).
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2. Algebraic Results

Throughout this section F will denote an arbitrary field, X will denote a vector
space over F , and L (X) will denote the algebra of all linear transformations on X .

A transformation T ∈ L (X) is locally nilpotent if X = ∪n�1 ker(Tn) . More
generally T is locally algebraic if, for each x ∈ X , there is a nonzero polynomial
px ∈ F [t] such that px (T )x = 0. If px (t) is chosen to be monic with minimal degree,
we call px a local polynomial for T at x .

THEOREM 1. Every locally nilpotent linear transformation on a vector space X
over field F is algebraically null-orbit reflexive. Moreover, if S ∈ nullOrbRef0 (T ) ,
x ∈ X , and Sx = Tkx �= 0, then S = Tk.

Proof. We know from [3, Theorem 1] that T is algebraically F-orbit reflexive.
Thus if S ∈ nullOrbRef0 (T ) and S �= 0, then there is an x ∈ X and an integer n � 0
such that Sx = Tnx �= 0, and it follows from [3, Theorem 1] that S = Tn . �

For infinite fields the next theorem reduces the problem of algebraic null-orbit
reflexivity to the case of locally algebraic transformations. A key ingredient in the proof
is an algebraic reflexivity result from [2] that says if F is infinite and T ∈ L (X) is not
locally algebraic, then, whenever S ∈ L (X) and for every x ∈ X there is a polynomial
px such that Sx = px (T )x , we must have S = p(T ) for some polynomial p .

THEOREM 2. Suppose X is a vector space over an infinite field F , and suppose
T ∈ L (X) is not locally algebraic. Then T is algebraically null-orbit reflexive.

Proof. Suppose S ∈ nullOrbRef0 (T ) . Then Sx ∈ nullOrb(T )x for every x ∈ X .
It follows from [2] that T is algebraically reflexive, so we know there is a polynomial
p ∈ F [t] such that S = p(T ) . Since T is not locally algebraic, there is a vector e ∈ X
such that for every nonzero polynomial q ∈ F [t] , we have q(T )e �= 0. Since S ∈
nullOrbRef0 (T ) , we know that there is an n � 0 such that Se = Tne. Hence p(t) = tn,
and thus S ∈ nullOrb(T ) . �

REMARK 3. If there is an A ∈ OrbRef0 (T ) such that AT �= TA, then, since
OrbRef0 (T ) ⊆ nullOrbRef0 (T ) , it follows that T is not algebraically null-orbit re-
flexive. Similarly, if T acts on a Banach space, and there is an A ∈ OrbRef(T ) such
that AT �= TA , then T is not null-orbit reflexive. Hence the Hilbert space operator
constructed by S. Grivaux and M. Roginskaya [1] is not null-orbit reflexive.

The preceding remark naturally leads to a pair of questions.

QUESTION 1. If S ∈ nullOrbRef0 (T ) and ST = TS, must S ∈ nullOrb(T )?

QUESTION 2. If T acts on a Hilbert space, S ∈ nullOrbRef(T ) and ST = TS ,
must S be in the strong-operator closure of nullOrb(T )? What is the answer if we
assume that S is in the double commutant of {T}?
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Note that the example of V. Müller and J. Vršovský [11, Example 1], where S =
0 ∈ OrbRef(T )\Orb(T )−SOT shows that the analog of Question 2 for orbit reflexivity
has a negative answer. We will see later (Corollary 16) that their example is null-orbit
reflexive, so it has no bearing on Question 2. In [11] an example is given of an operator
on �1 that is reflexive but not orbit reflexive. In view of Theorem 2.8 and Proposition
3.1 in [4], it seems feasible that the operator T in Example 1 of [11, Example 1] is
reflexive. We know that AlgLatT ⊆ {T}′′ and that if S ∈AlgLatT , then there is a

sequence {an}n�0 such that, for every vector x, Sx ∼
∞

∑
n=0

anT n in the sense of [4].

QUESTION 3. Is the operator in Example 1 of [11] reflexive?
The proof of Theorem 2 shows that if T is algebraically F-orbit reflexive (reflex-

ive) and F-Orb(T ) ({p(T ) : p ∈ F [t]}) has a separating vector, then T is algebraically
null-orbit reflexive. This immediately gives us the following (see [3, Theorem 3]).

THEOREM 4. Suppose X is a finite-dimensional vector space over a field F not
isomorphic to Z/pZ for some prime p. Then every linear transformation on X whose
minimal polynomial splits over F is algebraically null-orbit reflexive.

COROLLARY 5. If X is a finite-dimensional vector space over an algebraically
closed field F , then every linear transformation on X is algebraically null-orbit reflex-
ive.

Recall from ring theory that if R is a principal ideal domain, M is an R -module,
0 �= r ∈ R and rM = {0} , then M is a direct sum of cyclic R -modules; Applying
this fact to R = F [t] , we get that any algebraic linear transformation on a vector space
is a direct sum of transformations on finite-dimensional subspaces, and therefore has
a Jordan form when the minimal polynomial splits over F . (See [6] for details.) This
gives us the following corollary.

COROLLARY 6. Suppose X is a vector space over a field F not isomorphic to
Z/pZ for some prime p. Then every algebraic linear transformation on X whose
minimal polynomial splits over F is algebraically null-orbit reflexive.

3. Null-orbit reflexivity

The following result was proved in [5, Proposition 3].

LEMMA 7. Suppose N is a commuting family of normal operators on a Hilbert
space X and A ∈ B(X) satisfies, for every x ∈ X , Ax ∈ (N x)− . Then A is in the
SOT-closure of N .

If in the preceding lemma we let N =
{
0,1,T,T 2, . . .

}
, we obtain the following.

PROPOSITION 8. Every normal operator on a Hilbert space is null-orbit reflexive.
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The next two results are consequences of Theorem 1.

THEOREM 9. Suppose T is a bounded linear operator on a real or complex
normed space X such that ∪∞

n=1 ker(Tn) is dense in X . Then T is null-orbit reflexive
and nullOrb(T ) is SOT-closed. Moreover, if S ∈ nullOrbRef(T ) , x ∈ ∪∞

n=1 ker(Tn) ,
k � 0, and Sx = Tkx �= 0 , then S = Tk .

Proof. Suppose S ∈ nullOrbRef(T ) , and let M = ∪∞
n=1 ker(Tn) . It is clear that

S (M) ⊆ M and T (M) ⊆ M and S|M ∈ nullOrbRef0 (T |M) . But T |M is locally nilpo-
tent, and if x ∈ M and Tnx = 0, then

nullOrb(T )x = {0}∪{
x,Tx, . . . ,Tn−1x

}

is norm closed. Hence, nullOrbRef(T |M) = nullOrbRef0 (T |M) , which, by Theorem 1
is nullOrb(T |M) . Hence there is an A ∈ nullOrb(T ) such that S|M = A|M . However,
M is dense in X , so S = A ∈ nullOrb(T ) . �

The preceding theorem implies a stronger version of itself.

COROLLARY 10. Suppose X is a real or complex normed space, and there is a
decreasingly directed family {Xλ : λ ∈ Λ} of T -invariant closed linear subspaces such
that

1. for every λ ∈ Λ , ∪∞
n=0 (Tn)−1 (Xλ ) is dense in X , and

2. ∩λ∈ΛXλ = {0} .

Then T is null-orbit reflexive and nullOrbRef(T ) = nullOrb(T ) .

Proof. Suppose S ∈ nullOrbRef(T ) and S �= 0. Choose e ∈ X such that Se �= 0.
It follows from (2) that both (1) and (2) remain true if we consider only those Xλ that
contain neither e nor Se . Since T (Xλ )⊆Xλ , T̂λ (x+Xλ ) = Tx+Xλ defines a bounded
linear operator T̂λ on X/Xλ . Condition (1) implies that ∪∞

n=1 ker
(
T̂ n

λ
)

is dense in
X/Xλ ; whence, by Theorem 9, T̂λ is null-orbit reflexive. However, S ∈ nullOrbRef(T )
implies that S (Xλ ) ⊆ Xλ , so Ŝλ (x+Xλ ) = Sx+Xλ defines an operator on X/Xλ such
that Ŝλ ∈ nullOrbRef

(
T̂λ

)
. Hence, by Theorem 9, there is a unique nonnegative integer

nλ such that Ŝλ = T̂ nλ
λ . Suppose η ∈Λ . Since the Xλ ’s are decreasingly directed, there

is a σ ∈Λ such that Xσ ⊆Xλ ∩Xη . Applying the same arguments we used on Xλ , there
is a unique integer nσ � 0 such that Ŝσ = T̃ nσ

σ . However, it follows from (1) that there

is a vector x ∈
[
∪∞

n=0 (Tn)−1 (Xσ )
]
\Xλ . Then there is an n such that Tnx ∈ Xσ ⊆ Xλ

and thus T̂ n
λ (x+Xλ ) = 0 but x+Xλ �= 0. However, Sx−Tnσ x ∈ Xσ ⊆ Xλ , so

Ŝλ (x+Xλ) = T
nσ
λ (x+Xλ ) = T

nλ
λ (x+Xλ ) ,

which implies that nσ = nλ . Hence there is an integer n � 0 such that, for every λ ∈ Λ ,
nλ = n . Hence, for every x ∈ X and every λ ∈ Λ,

Sx−Tnx ∈ Xλ ,
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which, by (2) , implies S = Tn . �
The following corollary applies to operators that have a strictly upper-triangular

operator matrix with respect to some direct sum decomposition.

COROLLARY 11. If a normed space X over F ∈ {R,C} is a direct sum of spaces
{Xn : n ∈ N} such that T (X1) = {0} , and for every n > 1 ,

T (Xn) ⊆
(
∑⊕

k<n
Xk

)−
,

then T is null-orbit reflexive and nullOrbRef(T ) = nullOrb(T ) .

The preceding corollary has some familiar special cases.

COROLLARY 12. If T is an operator-weighted (unilateral or bilateral) shift or if
T is a direct sum of nilpotent operators on a real or complex normed space X , then T
is null-orbit reflexive.

THEOREM 13. Suppose X is a normed space over F ∈ {R,C} , T ∈ B(X) and
∩∞

n=1T
n (X)− = {0} . Then T is null-orbit reflexive and nullOrbRef(T ) = nullOrb(T ) .

Moreover, if S ∈ nullOrbRef(T ) , x ∈ X , and 0 �= Sx = Tkx , then S = Tk .

Proof. We will first show that T is algebraically null-orbit reflexive. If M is a
finite-dimensional invariant subspace for T and T |M is not nilpotent, then there is a
nonzero T -invariant subspace N of M such that ker(T |N) = 0. Thus T (N) = N �= 0,
which violates ∩∞

n=1T
n (X)− = {0} . Thus, either T is not locally algebraic or T is

locally nilpotent. In these cases it follows either from Theorem 2 or Theorem 1 that T
is indeed algebraically null-orbit reflexive. Furthermore, the hypothesis on T implies,
for each x ∈ X , that

∩∞
N=1

{
Tkx : k � N

}−
= {0} ,

so nullOrb(T )x is closed in X . Thus nullOrbRef(T )= nullOrbRef0 (T )= nullOrb(T ) .
For the last statement suppose x ∈ X , and k,n � 0 are integers, and

0 �= Sx = Tnx = Tkx.

Suppose k < n . Then M = sp
{
x,Tx, . . . ,Tn−1x

}
is a nonzero finite-dimensional in-

variant subspace for T with dimM � n . Since Tnx �= 0, we know T |M is not nilpotent,
which, as remarked earlier, contradicts ∩∞

n=1T
n (X)− = {0} . �

This theorem also implies a stronger version of itself.

COROLLARY 14. Suppose X is a real or complex normed space, T ∈ B(X) , and
there is an increasingly directed family {Xλ : λ ∈ Λ} of T -invariant linear subspaces
such that

1. for every λ ∈ Λ, ∩∞
n=1T

n (Xλ ) = {0} , and
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2. ∪λ∈ΛXλ is dense in X .

Then T is null-orbit reflexive, and nullOrbRef(T ) = nullOrb(T ) . Moreover, if
S ∈ nullOrbRef(T ) , x ∈ X , and 0 �= Sx = Tkx , then S = Tk .

Proof. Suppose 0 �= S∈ nullOrbRef(T ) . It follows from (2) that there is a λ0 ∈Λ
and an f ∈ Xλ0

such that 0 �= S f . However, we must have S
(
Xλ0

) ⊆ Xλ0
, and S|Xλ0

∈
nullOrbRef

(
T |Xλ0

)
= nullOrb(T |Xλ ) (by (1) and the preceding theorem). Thus there

is an integer k � 0 such that
S|Xλ0

= Tk|Xλ0
.

The same k must work for any Xλ that contains Xλ0
. It follows from the fact that the

family is increasingly directed and (2) that S = Tk . �

COROLLARY 15. Every backwards operator-weighted shift operator is null-orbit
reflexive.

If T is the operator constructed in [11] that is not orbit reflexive, it is easy to show
that ∩n�0Tn (X)− = 0.

COROLLARY 16. The non orbit reflexive operator constructed in Example 1 of
[11] is null-orbit reflexive.

Irving Kaplansky [6] (see also [7], [8] , [10]) proved that a (bounded linear) opera-
tor on a Banach space is locally algebraic if and only if it is algebraic. This immediately
gives us the following result from Theorem 2.

PROPOSITION 17. Suppose X is a real or complex Banach space and T ∈ B(X)
is not algebraic. Then T is algebraically null-orbit reflexive.

The results in the paper of [11] also extend to the null-orbit case. If T is an
operator on a Banach space, then r (T ) denotes the spectral radius of T , i.e.,

r (T ) = max{|λ | : λ ∈ σ (T )} .

LEMMA 18. If X is a normed space, T ∈ B(X) and

E = {x ∈ X : nullOrb(T )x is norm closed}

is not contained in a countable union of nowhere dense subsets of X , then T is null-
orbit reflexive and nullOrbRef(T ) = nullOrb(T ) . (Note that E contains all x∈ X such
that T nx → 0 weakly or ‖Tnx‖ → ∞ .)

Proof. If S ∈ nullOrbRef(T) , then E ⊆ ∪A∈nullOrb(T ) ker(S−A) , so there is an
A ∈ nullOrb(T ) such that ker(S−A) has nonempty interior, which means that S =
A . �
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COROLLARY 19. If X is a Banach space, T ∈ B(X) and r (T ) < 1 , then T is
null-orbit reflexive.

Proof. It follows that ‖Tn‖→ 0, and thus the set E in Lemma 18 is all of X . �
The proof of the following theorem is almost exactly the same as the proof of

Theorem 7 in [11].

THEOREM 20. If X is a Banach space and T ∈ B(X) and
∞

∑
n=1

1
‖Tn‖ < ∞ , then T

is null-orbit reflexive. If X is a Hilbert space and
∞

∑
n=1

1
‖Tn‖2 < ∞ , then T is null-orbit

reflexive. In particular, if r (T ) �= 1, then T is null-orbit reflexive.

COROLLARY 21. The set of null-orbit reflexive operators on a Banach space X
is norm dense in B(X) .

THEOREM 22. If X is a Hilbert space and T ∈B(X) and is polynomially bounded,
then T is null-orbit reflexive and orbit reflexive.

Proof. We prove the null-orbit reflexivity; the orbit reflexivity is proved in a sim-
ilar fashion. Suppose T is polynomially bounded. It was proved by W. Mlak [9] that
T is similar to the direct sum of a unitary operator U and an operator A with a weakly
continuous H∞ functional calculus. In particular, An → 0 in the weak operator topol-
ogy. We can assume T = U ⊕A. We can also assume that the A summand is present;
otherwise, T is null-orbit reflexive by Proposition 8. Since An → 0 in WOT, it follows
from Lemma 18 that nullOrbRef(A) = nullOrb(A) . Hence we can assume that the U
summand is also present. Suppose S ∈ nullOrbRef(T ) . Then we can write S = B⊕C .
Hence C ∈ nullOrb(A) . We also know that B ∈ nullOrbRef(U) .

Case 1. C = 0, and B �= 0. For a fixed x0 with Bx0 �= 0 and any y there is
a sequence {nk} of nonnegative integers such that ‖Tnk (x0⊕ y)−Bx0⊕0‖ → 0. In
particular, ‖Anky‖ → 0. However, An → 0 WOT implies there is an M > 0 such that
‖An‖ < M for all n � 0. We want to show ‖Any‖ → 0. Suppose ε > 0. Then there is
an nk such that ‖Anky‖ < ε/M . If n � nk , then

‖Any‖ �
∥∥An−nk

∥∥∥∥Anky
∥∥ < M (ε/M) = ε.

We now know that An → 0 in the strong operator topology.
Now suppose m � 0 and Am �= 0. Choose y0 such that Amy0 �= 0. For any x,

there is a sequence {nk} of integers such that Tnk (x⊕ y0) → S (x⊕ y0) , and it follows
that eventually nk > m. Thus, for every x we have Bx ∈ {Unx : n > m} , so it follows
from Lemma 18 that B ∈ {Un : n > m}−SOT . It now follows that there is a net {nλ} of
positive integers such that Tnλ → S in the strong operator topology.

Case 2. C �= 0. Since C ∈ nullOrb(A) , there is an integer s � 0 such that C =
As �= 0. Since An → 0 in the WOT , it follows that Ker

(
Ak −1

)
= 0 for k > 0. Thus
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if Any = Amy with n < m, then (Am−n−1)Any = 0, which implies that Anx = 0 and
therefore Amx = 0. Choose y1 so that Asy1 �= 0. It follows that if {nk} is a sequence
of nonnegative integers and Anky1 → Asy1, then nk must eventually become s. By
considering vectors of the form x⊕ y1 , we see that B = Us, and therefore S = Ts .

Since the only remaining case is S = 0 ∈ nullOrb(T ) , the proof is complete. �

COROLLARY 23. If T is a Hilbert space operator and ‖T‖ � 1, then T is null-
orbit reflexive.

COROLLARY 24. If T is a Hilbert space operator with ‖T‖ = r (T ) (e.g., T is
hyponormal), then T is null-orbit reflexive.

The following lemma is a consequence of Theorem 20.

LEMMA 25. Suppose X is a Hilbert space, T ∈ B(X) , λ ∈ C with |λ | = 1. If
ker(T −λ ) �= ker(T −λ )2 , then T is null orbit reflexive.

Proof. Suppose ‖x‖ = 1 and (T −λ )2 x = 0 and (T −λ )x �= 0. It follows that

‖Tnx‖ = ‖[λ +(T −λ )]n x‖ = ‖λ nx+n(T −λ )x‖ � n‖(T −λ )x‖−‖x‖ � εn

for some ε > 0 and for sufficiently large n . Thus ∑1/‖Tn‖2 < ∞ , which, by Theorem
20, implies T is null-orbit reflexive. �

THEOREM 26. Suppose X is a Hilbert space, T ∈ B(X) , r (T ) = 1 and no point
in E = σ (T )∩{z ∈ C : |z| = 1} is a limit point of the spectrum of T . If the restriction
of T to the spectral subspace ME for the clopen subset E of σ (T ) is an algebraic
operator, then T is null-orbit reflexive. In particular, every compact operator, or al-
gebraic operator on a Hilbert space is null-orbit reflexive. Hence every operator on a
finite-dimensional space is null-orbit reflexive.

Proof. It follows from Lemma 25 that we need only consider the case when
ker(T −λ ) = ker(T −λ )2 for every λ ∈ E. This implies that the restriction of T to
ME is similar to a unitary operator, and since the restriction of T to Mσ(T )\E has spec-
tral radius less than 1, we see that T is similar to a contraction. Hence, by Theorem
22, T is null-orbit reflexive. If T is compact or algebraic and r (T ) = 1, then the first
part of this theorem applies. If r (T ) �= 1, then T is null-orbit reflexive by Theorem
20. �

We conclude with another question.

QUESTION 4. Is every power bounded Hilbert space operator orbit reflexive or
null-orbit reflexive?
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