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Abstract. The Riemannian mean on the convex cone of positive definite matrices is a kind of
geometric mean of n -matrices which is an extension of the geometric mean of two-matrices. In
this paper, we derive the Ando-Hiai inequality for the Riemannian mean which is an extension
of the well-known Ando-Hiai inequality of two-matrices. Moreover, we shall show an extension
of a characterization of chaotic order. Lastly, we will give a negative answer for the problem
whether the same results are satisfied or not for other geometric means of n -matrices.

1. Introduction

For positive invertible matrices A and B , their weighted geometric mean A�αB is
well known as

A�αB = A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 for α ∈ [0,1]. (1.1)

Especially, in the case α = 1
2 , we say A� 1

2
B geometric mean, and denote it by A�B ,

simply. If A and B are non-invertible positive matrices, then their geometric mean is
defined by

A�αB = lim
ε→+0

(A+ εI)�α(B+ εI) for α ∈ [0,1] .

The problem of extending two-variable geometric mean to multivariable was a long
standing problem. Recently, a nice definition of geometric mean of n -matrices was
given in [3]. Since then, many authors have studied geometric means of n -matrices.
Now, we know three kind of definitions of geometric mean. The one is defined by
Ando-Li-Mathias in [3], the second one is defined in [10, 7] which is a modification of
the geometric mean by Ando-Li-Mathias. The third one is called the Riemannian mean
or the least squares mean defined in [5, 11, 13]. These geometric means satisfy the
same ten properties including monotonicity and arithmetic-geometric mean inequality
(which will be introduced in the later).
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On the other hands, there are many results on the geometric mean of two-matrices.
Especially, the following result is well known as the Ando-Hiai inequality [2]: Let
α ∈ [0,1] . Then for positive matrices A and B ,

A�αB � I implies Ap�αBp � I for all p � 1,

where the order is defined by positive semi-definiteness. (In the whole paper, we use
this order.)

For positive invertible matrices A and B , the order logA � logB is called chaotic
order. It is a weaker order than the usual order A � B since logt is an operator mono-
tone function. As a characterization of chaotic order, it is well known that the following
statements are mutually equivalent [1, 8, 9, 16]:

(1) logA � logB ,

(2) Ap � (A
p
2 BpA

p
2 )

1
2 for all p � 0,

(3) Ar � (A
r
2 BpA

r
2 )

r
p+r for all p,r � 0.

The Ando-Hiai inequality and the above characterization of chaotic order play impor-
tant roles in the theory of matrix (operator) inequalities.

In this paper, we shall show some matrix inequalities for the Riemannian mean.
One of them is an extension of the Ando-Hiai inequality, and the other one is an exten-
sion of the above characterization of chaotic order. In Section 2, we shall introduce the
definition of the Riemannian mean and its basic properties. In Section 3, we will derive
matrix inequalities for the Riemannian mean which include extensions of the Ando-
Hiai inequality and a characterization of chaotic order. In Section 4, we will discuss
whether our results hold for other two geometric means of n -variable or not.

2. The Riemannian mean and its basic properties

In this section, we shall introduce the definition of the Riemannian mean and its
basic properties. In what follows let Mm(C) be the set of all m×m matrices on C , and
let Pm(C) be the set of all m×m positive invertible matrices. For A,B∈Mm(C) , define
an inner product 〈A,B〉 by 〈A,B〉 = trA∗B . Then Mm(C) is an inner product space

equipped with the norm ‖A‖2 = (trA∗A)
1
2 , moreover Pm(C) is a differential manifold,

and we can consider the geodesic [A,B] ⊂ Pm(C) which includes A,B ∈ Pm(C) . It can
be parameterized as follows:

THEOREM A. ([4, 5]) Let A,B ∈ Pm(C) . Then there exists a unique geodesic
[A,B] joining A and B. It has a parametrization

γ(t) = A�tB = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 , t ∈ [0,1].

Furthermore, we have a distance δ2(A,B) between A and B along the geodesic [A,B]
as

δ2(A,B) = ‖ logA
−1
2 BA

−1
2 ‖2.
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We call the metric δ2(A,B) between A and B by the Riemannian metric.
A vector ω = (w1,w2, . . . ,wn) is called a probability vector if and only if its com-

ponents satisfy ∑i wi = 1 and wi > 0 for i = 1,2, . . . ,n . Then the weighted Riemannian
mean is defined as follows:

DEFINITION 1. ([4, 5, 11, 13]) Let A1, . . . ,An ∈ Pm(C) , and ω = (w1, . . . ,wn) be
a probability vector. Then the weighted Riemannian mean Gδ (ω ;A1, . . . ,An) is defined
by

Gδ (ω ;A1, . . . ,An) = argminX∈Pm(C)

n

∑
i=1

wiδ 2
2 (Ai,X),

where argmin f (X) means the point X0 which attains minimum value of the function
f (X) .

It is easy to see that the weighted Riemannian mean of two-matrices just coincides
with the weighted geometric mean in (1.1) by the following property of the Riemannian
metric.

δ2(A,A�αB) = αδ2(A,B) for α ∈ [0,1] .

This definition is firstly introduced in [5, 13] for the case of ω = ( 1
n , . . . , 1

n) . In this case,
we denote the weighted Riemannian mean by Gδ (A1, . . . ,An) , simply, and we call it
the Riemannian mean. Existence and uniqueness of the Riemannian mean have been
already shown in [5, 13]. Recently, Lawson and Lim defined the weighted Riemannian
mean in [11], generally.

It is known that the weighted Riemannian mean satisfies the following ten prop-
erties: Let Ai ∈ Pm(C) , i = 1,2, . . . ,n , and ω = (w1, . . . ,wn) be a probability vector.
Then

(P1) If A1, . . . ,An commute with each other, then

Gδ (ω ;A1, . . . ,An) = Aw1
1 · · ·Awn

n .

(P2) Joint homogeneity.

Gδ (ω ;a1A1, . . . ,anAn) = aw1
1 · · ·awn

n Gδ (ω ;A1, . . . ,An)

for positive numbers ai > 0 (i = 1, . . . ,n) .

(P3) Permutation invariance. For any permutation π on {1,2, . . . ,n} ,

Gδ (ω ;A1, . . . ,An) = Gδ (π(ω);Aπ(1), . . . ,Aπ(n)),

where π(ω) = (wπ(1), . . . ,wπ(n)) .

(P4) Monotonicity. For each i = 1,2, . . . ,n , if Bi � Ai , then

Gδ (ω ;B1, . . . ,Bn) � Gδ (ω ;A1, . . . ,An).
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(P5) Continuity. For each i = 1,2, . . . ,n , let {A(k)
i }∞

k=1 ⊂ Pm(C) be sequences such

that A(k)
i → Ai as k → ∞ . Then

Gδ (ω ;A(k)
1 , . . . ,A(k)

n ) → Gδ (ω ;A1, . . . ,An) as k → ∞.

(P6) Congruence invariance. For any invertible matrix S ,

Gδ (ω ;S∗A1S, . . . ,S∗AnS) = S∗Gδ (ω ;A1, . . . ,An)S.

(P7) Joint concavity.

Gδ (ω ;λA1 +(1−λ )A′
1, . . . ,λAn +(1−λ )A′

n)
� λGδ (ω ;A1, . . . ,An)+ (1−λ )Gδ(ω ;A′

1, . . . ,A
′
n) for 0 � λ � 1.

(P8) Self-duality.
Gδ (ω ;A−1

1 , . . . ,A−1
n )−1 = Gδ (ω ;A1, . . . ,An).

(P9) Determinantial identity.

detGδ (ω ;A1, . . . ,An) =
n

∏
i=1

(detAi)wi .

(P10) Arithmetic-geometric-harmonic mean inequalities.(
n

∑
i=1

wiA
−1
i

)−1

� Gδ (ω ;A1, . . . ,An) �
n

∑
i=1

wiAi.

Moreover, instead of continuity of the weighted Riemannian mean, non-expansiveprop-
erty is satisfied as follows:

δ2(Gδ (ω ;A1, . . . ,An),Gδ (ω ;B1, . . . ,Bn)) �
n

∑
i=1

wiδ2(Ai,Bi). (P5’)

(P3), (P5), (P6) and (P8) follow from the definition of the weighted Riemannian mean
and properties of the Riemannian metric [4, 5, 11]. (P1), (P2), (P9) and (P10) follow
from the following characterization of the weighted Riemannian mean [11, 13, 17].

THEOREM B. ([11, 13]) Let A1, . . . ,An ∈Pm(C) , and ω = (w1, . . . ,wn) be a prob-
ability vector. Then X = Gδ (ω ;A1, . . . ,An) is a unique positive solution of the following
matrix equation:

w1 logX
−1
2 A1X

−1
2 + · · ·+wn logX

−1
2 AnX

−1
2 = 0.

(P4) and (P7) are not easy consequences. But very recently, Lawson and Lim have
given proofs of (P4) and (P7) in [11] by using Sturm’s result [15], and then Lawson and
Lim showed that the weighted Riemannian mean satisfied (P5’) in [11]. Alternative
proof of (P4) is obtained in [6]. Theorem B has been obtained by Moakher in [13] in
the case of ω = ( 1

n , . . . , 1
n) , and then Lawson and Lim obtained Theorem B in [11],

completely.
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3. Main results

In this section, we shall show further properties of the weighted Riemannian mean.
Almost these results are matrix inequalities, and some of them extends well-known
matrix (operator) inequalities introduced in Section 1.

THEOREM 1. Let A1, . . . ,An ∈Pm(C) , and ω = (w1, . . . ,wn) be a probability vec-
tor. Then w1 logA1 + · · ·+wn logAn � 0 implies Gδ (ω ;A1, . . . ,An) � I .

Proof. If w1 logA1 + · · ·+ wn logAn � 0, then there exists a matrix A ∈ Pm(C)
such that A � I and

w1

2
logA1 + · · ·+ wn

2
logAn +

1
2

logA = 0.

Then ω1 = (w1
2 , . . . , wn

2 , 1
2 ) is a probability vector, and by Theorem B, we have

Gδ (ω1;A1, . . . ,An,A) = I.

Define a sequence {Gn}∞
n=0 ⊂ Pm(C) by

Gn+1 = Gδ (ω1;A1, . . . ,An,Gn) and G0 = Gδ (ω1;A1, . . . ,An, I).

Then by A � I and the monotonicity of the weighted Riemannian mean, we have

I = Gδ (ω1;A1, . . . ,An,A) � Gδ (ω1;A1, . . . ,An, I) = G0,

and hence we obtain
I � G0 � G1 � · · · � Gn � · · · � 0.

Therefore the sequence {Gn}∞
n=0 converges to a positive semi-definite matrix.

Let X = Gδ (ω ;A1, . . . ,An) . We shall show that Gn converges to X . Noting that
by Theorem B, we have

0 =
n

∑
i=1

wi logX
−1
2 AiX

−1
2 =

n

∑
i=1

wi

2
logX

−1
2 AiX

−1
2 +

1
2

logX
−1
2 XX

−1
2 ,

and hence
Gδ (ω1;A1, . . . ,An,X) = X .

Then by the non-expansive property of the weighted Riemannian mean, we have

δ2(X ,Gk) = δ2(Gδ (ω1;A1, . . . ,An,X),Gδ (ω1;A1, . . . ,An,Gk−1))

� 1
2

δ2(X ,Gk−1)

� · · ·

�
(

1
2

)k

δ2(X ,G0) → 0 as k → +∞,
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and hence Gk → X as k → +∞ . Since {Gk}∞
k=0 is a contractive and decreasing se-

quence, we have
Gδ (ω ;A1, . . . ,An) = X � I. �

COROLLARY 2. For A1, . . . ,An ∈Pm(C) and a probability vector ω = (w1, . . . ,wn) ,
the weighted Riemannian mean Gδ (ω ;A1, . . . ,An) is characterized by

Gδ (ω ;A1, . . . ,An) = min{X ∈ Pm(C);
n

∑
i=1

wi logX
−1
2 AiX

−1
2 � 0}.

Proof. By Theorem 1,

w1 logX
−1
2 A1X

−1
2 + · · ·+wn logX

−1
2 AnX

−1
2 � 0

ensures Gδ (ω ;X
−1
2 A1X

−1
2 , . . . ,X

−1
2 AnX

−1
2 ) � I . By the congruence invariance prop-

erty of the weighted Riemannian mean, we have

Gδ (ω ;A1, . . . ,An) � X .

Hence the proof is completed. �

THEOREM 3. Let A1, . . . ,An ∈ Pm(C) . For any probability vector ω ,
Gδ (ω ;A1, . . . ,An) � I implies Gδ (ω ;Ap

1 , . . . ,Ap
n) � I for all p � 1 .

Theorem 3 is an extension of the following Ando-Hiai inequality, because Gδ (1−
α,α;A,B) = A�αB .

THEOREM C. (Ando-Hiai inequality [2]) Let A and B be positive matrices. For
any α ∈ [0,1] , A�αB � I implies Ap�αBp � I for all p � 1 .

Proof of Theorem 3. Let ω = (w1, . . . ,wn) and X = Gδ (ω ;A1, . . . ,An) � I . Then
for p ∈ [1,2] , we have

0 = p(w1 logX
1
2 A−1

1 X
1
2 + · · ·+wn logX

1
2 A−1

n X
1
2 ) by Theorem B

= w1 log(X
1
2 A−1

1 X
1
2 )p + · · ·+wn log(X

1
2 A−1

n X
1
2 )p

� w1 logX
1
2 A−p

1 X
1
2 + · · ·+wn logX

1
2 A−p

n X
1
2 ,

where the last inequality holds since logt is operator monotone, X � I and Hansen’s
inequality for p ∈ [1,2] . It is equivalent to

w1 logX
−1
2 Ap

1X
−1
2 + · · ·+wn logX

−1
2 Ap

nX
−1
2 � 0,

and by Theorem 1, we have

Gδ (ω ;X
−1
2 Ap

1X
−1
2 , . . . ,X

−1
2 Ap

nX
−1
2 ) � I.
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Hence we have

Gδ (ω ;Ap
1 , . . . ,Ap

n) � X = Gδ (ω ;A1, . . . ,An) � I

for p ∈ [1,2] by (P6). Repeating this procedure for Gδ (ω ;Ap
1 , . . . ,A

p
n) � I , the proof is

completed. �

Let p1, . . . , pn be positive numbers. For i = 1,2, . . . ,n , we denote ∏ j 
=i p j by p 
=i .

THEOREM 4. Let A1, . . . ,An ∈Pm(C) . Then the following assertions are mutually
equivalent;

(1) logA1 + · · ·+ logAn � 0 ,

(2) Gδ (Ap
1 , . . . ,A

p
n) � I for all p > 0 ,

(3) Gδ (ω ′;Ap1
1 , . . . ,Apn

n ) � I for all pi > 0 , i = 1,2, . . . ,n,

where ω ′ is a probability vector defined by

ω ′ =
(

p 
=1

∑i p 
=i
, . . . ,

p 
=n

∑i p 
=i

)
.

Theorem 4 is an extension of the following characterization of chaotic order:

THEOREM D. (Characterization of chaotic order [1, 8, 9, 16]) Let A and B be pos-
itive invertible matrices. Then the following assertions are mutually equivalent:

(1) logA � logB,

(2) Ap � (A
p
2 BpA

p
2 )

1
2 for all p � 0 ,

(3) Ar � (A
r
2 BpA

r
2 )

r
p+r for all p,r � 0 .

In fact, Theorem D can be rewritten in the following form:

THEOREM D’. Let A and B be positive invertible matrices. Then the following
assertions are mutually equivalent:

(1) logA+ logB � 0 ,

(2) Ap�Bp � I for all p � 0 ,

(3) Ar� r
p+r

Bp � I for all p,r � 0 .

To prove Theorem 4, we need the following result:

THEOREM E. ([14]) Let A1, . . . ,An ∈ Pm(C) . Then

lim
p→+0

(
Ap

1 + · · ·+Ap
n

n

) 1
p

= exp

(
logA1 + · · ·+ logAn

n

)
,

uniformly.
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Proof of Theorem 4. Proof of (1) → (3). If logA1 + · · ·+ logAn � 0, then we have

∏i pi

∑i p 
=i
(logA1 + · · ·+ logAn) � 0,

i.e.,
p 
=1

∑i p 
=i
logAp1

1 + · · ·+ p 
=n

∑i p 
=i
logApn

n � 0.

Hence by Theorem 1, we have

Gδ (ω ′;Ap1
1 , . . . ,Apn

n ) � I

for all pi > 0, i = 1,2, . . . ,n .

Proof of (3) −→ (2) is easy by putting p1 = · · · = pn = p .

Proof of (2) −→ (1). By the geometric-harmonic mean inequality, we have

I � Gδ (Ap
1 , . . . ,Ap

n) �
(

A−p
1 + · · ·+A−p

n

n

)−1

.

By Theorem E, we have

I � lim
p→+0

(
A−p

1 + · · ·+A−p
n

n

)−1
p

=

(
exp

logA−1
1 + · · ·+ logA−1

n

n

)−1

= exp

(
logA1 + · · ·+ logAn

n

)
.

Hence we have (1). �

4. Other geometric means

In the previous section, we showed further properties of the weighted Riemannian
mean. Here one might expect that other geometric means satisfy the same properties
stated in the previous section. In this section, we will give a negative answer for the
problem.

It is known that there are two types of geometric means of n -matrices except
the weighted Riemannian mean which satisfy all properties of (P1)–(P10) stated in
Section 2. The most famous geometric mean has been defined by Ando-Li-Mathias
in [3]. In this paper, we call it ALM mean. The other one is defined by Bini-Meini-
Poloni and Izumino-Nakamura, independently in [7, 10]. We call it BMP mean in this
paper. Weighted BMP mean has been considered in [7, 10], and recently weighted
interpolation mean between ALM and BMP means has been defined in [12].
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THEOREM 5. Let A1, . . .,An ∈Pm(C) , ω be a probability vector and G(ω ;A1, . . .,An)
be a weighted geometric mean satisfying all properties of (P1)–(P10). If the weighted
geometric mean satisfies Theorem 1, then the weighted geometric mean G coincides
with the weighted Riemannian mean.

Proof. Let ω = (w1, . . . ,wn) . If the weighted geometric mean satisfies Theorem
1, we have

n

∑
i=1

wi logAi � 0 ⇐⇒
n

∑
i=1

wi logA−1
i � 0

=⇒ G(ω ;A−1
1 , . . . ,A−1

n ) � I

⇐⇒ G(ω ;A1, . . . ,An) � I by (P8).

Hence we obtain

w1 logA1 + · · ·+wn logAn = 0 =⇒ G(ω ;A1, · · · ,An) = I. (4.1)

Let X = Gδ (ω ;A1, . . . ,An) be the weighted Riemannian mean. Then by Theorem B,
we have

w1 logX
−1
2 A1X

−1
2 + · · ·+wn logX

−1
2 AnX

−1
2 = 0,

and by (4.1) and (P6),

G(ω ;X
−1
2 A1X

−1
2 , . . . ,X

−1
2 AnX

−1
2 ) = I

⇐⇒ G(ω ;A1, . . . ,An) = X = Gδ (ω ;A1, . . . ,An).

This completes the proof. �

COROLLARY 6. Let A1, . . . ,An ∈ Pm(C) , ω be a probability vector and
G(ω ;A1, . . . ,An) be a weighted geometric mean satisfying all properties of (P1)–(P10).
If the weighted geometric mean satisfies Theorem 3, then the weighted geometric mean
G coincides with the weighted Riemannian mean.

Proof. Let ω = (w1, . . . ,wn) . If w1 logA1 + · · ·+wn logAn � 0 is satisfied, then
by arithmetic-geometric mean inequality, we have

I � w1(I +
logA1

k
)+ · · ·+wn(I +

logAn

k
) � G

(
ω ; I +

logA1

k
, . . . , I +

logAn

k

)

hold for sufficiently large k . Since the weighted geometric mean G satisfies Theorem
3, we have

G

(
ω ;(I +

logA1

k
)k, . . . ,(I +

logAn

k
)k
)

� I.

By the well-known formula limk→+∞(I + logAi
k )k = Ai and (P5), we have

G(ω ;A1, . . . ,An) � I,
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i.e., the weighted geometric mean G satisfies Theorem 1. Hence, by Theorem 5, the
weighted geometric mean coincides with the weighted Riemannian mean. �

Generally, ALM, BMP and the Riemannian means are different from each other.
Here we shall introduce a concrete example. Before introducing an example, we shall
introduce the definitions of ALM and BMP means of three-variable, briefly.

Let A,B,C ∈ Pm(C) . Define three sequences {An}∞
n=0 , {Bn}∞

n=0 and {Cn}∞
n=0 as

follows: A0 = A , B0 = B , C0 = C and

An+1 = Bn�Cn, Bn+1 = Cn�An, Cn+1 = An�Bn.

Then {An}∞
n=0 , {Bn}∞

n=0 and {Cn}∞
n=0 converge the same limit, and we define it as

ALM mean [3] (denoted by Galm(A,B,C)), i.e.,

lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

Cn = Galm(A,B,C).

On the other hand, BMP mean is defined as follows: Define three sequences
{An}∞

n=0 , {Bn}∞
n=0 and {Cn}∞

n=0 by A0 = A , B0 = B , C0 = C and

An+1 = (Bn�Cn)� 1
3
An, Bn+1 = (Cn�An)� 1

3
Bn, Cn+1 = (An�Bn)� 1

3
Cn.

Then {An}∞
n=0 , {Bn}∞

n=0 and {Cn}∞
n=0 converge the same limit, and we define it as

BMP mean [7, 10] (denoted by Gbmp(A,B,C)), i.e.,

lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

Cn = Gbmp(A,B,C).

EXAMPLE. Let

A =
(

18 5
5 2

)
, B =

(
1 0
0 200

)
, C =

(
75 54
54 40

)
.

Then

G1 = Galm(A,B,C) =
(

9.06732 4.86436
4.86436 8.89146

)

and

logG
1
2
1 A−1G

1
2
1 + logG

1
2
1 B−1G

1
2
1 + logG

1
2
1 C−1G

1
2
1

=
( −0.263706 −0.0340424
−0.0340424 0.263706

)

= O.

Hence by Theorem B, Gδ (A,B,C) 
= G1 = Galm(A,B,C) . On the other hand,

G2 = Gbmp(A,B,C) =
(

9.39875 4.91569
4.91659 8.63133

)
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and

logG
1
2
2 A−1G

1
2
2 + logG

1
2
2 B−1G

1
2
2 + logG

1
2
2 C−1G

1
2
2

=
( −0.101249 −0.0568546
−0.0568546 0.101249

)

= O.

Hence by Theorem B, Gδ (A,B,C) 
= G2 = Gbmp(A,B,C) .

COROLLARY 7. ALM and BMP means do not satisfy Theorems 1 and 3.

Proof. ALM and BMP means do not coincide with the Riemannian mean. Hence
by Theorem 5 and Corollary 6, the proof is completed. �
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