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SOME BETTER BOUNDS IN CONVERSES

OF THE JENSEN OPERATOR INEQUALITY

JADRANKA MIĆIĆ, ZLATKO PAVIĆ AND JOSIP PEČARIĆ

(Communicated by C.-K. Li)

Abstract. In this paper we study converses of a generalized Jensen’s inequality for a continuous
field of self-adjoint operators, a unital field of positive linear mappings and real values continuous
convex functions. We obtain some better bounds than the ones calculated in a series of papers
in which these inequalities are studied. As an application, we provide a refined calculation of
bounds in the case of power functions.

1. Introduction

We recall some definitions and notations. Let H , K will be Hilbert spaces and
B(H) , B(K) will be appropriate C∗ -algebras of all bounded linear operators. Let
A be a C∗ -algebra of operators on H and T be a locally compact Hausdorff space.
We say that a field (At)t∈T of operators At ∈ A is continuous if the function t �→ At

is norm continuous on T . If μ is a bounded Radon measure on T and the function
t �→ ‖At‖ is integrable, then we can form the Bochner integral

∫
T At dμ(t) which is the

unique element in the multiplier algebra

M (A ) = {B ∈ B(H) : AB+BA∈ A for every A ∈ A }

so that

ϕ
(∫

T
At dμ(t)

)
=
∫

T
ϕ(At)dμ(t)

for every linear functional ϕ in the norm dual A ∗ .
Let A and B be C∗ -algebras on H and K respectively. A field (Φt )t∈T of posi-

tive linear mappings Φt : A →B is continuous if the function t �→Φt(A) is continuous
for every A ∈ A . Additionally, if the field (Φt(1H))t∈T is integrable with∫

T
Φt(1H)dμ(t) = 1K,

we say that a field (Φt)t∈T is unital.
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The self-adjoint operators on Hilbert spaces with its numerous applications play an
important part of the theory of operators. The bounds research for self-adjoint operators
is a very useful area of this theory. There is no better inequality in bounds examina-
tion than Jensen’s inequality. It is an extensively used inequality in various fields of
mathematics.

The starting point in an investigation of converses of Jensen’s operator inequality
by using the Mond-Pečarić method is given in [6]. The mentioned inequalities and their
consequences have been explored in the last years [2, 3, 5]. So, F. Hansen, J. Pečarić
and I. Perić gave in [3, Theorem 3.1] the following theorem.

THEOREM A. Let (At)t∈T be a bounded continuous field of self-adjoint elements
in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let
(Φt)t∈T be a unital field of positive linear maps Φt : A → B from A to another
unital C∗−algebra B . Let f ,g : [m,M] → R and F : U ×V → R be functions such
that f ([m,M]) ⊂U, g([m,M]) ⊂ V and F is bounded. If F is operator monotone in
the first variable and f is convex in the interval [m,M] , then

F [
∫
T Φt ( f (At))dμ(t),g(

∫
T Φt(At)dμ(t))] (1.1)

� sup
m�z�M

F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]

1K .

In the dual case (when f is concave) the opposite inequality holds in (1.1) with inf
instead of sup .

In [5] converses of a generalized Jensen operator inequality were studied for fields
of positive linear mappings (Φt)t∈T such that

∫
T Φt(1H)dμ(t) = k1K for some positive

scalar k .
Very recently, we gave in [4, Theorem 1] a version of Jensen’s operator inequality

without operator convexity as follows.

THEOREM B. Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈B(H)
with bounds mi and Mi , mi � Mi , i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n-tuple of po-
sitive linear mappings Φi : B(H) → B(K) , i = 1, . . . ,n, such that ∑n

i=1 Φi(1H) = 1K .
If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (1.2)

where mA and MA , mA � MA , are bounds of the self-adjoint operator A = ∑n
i=1 Φi(Ai) ,

then

f

(
n

∑
i=1

Φi(Ai)

)
�

n

∑
i=1

Φi ( f (Ai)) (1.3)

holds for every continuous convex function f : I → R provided that the interval I con-
tains all mi,Mi .

If f : I → R is concave, then the reverse inequality is valid in (1.3).

The result from Theorem B, where a special condition is given on the bounds of
the arithmetic mean of operators which appear in Jensen’s inequality, has inspired us
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to similarly improve the Mond-Pečarić method used in [1, 2, 3, 5]. So, in this paper
we give a better bound than the ones calculated in the above references, when we take
into account an interval which contains the bounds of the integral arithmetic mean of
operators. In the second section we give a general formulation of converses of Jensen’s
operator inequality. In the third and the fourth sections we give the difference and ratio
type converses, respectively, and applications to provide a refinement of bounds for
power functions.

2. Main results

In the following theorem we give a general form of converses of Jensen’s inequal-
ity which give a better bound than the one in Theorem A.

THEOREM 2.1. Let (At)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a
locally compact Hausdorff space T equipped with a bounded Radon measure μ , and
let (Φt)t∈T be a unital field of positive linear maps Φt : A → B from A to another
unital C∗−algebra B . Let mA and MA , mA � MA , be the bounds of the self-adjoint
operator A =

∫
T Φt(At)dμ(t) and f : [a,b] → R , g : [mA,MA] → R , F : U ×V → R ,

where f ([a,b]) ⊆U , g([mA,MA]) ⊆V and F be bounded.
If f is convex and F is operator monotone in the first variable, then

F

[∫
T
Φt( f (At ))dμ(t) , g

(∫
T
Φt(At)dμ(t)

)]
� C1 1K � C1K , (2.1)

where constants C1 ≡C1(F, f ,g,m,M,mA,MA) and C ≡C(F, f ,g,m,M) are

C1 := sup
mA�z�MA

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
M−MA
M−m �p� M−mA

M−m

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} ,

C := sup
m�z�M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
0�p�1

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} .

If f is concave, then the reverse inequality is valid in (2.1) with inf instead of sup
in bounds C1 and C.

Proof. We only prove the convex case. Since mΦt(1H) � Φt (At) � MΦt (1H) and∫
T Φt (1H)dμ(t) = 1K , then m1K �

∫
T Φt(At)dμ(t) � M1K . Next, since mA and MA ,

are the bounds of the operator
∫
T Φt(At)dμ(t) it follows that [mA,MA] ⊆ [m,M] .
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By using convexity of f and functional calculus, we obtain

∫
T

Φt( f (At ))dμ(t) �
∫

T
Φt

(
M1H −At

M−m
f (m)+

At −m1H

M−m
f (M)

)
dμ(t)

=
M1K − ∫T Φt(At)

M−m
f (m)+

∫
T Φt (At)−m1K

M−m
f (M).

Using operator monotonicity of u �→ F(u,v) and boundedness of F , it follows

F

[∫
T
Φt ( f (At))dμ(t) , g

(∫
T
Φt(At)dμ(t)

)]

� F

[
M1K − ∫T Φt (At)

M−m
f (m)+

∫
T Φt(At)−m1K

M−m
f (M) , g

(∫
T
Φt (At)dμ(t)

)]

� sup
mA�z�MA

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K

� sup
m�z�M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K . �

REMARK 2.2. We can obtain an inequality similar to the one in Theorem 2.1
in the case when (Φt)t∈T is a non-unit field of positive linear mappings, i.e. when∫
T Φt (1)dμ(t) = k1 for some positive scalar k . Then,

F

[∫
T
Φt( f (At))dμ(t) , g

(∫
T
Φt (At)dμ(t)

)]

� sup
kmA�z�kMA

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K

� sup
km�z�kM

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K .

This means that we obtain a better upper bound than the one given in [5, Theorem 2.3].

3. Difference type converse inequalities

We recall that the following generalization of Jensen’s inequality holds (see [3,
Theorem 1]). Let (At)t∈T and (Φt)t∈T be as in Theorem 2.1. If f is an operator
convex function on [m,M] and αg � f on [m,M] for some function g and real number
α , then

0 �
∫

T
Φt ( f (At))dμ(t)−αg

(∫
T

Φt(At)dμ(t)
)

. (3.1)

In this section we consider the difference type converses of the above inequality.

For convenience we introduce some abbreviations. Let f : [m,M] → R , m < M ,
be a convex or a concave function. We denote a linear function through (m, f (m)) and
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(M, f (M)) by f cho
[m,M] , i.e.

f cho
[m,M](z) =

M− z
M−m

f (m)+
z−m
M−m

f (M), z ∈ R

and the slope and the intercept by k f and l f , respectively, i.e.

k f =
f (M)− f (m)

M−m
and l f =

M f (m)−mf (M)
M−m

.

The following Theorem 3.1 and Corollary 3.2 are refinements of [1, Theorem 2.4].

THEOREM 3.1. Let (At)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a lo-
cally compact Hausdorff space T equipped with a bounded Radon measure μ , and let
(Φt)t∈T be a unital field of positive linear maps Φt : A →B from A to another unital
C∗−algebra B . Let mA and MA , mA � MA , be the bounds of A =

∫
T Φt(At)dμ(t) and

f : [m,M] → R , g : [mA,MA] → R be continuous functions.
If f is convex, then∫

T
Φt( f (At ))dμ(t)−αg

(∫
T

Φt (At)dμ(t)
)

(3.2)

� max
mA�z�MA

{
k f z+ l f −αg(z)

}
1K

holds and the bound in RHS of (3.2) exists for any m,M,mA and MA .
If f is concave, then the reverse inequality with min instead of max is valid in

(3.2). The bound in RHS of this inequality exists for any m,M,mA and MA .

Proof. We put F(u,v) = u−αv , α ∈ R in Theorem 2.1. A function z �→ k f z+
l f −αg(z) is continuous on [mA,mA] , so the global extremes exist. �

In the following corollary, we give a way of determining the bounds placed in
Theorem 3.1.

COROLLARY 3.2. Let (At)t∈T , (Φt )t∈T , A, f and g be as in Theorem 3.1.
(i) Let α � 0 . If f is convex and g is convex, then∫

T
Φt ( f (At))dμ(t)−αg

(∫
T

Φt(At)dμ(t)
)

� Cα1K (3.3)

holds with

Cα = max
{

f cho
[m,M](mA)−αg(mA) , f cho

[m,M](MA)−αg(MA)
}

. (3.4)

But, if f is convex and g is concave, then the inequality (3.3) holds with

Cα =

⎧⎪⎪⎨
⎪⎪⎩

f cho
[m,M](mA)−αg(mA) if αg′−(z) � k f for every z∈(mA,MA),

f cho
[m,M](z0)−αg(z0) if αg′−(z0) � k f � αg′+(z0) for some z0∈(mA,MA),

f cho
[m,M](MA)−αg(MA) if αg′+(z) � k f for every z∈(mA,MA).

(3.5)
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If f is concave and g is convex, then

cα1K �
∫

T
Φt( f (At ))dμ(t)−αg

(∫
T

Φt (At)dμ(t)
)

(3.6)

holds with cα which equals the right side in (3.5) with reverse inequality signs.
But, if f is concave and g is concave, then the inequality (3.6) holds with cα

which equals the right side in (3.4) with min instead of max .

(ii) Let α � 0 .
If f is convex and g is convex, then the inequality (3.3) holds with Cα defined by

(3.5). But if f is convex and g is concave, then (3.3) holds with Cα defined by (3.4).
If f is concave and g is convex, then the inequality (3.6) holds with cα which

equals the right side in (3.4) with min instead of max . But, if f is concave and g
is concave, then (3.6) holds with cα which equals the right side in (3.5) with reverse
inequality signs.

Proof. (i) : We only prove the cases when f is convex. If g is convex (resp.
concave) we apply Proposition 5.2 (resp. Proposition 5.1) on the convex (resp. concave)
function hα = f cho

[m,M](z)−αg(z) , and get (3.4) (resp. (3.5)).
In the remaining cases the proof is essentially the same as in the above cases. �
Corollary 3.2 applied on the functions f (z) = zp and g(z) = zq gives the following

corollary, which is a refinement of [1, Corollary 2.6].

COROLLARY 3.3. Let (At)t∈T , (Φt)t∈T and A be as in Theorem 3.1, and addi-
tionally let operators At be strictly positive with the spectra in [m,M] , where 0 < m <
M.

(i) Let α � 0 .
If p,q ∈ (−∞,0]∪ [1,∞) , then

∫
T

Φt(A
p
t )dμ(t)−α

(∫
T

Φt(At)dμ(t)
)q

� C�
α1K (3.7)

holds with
C�

α = max
{
kt pmA + lt p −αmq

A , kt pMA + lt p −αMq
A

}
. (3.8)

If p ∈ (−∞,0) and q ∈ (0,1) , then the inequality (3.7) holds with

C�
α =

⎧⎪⎨
⎪⎩

kt p mA + lt p −α mq
A if (α q/kt p)1/(1−q) � mA,

lt p + α(q−1)(α q/kt p)q/(1−q) if mA � (α q/kt p)1/(1−q) � MA,

kt p MA + lt p −α Mq
A if (α q/kt p)1/(1−q) � MA.

(3.9)

If p ∈ (0,1) and q ∈ (−∞,0) , then

c�
α1K �

∫
T

Φt(A
p
t )dμ(t)−α

(∫
T

Φt(At)dμ(t)
)q

(3.10)
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holds with c�
α which equals the right side in (3.9).

If p,q∈ [0,1] , then the inequality (3.10) holds with c�
α which equals the right side

in (3.8) with min instead of max .

(ii) Let α � 0 .
If p,q ∈ (−∞,0)∪ (1,∞) , then (3.7) holds with C�

α defined by (3.9). But, if p ∈
(−∞,0]∪ [1,+∞) and q ∈ [0,1] , then (3.7) holds with C�

α defined by (3.8).
If p ∈ [0,1] and q ∈ (−∞,0]∪ [1,∞) , then (3.10) holds with c�

α which equals the
right side in (3.8) with min instead of max . But, if p ∈ (0,1) and q ∈ (0,1) , then
(3.10) holds with c�

α which equals the right side in (3.9).

Using Theorem 3.1 and Corollary 3.2 with g = f and α = 1 we have the following
theorem.

THEOREM 3.4. Let (At)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a lo-
cally compact Hausdorff space T equipped with a bounded Radon measure μ , and let
(Φt)t∈T be a unital field of positive linear maps Φt : A →B from A to another unital
C∗−algebra B . Let mA and MA , mA � MA , be the bounds of A =

∫
T Φt(At)dμ(t) and

f : [m,M] → R be a continuous function.
If f is convex, then

0 �
∫

T
Φt( f (At ))dμ(t)− f

(∫
T

Φt (At)dμ(t)
)

� max
mA�z�MA

{
f cho
[m,M](z)− f (z)

}
1K

(3.11)
holds and the bound in RHS of (3.11) exists for any m,M,mA and MA .

The value of the constant

C ≡C( f ,m,M,mA,MA) := max
mA�z�MA

{
f cho
[m,M](z)− f (z)

}

can be determined as follows

C =

⎧⎪⎪⎨
⎪⎪⎩

f cho
[m,M](mA)− f (mA) if f ′−(z) � k f for every z∈(mA,MA),

f cho
[m,M](z0)− f (z0) if g′−(z0) � k f � g′+(z0) for some z0∈(mA,MA),

f cho
[m,M](MA)− f (MA) if g′+(z) � k f for every z∈(mA,MA).

(3.12)

If f is concave, then the reverse inequality with min instead of max is valid in
(3.11). The bound in this inequality exists for any m,M,mA and MA . The value of the
constant

c ≡ c( f ,m,M,mA,MA) := min
mA�z�MA

{
f cho
[m,M](z)− f (z)

}
can be determined as in the right side in (3.12) with reverse inequality signs.

If f is a strictly convex differentiable function on [mA,MA] , then we obtain the
following corollary of Theorem 3.4. This is a refinement of [1, Corollary 2.16].
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COROLLARY 3.5. Let (At)t∈T , (Φt )t∈T and A be as in Theorem 3.4. Let f :
[m,M]→R be a continuous function. If f is strictly convex differentiable on [mA,MA] ,
then

0 �
∫

T
Φt( f (At))dμ(t)− f

(∫
T

Φt(At)dμ(t)
)

�
(
k f z0 + l f − f (z0)

)
1K , (3.13)

where

z0 =

⎧⎨
⎩

mA if f ′(mA) � k f ,
f ′−1

(
k f
)

if f ′(mA) � k f � f ′(MA),
MA if f ′(MA) � k f .

(3.14)

The global upper bound is C(m,M, f ) = k f z0 + l f − f (z0) , where z0 = ( f ′)−1(k f ) ∈
(m,M) . The upper bound in RHS of (3.13) is better than the global upper bound
provided that either f ′(mA) � k f or f ′(MA) � k f .

In the dual case, when f is strictly concave differentiable on [mA,MA] , then the
reverse inequality is valid in (3.13), with z0 which equals the right side in (3.14) with
reverse inequality signs. The global lower bound is defined as the global upper bound
in the convex case. The lower bound in the reverse inequality in (3.13) is better than
the global lower bound provided that either f ′(mA) � k f or f ′(MA) � k f .

Proof. We only prove the cases when f is strictly convex differentiable on [mA,MA] .
The inequality (3.13) follows from Theorem 3.4 by using the differential calculus.
Since h(z) = k f z+ l f − f (z) is a continuous strictly concave function on [m,M] , then
there is exactly one point z0 ∈ [m,M] which achieves the global maximum. If neither
of these points is in the interval [mA,MA] , then the global maximum in [mA,MA] is less
than the global maximum in [m,M] . �

Using Corollary 3.3 with q = p , α = 1 or applying Corollary 3.5 we have the
following corollary, which is a refinement of [1, Corollary 2.18].

COROLLARY 3.6. Let (At)t∈T , (Φt)t∈T and A be as in Theorem 3.4, and addi-
tionally let operators At be strictly positive with the spectra in [m,M] , where 0 < m <
M. Then

0 �
∫

T
Φt(A

p
t )dμ(t)−

(∫
T

Φt(At)dμ(t)
)p

� C(mA,MA,m,M, p)1K � C(m,M, p)1K ,

for p ∈ (0,1) , and

0 �
∫

T
Φt(A

p
t )dμ(t)−

(∫
T

Φt (At)dμ(t)
)p

� c(mA,MA,m,M, p)1K � C(m,M, p)1K ,

for p ∈ (0,1) , where

C(mA,MA,m,M, p) =

⎧⎪⎨
⎪⎩

kt p mA + lt p −mp
A if pmp−1

A � kt p ,

C(m,M, p) if pmp−1
A � kt p � pMp−1

A ,

kt p MA + lt p −Mp
A if pMp−1

A � kt p ,

(3.15)
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and c(mA,MA,m,M, p) equals the right side in (3.15) with reverse inequality signs.
C(m,M, p) is the known constant Kantorovich type for difference (see i.e. [1, §2.7]):

C(m,M, p) = (p−1)
(

Mp−mp

p(M−m)

)1/(p−1)

+
Mmp−mMp

M−m
, for p ∈ R .

4. Ratio type converse inequalities

In this section we consider the ratio type converses of Jensen’s inequality. The
following Theorem 4.1 and Corollary 4.3 are refinements of [1, Theorem 2.9].

THEOREM 4.1. Let (At)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a lo-
cally compact Hausdorff space T equipped with a bounded Radon measure μ , and let
(Φt)t∈T be a unital field of positive linear maps Φt : A →B from A to another unital
C∗−algebra B . Let mA and MA , mA � MA , be the bounds of A =

∫
T Φt(At)dμ(t) and

f : [m,M] → R be a continuous function and g : [mA,MA] → R be a strictly positive
continuous function.

If f is convex, then

∫
T

Φt ( f (At))dμ(t) � max
mA�z�MA

{
k f z+ l f

g(z)

}
g

(∫
T

Φt(At)dμ(t)
)

(4.1)

holds and the bound in RHS of (4.1) exists for any m,M,mA and MA .
If f is concave, then the reverse inequality with min instead of max is valid in

(4.1). The bound in RHS of this inequality exists for any m,M,mA and MA .

Proof. We put F(u,v) = v−
1
2 uv−

1
2 in Theorem 2.1.

A function z �→ k f z+l f
g(z) is continuous on [mA,mA] , so the global extremes ex-

ist. �

REMARK 4.2. If f is convex and g is strictly negative on [mA,MA] , then the
inequality with min instead of max is valid in (4.1). If f is concave and g is strictly
negative on [mA,MA] , then the reverse inequality is valid in (4.1).

In the following corollary, we give a way of determining the bounds placed in
Theorem 4.1.

COROLLARY 4.3. Let (At)t∈T , (Φt )t∈T , A, f and g be as in Theorem 4.1. Ad-
ditionally, let f cho

[m,M] and g be strictly positive on [mA,MA] .
If f is convex and g is convex, then

∫
T

Φt( f (At))dμ(t) � Cg

(∫
T

Φt(At)dμ(t)
)

(4.2)
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holds with

C=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f cho
[m,M](mA)

g(mA) if g′−(z) � k f g(z)
k f z+l f

for every z∈(mA,MA),

f cho
[m,M](z0)

g(z0)
ifg′−(z0) � k f g(z0)

k f z0+l f
� g′+(z0) forsome z0∈(mA,MA),

f cho
[m,M](MA)
g(MA) ifg′+(z) � k f g(z)

k f z+l f
for every z∈(mA,MA).

(4.3)

If f is convex and g is concave, then the inequality (4.2) holds with

C = max

{
f cho
[m,M](mA)

g(mA)
,

f cho
[m,M](MA)

g(MA)

}
. (4.4)

If f is concave and g is convex, then∫
T

Φt( f (At ))dμ(t) � cg

(∫
T

Φt(At)dμ(t)
)

(4.5)

holds with c which equals the right side in (4.4) with min instead of max .
If f is concave and g is concave, then the inequality (4.5) holds with c which

equals the right side in (4.3) with reverse inequality signs.

Proof. We only prove the cases when f is convex. If g is convex (resp. concave)

we apply Proposition 5.3 (resp. Proposition 5.5) on the ratio function h(z) =
f cho
[m,M](z)

g(z)
with the convex (resp. concave) denominator g , and so we get (4.3) (resp. (4.4)). �

Corollary 4.3 applied on the functions f (z) = zp and g(z) = zq gives the following
corollary, which is a refinement of [1, Corollary 2.11].

COROLLARY 4.4. Let (At)t∈T , (Φt)t∈T and A be as in Theorem 4.1, and addi-
tionally let operators At be strictly positive with the spectra in [m,M] , where 0 < m <
M.

If p,q ∈ (−∞,0)∪ (1,∞) , then

∫
T

Φt(A
p
t )dμ(t) � C�

(∫
T

Φt(At)dμ(t)
)q

(4.6)

holds with

C� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kt p mA+lt p
mq

A
if q

1−q
lt p
kt p

� mA,

lt p
1−q

(
1−q
q

kt p

lt p

)q
if mA � q

1−q
lt p
kt p

� MA,

kt p MA+lt p
Mq

A
if q

1−q
lt p
kt p

� MA.

(4.7)

If p ∈ (−∞,0]∪ [1,∞) and q ∈ [0,1] , then the inequality (4.6) holds with

C� = max

{
kt pmA + lt p

mq
A

,
kt pMA + lt p

Mq
A

}
. (4.8)
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If p ∈ [0,1] and q ∈ (−∞,0]∪ [1,∞) , then

∫
T

Φt(A
p
t )dμ(t) � c�

(∫
T

Φt (At)dμ(t)
)q

(4.9)

holds with cα which equals the right side in (4.8) with min instead of max .
If p,q ∈ (0,1) , then the inequality (4.9) holds with c� which equals the right side

in (4.7).

Using Theorem 4.1, Proposition 5.4 and 5.6 with g = f we have the following
theorem.

THEOREM 4.5. Let (At)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with the spectra in [m,M] , m < M, defined on a lo-
cally compact Hausdorff space T equipped with a bounded Radon measure μ , and let
(Φt)t∈T be a unital field of positive linear maps Φt : A →B from A to another unital
C∗−algebra B . Let mA and MA , mA � MA , be the bounds of A =

∫
T Φt(At)dμ(t) .

let f : [m,M] → R be a continuous function and strictly positive on [mA,MA] .
If f is convex, then

∫
T

Φt( f (At ))dμ(t) � max
mA�z�MA

{
f cho
[m,M](z)

f (z)

}
f

(∫
T

Φt(At)dμ(t)
)

(4.10)

holds and the bound in RHS of (4.10) exists for any m,M,mA and MA .
The value of the constant

C ≡C( f ,m,M,mA,MA) := max
mA�z�MA

{
f cho
[m,M](z)

f (z)

}

can be determined as follows:

C =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f cho
[m,M](mA)

f (mA) if f ′−(z) � k f f (z)
k f z+l f

for every z∈(mA,MA),

f cho
[m,M](z0)

f (z0)
if f ′−(z0) � k f f (z0)

k f z0+l f
� f ′+(z0) forsome z0∈(mA,MA),

f cho
[m,M](MA)

f (MA) if f ′+(z) � k f f (z)
k f z+l f

for every z∈(mA,MA).

(4.11)

If f is concave, then the reverse inequality with min instead of max is valid in
(4.10). The bound in this inequality exists for any m,M,mA and MA . The value of the
constant

c ≡ c( f ,m,M,mA,MA) := min
mA�z�MA

{
f cho
[m,M](z)

f (z)

}

can be determined as in the right side in (4.10) with reverse inequality signs.
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REMARK 4.6. If f is convex and strictly negative on [mA,MA] , then the inequal-
ity with min instead of max is valid in (4.10). If f is concave and strictly negative on
[mA,MA] , then the reverse inequality is valid in (4.10).

If f is a strictly convex differentiable function on [mA,MA] , then we obtain the
following corollary of Theorem 4.5. This is a refinement of [1, Corollary 2.10].

COROLLARY 4.7. Let (At)t∈T , (Φt )t∈T and A be as in Theorem 4.5. Let f :
[m,M] → R be a continuous function and f (m), f (M) > 0 . If f is strictly positive and
strictly convex twice differentiable on [mA,MA] , then

∫
T

Φt( f (At))dμ(t) �
(

k f z0 + l f

f (z0)

)
f

(∫
T

Φt(At)dμ(t)
)

, (4.12)

where z0 ∈ (mA,MA) is defined as the unique solution of k f f (z) = (k f z+ l f ) f ′(z) pro-
vided (k f mA + l f ) f ′(mA)/ f (mA) � k f � (k f MA + l f ) f ′(MA)/ f (MA) , otherwise z0 is
defined as mA or MA provided k f � (k f mA + l f ) f ′(mA)/ f (mA) or k f � (k f MA +
l f ) f ′(MA)/ f (MA) , respectively.

The global upper bound is C(m,M, f ) = (k f z0 + l f )/ f (z 0) , where z0 ∈ (m,M)
is defined as the unique solution of k f f (z) = (k f z+ l f ) f ′(z) . The upper bound in RHS
of (4.12) is better than the global upper bound provided that either k f � (k f mA +
l f ) f ′(mA)/ f (mA) or k f � (k f MA + l f ) f ′(MA)/ f (MA) .

In the dual case, when f is positive and strictly concave differentiable on [mA,MA] ,
then the reverse inequality is valid in (4.12), with z0 is defined as in (4.12) with re-
verse inequality signs. The global lower bound is defined as the global upper bound
in the convex case. The lower bound in the reverse inequality in (4.12) is better
than the global lower bound provided that either k f � (k f mA + l f ) f ′(mA)/ f (mA) or
k f � (k f MA + l f ) f ′(MA)/ f (MA) .

Proof. We only prove the cases when f is strictly convex differentiable on [mA,MA] .
The inequality (4.12) follows from Theorem 4.5 by using the differential calculus.

Next, we put h(z) = (k f z + l f )/ f (z) . Then h′(z) = H(z)/ f (z)2 , where H(z) =
k f f (z) − (k f z + l f ) f ′(z) . Due to the strict convexity of f on [mA,MA] and since
f (m), f (M) > 0, it follows that H ′(z) = −(k f z + l f ) f ′′(z) < 0. Hence H(z) is de-
creasing on [mA,MA] . If H(mA)H(MA) � 0, then the minimum value of the function
h on [mA,MA] is attained in z0 which is the unique solution of the equation H(z) = 0.
Otherwise, if H(mA)H(MA) � 0, then this minimum value is attained in mA or MA

according to H(mA) � 0 or H(MA) � 0.
Since h(z) = (k f z+ l f )/ f (z) is a continuous function on [m,M] , then the global

maximum in [mA,MA] is less than the global maximum in [m,M] . �

Using Corollary 4.4 with q = p or applying Corollary 4.7 we have the following
corollary, which is a refinement of [1, Corollary 2.12].
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COROLLARY 4.8. Let (At)t∈T , (Φt)t∈T and A be as in Theorem 4.5, and addi-
tionally let operators At be strictly positive with the spectra in [m,M] , where 0 < m <
M. Then∫

T
Φt(A

p
t )dμ(t)

� K(mA,MA,m,M, p)
(∫

T
Φt(At)dμ(t)

)p

� K(m,M, p)
(∫

T
Φt (At)dμ(t)

)p

,

for p ∈ (0,1) , and∫
T

Φt(A
p
t )dμ(t)

� k(mA,MA,m,M, p)
(∫

T
Φt(At)dμ(t)

)p

� K(m,M, p)
(∫

T
Φt (At)dμ(t)

)p

,

for p ∈ (0,1) , where

K(mA,MA,m,M, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kt p mA+lt p
mp

A
if p lt p/mA � (1− p)kt p ,

K(m,M, p) if p lt p/mA < (1− p)kt p < plt p/MA,

kt p MA+lt p
Mp

A
if p lt p/MA � (1− p)kt p ,

(4.13)

and k(mA,MA,m,M, p) equals the right side in (4.13) with reverse inequality signs.
K(m,M, p) is the known Kantorovich constant (see i.e. [1, §2.7]):

K(m,M, p) = K(m,M, p) :=
mMp −Mmp

(p−1)(M−m)

(
p−1

p
Mp−mp

mMp−Mmp

)p

, for p ∈ R .

REMARK 4.9. We can obtain inequalities similar to the ones in Section §3 and §4
in the case when (Φt)t∈T is a field of positive linear mappings such that

∫
T Φt(1)dμ(t)

= k1 for some positive scalar k . The details are left to the interested reader.

5. Calculating the extreme values

In this section we give the calculation of extreme values of a difference or ratio
function y = h(z) , of a linear function y = kx+ l and a continuous convex or concave
function y = g(x) on a closed interval. The basic facts about the convex and concave
functions can be found e.g. in books [7, 6].

We first examine two cases for the difference.

PROPOSITION 5.1. Let g : [a,b] → R be a continuous function and let h(z) =
kz+ l−g(z) be a difference function. If g is convex, then

min
a�z�b

h(z) = min{h(a) , h(b)} (5.1)
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and

max
a�z�b

h(z) =

⎧⎪⎪⎨
⎪⎪⎩

h(a) if g′−(z) � k for every z ∈ (a,b),

h(z0) if g′−(z0) � k � g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) � k for every z ∈ (a,b).

(5.2)

Additionally, if g is strictly convex and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = max
a�z�b

h(z). (5.3)

Proof. A function y = h(z) is continuously concave because it is the sum of two
continuous concave functions y = kz+ l and y = −g(z) . Since a function h is lower
bounded by the chord line through endpoints Pa(a,h(a)) and Pb(b,h(b)) , then (5.1)
holds. Next, (5.2) follows from the global maximum property for concave functions.
With additional assumptions the equality (5.3) follows from the strict concavity of
h . �

PROPOSITION 5.2. Let g : [a,b] → R be a continuous function and let h(z) =
kz+ l−g(z) be a difference function. If g is concave, then

max
a�z�b

h(z) = max{h(a) , h(b)}

and

min
a�z�b

h(z) =

⎧⎪⎪⎨
⎪⎪⎩

h(a) if g′−(z) � k for every z ∈ (a,b),

h(z0) if g′+(z0) � k � g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) � k for every z ∈ (a,b).

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a�z�b

h(z).

Proof. The proof is essentially the same as the one in Proposition 5.1. �
We now examine four cases for the ratio.

PROPOSITION 5.3. Let g : [a,b] → R be either a strictly positive or strictly neg-
ative continuous function and let h(z) = kz+l

g(z) be a ratio function with strictly positive
numerator. If g is convex, then

min
a�z�b

h(z) = min{h(a) , h(b)} (5.4)

and

max
a�z�b

h(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h(a) if g′−(z) � kg(z)
kz+l for every z ∈ (a,b),

h(z0) if g′−(z0) � kg(z0)
kz0+l � g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) � kg(z)
kz+l for every z ∈ (a,b).

(5.5)
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Additionally, if g is strictly convex and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = max
a�z�b

h(z). (5.6)

Proof. Maximum value: A function y = h(z) is continuous on [a,b] because it is
the ratio of two continuous functions. Then there exists z0 ∈ [a,b] such that h(z0) =
maxa�z�b h(z) . Also, since g is convex, then g′−(z) and g′+)z) exist and g′−(z) � g′+(z)
on (a,b) . Then h′− and h′+ exist and

h′∓(z) =
kg(z)− (k z+ l)g′∓(z)

(g(z))2 .

First we observe the case when h is not monotone on [a,b] . Then there exists
z0 ∈ (a,b) such that h(z0) = maxa�z�b h(z) . So for every z ∈ (a,b) we have

(k z+ l)/g(z) � (k z0 + l)/g(z0) (because h(z0) is maximum),
(k z+ l) g(z0) � (k z+ l)g(z)+ kg(z)(z0− z) (because g > 0 or g < 0),
(k z+ l)μg(z)(z0 − z) � (k z+ l)(g(z0)−g(z)) � kg(z)(z0 − z)

(because g is convex),

g′−(z) � μg(z) � kg(z)
k z+ l

for a < z < z0 and g′+(z) � μg(z) � kg(z)
k z+ l

for b > z > z0 ,

where μg(z) is a subdifferential of the function g in z , i.e. μg(z) ∈ [g′−(z),g′+(z)] . So

h′−(z) � 0 for a < z < z0 and h′+(z) � 0 for b > z > z0 . (5.7)

It follows that for each number z0 at which the function h has the global maximum on
[a,b] the conditione g′−(z0) � kg(z0)

kz0+l � g′+(z0) is valid.
In the case when h is monotonically decreasing on [a,b] , we have maxa�z�b h(z)=

h(a) and h′−(z) � 0 for all z ∈ (a,b) , which imply that g′−(z) � kg(z)
kz+l for every z ∈

(a,b) . In the same way we can observe the case when h is monotonically increasing.
With additional assumptions it follows by using (5.7) that the function h is strictly

increasing on (a,z0] and strictly decreasing on [z0,b) . Hence the equality (5.6) is valid.

Minimum value: There does not exist z0 ∈ (a,b) at which the function h has the
global minimum. Indeed, if h is not a monotone function on [a,b] , it follows by using
(5.7) that h is increasing on (a, z0] and decreasing on [z0,b) , where z0 ∈ (a,b) is the
point at which the function h has the global maximum. It follows that the function h
does not have a global minimum on (a,b) , and consequently (5.4) is valid. �

Similarly to Proposition 5.3 we obtain the following result.

PROPOSITION 5.4. Let g : [a,b]→ R be either a strictly positive or strictly nega-
tive continuous function and let h(z) = kz+l

g(z) be a ratio function with a strictly negative
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numerator. If g is convex, then the equality (5.4) is valid with max instead of min , and
the equality (5.5) is valid with min instead of max .

Additionally, if g is strictly convex and h is not monotone, then the equality (5.6)
is valid with min instead of max .

PROPOSITION 5.5. Let g : [a,b] → R be either a strictly positive or strictly neg-
ative continuous function and let h(z) = kz+l

g(z) be a ratio function with a strictly positive
numerator. If g is concave, then

max
a�z�b

h(z) = max{h(a) , h(b)} . (5.8)

and

min
a�z�b

h(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h(a) if g′−(z) � kg(z)
kz+l for every z ∈ (a,b),

h(z0) if g′+(z0) � kg(z0)
kz0+l � g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) � kg(z)
kz+l for every z ∈ (a,b).

(5.9)

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a�z�b

h(z). (5.10)

Proof. The proof is the same as the one in Proposition 5.3. �
Similarly to the above proposition we obtain the following result.

PROPOSITION 5.6. Let g : [a,b]→ R be either a strictly positive or strictly nega-
tive continuous function and let h(z) = kz+l

g(z) be a ratio function with a strictly negative
numerator. If g is concave, then the equality (5.8) is valid with min instead of max ,
and the equality (5.9) is valid with max instead of min .

Additionally, if g is strictly concave and h is not monotone, then the equality
(5.10) is valid with max instead of min .
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