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THE POSSIBLE SHAPES OF NUMERICAL RANGES

J. WILLIAM HELTON AND I. M. SPITKOVSKY

(Communicated by L. Rodman)

Abstract. Which convex subsets of C are the numerical range W (A) of some matrix A? This
paper gives a precise characterization of these sets. In addition to this we show that for any A
there exists a symmetric B of the same size such that W(A) = W (B) thereby settling an open
question from [2].

Consider Cd , the standard complex inner product space. Let 〈·, ·〉 denote its scalar
product, and ‖·‖ the related norm. The numerical range W (A) of a d×d matrix A is
defined as

W (A) = {〈Ax,x〉 : ‖x‖ = 1}. (1)

It is well known that W (A) is a compact convex subset of C containing the spectrum of
A ; see, e.g., monographs [3, 6] for these and other properties, as well as for the history
of the subject. In this short note we give an answer to the question of exactly which sets
W actually are the numerical range of some matrix A , see Theorem 2. Our second main
result (Theorem 4) shows that arbitrary matrices generate the same class of numerical
ranges as do symmetric matrices of the same size.

This question was originally raised in Kippenhahn’s 1951 article [7] (see also a
more accessible English translation [8]) which gave several non-trivial necessary con-
ditions on the “geometrical shape” of a numerical range.

However, a necessary and sufficient condition remained unknown1. One can be
obtained by the observation that curves critical to the problem were effectively clas-
sified in [4]. Didier Henrion in [5] makes such a connection2 and more, and states
explicitly one side (necessary) of the characterization of numerical range. While all
components of our paper can easily be extracted from [5] by those comfortable with the
theory in [4] , we think our short note will nevertheless be useful to the numerical range
community, at least for expository purposes. In particular, our Theorem 2 explicitly
states a necessary and sufficient condition.
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Our characterization of numerical ranges is in terms of a type of dual convex set.
For any set S ⊂ Rn its polar is defined as

S∗ = {x ∈ R
n : sup

y∈S
〈x,y〉 � 1} (2)

(see, e.g., [1, 9]). The set S∗ is closed, convex, and contains 0. Clearly (see also [9,
Corollary 14.5.1]), 0 is an interior point of S∗ if and only if S is bounded. Directly
from the definition it follows that S∗ = (conv{S,0})∗ , where conv{S,0} stands for the
convex hull of S and 0. If S is closed, convex and contains 0, then

S∗∗ := (S∗)∗ = S (3)

[9, Theorem 14.5]. So, if S is closed, convex but does not necessarily contain 0, then

S∗∗ = (conv{S,0})∗∗ = conv{S,0}. (4)

The next result provides an explicit description of polar sets of numerical ranges.
In some form it goes back many years, at least to §3 [7]. A different point of view (in
a more general setting) is presented in [10, Section 5] (there the term dual is used in
place of polar).

LEMMA 1. Let A ∈ Cd×d . Then

W (A)∗ = {z = ξ + iη : I− ξH−ηK is positive semi-definite}. (5)

Here H and K are hermitian matrices from the representation

A = H + iK. (6)

Proof. Directly from the definitions (1) and (2) it follows that

W (A)∗ = {z : Re(〈Av,v〉z) � 1 for all v ∈ C
d with ‖v‖ = 1}

= {z : 〈(Re(zA)v,v〉) � 1 for all v ∈ C
d with ‖v‖ = 1}

= {z : I−Re(zA) is positive semi-definite}
= {ξ + iη : I− ξH−ηK is positive semi-definite}. �

Common terminology is that (5) is a linear matrix inequality (LMI for short) rep-
resentation for W (A)∗ and the lemma says that if a set W ⊂ C is a numerical range,
then its polar has an LMI representation. The paper [4] describes precisely the sets C
in R2 , hence in C , which have an LMI representation. It characterizes them as “rigidly
convex” a term we set about to define. An algebraic interior C has a defining polyno-
mial q , namely C is the closure of the connected component of C := {z : q(z) > 0}
containing 0. A minimum degree defining polynomial for C is unique (up to a con-
stant), see Lemma 2.1 [4] and its degree we call the degree of C . A convex set C is
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called rigidly convex3 provided it is an algebraic interior and it has a defining polyno-
mial q which satisfies the real zero (RZ) condition, namely,

if μ ∈ C,z ∈ R
2 and q(μ · z) = 0, then μ ∈ R.

Our characterization of numerical ranges is:

THEOREM 2. A subset W of C is the numerical range of some d×d matrix A if
and only if its polar W∗ is rigidly convex of degree less than or equal to d .

Proof. Given A = H + iK , observe that p defined by

p(z) = det(I− ξH−ηK) (7)

is an RZ polynomial, since all eigenvalues of a symmetric matrix are real. Moreover,
W (A)∗ coincides with the closure of the connected component of {z : p(z) > 0} con-
taining zero. Thus the set W (A)∗ is rigidly convex.

However, Theorem 3.1 of [4] says that converse also holds : if V is rigidly convex,
then there exist real symmetric matrices H,K such that

V = {z = ξ + iη : I− ξH−ηK is positive semi-definite}. (8)

Consequently, V = W (B)∗ for B = H + iK . Moreover, we can do this with an H,K
whose dimension is the degree of V . �

The forward side of Theorem2 is in [5] (stated in the language of homogeneous co-
ordinates, and emphasizing that numerical ranges are affine projections of semi-definite
cones). The converse follows easily from ingredients there, though it is not stated ex-
plicitly.

Duality (3) allows us to restate Theorem 2 in the following form.

COROLLARY 3. A subset W of C is the numerical range of some d×d matrix A
if and only if it is a translation of the polar of a rigidly convex set of degree less than or
equal to d .

Proof. For a given d × d matrix A , pick λ ∈ W (A) and let A0 = A− λ I . By
Theorem 2, the polar set V of W (A0) is rigidly convex and has degree not exceeding
d . But 0 ∈W (A0) , so that due to (3) we have W (A0) = V∗ . Consequently, W (A) =
W (A0)+ λ is a translation of V∗

Conversely, if W is a translation of V∗ for some rigidly convex set V of degree not
exceeding d , then W −λ = V∗ for some λ ∈ C . Applying (3) to S = V , we conclude
that (W −λ )∗ =V . By Theorem 2, W −λ =W (A0) for some d×d matrix A0 , so that
W = W (A0 + λ I) . �

3The term rigid convexity of C reflects the property that for C with algebraically nonsingular boundary,
any small enough perturbation of q produces a polynomial q̃ also defining a convex set ˜C , the latter also
being automatically rigidly convex. See [4, §5.3].
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Note that the matrix B constructed in the proof of Theorem 2 is symmetric along
with H,K . This yields an affirmative answer to the question stated in [2] (raised by the
referee of the latter):

THEOREM 4. For every d×d matrix A there exists a symmetric d×d matrix B
such that W (B) =W (A) .

Proof. Note first of all that scalar multiples of the identity are symmetric. So:
(i) there is nothing to prove if A is such a scalar multiple, and (ii) otherwise, we may
consider A−λ I in place of A and therefore suppose without loss of generality that 0
lies in W (A) but is not its corner point.

Let B be as constructed in the proof of Theorem 2. Then W (A)∗ = W (B)∗ , and
therefore W (A)∗∗ = W (B)∗∗ .

Since 0 is in W (A) , the latter coincides with W (A)∗∗ . Consequently, W (B)∗∗ =
W (A) , and therefore 0 is not a corner point of W (B)∗∗ . From (4) with S = W (B) it
follows then that W (B) contains 0. Thus, W (B) = W (B)∗∗ = W (A) . �

Note that for d = 2 the statement of Corollary 4 can be established by a direct
computation, but even for d = 3 an elementary proof evades us.

REMARK 5. If the matrices H,K from representation (6) are linearly dependent
with I , then the set V in (8) is unbounded. Moreover, V stays unbounded under trans-
lations of A . In other words, W (A) in this case has empty interior. This agrees with the
fact that A in this (and only this) case has the form αR+β I for some hermitian R and
α,β ∈ C , and W (A) is therefore a (closed) line segment. In all other cases the interior
of W (A) is non-empty, and W (A−λ I)∗ is bounded for any λ lying in the interior of
W (A) . One such value of λ is λ = tr(A)/d .
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