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PARA–ORTHOGONAL RATIONAL MATRIX–VALUED FUNCTIONS

ON THE UNIT CIRCLE

BERND FRITZSCHE, BERND KIRSTEIN AND ANDREAS LASAROW

(Communicated by D. Alpay)

Abstract. In this paper, we continue previous investigations with the ultimate goal being a
Szegő theory for orthogonal rational matrix functions. We implement here the concept of para-
orthogonal functions on the unit circle in the context of rational matrix functions and present
some fundamental properties of the para-orthogonal functions in question. We discuss, among
other things, the relationship between these functions and orthogonal rational matrix functions
as well as existence criteria and some para-orthogonal functions of particular interest.

1. Introduction

Referencing and building on [30] and [31], the present paper continues towards
a Szegő theory of orthogonal rational matrix functions on the unit circle T . In do-
ing so, we turn to the work of Bultheel, González-Vera, Hendriksen, and Njåstad on
orthogonal rational (complex-valued) functions and use the monograph [10] as guide.
These authors prepared systematically the topic of a rational generalization of the clas-
sical theory of orthogonal polynomials on T which goes back to Szegő (see, e.g., [53]
as well as [38], [47], and [54]). However, first considerations on orthogonal rational
functions on T occur already in the work of Djrbashian (see, e.g., [26]). We will also
refer to the paper [55] of Velázquez, where a spectral approach to orthogonal rational
functions is pointed out. As a further aside, we mention the paper [44] of Njåstad and
Velázquez, where a remarkable formula for orthogonal polynomials due to Khrushchev
(see [41, Theorems 2 and 3]) is extended to the rational case.

We develop here the basic concept of para-orthogonal functions in the context
of rational matrix-valued functions on T . Note that in the case of para-orthogonal
rational (complex-valued) functions, it is possible to obtain quadrature formulas on
T just as in the classical case of polynomials (see, e.g., [8] and concerning explicit
expressions and numerical examples [6]). Para-orthogonal polynomials on T seem to
have been first introduced by Jones, Njåstad, and Thron in [40], even though some
related aspects had already been presented in a more classical context by Geronimus
[37], Grenander and Szegő [38], and also Szegő [53]. (For more information on para-
orthogonal polynomials and para-orthogonal rational functions on T , see also [4], [16],
[18], [19], [22], [39], [42], [47]–[52], [56] and [7]–[14], [23], respectively.)
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Classical Gaussian quadrature formulas are exact on sets of polynomials and opti-
mal in a sense (for a survey, see [35]). The Szegő quadrature formulas are the analogs
for these on the unit circle T . In that context the formulas are exact on sets of Laurent
polynomials. (As an aside, there are slightly modified techniques of computing inte-
grals with respect to Borel measures supported on T via quadrature formulas as well;
see, e.g., [3], [21], and [46].)

Since Laurent polynomials are rational functions with poles at the origin and at
infinity, the step towards a more general situation seems natural, where the poles are
at several other fixed positions. This gave rise to a discussion of orthogonal rational
functions and para-orthogonal rational functions with arbitrary, but fixed poles. In this
case (see, e.g., [8]), the nodes are the zeros of corresponding para-orthogonal rational
functions and the quadrature formula is an integral of the rational Lagrange interpolant
in these nodes, so that the weights can be obtained as the integral of rational Lagrange
basis functions. (In view of some numerical aspects of these rational Szegő quadrature
formulas we refer to [25], where similar to the case of rational quadrature formulas on
an interval studied in [24] and [36] error bounds are given and compared with other
bounds appearing in the literature.)

An alternative approach to a rational kind of Szegő quadrature formulas, by using
the Hermite interpolation, is pointed out in [9]. Based on the recently obtained matricial
representation for orthogonal rational functions on T in [55], a further way to calculate
the nodes and weights to rational quadrature formulas is presented in [5] (see also [15]).
This exposes particularly an interrelation between para-orthogonal rational functions on
T and eigenvalue problems for special matrices.

As another extension of the classical considerations on para-orthogonal polynomi-
als on T and related quadrature formulas, one can already find this topic with respect
to matrix polynomials in the literature (see, e.g., [20], [50], and [51]). In particular,
we present in this paper some results which can be regarded also as a generalization of
well-known facts in the theory of matrix polynomials to the rational case.

The considerations in the paper at hand are also motivated by those in [32] dealing
with particular solutions of the matricial Carathéodory problem in the nondegenerate
case that are extremal in several directions (see also [33], [34], and [43]). In particu-
lar, [32] is concerned with an extremal problem using an approach based on a general
result due to Arov (see [1]). More specifically, this problem is that of determining a
matrix-valued Carathéodory function such that its Riesz–Herglotz measure produces
the maximal value of the mass F({u}) for some fixed point u ∈ T if F varies over
the Riesz–Herglotz measures of all solutions of the problem. In the classical case for
complex-valued functions, this problem can be handled in analyzing para-orthogonal
polynomials on T . Having in mind discussions regarding similar questions (as, for in-
stance, presented in [32, Section 9]) concerning a moment problem for rational matrix
functions, we will point out some fundamental properties of para-orthogonal functions
on T in the context of rational matrix-valued functions. These will later be useful.

The approach can be outlined as follows. At first, in Section 2, we review symbols
and notation drawn from previous papers on orthogonal rational matrix functions.
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We present basic properties of the para-orthogonal functions in question in Sec-
tion 3. In particular, we discuss some connections between para-orthogonal systems
and orthonormal systems (or, alternatively, reproducing kernels) of rational matrix func-
tions. Theorem 3.5 (or Corollary 3.8) shows that the relationship in the matrix case is
quite similar to the well-known scalar case of rational (complex-valued) functions.

In Sections 4 and 5, we focus on the fundamental existence problem for para-
orthogonal systems of rational matrix functions. We present a thorough investigation
into the existence of these para-orthogonal functions in terms of the underlying nonne-
gative Hermitian matrix-valued Borel measure on T (which is used to define the as-
sociated left and right matrix-valued inner products). We will see that dealing with
the existence question for para-orthogonal rational matrix functions is somewhat more
complicated than in the scalar case. Via Theorem 4.4, we obtain a sufficient condition
for existence. Though this is, in general, not necessarily fulfilled. Thus, the condition
does not completely agree with the scalar case for rational functions (where this is suf-
ficient and necessary; cf. [14, Theorem 3.5]). We do find, however, that under certain
stronger requirements, the situation does closely correspond to the scalar case (see, e.g.,
Theorems 4.6 and 5.5). Along the way, we verify some auxiliary results on reproducing
kernels of rational matrix functions in Section 4. In Section 5, we present some results
on molecular matrix-valued Borel measures on T .

Finally, in Section 6, we consider particular para-orthogonal systems of rational
matrix functions. These para-orthogonal systems can be used to obtain rational Szegő
quadrature formulas in the scalar case of complex-valued functions. The essential re-
sult, in the scalar case, is that the zeros of these para-orthogonal rational functions are
simple and that all of them are located on T . In Theorem 6.5, we present a matrix
version of this result. In particular, this can be regarded as a starting point for obtaining
an extension of the Gaussian quadrature formula presented in [50, Theorem 3.3], where
instead of matricial Laurent polynomials then (more general) rational matrix functions
appear. We intend, however, to return to this topic at a later time.

2. Preliminaries

For convenience, we now review some notation introduced in [30] and [31].
Let N0 and N be the set of all nonnegative integers and the set of all positive

integers, respectively. For each k ∈ N0 and each τ ∈ N0 or τ = ∞ , let Nk,τ be the set
of all integers n for which k � n � τ . Furthermore, let D := {w ∈ C : |w| < 1} and
T := {z ∈ C : |z| = 1} be the unit disk and the unit circle in the complex plane C . We
will use the notation C0 for the extended complex plane C∪{∞} .

Throughout this paper, p and q will be positive integers, unless otherwise indi-
cated. If X is a nonempty set, then Xp×q stands for the set of all p×q matrices with
elements in X . If A ∈ Cp×q , then A∗ is the adjoint matrix of A . The null space of a
matrix A will be denoted by N (A) and R(A) will be used for the range of A . The
zero matrix in Cp×q will be denoted by 0p×q . (In cases, where there is no chance for
confusion, the indices might be omitted.) It will be used Iq to denote the identity matrix
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in Cq×q . For A ∈ Cq×q , we use detA to denote the determinant of A .
Let τ ∈ N or τ = ∞ . Let (α j)τ

j=1 be a sequence, where α j ∈ C \T , and let
n ∈ N0,τ . If n = 0, then let πα ,0 be the constant function on C0 with value 1. Let
Rα ,0 denote the set of all constant complex-valued functions defined on C0 and let
Pα ,0 := /0 . If n ∈ N , then let πα ,n : C → C be the polynomial defined by

πα ,n(u) :=
n

∏
j=1

(1−α ju) (2.1)

and let Rα ,n denote the set of all rational functions f that admit a representation

f =
1

πα ,n
P

with some (complex-valued) polynomial P of degree not greater than n . Further, let

Pα ,n :=
n⋃

j=1

{
1

α j

}
(using 1

0
:= ∞). We also use O to denote the constant function on C0 with value 0p×q

(for any choice of p,q ∈ N), where the size p×q will be clear from the context.
Let BT and B be the σ -algebra of all Borel subsets of T and C , respectively.

Furthermore, let F ∈M q
�(T,BT) , where M q

�(T,BT) stands for the set of all nonnega-
tive Hermitian q×q measures defined on BT . As in [28]–[31], the right Cp×p -module
Rq×p

α ,n (resp., left Cp×p -module R p×q
α ,n ) is equipped with a complex p× p matrix inner

product which is given by(
X ,Y

)
F,r :=

∫
T

(
X(z)

)∗
F(dz)Y (z)

(
resp.,

(
X ,Y

)
F,l :=

∫
T

X(z)F(dz)
(
Y (z)

)∗)
for all X ,Y ∈Rq×p

α ,n (resp., X ,Y ∈R p×q
α ,n ). For details on integration theory with respect

to nonnegative Hermitian matrix measures, we refer to Rosenberg [45]. Note that(
X ,Y

)
F,r =

(
Y,X

)∗
F,r

(
resp.,

(
X ,Y

)
F,l =

(
X ,Y

)∗
F,l

)
(2.2)

for all X ,Y ∈ Rq×p
α ,n (resp., X ,Y ∈ R p×q

α ,n ). We will pay special attention to the case in
which some nondegeneracy condition is fulfilled.

Recall that a nonnegative Hermitian q×q measure F on BT is called nondegen-
erate of order n if the q×q block Toeplitz matrix

T(F)
n :=

(
c(F)

j−k

)n
j,k=0

is nonsingular, where
c(F)
� :=

∫
T

z−�F(dz)

for some integer � . We will write M q,n
� (T,BT) for the subset of M q

�(T,BT) consist-
ing of all nondegenerate measures of order n . Furthermore, we set

M q,∞
� (T,BT) :=

∞⋂
m=0

M q,m
� (T,BT).
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Let F ∈ M q,n
� (T,BT) . Because of [29, Theorem 5.8] and [28, Theorem 10] one can

find that (Rq×q
α ,n ,(·, ·)F,r) forms a right Cq×q -Hilbert module with reproducing kernel

K(α ,F)
n;r and that (Rq×q

α ,n ,(·, ·)F,l) forms a left Cq×q -Hilbert module with reproducing

kernel K(α ,F)
n;l . In fact (cf. [28, Remark 12]), if X0,X1, . . . ,Xn is a basis for the right

Cq×q -module Rq×q
α ,n (resp., if Y0,Y1, . . . ,Yn is a basis for the left Cq×q -module Rq×q

α ,n ),

then the reproducing kernel K(α ,F)
n;r (resp., K(α ,F)

n;l ) can be represented as follows

K(α ,F)
n;r (v,w) = Ξn(v)

((∫
T

(
Xj(z)

)∗
F(dz)Xk(z)

)n

j,k=0

)−1(
Ξn(w)

)∗
(2.3)(

resp., K(α ,F)
n;l (w,v) =

(
ϒn(w)

)∗((∫
T

Xj(z)F(dz)
(
Xk(z)

)∗)n

j,k=0

)−1

ϒn(v)
)

for all v,w ∈ C0 \Pα ,n , where

Ξn :=
(
X0,X1, . . . ,Xn

) (
resp., ϒn :=

⎛⎜⎜⎝
Y0

Y1
...

Yn

⎞⎟⎟⎠). (2.4)

Furthermore, for each w ∈ C0 \Pα ,n , let the matrix function A(α ,F)
n,w : C0 \Pα ,n → Cq×q

(resp., C(α ,F)
n,w : C0 \Pα ,n → Cq×q ) be defined by

A(α ,F)
n,w (v) := K(α ,F)

n;r (v,w)
(
resp., C(α ,F)

n,w (v) := K(α ,F)
n;l (w,v)

)
. (2.5)

Having regard to [30], we focus on the situation in which the elements of the
underlying sequence (α j)n

j=1 are, in a sense, well-positioned concerning the unit circle
T . We will denote by T1 the set of all sequences (α j)∞

j=1 of complex numbers which
satisfy α jαk �= 1 for all j,k ∈N . Clearly, if (α j)∞

j=1 ∈T1 , then α j �∈T for each j ∈N .
Let (α j)∞

j=1 ∈ T1 . For each j ∈ N , let

η j :=

⎧⎪⎨⎪⎩
−1 if α j = 0

α j

|α j| if α j �= 0

and let bα j : C0 \
{

1
α j

}→ C be given by

bα j(u) :=

⎧⎪⎪⎨⎪⎪⎩
η j

α j −u

1−α ju
if u ∈ C\{ 1

α j

}
1

|α j| if u = ∞ .

(2.6)
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If B(q)
α ,0 stands for the constant function on C0 with value Iq and if, for each k ∈ N1,n

B(q)
α ,k :=

( k

∏
j=1

bα j

)
Iq,

then the system B(q)
α ,0,B

(q)
α ,1, . . . ,B

(q)
α ,n is a basis for the right Cq×q -module Rq×q

α ,n and a ba-

sis for the left Cq×q -module Rq×q
α ,n (cf. [29, Remark 2.4]). More universal (cf. [29,

Remark 2.3]), if X ∈ R p×q
α ,n , then there are unique matrices A0,A1, . . . ,An belonging

to C
p×q such that

X =
n

∑
j=0

A jB
(q)
α , j.

Thereby, the reciprocal rational (matrix-valued ) function X [α ,n] of X with respect to
(α j)∞

j=1 and n is given by

X [α ,n] :=
n

∑
j=0

B(q)
β , jA

∗
n− j, (2.7)

where (β j)∞
j=1 is the sequence defined by βk := αn+1−k for each k ∈N1,n and β j := α j

otherwise (cf. [30, Section 2]). If α j = 0 for each j ∈ N1,n , a function X belonging
to R p×q

α ,n is a p× q matrix polynomial of degree not greater than n and X [α ,n] is just
the reciprocal matrix polynomial X̃ [n] of X with respect to T and formal degree n (as
used, e.g., in [27]). In general (see [30, Remark 2.4]), we have X [α ,n] ∈ Rq×p

α ,n and(
X [α ,n])[α ,n] = X . (2.8)

Furthermore (see [30, Remark 4.2]), for all X ,Y ∈ R p×q
α ,n , it follows that(

X [α ,n],Y [α ,n])
F,r =

(
X ,Y

)
F,l. (2.9)

Finally, we revisit the concept of orthonormal systems introduced in [30]. Here
and in the following, δ jk stands for the Kronecker delta, i.e. δ jk := 1 if j = k and
δ jk := 0 if j �= k .

DEFINITION 2.1. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N0 or τ = ∞ . Furthermore, let

F ∈ M q
�(T,BT) . A sequence (Xk)τ

k=0 (resp., (Yk)τ
k=0) of matrix functions is called a

left (resp., right ) orthonormal system corresponding to (α j)∞
j=1 and F if:

(I) For each k ∈ N0,τ , the function Xk (resp., Yk) belongs to Rq×q
α ,k .

(II) For all j,k ∈ N0,τ , the equality
(
Xj,Xk

)
F,l = δ jkIq (resp.,

(
Yj,Yk

)
F,r = δ jkIq)

holds.

If τ = 0 or if α j = 0 for all j ∈ N1,τ , then a left (resp., right) orthonormal sys-
tem (Xk)τ

k=0 corresponding to (α j)∞
j=1 and some F ∈ M q

�(T,BT) simply consists of
complex q× q matrix polynomials. In that particular situation we will also refer to
(Xk)τ

k=0 as left (resp., right) orthonormal matrix polynomial system corresponding to
F (cf. [27, Section 3.6]).
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3. Some basics on para-orthogonal rational matrix functions

In this section, we begin to implement the concept of para-orthogonal functions
in the context of rational matrix functions and will point out some fundamental prop-
erties of the para-orthogonal functions in question. In particular, we will study the re-
lationship between para-orthogonal and orthonormal systems of rational matrix-valued
functions on the unit circle T . We start by presenting the central notion of this paper.

DEFINITION 3.1. Let (α j)∞
j=1 ∈T1 and let τ ∈N or τ = ∞ . Let F ∈M q

�(T,BT) .
A sequence (Pj)τ

j=1 (resp., (Rj)τ
j=1) of matrix functions is called a left (resp., right)

para-orthogonal system corresponding to (α j)∞
j=1 and F if, for each j ∈ N1,τ , the

following holds:

(I) The function Pj (resp., Rj) belongs to Rq×q
α , j .

(II) The matrices
(
Pj,B

(q)
α ,0

)
F,l and

(
Pj,B

(q)
α , j

)
F,l (resp.,

(
B(q)

α ,0,Rj
)
F,r and

(
B(q)

α , j,Rj
)
F,r)

are not equal to 0q×q .

(III) If Z ∈ Rq×q
α , j such that the identities Z(α j) = 0q×q and Z[α , j](α j) = 0q×q are

fulfilled, then
(
Pj,Z

)
F,l = 0q×q (resp.,

(
Z,Rj

)
F,r = 0q×q) .

In the particular case that, for each j ∈ N1,τ , the conditions (I), (III), and

(II’) The matrices
(
Pj,B

(q)
α ,0

)
F,l and

(
Pj,B

(q)
α , j

)
F,l (resp.,

(
B(q)

α ,0,Rj
)
F,r and

(
B(q)

α , j,Rj
)
F,r)

are nonsingular.

are satisfied, we call (Pj)τ
j=1 (resp., (Rj)τ

j=1) a left (resp., right ) strictly para-ortho-
gonal system corresponding to (α j)∞

j=1 and F .

Similar to the case for orthonormal systems (i.e. relating to Definition 2.1), if
α j = 0 for all j ∈ N1,τ , then we will also refer to a (Pj)τ

j=1 (resp., (Rj)τ
j=1) as left

(resp., right ) para-orthogonalmatrix polynomial system corresponding to F when the
conditions (I), (II), and (III) hold and as a left (resp., right ) strictly para-orthogonal
matrix polynomial system corresponding to F when (I), (II’), and (III) are satisfied.

The terminology “para-orthogonal system” introduced in Definition 3.1 is an adap-
tation of the scalar case q = 1. Such rational (complex-valued) functions are studied,
e.g., in [8] (see also [7, Section 15], [10, Chapter 5], and [40]). The phrase “para-
orthogonal” is chosen because the orthogonality properties for the relevant sequences
fall short of providing proper orthogonality (cf. Definition 2.1). Comparing (III) of
Definition 3.1 and the corresponding part in the definition given in [8], we note that
[30, Equation (2.10)] implies, by setting

R̂ p×q
α , j :=

{
Z ∈ R p×q

α , j : Z(α j) = 0p×q and Z[α , j](α j) = 0q×p
}

(and we will use the notation R̂ p×q
α , j throughout this paper), that

R̂ p×q
α , j =

{
Z ∈ R p×q

α , j−1 : Z(α j) = 0p×q
}

(3.1)
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for each j ∈N1,τ . Furthermore, the para-orthogonal systems of rational functions in [8]
include the index j = 0 (for which some constant functions result). For the purposes in
the current context, this would prove to be unwieldy, because it would be necessary to
repeatedly differentiate between cases (trivial, but mainly tedious). Consequently, the
systems here exclude the index j = 0 and begin with j = 1.

We now present some elementary properties of para-orthogonal systems of rational
matrix functions. These properties are closely related to properties of orthogonal sys-
tems of rational matrix functions on T (cf. [30, Section 3]). Unless otherwise indicated,
let (α j)∞

j=1 ∈ T1 and let τ ∈ N or τ = ∞ as well as suppose that F ∈ M q
�(T,BT) .

REMARK 3.2. Let (Pj)τ
j=1 be a sequence of complex q×q matrix functions.

(a) Let (C j)τ
j=1 be a sequence of nonsingular complex q×q matrices. Then (Pj)τ

j=1
is a left (resp., right) para-orthogonal system corresponding to (α j)∞

j=1 and F if
and only if (C jPj)τ

j=1 is a left (resp., (PjC j)τ
j=1 is a right) para-orthogonal

system corresponding to (α j)∞
j=1 and F . (The special case for strictly para-

orthogonal systems is analogous.)

(b) (Pj)τ
j=1 is a left (resp., right) para-orthogonal system corresponding to (α j)∞

j=1

and F if and only if (PT
j )τ

j=1 is a right (resp., left) para-orthogonal system

corresponding to (α j)∞
j=1 and FT . (The special case for strictly para-orthogonal

systems is analogous.)

(c) Suppose that Pj ∈Rq×q
α , j for each j ∈N1,τ . Because of (2.2), (2.8), (2.9), and [30,

Remark 2.9] it follows that (Pj)τ
j=1 is a left (resp., right) para-orthogonal system

corresponding to (α j)∞
j=1 and F if and only if (P[α , j]

j )τ
j=1 is a right (resp., left)

para-orthogonal system corresponding to (α j)∞
j=1 and F . (The special case for

strictly para-orthogonal systems is analogous.)

REMARK 3.3. Let A ∈ Cq×q be nonsingular. Then FA : BT → Cq×q given by
FA(B) := A∗F(B)A for all B ∈ BT belongs to M q

�(T,BT) , since F ∈ M q
�(T,BT) .

Furthermore, a sequence (Pj)τ
j=1 (resp., (Rj)τ

j=1) of matrix functions is a left (resp.,
right) para-orthogonal system corresponding to (α j)∞

j=1 and F if and only if (PjA−∗)τ
j=1

is a left (resp., (A−1Rj)τ
j=1 is a right) para-orthogonal system corresponding to (α j)∞

j=1
and FA . (The case for strictly para-orthogonal systems is analogous.)

In the following, we study the relationship between the concepts of Definitions 2.1
and 3.1. We will be using the notation [(Xk)τ

k=0,(Yk)τ
k=0] for a pair of orthonormal

systems corresponding to (α j)∞
j=1 and F , where (Xk)τ

k=0 is a left (resp., (Yk)τ
k=0 is

a right) orthonormal system corresponding to (α j)∞
j=1 and F . If τ = 0 or if α j = 0

for all j ∈ N1,τ , then we will also refer to [(Xk)τ
k=0,(Yk)τ

k=0] as a pair of orthonormal
matrix polynomial systems corresponding to F (cf. [27, Section 3.6]).

LEMMA 3.4. Suppose that [(Xk)τ
k=0,(Yk)τ

k=0] is a pair of orthonormal systems
corresponding to (α j)∞

j=1 and F . Then:
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(a) For each j ∈ N1,τ , the matrix
(
Xj,B

(q)
α , j

)
F,l (resp.,

(
B(q)

α , j,Yj
)
F,r) is nonsingular

and, if Z ∈ R̂q×q
α , j , then

(
Xj,Z

)
F,l = 0q×q (resp.,

(
Z,Yj

)
F,r = 0q×q) . But, it holds

(
Xj,B

(q)
α ,0

)
F,l = 0q×q

(
resp.,

(
B(q)

α ,0,Yj
)
F,r = 0q×q

)
(3.2)

for each j ∈ N1,τ . In particular, (Xj)τ
j=1 is not a left (resp., (Yj)τ

j=1 is not a
right ) para-orthogonal system corresponding to (α j)∞

j=1 and F .

(b) For all j ∈ N1,τ , the matrix
(
Y [α , j]

j ,B(q)
α ,0

)
F,l (resp.,

(
B(q)

α ,0,X
[α , j]
j

)
F,r) is nonsin-

gular and
(
Y [α , j]

j ,Z
)
F,l = 0q×q (resp.,

(
Z,X [α , j]

j

)
F,r = 0q×q) when Z ∈ R̂q×q

α , j .
But, it holds(

Y [α , j]
j ,B(q)

α , j

)
F,l = 0q×q

(
resp.,

(
B(q)

α , j,X
[α , j]
j

)
F,r = 0q×q

)
for each j ∈ N1,τ . In particular, (Y [α , j]

j )τ
j=1 is not a left (resp., (X [α , j]

j )τ
j=1 is

not a right ) para-orthogonal system corresponding to (α j)∞
j=1 and F .

Proof. (a) Taking (2.2) and (3.1) into account, we see that the first part (up to and
including (3.2)) of (a) is a consequence of [30, Lemma 3.6]. Because of (3.2) and (II)
in Definition 3.1 it follows that (Xj)τ

j=1 is not a left (resp., (Yj)τ
j=1 is not a right) para-

orthogonal system corresponding to (α j)∞
j=1 and F .

(b) By part (c) of Remark 3.2 and part (a) we see that (X [α , j]
j )τ

j=1 (resp., (Y [α , j]
j )τ

j=1)
cannot be a right (resp., left) para-orthogonal system corresponding to (α j)∞

j=1 and
F . The rest follows from part (a) along with (2.2), (2.8), and (2.9). �

Even though Lemma 3.4 suggests the opposite, there is a relationship between
para-orthogonal and orthogonal systems of rational matrix functions. Similar to the
scalar case q = 1 (cf. [8, Theorem 2]), this relationship can be described as follows.

THEOREM 3.5. Let (α j)∞
j=1 ∈T1 and let τ ∈ N or τ = ∞ . Let F ∈M q

�(T,BT) .
Furthermore, let [(Xk)τ

k=0,(Yk)τ
k=0] be a pair of orthonormal systems corresponding

to (α j)∞
j=1 and F and let (Pj)τ

j=1 (resp., (Rj)τ
j=1) be a sequence of complex q× q

matrix-valued functions. Then the following statements are equivalent:

(i) (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) para-orthogonal system corres-
ponding to (α j)∞

j=1 and F .

(ii) For each j ∈ N1,τ , there are complex q×q matrices A j and B j , both not equal
to the zero matrix, such that Pj (resp., R j) admits the representation

Pj = A jXj +B jY
[α , j]
j

(
resp., Rj = YjA j +X [α , j]

j B j

)
.
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If (i) holds, then A j and B j in (ii) are uniquely determined for j ∈ N1,τ , where

A j =
(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j) and B j =

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗(

resp., A j =Y [α , j]
j (α j)

(
B(q)

α , j,Rj
)
F,r and B j =

(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r

)
.

In particular, (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) strictly para-orthogonal sys-
tem corresponding to (α j)∞

j=1 and F if and only if, for j ∈ N1,τ , there are nonsingular
matrices A j and B j such that Pj (resp., R j) admits the representation in (ii).

Proof. We will only show the assertion for the sequence (Pj)τ
j=1 . A similar argu-

ment can be used for the remaining case. We first suppose that, for each j ∈ N1,τ , there
exist complex q×q matrices A j and B j , both not equal to the zero matrix, such that

Pj = A jXj +B jY
[α , j]
j (3.3)

holds. Let j ∈ N1,τ . Because of (3.3), Definition 2.1, and (2.8) we have

Pj ∈ Rq×q
α , j .

Furthermore, (3.3) and part (a) of Lemma 3.4 imply that(
Pj,B

(q)
α ,0

)
F,l = A j

(
Xj,B

(q)
α ,0

)
F,l +B j

(
Y [α , j]

j ,B(q)
α ,0

)
F,l = B j

(
Y [α , j]

j ,B(q)
α ,0

)
F,l. (3.4)

Combining (3.3) with part (b) of Lemma 3.4 we obtain(
Pj,B

(q)
α , j

)
F,l = A j

(
Xj,B

(q)
α , j

)
F,l +B j

(
Y [α , j]

j ,B(q)
α , j

)
F,l = A j

(
Xj,B

(q)
α , j

)
F,l. (3.5)

Since B j �= 0q×q and since part (b) of Lemma 3.4 yields that
(
Y [α , j]

j ,B(q)
α ,0

)
F,l is a non-

singular matrix, it follows from (3.4) that the relation(
Pj,B

(q)
α ,0

)
F,l �= 0q×q

holds. Similarly, A j �= 0q×q along with part (a) of Lemma 3.4 and (3.5) leads to(
Pj,B

(q)
α , j

)
F,l �= 0q×q.

If Z ∈ R̂q×q
α , j , then by (3.3) and Lemma 3.4 we get

(
Pj,Z

)
F,l = A j

(
Xj,Z

)
F,l +B j

(
Y [α , j]

j ,Z
)
F,l = 0q×q.

Therefore, we have shown that (Pj)τ
j=1 is a left para-orthogonal system corresponding

to (α j)∞
j=1 and F . Conversely, we are now starting from a left para-orthogonal system

(Pj)τ
j=1 corresponding to (α j)∞

j=1 and F . We will prove that, for each j ∈ N1,τ , there
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exist complex q× q matrices A j and B j , both not equal to the zero matrix, such that
(3.3) holds. Let j ∈ N1,τ . Recalling part (b) of Lemma 3.4, we set

B j :=
(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j ,B(q)
α ,0

)−1
F,l , A j :=

(
Pj,Xj

)
F,l −B j

(
Y [α , j]

j ,Xj
)
F,l,

and
Hj := Pj −A jXj −B jY

[α , j]
j . (3.6)

Obviously, A j and B j belong to Cq×q , where B j �= 0q×q . Because of (3.6) and (2.7)
the function Hj belongs to Rq×q

α , j . Thus, [30, Remark 3.4] implies that Hj admits a
representation

Hj =
j

∑
k=0

CkXk, (3.7)

where Ck ∈ Cq×q for each k ∈ N0, j . We will verify that Hj is the constant function on
C0 with value 0q×q , i.e. that Hj = O . Since

(
Xj,Xj

)
F,l = Iq , from (3.6) we see that(

Hj,Xj
)
F,l =

(
Pj,Xj

)
F,l −A j −B j

(
Y [α , j]

j ,Xj
)
F,l = 0q×q.

Hence, in view of (3.7) and the orthogonality of (Xk)τ
k=0 we obtain

C j = C j
(
Xj,Xj

)
F,l =

j

∑
k=0

Ck
(
Xk,Xj

)
F,l =

(
Hj,Xj

)
F,l = 0q×q. (3.8)

Furthermore, from part (a) of Lemma 3.4 we know that the identity
(
Xs,B

(q)
α ,0

)
F,l = 0q×q

holds for each s ∈ N1,τ . Consequently, because of (3.6) we have(
Hj,B

(q)
α ,0

)
F,l =

(
Pj,B

(q)
α ,0

)
F,l −B j

(
Y [α , j]

j ,B(q)
α ,0

)
F,l = 0q×q.

Using again that
(
Xs,B

(q)
α ,0

)
F,l = 0q×q for each s ∈ N1,τ and (3.7), this leads to

C0
(
X0,B

(q)
α ,0

)
F,l =

j

∑
k=0

Ck
(
Xk,B

(q)
α ,0

)
F,l =

(
Hj,B

(q)
α ,0

)
F,l = 0q×q.

Since the matrix
(
X0,B

(q)
α ,0

)
F,l is nonsingular (see, e.g., [30, Lemma 3.6]), we obtain

C0 = 0q×q. (3.9)

In particular, for the case j = 1, due to (3.7)–(3.9) we get that Hj = O . Let j � 2.
From (3.7)–(3.9) we find

Hj =
j−1

∑
k=1

CkXk. (3.10)

Let s ∈ N1, j−1 and let ps, j : C → C denote the polynomial given by

ps, j(u) =

⎧⎪⎨⎪⎩
(α j −u) if s = 1

(α j −u)
s−1

∏
k=1

(αk −u) if s > 1 .
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Let πα ,s be defined as in (2.1) and let

Us, j :=
ps, j

πα ,s
Iq.

It is immediately apparent that

Us, j ∈ Rq×q
α ,s ⊆ Rq×q

α , j−1 and Us, j(α j) = 0q×q.

From [30, Proposition 2.13] one can infer that there is some η ∈ T such that

U [α ,s]
s, j (v) = η

1−α jv

1−αsv
Iq

for all v ∈ C\Pα ,s . Thus, the matrix U [α ,s]
s, j (αs) is nonsingular. From [30, Lemma 3.6],

(2.2), (3.10), (3.6), (III) in Definition 3.1, (3.1), and Lemma 3.4 we obtain

C1
(
X1,U1, j

)
F,l =

j−1

∑
k=1

Ck
(
Xk,U1, j

)
F,l =

(
Hj,U1, j

)
F,l

=
(
Pj,U1, j

)
F,l −A j

(
Xj,U1, j

)
F,l −B j

(
Y [α , j]

j ,U1, j
)
F,l = 0q×q.

Accordingly, since [30, Lemma 3.6 and Equation (2.10)] and detU [α ,1]
1, j (α1) �= 0 imply

that the matrix
(
X1,U1, j

)
F,l is nonsingular, it follows that C1 = 0q×q . Iterating this

argument we obtain Cs = 0q×q for each s ∈ N1, j−1 . Therefore, (3.10) implies that
Hj = O in the case j � 2 as well. Again, suppose that j ∈ N1,τ . Since Hj = O , the
definition of Hj in (3.6) leads to (3.3). As explained above, (3.3) results in (3.4) and
(3.5). In particular, from (3.4), (3.5), and Lemma 3.4 one can see that A j and B j are
uniquely determined by (3.3). Furthermore, by using (3.4) and (3.5) along with [30,
Equation (2.10), Remark 2.9, and Lemma 3.6], (2.2), (2.8), and (2.9) it follows that

A j =
(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j) and B j =

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗

. �

Note that, for each j ∈ N1,τ , the complex q×q matrices A j and B j in (ii) of The-
orem 3.5 depend on the choice of the pair of orthonormal systems [(Xk)τ

k=0,(Yk)τ
k=0] .

COROLLARY 3.6. Let (α j)∞
j=1 ∈T1 and let τ ∈N or τ = ∞ . Let F ∈M q

�(T,BT) .
Furthermore, let [(Xk)τ

k=0,(Yk)τ
k=0] be a pair of orthonormal systems corresponding to

(α j)∞
j=1 and F . Suppose that (Pj)τ

j=1 is a left (resp., let (Rj)τ
j=1 is a right ) para-

orthogonal system corresponding to (α j)∞
j=1 and F . Let j ∈ N1,τ . There are complex

q×q matrices Ã j and B̃ j (resp., D̃ j and Ẽ j) such that, for each v ∈ C\Pα , j ,

Pj(v) =
1−α j−1v

1−α jv

(
bα j−1(v)Ã jXj−1(v)+ B̃ jY

[α , j−1]
j−1 (v)

)
(3.11)(

resp., Rj(v) =
1−α j−1v

1−α jv

(
bα j−1(v)Yj−1(v)D̃ j +X [α , j−1]

j−1 (v)Ẽ j
))

holds, where Ã j and B̃ j (resp., D̃ j and Ẽ j) are uniquely determined.
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Proof. By using [30, Corollary 4.4, Corollary 4.7, and Remark 6.2] and the recur-
rence relations of [31, Propositions 2.5 and 2.6], Theorem 3.5 leads to (3.11). That the
complex q× q matrices Ã j and B̃ j (resp., D̃ j and Ẽ j) in (3.11) are uniquely deter-
mined follows from bα j−1(α j−1) = 0 along with [30, Remark 6.2, Theorem 6.7, and
Theorem 6.9]. �

For each j ∈ N1,τ , based on Theorem 3.5 and [31, Proposition 3.14] it is possible
to obtain explicit expressions for the matrices Ã j and B̃ j (resp., D̃ j and Ẽ j) in (3.11).
In particular, it follows that one of these matrices could be the zero matrix.

Because of Theorem 3.5 there is also a relationship between para-orthogonal sys-
tems of rational matrix functions and the matrix functions defined by (2.3)–(2.5). The
following corollaries serve to further clarify this fact.

COROLLARY 3.7. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Suppose that F ∈

M q,τ
� (T,BT) . Furthermore, let (Pj)τ

j=1 (resp., (Rj)τ
j=1) be a sequence of complex

q×q matrix-valued functions. Then the following statements are equivalent:

(i) (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) para-orthogonal system corres-
ponding to (α j)∞

j=1 and F .

(ii) For each j ∈ N1,τ , there are complex q×q matrices Ă j and B̆ j , both not equal
to the zero matrix, such that Pj (resp., R j) admits the representation

Pj = Ă j
(
A(α ,F)

j,α j

)[α , j] + B̆ jC
(α ,F)
j,α j

(
resp., Rj =

(
C(α ,F)

j,α j

)[α , j]Ă j +A(α ,F)
j,α j

B̆ j

)
.

If (i) holds, then Ă j and B̆ j in (ii) are uniquely determined for j ∈ N1,τ , where

Ă j =
(
Pj,B

(q)
α , j

)
F,l and B̆ j =

(
Pj,B

(q)
α ,0

)
F,l(

resp., Ă j =
(
B(q)

α , j,Rj
)
F,r and B̆ j =

(
B(q)

α ,0,Rj
)
F,r

)
.

In particular, (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) strictly para-orthogonal sys-
tem corresponding to (α j)∞

j=1 and F if and only if, for j ∈ N1,τ , there are nonsingular
matrices Ă j and B̆ j such that Pj (resp., R j) admits the representation in (ii).

Proof. Use Theorem 3.5 along with [30, Corollary 4.4 and Theorem 4.5]. �

COROLLARY 3.8. Let (α j)∞
j=1 ∈T1 and let τ ∈N or τ = ∞ . Let F ∈M q,τ

� (T,BT)
and let [(Xk)τ

k=0,(Yk)τ
k=0] be a pair of orthonormal systems corresponding to (α j)∞

j=1
and F . Furthermore, for each j ∈ N1,τ , let z j ∈ C0 \Pα , j and let

Pj :=
(
1−bα j(z j)bα j

)
C(α ,F)

j−1,z j

(
resp., Rj :=

(
1−bα jbα j(z j)

)
A(α ,F)

j−1,z j

)
. (3.12)

(a) The following statements are equivalent:
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(i) (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) para-orthogonal system corres-
ponding to (α j)∞

j=1 and F .

(ii) For each j ∈ N1,τ , one of the values Xj(z j) and Yj(z j) as well as one of

the values X [α , j]
j (z j) and Y [α , j]

j (z j) is not equal to the zero matrix.

(iii) For each j ∈ N1,τ , the values Xj(z j) , Yj(z j) , X [α , j]
j (z j) , and Y [α , j]

j (z j) are
not equal to the zero matrix.

(b) The following statements are equivalent:

(iv) (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) strictly para-orthogonal system
corresponding to (α j)∞

j=1 and F .

(v) For each j ∈ N1,τ , one of the matrices Xj(z j) and Yj(z j) as well as one of

the matrices X [α , j]
j (z j) and Y [α , j]

j (z j) is nonsingular.

(vi) For each j ∈ N1,τ , the values Xj(z j) , Yj(z j) , X [α , j]
j (z j) , and Y [α , j]

j (z j) are
nonsingular matrices.

(c) If z j ∈ T for each j ∈ N1,τ , then (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right )
strictly para-orthogonal system corresponding to (α j)∞

j=1 and F .

Proof. Let j ∈ N1,τ . Because of [30, Remark 6.2, Lemma 6.5, Theorem 6.7, and
Theorem 6.10] one can realize that (ii) and (iii) (resp., (v) and (vi)) are equivalent. By
using this along with the fact that from [30, Lemma 5.1 and Theorem 5.4] we obtain

(
1−bα j(z j)bα j

)
C(α ,F)

j−1,z j
=
(
1−bα j(z j)bα j

) j−1

∑
k=0

(
Xk(z j)

)∗
Xk

=
(
Y [α , j]

j (z j)
)∗

Y [α , j]
j − (Xj(z j)

)∗
Xj(

resp.,
(
1−bα jbα j(z j)

)
A(α ,F)

j−1,z j
= X [α , j]

j

(
X [α , j]

j (z j)
)∗ −Yj

(
Yj(z j)

)∗ )
,

we see that applying Theorem 3.5 yields the assertion of parts (a) and (b). Furthermore,

if z j ∈T , then [30, Remark 2.6 and Corollary 4.7] imply that Xj(z j) , Yj(z j) , X [α , j]
j (z j) ,

and Y [α , j]
j (z j) are nonsingular matrices. Thus, part (c) is a consequence of (b). �

If we consider Corollary 3.8, it is not hard to accept that, for some left (resp., right)
para-orthogonal system (Pj)τ

j=1 of rational matrix functions and s ∈ N1,τ , the matrix

function Ps might belong only to Rq×q
α ,s−1 (cf. (I) in Definition 3.1 and Remark 3.11).

We now make use of Theorem 3.5 and keep the results of [33] and [34] in mind.
Based on (2.6), for some m ∈ N0 and n ∈ N0,m , we will use the settings

b(α)
n,m :=

⎧⎪⎨⎪⎩
B(1)

α ,0 if n = m or αn+1,αn+2, . . . ,αn+r ∈ D

∏
j∈{k∈Nn+1,m:αk �∈D}

bα j if αk �∈ D for some k ∈ Nn+1,m
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and

b̃(α)
n,m :=

⎧⎪⎨⎪⎩
B(1)

α ,0 if n = m or αn+1,αn+2, . . . ,αn+r �∈ D

∏
j∈{k∈Nn+1,m:αk∈D}

bα j if αk ∈ D for some k ∈ Nn+1,m ,

where B(1)
α ,0 stands for the constant function on C0 with value 1 (as in Section 2).

COROLLARY 3.9. Let (α j)∞
j=1 ∈ T1 . Let n ∈ N0 and let F ∈ M q,n

� (T,BT) .
Suppose that [(Xk)n

k=0,(Yk)n
k=0] is a pair of orthonormal systems corresponding to

(α j)∞
j=1 and F . Let w ∈ D \Pα ,n and let A(α ,F)

n,w and C(α ,F)
n,w be the rational matrix

functions given by (2.3)–(2.5). Furthermore, let the nonnegative Hermitian measure

F(α)
n,w : BT → Cq×q be defined by

F(α)
n,w (B) :=

1
2π

∫
B

1−|w|2
|z−w|2

(
A(α ,F)

n,w (z)
)−∗

A(α ,F)
n,w (w)

(
A(α ,F)

n,w (z)
)−1 λ (dz),

where λ stands for the linear Lebesgue measure defined on BT . Let τ ∈ N or τ = ∞
and suppose that (Pj)τ

j=1 (resp., (Rj)τ
j=1) is a sequence of rational matrix functions.

Then F (α)
n,w ∈ M q,τ

� (T,BT) and the following statements are equivalent:

(i) (Pj)τ
j=1 is a left (resp., (Rj)τ

j=1 is a right ) para-orthogonal system corres-

ponding to (α j)∞
j=1 and F(α)

n,w .

(ii) For each j ∈ N1,τ , there are complex q×q matrices A j and B j , both not equal
to the zero matrix, such that Pj (resp., R j) admits the representation

Pj = A jXj +B jY
[α , j]
j

(
resp., Rj = YjA j +X [α , j]

j B j

)
, j � n,

and, if j > n and v ∈ C\Pα , j , then the value Pj(v) (resp., R j(v)) is given by

Pj(v) =
1−wv
1−α jv

(
bw(v)b̃(α)

n, j−1(v)A j
(
A(α ,F)

n,w
)[α ,n](v)+b(α)

n, j−1(v)B jC
(α ,F)
n,w (v)

)
(

resp., Rj(v) =
1−wv
1−α jv

(
bw(v)b̃(α)

n, j−1(v)
(
C(α ,F)

n,w
)[α ,n](v)A j+b(α)

n, j−1(v)A
(α ,F)
n,w (v)B j

))
.

If (i) holds, then the matrices A j and B j in (ii) are uniquely determined for each
j ∈ N1,τ . In particular, (Pj)τ

j=1 is a left (resp., (Rj)τ
j=1 is a right) strictly para-

orthogonal system corresponding to (α j)∞
j=1 and F(α)

n,w if and only if, for each j ∈N1,τ ,
there are nonsingular matrices A j and B j such that the equalities in (ii) hold.

Proof. Recalling [33, Remark 3.6] and the rules for working with reciprocal ratio-
nal matrix function presented in [30, Section 2], one can apply Theorem 3.5 along with
[34, Theorem 4.5 and Remark 4.7] to obtain the assertion. �



646 B. FRITZSCHE, B. KIRSTEIN AND A. LASAROW

For each s ∈ Nn+1,τ , the formulas (in [34, Theorem 4.5 and Remark 4.7]) for the
elements Xs and Ys of a pair of orthonormal systems corresponding to (α j)∞

j=1 and

F(α)
n,w require that we differentiate between the case in which αs belongs to D and the

remaining case in which it does not. This case differentiation does not, however, appear
in the formulas of Corollary 3.9 for left (resp., right) para-orthogonal systems corres-

ponding to (α j)∞
j=1 and F(α)

n,w .

REMARK 3.10. Let (α j)∞
j=1 ∈T1 and let τ ∈ N or τ = ∞ . Let F ∈M q

�(T,BT) .
Furthermore, let [(Xk)τ

k=0,(Yk)τ
k=0] be a pair of orthonormal systems corresponding to

(α j)∞
j=1 and F . If j ∈N1,τ and if A j,B j ∈Cq×q such that A jXj +B jY

[α , j]
j = O (resp.,

YjA j +X [α , j]
j B j = O) holds, then based on Theorem 3.5 one can see that A j = 0 and

B j = 0 follows (see also Remark 6.3).

The excluded case j = 0 in Remark 3.10 does, indeed, not hold in general.
In view of (I) in Definition 3.1, we now emphasize a situation different from the

one for orthogonal rational matrix functions (cf. [30, Remark 3.4]).

REMARK 3.11. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Let (Pj)τ

j=1 be a
left (resp., right) para-orthogonal system corresponding to (α j)∞

j=1 and some measure
F ∈ M q

�(T,BT) . Let j ∈ N1,τ . By Theorem 3.5 along with (2.8) and [30, Remark 2.7,

Remark 2.8, and Corollary 4.4] it seems reasonable that Pj(α j)= 0 or P[α , j]
j (α j)= 0

might hold. Thus, from [30, Equation (2.10)] and (2.8) we see that it may be the case
that P[α , j]

j ∈ Rq×q
α , j−1 or Pj ∈ Rq×q

α , j−1 .

The statement of Remark 3.11 does not apply to the matrix case. It holds, in
particular, for the scalar case q = 1 and hence also for left (resp., right) strictly para-
orthogonal systems of rational (matrix) functions.

The next result shows that the “or” in Remark 3.11 cannot be replaced by “and”.

PROPOSITION 3.12. Let (α j)∞
j=1 ∈T1 and let τ ∈ N or τ = ∞ . Furthermore, let

F ∈ M q
�(T,BT) . Suppose that (Pj)τ

j=1 is a left (resp., right ) para-orthogonal system

corresponding to (α j)∞
j=1 and F . Let j ∈ N1,τ . Then Pj(α j) �= 0 or P[α , j]

j (α j) �= 0

holds. In particular, P[α , j]
j or Pj belongs to Rq×q

α , j \Rq×q
α , j−1 . Moreover, if there exists a

pair [(Xk)
j
k=0,(Yk)

j
k=0] of orthonormal systems corresponding to (αs)∞

s=1 and F such

that Xj(α j) = 0 or Yj(α j) = 0 , then Pj(α j) �= 0 , P[α , j]
j (α j) �= 0 , as well as Pj and

P[α , j]
j belong to Rq×q

α , j \Rq×q
α , j−1 .

Proof. Suppose that both equalities Pj(α j) = 0 and P[α , j]
j (α j)= 0 hold. Recalling

(I) and (III) of Definition 3.1, we see that(
Pj,Pj

)
F,l = 0q×q

(
resp.,

(
Pj,Pj

)
F,r = 0q×q

)
.

But, this implies
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Pj,B

(q)
α ,0

)
F,l = 0q×q

(
resp.,

(
B(q)

α ,0,Pj
)
F,r = 0q×q

)
,

which contradicts (II) of Definition 3.1. Therefore, it follows that Pj(α j) or P[α , j]
j (α j)

must not be equal to the zero matrix. Hence, because of [30, Equation (2.10)] and (2.8)
we obtain

P[α , j]
j ∈ Rq×q

α , j \Rq×q
α , j−1 or Pj ∈ Rq×q

α , j \Rq×q
α , j−1.

We now consider the case for which there exists a pair [(Xk)
j
k=0,(Yk)

j
k=0] of orthonormal

systems corresponding to (αs)∞
s=1 and F such that

Xj(α j) = 0 or Yj(α j) = 0

holds. Based on [30, Remark 6.2, part (a) of Lemma 6.5, Theorem 6.7, and The-

orem 6.10] we find that Xj(α j) = 0 and Yj(α j) = 0 and also that X [α , j]
j (α j) and

Y [α , j]
j (α j) are nonsingular matrices. Consequently, Theorem 3.5 along with (2.8) and

[30, Remarks 2.7 and 2.8] implies that Pj(α j) �= 0 and P[α , j]
j (α j) �= 0. Thus, from [30,

Equation (2.10)] and (2.8) we get that P[α , j]
j and Pj belong to Rq×q

α , j \Rq×q
α , j−1 . �

With regard to the special case considered at the end of Proposition 3.12, in which
Xj(α j) = 0 or Yj(α j) = 0, it should be noted that it is closely related to the case studied
in Corollary 3.9 (see also [33, Proposition 6.2] and [34, Theorem 4.5]).

4. On the existence of para-orthogonal rational matrix functions

Because of Theorem 3.5 and [30, Corollary 4.4] it is clear that, for τ ∈ N or
τ = ∞ , there is a left (resp., right) para-orthogonal system (Pj)τ

j=1 corresponding to
some (α j)∞

j=1 ∈ T1 and F ∈ M q
�(T,BT) if the underlying measure F belongs to

M q,τ
� (T,BT) . In this section, we study the question as to what extent this property is

necessary. In particular, we will see that, for τ ∈ N , the condition F ∈ M q,τ−1
� (T,BT)

is already sufficient. This condition is, furthermore, necessary and sufficient for the
existence of a left (resp., right) strictly para-orthogonal system (Pj)τ

j=1 corresponding
to (α j)∞

j=1 and F .
As the following result emphasizes, we can essentially restrict the considerations

on existence criteria to the case of left para-orthogonal systems.

REMARK 4.1. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Let F ∈ M q

�(T,BT) .
By part (c) of Remark 3.2 we see that there is a left para-orthogonal system (Pj)τ

j=1
corresponding to (α j)∞

j=1 and F if and only if there is a right para-orthogonal sys-
tem (Rj)τ

j=1 corresponding to (α j)∞
j=1 and F . (The case for strictly para-orthogonal

systems is analogous.)

We now give some information on the special case τ = 1. (In a sense, this case is
somewhat peculiar, since (III) of Definition 3.1 does not need to be regarded.)
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REMARK 4.2. Let (α j)∞
j=1 ∈ T1 and let F ∈ M q

�(T,BT) . Because of Defini-

tion 3.1 and (3.1) a sequence (Pj)1
j=1 is a left para-orthogonal system corresponding to

(α j)∞
j=1 and F if and only if P1 ∈Rq×q

α ,1 such that
(
P1,B

(q)
α ,0

)
F,l �= 0q×q and

(
P1,B

(q)
α ,1

)
F,l

�= 0q×q hold. Thus, one can see that there exists a left para-orthogonal system (Pj)1
j=1

corresponding to (α j)∞
j=1 and F if and only if F(T) �= 0q×q . Similarly, there is a left

strictly para-orthogonal system (Pj)1
j=1 corresponding to (α j)∞

j=1 and F if and only if

detF(T) �= 0 (i.e. F ∈ M q,0
� (T,BT)).

Remark 4.2 leads us to suspect that, for τ ∈ N , there is a left (strictly) para-or-
thogonal system (Pj)τ

j=1 corresponding to (α j)∞
j=1 and F if the measure F belongs to

M q,τ−1
� (T,BT) . The following considerations are aimed at verifying this suspicion.

The proof relies on Corollary 3.8. We first point out some auxiliary results on the
reproducing kernels of rational matrix functions given by (2.3)–(2.5).

LEMMA 4.3. Let (α j)∞
j=1 ∈T1 . Let n∈ N0 and suppose that F ∈M q,n

� (T,BT) .
Furthermore, let z ∈ T . Then:

(a) A(α ,F)
n,z =

(
B(q)

α ,n(z)
)∗(

C(α ,F)
n,z

)[α ,n]
and C(α ,F)

n,z =
(
B(q)

α ,n(z)
)∗(

A(α ,F)
n,z

)[α ,n]
.

(b) The following statements are equivalent:

(i)
(
B(q)

α ,n+1,C
(α ,F)
n,z

)
F,l −B(q)

α ,n+1(z) is a singular (resp., the zero ) matrix.

(ii)
(
(1− bαn+1(z)bαn+1)C

(α ,F)
n,z ,B(q)

α ,n+1

)
F,l is a singular (resp., the zero ) ma-

trix.

(iii)
(
B(q)

α ,0,(1−bαn+1bαn+1(z) )A(α ,F)
n,z

)
F,r is a singular (resp., the zero ) matrix.

Moreover, there is only a set Δ(l)
n+1 of at most (n+ 1)q (resp., a set Δ̃(l)

n+1 of at
most n+1) pairwise different points belonging to T such that (i) is satisfied. In
particular, Δ̃(l)

n+1 ⊆Δ(l)
n+1 holds, Δ(l)

n+1 consists of at most (n+1−k)q+k pairwise

different points if Δ̃(l)
n+1 includes k pairwise different points, and Δ(l)

n+1 = /0 in the

case of F ∈ M q,n+1
� (T,BT) .

(c) The following statements are equivalent:

(iv)
(
A(α ,F)

n,z ,B(q)
α ,n+1

)
F,r −B(q)

α ,n+1(z) is a singular (resp., the zero ) matrix.

(v)
(
B(q)

α ,n+1,(1− bαn+1bαn+1(z) )A(α ,F)
n,z

)
F,r is a singular (resp., the zero ) ma-

trix.

(vi)
(
(1−bαn+1(z)bαn+1)C

(α ,F)
n,z ,B(q)

α ,0

)
F,l is a singular (resp., the zero ) matrix.

Moreover, there is only a set Δ(r)
n+1 of at most (n+ 1)q (resp., a set Δ̃(r)

n+1 of at
most n+1) pairwise different points belonging to T such that (iv) is satisfied. In

particular, Δ̃(r)
n+1 ⊆Δ(r)

n+1 holds, Δ(r)
n+1 consists of at most (n+1−k)q+k pairwise
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different points if Δ̃(r)
n+1 includes k pairwise different points, and Δ(r)

n+1 = /0 in the

case of F ∈ M q,n+1
� (T,BT) .

Proof. (a) Recalling
(
B(q)

α ,n(z)
)∗

B(q)
α ,n(z) = Iq and [30, Lemma 2.2], by using [30,

Lemmas 5.1 and 5.2] we obtain the assertion of (a) (see also [14, Lemma 3.2]).
(b) Based on (2.6), (2.2), and [28, Theorem 10], for each v ∈ C0 \Pα ,n+1 , we get(

(1−bαn+1(v)bαn+1)C
(α ,F)
n,v ,B(q)

α ,n+1

)
F,l =

(
C(α ,F)

n,v ,B(q)
α ,n+1

)
F,l−bαn+1(v)

(
C(α ,F)

n,v ,B(q)
α ,n
)
F,l

=
(
B(q)

α ,n+1,C
(α ,F)
n,v

)∗
F,l−

(
B(q)

α ,n+1(v)
)∗

.

Furthermore, by (2.6), (2.2), [28, Theorem 10], B(q)
α ,0(z) = Iq , (a), (2.8), (2.9), [30,

Remark 2.9], and the structure of B(q)
α ,n+1 (in particular,

(
B(q)

α ,n+1(z)
)∗

B(q)
α ,n+1(z) = Iq )

we obtain the equality(
B(q)

α ,0,(1−bαn+1bαn+1(z) )A(α ,F)
n,z

)
F,r =

(
B(q)

α ,0,A
(α ,F)
n,z

)
F,r −

(
B(q)

α ,0,bαn+1bαn+1(z)A
(α ,F)
n,z

)
F,r

= Iq −
(
B(q)

α ,0,bαn+1

(
B(q)

α ,n+1(z)
)∗(

C(α ,F)
n,z

)[α ,n])
F,r

= Iq−
(
B(q)

α ,n+1(z)
)∗(

B(q)
α ,0,bαn+1

(
C(α ,F)

n,z
)[α ,n])

F,r

=
(
B(q)

α ,n+1(z)
)∗(

B(q)
α ,n+1(z)−

(
B(q)

α ,n+1,C
(α ,F)
n,z

)
F,l

)
,

where B(q)
α ,n+1(z) is a nonsingular matrix. Thus, we get that the statements (i), (ii), and

(iii) are equivalent. For some m ∈ N0 , let

H(α ,F)
m :=

((
B(q)

α , j,B
(q)
α ,k

)
F,l

)m

j,k=0

and let
(
h0,h1, . . . ,hn+1

)
denote the last q× (n + 2)q block row of H(α ,F)

n+1 , where
hk ∈ Cq×q for each k ∈ N0,n+1 . By [29, Remarks 2.4 and 3.7] and (2.3)–(2.5), for each
v ∈ C0 \Pα ,n+1 , it follows that

(
B(q)

α ,n+1,C
(α ,F)
n,v

)
F,l =

(
0q×q, . . . ,0q×q,Iq

)
H(α ,F)

n+1

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
⎛⎜⎝B(q)

α ,0(v)...

B(q)
α ,n(v)

⎞⎟⎠
∗(

H(α ,F)
n

)−1

⎞⎟⎟⎠
∗

0q×q

⎞⎟⎟⎟⎟⎠

=
(
h0,h1, . . . ,hn+1

)⎛⎜⎜⎜⎝
(
H(α ,F)

n

)−1

⎛⎜⎝B(q)
α ,0(v)...

B(q)
α ,n(v)

⎞⎟⎠
0q×q

⎞⎟⎟⎟⎠
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=
(
h0,h1, . . . ,hn

)(
H(α ,F)

n

)−1

⎛⎜⎝B(q)
α ,0(v)

...

B(q)
α ,n(v)

⎞⎟⎠ .

Hence (note again [29, Remark 2.4]), we see that H : C0 \Pα ,n+1 → Cq×q given by

H(v) :=
(
B(q)

α ,n+1,C
(α ,F)
n,v

)
F,l −B(q)

α ,n+1(v)

defines a function belonging to Rq×q
α ,n+1 , where (2.7) implies H [α ,n+1](αn+1) = −Iq . It

therefore follows from [30, Remark 2.6] and the Fundamental Theorem of Algebra that

there is a set Δ(l)
n+1 of at most (n+ 1)q (resp., a set Δ̃(l)

n+1 of at most n+ 1) pairwise

different points belonging to T such that
(
B(q)

α ,n+1,C
(α ,F)
n,u

)
F,l −B(q)

α ,n+1(u) is a singular

matrix for each u ∈ Δ(l)
n+1 (resp., the zero matrix for each u ∈ Δ̃(l)

n+1 ). Furthermore,

Δ̃(l)
n+1 ⊆ Δ(l)

n+1 holds and the set Δ(l)
n+1 consists of at most (n + 1− k)q + k pairwise

different points if the set Δ̃(l)
n+1 includes k pairwise different points. Finally, part (c) of

Corollary 3.8 shows that Δ(l)
n+1 = /0 if F belongs to M q,n+1

� (T,BT) .
(c) Use part (b) along with [28, Remark 8]. �

If (α j)∞
j=1 ∈ T1 and F ∈ M q

�(T,BT) , then (with some τ ∈ N or τ = ∞) we will
call a pair [(Pj)τ

j=1,(Rj)τ
j=1] , where (Pj)τ

j=1 is a left (resp., (Rj)τ
j=1 is a right) para-

orthogonal system corresponding to (α j)∞
j=1 and F , a pair of para-orthogonal systems

corresponding to (α j)∞
j=1 and F . (If α j = 0 for all j ∈ N1,τ , then we will also refer

to [(Pj)τ
j=1,(Rj)τ

j=1] as a pair of para-orthogonal matrix polynomial systems corre-
sponding to F .) We will use analogous terms in the case of strictly para-orthogonal
systems.

THEOREM 4.4. Let (α j)∞
j=1 ∈T1 . Let τ ∈N and F ∈M q,τ−1

� (T,BT) . For each
j ∈ N1,τ , let z j ∈ T and let the matrix functions Pj and Rj be given by (3.12). Then:

(a) There is a set Δ̃τ of at most 2τ pairwise different points belonging to T such that(
B(q)

α ,τ ,C
(α ,F)
τ−1,z

)
F,l −B(q)

α ,τ(z) and
(
A(α ,F)

τ−1,z,B
(q)
α ,τ
)
F,r −B(q)

α ,τ(z) are nonzero matrices

for all z ∈ T \ Δ̃τ . Moreover, [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of para-orthogonal

systems corresponding to (α j)∞
j=1 and F if and only if zτ ∈T\ Δ̃τ . In particular,

there is a left (resp., right ) para-orthogonal system (Qj)τ
j=1 corresponding to

(α j)∞
j=1 and F .

(b) There is a set Δτ of at most 2τq pairwise different points belonging to T such

that
(
B(q)

α ,τ ,C
(α ,F)
τ−1,z

)
F,l −B(q)

α ,τ(z) and
(
A(α ,F)

τ−1,z,B
(q)
α ,τ
)
F,r −B(q)

α ,τ(z) are nonsingular

matrices for all z∈T\Δτ . Moreover, [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of strictly para-
orthogonal systems corresponding to (α j)∞

j=1 and F if and only if zτ ∈ T \Δτ .
In particular, there exists a left (resp., right ) strictly para-orthogonal system
(Qj)τ

j=1 corresponding to (α j)∞
j=1 and F .
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Proof. Because of Lemma 4.3 it follows that there is a set Δτ of at most 2τq
(resp., a set Δ̃τ of at most 2τ ) pairwise different points belonging to T such that

det
((

B(q)
α ,τ ,C

(α ,F)
τ−1,z

)
F,l −B(q)

α ,τ(z)
)
�= 0 and det

((
A(α ,F)

τ−1,z,B
(q)
α ,τ
)
F,r −B(q)

α ,τ(z)
)
�= 0(

resp.,
(
B(q)

α ,τ ,C
(α ,F)
τ−1,z

)
F,l �= B(q)

α ,τ(z) and
(
A(α ,F)

τ−1,z,B
(q)
α ,τ
)
F,r �= B(q)

α ,τ(z)
)

for all z ∈ T \ Δτ (resp., for all z ∈ T \ Δ̃τ ). Let zτ ∈ T \ Δτ (resp., z ∈ T \ Δ̃τ ).

Based on (3.12) and Lemma 4.3 we see that
(
Pτ ,B

(q)
α ,τ
)
F,l ,

(
Pτ ,B

(q)
α ,0

)
F,l ,

(
B(q)

α ,τ ,Rτ
)
F,r

and
(
B(q)

α ,0,Rτ
)
F,r are all nonsingular matrices (resp., nonzero matrices). In partic-

ular, for the case τ = 1, it follows that [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of strictly para-
orthogonal systems (resp., a pair of para-orthogonal systems) corresponding to (α j)∞

j=1

and F . Now let τ � 2. Noting that F ∈ M q,τ−1
� (T,BT) , from Corollary 3.8 we find

that [(Pj)τ−1
j=1 ,(Rj)τ−1

j=1 ] is a pair of strictly para-orthogonal systems corresponding to

(α j)∞
j=1 and F . Let Z ∈ R̂q×q

α ,τ . In view of (3.1) the function Z admits

Z =
pτ

πα ,τ−1
Q

with some complex q×q matrix polynomial Q of degree not greater than τ −2, where
πα ,τ−1 is given by (2.1) and pτ(v) := ατ − v for each v ∈ C . If qτ(v) := ητ(1−ατv)
for each v ∈ C with a view to (2.6), then (2.2) and [28, Theorem 10] imply(

Pτ ,Z
)
F,l =

(
C(α ,F)

τ−1,zτ
,

pτ
πα ,τ−1

Q
)
F,l −bατ (zτ )

(
bατC

(α ,F)
τ−1,zτ

,
pτ

πα ,τ−1
Q
)
F,l

=
( pτ(zτ )

πα ,τ−1(zτ )
Q(zτ)

)∗ −bατ (zτ )
(
C(α ,F)

τ−1,zτ
,

qτ
πα ,τ−1

Q
)
F,l

=
( pτ(zτ )

πα ,τ−1(zτ )
Q(zτ)

)∗ −bατ (zτ )
( qτ(zτ )

πα ,τ−1(zτ )
Q(zτ )

)∗
= 0q×q.

Similarly, we obtain (
Z,Rτ

)
F,r = 0q×q.

Thus, for τ � 2, we again have that [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of strictly para-orthogonal
systems (resp., a pair of para-orthogonal systems) corresponding to (α j)∞

j=1 and F . �
Because of Theorem 4.4 and the Christoffel–Darboux formulas for orthonormal

systems of rational matrix functions we obtain the following (cf. Corollary 3.6).

COROLLARY 4.5. Let (α j)∞
j=1 ∈T1 . Let τ ∈N and F ∈M q,τ−1

� (T,BT) . Let Δτ

and Δ̃τ be the subsets of T as in Theorem 4.4 and let [(Xk)τ−1
k=0 ,(Yk)τ−1

k=0 ] be a pair of or-
thonormal systems corresponding to
(α j)∞

j=1 and F . Furthermore, let z j ∈ T and let Ã j := −bα j−1(z j)
(
Xj−1(z j)

)∗
,

B̃ j :=
(
Y [α , j−1]

j−1 (z j)
)∗

, D̃ j := −bα j−1(z j)
(
Yj−1(z j)

)∗
, and Ẽ j :=

(
X [α , j−1]

j−1 (z j)
)∗

for
each j ∈ N1,τ . Then:
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(a) There exists a pair [(Pj)τ
j=1,(Rj)τ

j=1] of para-orthogonal systems corresponding
to (α j)∞

j=1 and F such that, for each j ∈ N1,τ and each v ∈ C \ Pα , j , both

equalities in (3.11) are satisfied if and only if zτ ∈ T\ Δ̃τ .

(b) There is a pair [(Pj)τ
j=1,(Rj)τ

j=1] of strictly para-orthogonal systems correspond-
ing to (α j)∞

j=1 and F such that, for each j ∈ N1,τ and each v ∈ C \Pα , j , both
equalities in (3.11) are satisfied if and only if zτ ∈ T\Δτ .

Proof. Let j ∈ N1,τ and let z ∈ T . Furthermore, let f j be the rational function
given by

f j(v) :=
(1−|α j|2)(1− zα j−1)(1−α j−1v)
(1−|α j−1|2)(1− zα j)(1−α jv)

, v ∈ C\Pα , j.

Thus, from (2.6) and [30, Corollary 4.4, Lemma 5.1, Remark 5.3, and Corollary 5.5] it
follows

(
1−bα j(z)bα j

)
C(α ,F)

j−1,z =
1−bα j(z)bα j

1−bα j−1(z)bα j−1

(
1−bα j−1(z)bα j−1

) j−1

∑
k=0

(
Xk(z)

)∗
Xk

= f j

((
Y [α , j−1]

j−1 (z)
)∗

Y [α , j−1]
j−1 −bα j−1(z)bα j−1

(
Xj−1(z)

)∗
Xj−1

)
= f j

(
bα j−1Ã jXj−1 + B̃ jY

[α , j−1]
j−1

)
and similarly (

1−bα jbα j(z)
)
A(α ,F)

j−1,z = f j
(
bα j−1Yj−1D̃ j +X [α , j−1]

j−1 Ẽ j
)
.

Applying this along with Theorem 4.4 and part (a) of Remark 3.2 we get the asser-
tion. �

As an aside (cf. Corollaries 3.6 and 3.8), it should be noted that the statements of
Theorem 4.4 and Corollary 4.5 are valid for τ = ∞ (with τ −1 = ∞ and Δ̃τ = Δτ = /0)
as well. Furthermore, in the scalar case q = 1 (see [14, Theorem 3.5]), a converse to
Theorem 4.4 (resp., Corollary 4.5) holds. Thus, if τ ∈ N , then F ∈ M 1,τ−1

� (T,BT) is
necessary and sufficient for the existence of a left (resp., right ) para-orthogonal system
(Pj)τ

j=1 corresponding to (α j)∞
j=1 and F . Because of Remark 4.2 we see that this is

particular to the case q = 1. Even for τ = 1, Remark 4.2 shows that in the case q � 2
the existence of a left para-orthogonal system (Pj)1

j=1 corresponding to some (α j)∞
j=1 ∈

T1 and F ∈M q
�(T,BT) does not yield F ∈M q,0

� (T,BT) in general. Concerning this,
the remaining question is if the existence of a left (resp., right) strictly para-orthogonal
system (Pj)τ

j=1 corresponding to (α j)∞
j=1 and F leads to F ∈ M q,τ−1

� (T,BT) for
some τ ∈ N . As the following result emphasizes, this guess is true.

THEOREM 4.6. Let (α j)∞
j=1 ∈T1 . Furthermore, let τ ∈N and F ∈M q

�(T,BT) .
Then the following statements are equivalent:
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(i) F belongs to M q,τ−1
� (T,BT) .

(ii) There exists a sequence (z j)τ
j=1 of points belonging to T such that, by using both

declarations in (3.12) for each j ∈ N1,τ , the pair [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of
strictly para-orthogonal systems corresponding to (α j)∞

j=1 and F .

(iii) There is a pair [(Pj)τ
j=1,(Rj)τ

j=1] of strictly para-orthogonal systems correspon-

ding to (α j)∞
j=1 and F such that with some pair [(Xk)τ−1

k=0 ,(Yk)τ−1
k=0 ] of orthonor-

mal systems corresponding to (α j)∞
j=1 and F , for each j ∈ N1,τ and each v ∈

C \ Pα , j , both equalities in (3.11) hold, where Ã j := −bα j−1(z j)
(
Xj−1(z j)

)∗
,

B̃ j :=
(
Y [α , j−1]

j−1 (z j)
)∗

, D̃ j := −bα j−1(z j)
(
Yj−1(z j)

)∗
, and Ẽ j :=

(
X [α , j−1]

j−1 (z j)
)∗

with some z j ∈ T .

(iv) There is a left (resp., right ) strictly para-orthogonal system (Qj)τ
j=1 corre-

sponding to (α j)∞
j=1 and F .

Proof. Because of Theorem 4.4 it follows that (i) leads to (ii). Furthermore, the
equivalence of (ii) and (iii) is a consequence of the Christoffel–Darboux formulas for
orthonormal systems of rational matrix functions (cf. the proof of Corollary 4.5). We
see next that, (ii) clearly yields (iv). Suppose now that (iv) holds. We will show by
induction that (i) follows from (iv). By Remark 4.1, without loss of generality, we
can restrict the considerations to the case in which there exists a left strictly para-or-
thogonal system (Pj)τ

j=1 corresponding to (α j)∞
j=1 and F . If τ = 1, then Remark

4.2 yields F ∈ M q,0
� (T,BT) . Now suppose that, for some n ∈ N , the existence of

a strictly para-orthogonal system (Pj)n
j=1 corresponding to (α j)∞

j=1 and F implies

that F ∈ M q,n−1
� (T,BT) . We then show that the same implication holds for n + 1.

Let (Pj)n+1
j=1 be a strictly para-orthogonal system corresponding to (α j)∞

j=1 and F . In
particular, (Pj)n

j=1 is a strictly para-orthogonal system corresponding to (α j)∞
j=1 and

F . From the induction hypothesis, it thus follows that F ∈ M q,n−1
� (T,BT) . We verify

below, by using an argument by contradiction, that F ∈ M q,n
� (T,BT) . We first assume

that F belongs to M q,n−1
� (T,BT) \M q,n

� (T,BT) . From that assumption along with

[29, Theorem 5.8] one can see that there is a function X ∈ Rq×q
α ,n \Rq×q

α ,n−1 such that(
X ,X

)
F,l = 0q×q. (4.1)

Obviously, (4.1) implies (
Pn+1,X

)
F,l = 0q×q.

Hence, since (3.1) gives us that Y := X(αn+1)−X belongs to R̂q×q
α ,n+1 , we get

0q×q =
(
Pn+1,Y

)
F,l =

(
Pn+1,B

(q)
α ,0

)
F,l

(
X(αn+1)

)∗ − (Pn+1,X
)
F,l

=
(
Pn+1,B

(q)
α ,0

)
F,l

(
X(αn+1)

)∗
.
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Because (Pj)n+1
j=1 is a strictly para-orthogonal system corresponding to (α j)∞

j=1 and F it
follows that X(αn+1) = 0q×q . Therefore, there is a complex q×q matrix polynomial P
of degree not greater than n−1 such that P �=O and so that X admits the representation

X =
pn+1

πα ,n
P,

where pn+1 : C→C is the polynomial given by pn+1(v) := αn+1−v and where πα ,n is
the polynomial defined as in (2.1). We note that the rational (complex-valued) function

g :=
pn+1

πα ,n

does not have any poles or zeros on T (which also means that the restriction of g to
T is a BT -B-measurable function and that there are positive real numbers L1 and
L2 such that L1 � |g(z)| � L2 holds for all z ∈ T). Recalling this, the assumption
F ∈ M q,n−1

� (T,BT)\M q,n
� (T,BT) , and [29, Remarks 1.1, 1.3, and 5.9], by setting

H(B) :=
∫

B

(
g(z)Iq

)∗
F(dz)g(z)Iq, B ∈ BT,

we obtain a measure belonging to M q,n−1
� (T,BT) \M q,n

� (T,BT) . Furthermore, the
choice of H , [29, Remark 1.1], and (4.1) imply∫

T

P(z)H(dz)
(
P(z)

)∗ =
∫

T

|g(z)|2P(z)F(dz)
(
P(z)

)∗ =
(
X ,X

)
F,l = 0q×q.

Consequently, by using [29, Theorem 5.8], we get H ∈ M q
�(T,BT)\M q,n−1

� (T,BT) .
This is a contradiction to H ∈ M q,n−1

� (T,BT)\M q,n
� (T,BT) . Therefore, the assump-

tion that the matrix measure F belongs to M q,n−1
� (T,BT) \M q,n

� (T,BT) was false
and it follows that F ∈ M q,n

� (T,BT) . Thus, (iv) implies (i). �

COROLLARY 4.7. Let (α j)∞
j=1 ∈T1 and let F ∈M q

�(T,BT) . Then the following
statements are equivalent:

(i) F belongs to M q,∞
� (T,BT) .

(ii) There exists a sequence (z j)∞
j=1 of points belonging to T such that, by using

both declarations in (3.12), for each j ∈ N , the pair [(Pj)∞
j=1,(Rj)∞

j=1] is a pair
of strictly para-orthogonal systems corresponding to (α j)∞

j=1 and F .

(iii) There is a pair [(Pj)∞
j=1,(Rj)∞

j=1] of strictly para-orthogonal systems correspond-
ing to (α j)∞

j=1 and F such that with some pair [(Xk)∞
k=0,(Yk)∞

k=0] of orthonor-
mal systems corresponding to (α j)∞

j=1 and F , for each j ∈ N and each point

v ∈ C\Pα , j , both equalities in (3.11) hold, where Ã j :=−bα j−1(z j)
(
Xj−1(z j)

)∗
,

B̃ j :=
(
Y [α , j−1]

j−1 (z j)
)∗

, D̃ j := −bα j−1(z j)
(
Yj−1(z j)

)∗
, and Ẽ j :=

(
X [α , j−1]

j−1 (z j)
)∗

with some z j ∈ T .
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(iv) There is a left (resp., right ) strictly para-orthogonal system (Qj)∞
j=1 corre-

sponding to (α j)∞
j=1 and F .

Proof. The assertion is an immediate consequence of Theorem 4.6. �

COROLLARY 4.8. Let τ ∈ N or τ = ∞ . Furthermore, let F ∈M q
�(T,BT) . Then

the following statements are equivalent:

(i) For each sequence (α j)∞
j=1 ∈ T1 , there is a pair [(Pj)τ

j=1,(Rj)τ
j=1] of strictly

para-orthogonal systems corresponding to (α j)∞
j=1 and F .

(ii) There is a left (resp., right ) strictly para-orthogonal system (Pj)τ
j=1 corre-

sponding to some (α j)∞
j=1 ∈ T1 and F .

(iii) There exists a left (resp., right ) strictly para-orthogonal matrix polynomial sys-
tem (Pj)τ

j=1 corresponding to F .

Proof. Since (i) in Theorem 4.6 (resp., (i) in Corollary 4.7) does not depend on
the exact choice of the underlying sequence (α j)∞

j=1 ∈T1 (i.e. the location of the poles
for the relevant rational matrix functions is not important), the assertion follows. �

Because of Lemma 4.3 the finite sets Δτ and Δ̃τ in Theorem 4.4 (resp., Corol-
lary 4.5) are empty when the underlying measure F belongs to M q,τ

� (T,BT) . Con-

versely (cf. [14, Proposition 3.9]), if q = 1 and if Δ̃τ = /0 , then F ∈ M 1,τ
� (T,BT) . As

the following example illustrates, this a special feature of the scalar case q = 1.

EXAMPLE 4.9. Let α1 := 0 . Suppose that c0 := I2 and

c1 :=
1√
2

(
1 1
0 0

)
.

Then there is an F ∈ M 2
�(T,BT) such that the identities c(F)

0 = c0 and c(F)
1 = c1

hold, where F ∈ M 2,0
� (T,BT) \M 2,1

� (T,BT) and where
(
B(2)

α ,1,C
(α ,F)
0,z

)
F,l −B(2)

α ,1(z)

and
(
A(α ,F)

0,z ,B(2)
α ,1

)
F,r −B(2)

α ,1(z) are nonsingular matrices for each z ∈ T .

Proof. The choice of c0 and c1 implies

c0− c1c−1
0 c∗1 = I2− 1

2

(
1 1
0 0

)(
1 0
1 0

)
=
(

0 0
0 1

)
.

Consequently, from c0 = I2 and [27, Lemma 1.1.9 and Theorem 3.4.2] it follows that

there is a measure F ∈ M 2
�(T,BT) such that c(F)

0 = c0 and c(F)
1 = c1 hold, where

F ∈ M 2,0
� (T,BT)\M 2,1

� (T,BT) . Let z ∈ T . Byu α1 = 0 and (2.3)–(2.5) we get

(
B(2)

α ,1,C
(α ,F)
0,z

)
F,l −B(2)

α ,1(z) =
∫

T

zF(dz)(c(F)
0 )−∗ − zI2 = (c(F)

1 )∗ − zI2 =

(
1√
2
−z 0
1√
2

z

)
.
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In particular,
(
B(2)

α ,1,C
(α ,F)
0,z

)
F,l −B(2)

α ,1(z) is a nonsingular matrix. Similarly, it follows

that
(
A(α ,F)

0,z ,B(2)
α ,1

)
F,r −B(2)

α ,1(z) is a nonsingular matrix. �

5. The case of molecular nonnegative Hermitian matrix Borel measures on T

We now study the existence of para-orthogonal systems of rational matrix func-
tions for the special case in which we have underlying molecular Borel measures on
T .

Recall that, for some n ∈ N , a measure F ∈ M q
�(T,BT) is called molecular of

order at most n if there is a sequence (u j)n
j=1 of n points belonging to T so that

F(T \ {u1,u2, . . . ,un}) = 0q×q . For some n ∈ N , the notation M q,mol
�,n (T,BT) is used

for the set of all F ∈ M q
�(T,BT) that are molecular of order at most n . Further-

more, M q,mol
�,0 (T,BT) denotes the singleton consisting of the zero measure belonging

to M q
�(T,BT) . We also use εu,BT

for the Dirac measure defined on BT with unit
mass located at some point u ∈ T .

LEMMA 5.1. Let n ∈ N and suppose that F ∈ M q,mol
�,n (T,BT) . Furthermore, let

(α j)∞
j=1 ∈ T1 and let X ∈ Rq×q

α ,n+1 . Then the following statements are equivalent:

(i)
(
X ,Y

)
F,l = 0q×q (resp.,

(
Y,X

)
F,r = 0q×q) for each Y ∈ Rq×q

α ,n+1 .

(ii)
(
Y,X [α ,n+1])

F,r = 0q×q (resp.,
(
X [α ,n+1],Y

)
F,l = 0q×q) for each Y ∈ Rq×q

α ,n+1 .

(iii)
(
X ,Z

)
F,l = 0q×q (resp.,

(
Z,X

)
F,r = 0q×q) for each Z ∈ R̂q×q

α ,n+1 .

Proof. The equivalence of (i) and (ii) is a simple consequence of (2.2), (2.8), and
(2.9). Furthermore, (i) clearly implies (iii). Conversely, we now assume that (iii) is
satisfied. We first suppose that, for each Z ∈ R̂q×q

α ,n+1 , the equality(
X ,Z

)
F,l = 0q×q (5.1)

holds. Because of the choice of F there exist a sequence (u j)n
j=1 of pairwise different

points belonging to T and a sequence (A j)n
j=1 of nonnegativeHermitian q×q matrices

such that

F =
n

∑
j=1

εu j ,BT
A j. (5.2)

For each Y ∈ Rq×q
α ,n+1 , from (5.2) we obtain

(
X ,Y

)
F,l =

∫
T

X(z)F(dz)
(
Y (z)

)∗ =
n

∑
j=1

X(u j)A j
(
Y (u j)

)∗
. (5.3)
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Let k ∈ N1,n . Let pn+1 : C → C be the polynomial given by pn+1(v) := αn+1 − v and
let Qk : C → Cq×q be the matrix polynomial of degree n−1 given by

Qk(v) :=

⎧⎪⎪⎨⎪⎪⎩
Iq if n = 1

∏
j∈N1,n\{k}

u j−v
u j−uk

Iq if n > 1 .
(5.4)

Furthermore, let

Zk :=
πα ,n(uk) pn+1

(αn+1−uk)πα ,n
Qk,

where πα ,n is the polynomial defined as in (2.1). In view of (3.1) and (5.4) one can see
that the function Zk belongs to R̂q×q

α ,n+1 , where the additional equality Zk(u j) = δ jkIq

holds for each j ∈ N1,n . Moreover, from (5.3) and (5.1) it follows that

X(uk)Ak = X(uk)Ak
(
Zk(uk)

)∗ =
n

∑
j=1

X(u j)A j
(
Zk(u j)

)∗ =
(
X ,Z

)
F,l = 0q×q.

This yields along with (5.3) the equality

(
X ,Y

)
F,l =

n

∑
j=1

X(u j)A j
(
Y (u j)

)∗ = 0q×q, Y ∈ Rq×q
α ,n+1.

Similarly, one can show that, if
(
Z,X

)
F,r = 0 for each Z ∈ R̂q×q

α ,n+1 , then
(
Y,X

)
F,r = 0

for each Y ∈ Rq×q
α ,n+1 . Consequently, (iii) implies (i). �

PROPOSITION 5.2. Let n,τ ∈ N and F∈ M q,mol
�,n (T,BT) . If (Pj)τ

j=1 is a left
(resp., right ) para-orthogonal system corresponding to (α j)∞

j=1 ∈ T1 and F , then
τ � n.

Proof. We present an indirect proof. Let (α j)∞
j=1 ∈T1 . Furthermore, taking Defi-

nition 3.1 into account, we suppose that (Pj)n+1
j=1 is a left para-orthogonal system corres-

ponding to (α j)∞
j=1 and F . Hence, we have

(
Pn+1,B

(q)
α ,n+1

)
F,l �= 0q×q and(

Pn+1,Z
)
F,l = 0q×q, Z ∈ R̂q×q

α ,n+1.

But, this contradicts Lemma 5.1. Thus, there does not exist a left para-orthogonal
system (Pj)n+1

j=1 corresponding to (α j)∞
j=1 and F . Therefore, if (Pj)τ

j=1 is a left para-
orthogonal system corresponding to (α j)∞

j=1 and F , then τ � n . Having dealt with
the left case, we note that a similar proof can be used for the remaining case (see also
Remark 4.1). �

If n ∈ N and if F ∈ M 1,mol
�,n (T,BT) \M 1,mol

�,n−1(T,BT) , then there exists a left
(resp., right ) para-orthogonal system (Pj)n

j=1 corresponding to some (α j)∞
j=1 ∈ T1
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and F (see, e.g., [14, Equation (2.1) and Theorem 3.5]). This is, however, a special
feature of the scalar case q = 1. To emphasize this, we provide the following simple
example for q = 2 and n = 2.

EXAMPLE 5.3. Let u1 ∈ T and u2 ∈ T \ {u1} . Let F := εu1,BT
A1 + εu2,BT

A2 ,
where

A1 :=
(

1 0
0 0

)
and A2 :=

(
0 0
0 1

)
.

Then F ∈M 2,mol
�,2 (T,BT)\M 2,mol

�,1 (T,BT) , but there does not exist a left (resp., right)

para-orthogonal system (Pj)2
j=1 corresponding to some (α j)∞

j=1 ∈ T1 and F .

Proof. The choice of F immediately gives us that F is a matrix measure belong-
ing to M 2,mol

�,2 (T,BT)\M 2,mol
�,1 (T,BT) . Let (α j)∞

j=1 ∈T1 . Suppose that there is a left

para-orthogonal system (Pj)2
j=1 corresponding to (α j)∞

j=1 and F , where

P2 =
(

a b
c d

)
with some a,b,c,d ∈ Rα ,2 . Furthermore, let p2 : C → C be the polynomial given by
p2(v) := α2 − v and let πα ,1 be defined by (2.1). Since (3.1) implies that the function

Z :=
p2

πα ,1
Iq

belongs to R̂q×q
α ,2 , from Definition 3.1 it follows that

02×2 =
(
P2,Z

)
F,l = P2(u1)A1

(
Z(u1)

)∗ +P2(u2)A2
(
Z(u2)

)∗
=

⎛⎝a(u1)
( α2−u1

1−α1u1

)
b(u2)

( α2−u2
1−α1u2

)
c(u1)

( α2−u1
1−α1u1

)
d(u2)

( α2−u2
1−α1u2

)
⎞⎠ .

Consequently, we obtain that (
a(u1) b(u2)
c(u1) d(u2)

)
= 02×2.

However, this is in contradiction to(
a(u1) b(u2)
c(u1) d(u2)

)
=
(
P2,B

(q)
α ,0

)
F,l �= 02×2.

Hence, there does not exist a left para-orthogonal system (Pj)2
j=1 corresponding to

(α j)∞
j=1 and F . A similar proof can be used for the remaining (right) case. �
As an addendum to Proposition 5.2, the following result concerning the existence

of left (resp., right) strictly para-orthogonal systems of rational matrix functions holds.
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PROPOSITION 5.4. Let (α j)∞
j=1 ∈ T1 . Let n ∈ N and F ∈ M q,mol

�,n (T,BT) . If
there are τ pairwise different points u1,u2, . . . ,uτ belonging to T with some τ ∈
N1,n , such that F({u j}) is a nonsingular matrix for j ∈ N1,τ , then there exists a left
(resp., right ) strictly para-orthogonal system (Pj)τ

j=1 corresponding to (α j)∞
j=1 and

F . Moreover, there exists a left (resp., right ) strictly para-orthogonal system (Pj)n
j=1

corresponding to (α j)∞
j=1 and F if and only if there are n pairwise different points

u1,u2, . . . ,un belonging to T such that F({u j}) is a nonsingular matrix for j ∈ N1,n .

Proof. Applying Theorem 4.6 along with [29, Theorem 6.11] yields the asser-
tion. �

For measures belonging to M q,mol
�,τ (T,BT) even the following equivalence holds.

This is quite similar to a characterization of the existence of para-orthogonal systems
of rational functions for the scalar case q = 1 (cf. [14, Theorem 3.5]).

THEOREM 5.5. Let (α j)∞
j=1 ∈ T1 . Let τ ∈ N and F ∈M q,mol

�,τ (T,BT) . Then the
following statements are equivalent:

(i) F belongs to M q,τ−1
� (T,BT) .

(ii) There is a left (resp., right ) strictly para-orthogonal system (Pj)τ
j=1 corre-

sponding to (α j)∞
j=1 and F .

(iii) There is a Pτ ∈ Rq×q
α ,τ so that

(
Pτ ,yIq

)
F,l (resp.,

(
yIq,Pτ

)
F,r) is a nonsingu-

lar matrix for some y ∈ Rα ,τ and
(
Pτ ,Z

)
F,l = 0q×q (resp.,

(
Z,Pτ

)
F,r = 0q×q)

for all Z ∈ R̂q×q
α ,τ .

Moreover, if (i) holds, then the measure F belongs to M q,mol
�,τ (T,BT)\M q,mol

�,τ−1(T,BT)
and to M q,τ−1

� (T,BT)\M q,τ
� (T,BT) .

Proof. From Theorem 4.4 we get that (i) leads to (ii). Recalling Definition 3.1,
we see that (iii) follows from (ii). Suppose now that (iii) holds. Because of (2.8) and
(2.9) we can restrict the considerations to the case in which there exists a Pτ ∈ Rq×q

α ,τ
such that

(
Pτ ,yIq

)
F,l is nonsingular for some y ∈ Rα ,τ and such that

(
Pτ ,Z

)
F,l = 0q×q

for each Z ∈ R̂q×q
α ,τ . Since F ∈M q,mol

�,τ (T,BT) , there is a sequence (u j)τ
j=1 of pairwise

different points belonging to T and a sequence (A j)τ
j=1 of nonnegativeHermitian q×q

matrices such that the measure F admits the representation (5.2) with n = τ . Therefore,
as in the proof of Lemma 5.1 (cf. (5.3)), we obtain that

det

( τ

∑
j=1

y(u j)Pτ(u j)A j

)
= det

( τ

∑
j=1

Pτ(u j)A j
(
y(u j)Iq

)∗) �= 0 (5.5)

and τ

∑
j=1

Pτ(u j)A j
(
Z(u j)

)∗ = 0q×q, Z ∈ R̂q×q
α ,τ . (5.6)
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If τ = 1, then it follows directly from (5.5) that detA1 �= 0. Suppose now that τ > 1.
We will show that (5.5) and (5.6) imply detA j �= 0 for each j ∈ N1,τ . We will use an
indirect approach and suppose that As is a singular matrix for some s ∈ N1,τ . Thus,
there is a matrix X ∈ Cq×q \ {0q×q} such that

AsX = 0q×q. (5.7)

Let k ∈ N1,τ \ {s} . Let pτ : C → C be the polynomial defined by pτ(v)
:= ατ − v and let Qk,s : C → Cq×q be the matrix polynomial of degree τ − 2 defined
by

Qk,s(v) :=

⎧⎪⎪⎨⎪⎪⎩
X∗ if τ = 2

∏
j∈N1,τ\{k,s}

u j−v
u j−uk

X∗ if τ > 2 .

Furthermore, let

Zk,s :=
πα ,τ−1(uk) pτ

(ατ−uk)πα ,τ−1
Qk,s,

where πα ,τ−1 is given by (2.1). From this and (3.1) we see that the function Zk,s

belongs to R̂q×q
α ,τ . Moreover, we have Zk,s(u j) = δ jkX∗ for all j ∈ N1,τ \ {s} and

Zk,s(us) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α2−us)(1−α1uk)
(α2−uk)(1−α1us)

X∗ if τ = 2

(ατ−us)πα ,τ−1(us)
(ατ−uk)πα ,τ−1(uk)

∏
j∈N1,τ\{k,s}

u j−us

u j−uk
X∗ if τ > 2 .

Hence, (5.6) and (5.7) imply

Pτ(uk)AkX = Pτ(uk)Ak
(
Zk,s(uk)

)∗ =
τ

∑
j=1

Pτ(u j)A j
(
Zk,s(u j)

)∗ = 0q×q.

Because of (5.7) we then get( τ

∑
j=1

y(u j)Pτ(u j)A j

)
X =

τ

∑
j=1

y(u j)Pτ(u j)A jX = y(us)Pτ(us)AsX = 0q×q,

which is in contradiction to (5.5). Consequently, there does not exist an s ∈ N1,τ such
that As is a singular matrix, i.e. detA j �= 0 holds for each j ∈ N1,τ . Finally, applying

[29, Theorem 6.11] gives us that F belongs to M q,mol
�,τ (T,BT) \M q,mol

�,τ−1(T,BT) and

to M q,τ−1
� (T,BT)\M q,τ

� (T,BT) . In particular, we see that (iii) implies (i). �

With respect to Theorem 4.6 and the finite set Δτ of exclusion points of Theo-
rem 4.4 (resp., Corollary 4.5), it appears that Δτ consists only of the τ mass points if
the underlying measure F belongs to M q,mol

�,τ (T,BT) . In fact, we get the following.
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PROPOSITION 5.6. Let (α j)∞
j=1 ∈ T1 . Let τ ∈ N and suppose that F is a mea-

sure belonging to M q,mol
�,τ (T,BT)∩M q,τ−1

� (T,BT) . Then the subsets Δτ and Δ̃τ of
T from Theorem 4.4 consists both of exactly τ pairwise different points u1,u2, . . . ,uτ .
Moreover, F admits (5.2) with n = τ and these points, where A1,A2, . . . ,Aτ are the

positive Hermitian matrices given by A j =
(
A(α ,F)

τ−1,u j
(u j)

)−1
and A j =

(
C(α ,F)

τ−1,u j
(u j)

)−1

for each j ∈ N1,τ . In particular, the four identities

∑
j∈N1,τ\{k}

B(q)
α ,τ(u j)A jC

(α ,F)
τ−1,u j

(uk) = 0q×q, ∑
j∈N1,τ\{k}

bατ (u j)C
(α ,F)
τ−1,uk

(u j)A j = 0q×q,

∑
j∈N1,τ\{k}

B(q)
α ,τ(u j)A

(α ,F)
τ−1,u j

(uk)A j = 0q×q, ∑
j∈N1,τ\{k}

bατ (u j)A jA
(α ,F)
τ−1,uk

(u j) = 0q×q

are satisfied for each k ∈ N1,τ .

Proof. Let n := τ . Because of F ∈ M q,mol
�,n (T,BT)∩M q,n−1

� (T,BT) , Theo-
rem 5.5, and [29, Theorem 6.11] it follows that F admits (5.2) with a sequence (u j)n

j=1
of pairwise different points belonging to T and a sequence (A j)n

j=1 of positive Her-
mitian q× q matrices. Let k ∈ N1,n . Furthermore, let Qk be the matrix polynomial
defined as in (5.4) and let πα ,n−1 be the polynomial given by (2.1). Suppose that

Xk :=
πα ,n−1(uk)

πα ,n−1
Qk.

We have that Xk ∈ Rq×q
α ,n−1 , where Xk(u j) = δ jkIq holds for each j ∈ N1,n . Based on

[28, Theorem 10], (5.2), and some facts from integration theory (cf. (5.3)) we find that

Iq =
(
Xk,C

(α ,F)
n−1,uk

)
F,l =

n

∑
j=1

Xk(u j)A j
(
C(α ,F)

n−1,uk
(u j)

)∗ = AkC
(α ,F)
n−1,uk

(uk),

i.e. that Ak =
(
C(α ,F)

n−1,uk
(uk)

)−1
. A similar argument yields Ak =

(
A(α ,F)

n−1,uk
(uk)

)−1
.

Let Δ(l)
n and Δ̃(l)

n (resp., Δ(r)
n and Δ̃(r)

n ) be the subsets of T defined in Lemma 4.3 In

particular, the set Δ̃(l)
n consists of at most n pairwise different points and(

B(q)
α ,n,C

(α ,F)
n−1,z

)
F,l = B(q)

α ,n(z) (5.8)

holds for each z ∈ Δ̃(l)
n . Let z ∈ T . Because of (5.2) it follows that

(
B(q)

α ,n,C
(α ,F)
n−1,z

)
F,l =

n

∑
j=1

B(q)
α ,n(u j)A j

(
C(α ,F)

n−1,z(u j)
)∗

.

Consequently, we see that (5.8) is fulfilled if and only if

n

∑
j=1

B(q)
α ,n(u j)A jC

(α ,F)
n−1,u j

(z) = B(q)
α ,n(z). (5.9)
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Furthermore, by using part (a) of Lemma 4.3 and [30, Remark 2.5], we obtain(
B(q)

α ,n,C
(α ,F)
n−1,z

)
F,l =

n

∑
j=1

B(q)
α ,n(u j)A j

(
(A(α ,F)

n−1,z)
[α ,n−1](u j)

)∗
B(q)

α ,n−1(z)

=
n

∑
j=1

bαn(u j)A jA
(α ,F)
n−1,z(u j)B

(q)
α ,n−1(z).

Thus, (5.8) holds if and only if

n

∑
j=1

bαn(u j)A jA
(α ,F)
n−1,z(u j) = bαn(z)Iq. (5.10)

Taking into account that the function

X :=
n

∑
j=1

bαn(u j)Xj

belongs to Rq×q
α ,n−1 , where the equality X(u j) = bαn(u j)Iq holds for each j ∈ N1,n , by

applying [28, Theorem 10], (5.2), and (2.2) we see that

bαn(u j)Iq =
(
X ,A(α ,F)

n−1,uk

)
F,r =

n

∑
j=1

(
X(u j)

)∗A jA
(α ,F)
n−1,uk

(u j) =
n

∑
j=1

bαn(u j)A jA
(α ,F)
n−1,uk

(u j).

Therefore, (5.10) holds if z = uk . Since (5.8) and (5.10) are equivalent, from part (b)
of Lemma 4.3, τ = n , and the fact that the set Δ̃τ has at most τ elements we get that

Δ(l)
τ = Δ̃(l)

τ = {u1,u2, . . . ,uτ}.
Recalling this and the form of (A j)τ

j=1 , the equivalence of (5.8) and (5.9) gives us

∑
j∈N1,τ\{k}

B(q)
α ,τ(u j)A jC

(α ,F)
τ−1,u j

(uk) =
τ

∑
j=1

B(q)
α ,τ(u j)A jC

(α ,F)
τ−1,u j

(uk)−B(q)
α ,τ(uk) = 0q×q

and the equivalence of (5.8) and (5.10) yields

∑
j∈N1,τ\{k}

bατ (u j)A jA
(α ,F)
τ−1,uk

(u j) =
τ

∑
j=1

bατ (u j)A jA
(α ,F)
τ−1,uk

(u j)−bατ (uk)Iq = 0q×q.

A similar argument, based on part (c) of Lemma 4.3, leads to the remaining two identi-

ties (different versions of the last two) with Δ(r)
τ = Δ̃(r)

τ = {u1,u2, . . . ,uτ} . In particular,
it follows that the subsets Δτ and Δ̃τ of T from Theorem 4.4 both consist of the τ
pairwise different points u1,u2, . . . ,uτ . �

COROLLARY 5.7. Let τ ∈N and let F ∈M q,mol
�,τ (T,BT)∩M q,τ−1

� (T,BT) . Fur-
thermore, let (z j)τ

j=1 be a sequence of points belonging to T . The following statements
are equivalent:
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(i) For every choice of a sequence (α j)∞
j=1 ∈ T1 , by using both declarations in

(3.12) for each j ∈ N1,τ , the pair [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of strictly para-
orthogonal systems corresponding to (α j)∞

j=1 and F .

(ii) By using (3.12) for each j ∈ N1,τ , the sequence (Pj)τ
j=1 (resp., (Rj)τ

j=1) is a
left (resp., right ) para-orthogonal system corresponding to some (α j)∞

j=1 ∈ T1

and F .

(iii) By setting

Pj(v) = (1− z jv)
(

z j−1
j Iq,z

j−2
j Iq, . . . ,z0

jIq

)(
T(F)

j−1

)−1

⎛⎜⎜⎝
v j−1Iq

v j−2Iq...
v0Iq

⎞⎟⎟⎠
(

resp., Rj(v) = (1− vz j)
(
v0Iq,v

1Iq, . . . ,v
j−1Iq

)(
T(F)

j−1

)−1

⎛⎜⎜⎜⎜⎝
z0

jIq

z1
jIq
...

z j−1
j Iq

⎞⎟⎟⎟⎟⎠
)

for each j ∈ N1,τ and v ∈ C , the sequence (Pj)τ
j=1 (resp., (Rj)τ

j=1) is a left
(resp., right ) para-orthogonal matrix polynomial system corresponding to F .

(iv) For all (α j)∞
j=1 ∈T1 , there is a pair [(Pj)τ

j=1,(Rj)τ
j=1] of strictly para-orthogonal

systems corresponding to (α j)∞
j=1 and F such that both equalities in (3.11) hold

for j ∈ N1,τ and v ∈ C\Pα , j with a pair [(Xk)τ−1
k=0 ,(Yk)τ−1

k=0 ] of orthonormal sys-
tems corresponding to (α j)∞

j=1 and F , where Ã j := −bα j−1(z j)(
Xj−1(z j)

)∗
, B̃ j :=

(
Y [α , j−1]

j−1 (z j)
)∗

, D̃ j := −bα j−1(z j)
(
Yj−1(z j)

)∗
, and Ẽ j :=(

X [α , j−1]
j−1 (z j)

)∗
.

(v) There is a left (resp., right ) para-orthogonal system (Pj)τ
j=1 (resp., (Rj)τ

j=1)
corresponding to some (α j)∞

j=1 ∈ T1 and F such that (3.11) holds for each

j ∈ N1,τ and each v ∈ C \Pα , j with a pair [(Xk)τ−1
k=0 ,(Yk)τ−1

k=0 ] of orthonormal
systems corresponding to (α j)∞

j=1 and F , where Ã j := −bα j−1(z j)
(
Xj−1(z j)

)∗
and B̃ j :=

(
Y [α , j−1]

j−1 (z j)
)∗ (resp., where D̃ j :=−bα j−1(z j)

(
Yj−1(z j)

)∗
and Ẽ j :=(

X [α , j−1]
j−1 (z j)

)∗ ) .
(vi) By setting

Pj(v) =
(
Ỹ [ j−1]

j−1 (z j)
)∗

Ỹ [ j−1]
j−1 (v)− z jv

(
Xj−1(z j)

)∗
Xj−1(v)(

resp., Rj(v) = X̃ [ j−1]
j−1 (v)

(
X̃ [ j−1]

j−1 (z j)
)∗ − vz j Yj−1(v)

(
Yj−1(z j)

)∗)
for j ∈ N1,τ and v ∈ C with some pair [(Xk)τ−1

k=0 ,(Yk)τ−1
k=0 ] of orthonormal ma-

trix polynomial systems corresponding to F , (Pj)τ
j=1 (resp., (Rj)τ

j=1) is a left
(resp., right ) para-orthogonal matrix polynomial system corresponding to F .
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Proof. Proposition 5.6 gives us that the sets Δτ and Δ̃τ in Theorem 4.4 coincide
and that the location of the poles for the relevant rational functions has no influence
on the form of Δτ if F ∈ M q,mol

�,τ (T,BT)∩M q,τ−1
� (T,BT) . Thus, the assertion is

a simple consequence of Proposition 5.6, Theorem 4.4, and Corollary 4.5. (In do-
ing so, with respect to (iii), one has to notice (2.3)–(2.5) and [29, Remark 2.4, Re-
mark 3.9, and Lemma 3.14].) �

COROLLARY 5.8. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N . Let F ∈ M q,τ−1

� (T,BT) be
such that, for every choice of a sequence (z j)τ

j=1 of points belonging to T , by using
(3.12) for each j ∈ N1,τ , the sequence (Pj)τ

j=1 (resp., (Rj)τ
j=1) is a left (resp., right )

para-orthogonal system corresponding to (α j)∞
j=1 and F . Then

F ∈ M q
�(T,BT)\M q,mol

�,τ (T,BT).

Proof. Use Theorem 4.4 along with Proposition 5.6. �

COROLLARY 5.9. Let (α j)∞
j=1 ∈T1 . Let τ ∈ N and F ∈M q,τ−1

� (T,BT) . If, for
every sequence (z j)τ

j=1 of points belonging to T , there is a left (resp., right ) para-
orthogonal system (Pj)τ

j=1 (resp., (Rj)τ
j=1) corresponding to (α j)∞

j=1 and F such

that (3.11) holds for all j ∈ N1,τ and v∈C\Pα , j , where Ã j :=−bα j−1(z j)
(
Xj−1(z j)

)∗
and B̃ j :=

(
Y [α , j−1]

j−1 (z j)
)∗ (resp., D̃ j :=−bα j−1(z j)

(
Yj−1(z j)

)∗
and Ẽ j :=

(
X [α , j−1]

j−1 (z j)
)∗ )

with a pair [(Xk)τ−1
k=0 ,(Yk)τ−1

k=0 ] of orthonormal systems corresponding to (α j)∞
j=1 and

F , then
F ∈ M q

�(T,BT)\M q,mol
�,τ (T,BT).

Proof. Apply Corollary 4.5 along with Proposition 5.6. �
It should be noted that, for the scalar case q = 1 with some τ ∈ N , Corollary 5.8

(resp., Corollary 5.9) leads in connection with Corollary 3.8 to a characterization of
whether a measure F belongs to M 1,τ

� (T,BT) or not (cf. [14, Proposition 3.9]).

REMARK 5.10. Let τ ∈ N and let Δ(l)
τ and Δ̃(l)

τ (resp., Δ(r)
τ and Δ̃(r)

τ ) be de-
fined as in Lemma 4.3. In view of Lemma 4.3 and the proof of Proposition 5.6 one

can see that Δ(l)
τ = Δ(r)

τ (resp., Δ̃(l)
τ = Δ̃(r)

τ ) when the underlying measure F belongs to
M q,τ

� (T,BT) or to M q,mol
�,τ (T,BT)∩M q,τ−1

� (T,BT) . Moreover, based on [17, Corol-
lary 5.10] one can realize that this equality holds as well in the special case of matrix
polynomials, i.e. if α j = 0 for each j ∈ N1,τ (without additional restriction on F ).

For any τ ∈ N , Remark 5.10 leads us to surmise that, in general, the sets Δ(l)
τ and

Δ(r)
τ (resp., Δ̃(l)

τ and Δ̃(r)
τ ) stated in Lemma 4.3 coincide.

REMARK 5.11. Because of Lemma 4.3 and Proposition 5.6, for some τ ∈ N , the
sets Δτ and Δ̃τ in Theorem 4.4 are empty if F ∈ M q,τ

� (T,BT) and consists of the τ
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mass points of F in case that F ∈ M q,mol
�,τ (T,BT)∩M q,τ−1

� (T,BT) . In particular, it
follows that the location of the poles of the relevant rational matrix functions has no
influence on the form of the sets Δτ and Δ̃τ in these situations.

Remark 5.11 results in the supposition that, in general, the location of the poles of
the relevant rational matrix functions has no influence on the form of Δτ and Δ̃τ .

Even though Proposition 5.6 and Remark 5.11 suggest the opposite, the sets Δτ
and Δ̃τ do not always coincide. This is emphasized by the following simple example
(as in Example 5.3) with q = 2 and τ = 1.

EXAMPLE 5.12. Let u1 ∈ T and u2 ∈ T\ {u1} . Let F := εu1,BT
A1 + εu2,BT

A2 ,
where

A1 :=
(

1 0
0 0

)
and A2 :=

(
0 0
0 1

)
.

Furthermore, let α1 ∈C\T . Then F belongs to M 2,mol
�,2 (T,BT)\M 2,mol

�,1 (T,BT) and

M 2,0
� (T,BT)\M 2,1

� (T,BT) , where
(
B(2)

α ,1,C
(α ,F)
0,z

)
F,l �=B(2)

α ,1(z) and
(
A(α ,F)

0,z ,B(2)
α ,1

)
F,r �=

B(2)
α ,1(z) for each z ∈ T . But,

(
B(2)

α ,1,C
(α ,F)
0,u1

)
F,l −B(2)

α ,1(u1) ,
(
B(2)

α ,1,C
(α ,F)
0,u2

)
F,l −B(2)

α ,1(u2) ,(
A(α ,F)

0,u1
,B(2)

α ,1

)
F,r −B(2)

α ,1(u1) ,
(
A(α ,F)

0,u2
,B(2)

α ,1

)
F,r −B(2)

α ,1(u2) are singular matrices.

Proof. The choice of F implies immediately that

F ∈ M 2,mol
�,2 (T,BT)\M 2,mol

�,1 (T,BT),

where
F(T) = A1 +A2 = I2.

Thus, based on [29, Theorem 6.11] we get F ∈ M 2,0
� (T,BT) \M 2,1

� (T,BT) . Fur-

thermore, because of (2.3)–(2.5) one can see that C(α ,F)
0,z (resp., A(α ,F)

0,z ) is the constant
function on C0 with value I2 for each z ∈ T . Consequently, for each z ∈ T , we get(

B(2)
α ,1,C

(α ,F)
0,z

)
F,l −B(2)

α ,1(z) = B(2)
α ,1(u1)A1 +B(2)

α ,1(u2)A2−B(2)
α ,1(z)

=
(

bα1(u1)−bα1(z) 0
0 bα1(u2)−bα1(z)

)
and similarly

(
A(α ,F)

0,z ,B(2)
α ,1

)
F,r −B(2)

α ,1(z) =
(

bα1(u1)−bα1(z) 0
0 bα1(u2)−bα1(z)

)
.

Finally, in view of (2.6) it follows that the inequalities
(
B(2)

α ,1,C
(α ,F)
0,z

)
F,l �= B(2)

α ,1(z) and(
A(α ,F)

0,z ,B(2)
α ,1

)
F,r �= B(2)

α ,1(z) hold for each z ∈ T and that
(
B(2)

α ,1,C
(α ,F)
0,u1

)
F,l −B(2)

α ,1(u1) ,(
B(2)

α ,1,C
(α ,F)
0,u2

)
F,l−B(2)

α ,1(u2) ,
(
A(α ,F)

0,u1
,B(2)

α ,1

)
F,r−B(2)

α ,1(u1) and
(
A(α ,F)

0,u2
,B(2)

α ,1

)
F,r−B(2)

α ,1(u2)
are singular matrices. �
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The existence results presented above (regardless of the exact construction of the
relevant objects) do not depend on the concrete choice of the underlying sequence
(α j)∞

j=1 . This leads us to surmise that, similar to the case for left (resp., right) or-
thogonal systems of rational matrix functions (cf. [30, Corollary 4.4]), the existence
of a left (resp., right) para-orthogonal system (Pj)τ

j=1 corresponding to (α j)∞
j=1 and F

for some (α j)∞
j=1 ∈ T1 implies the existence of such a system for any (α j)∞

j=1 ∈ T1

(cf. Corollary 4.8). Note that this equivalence is fulfilled in the scalar case q = 1 (see
[14, Corollary 3.7 and Corollary 3.10]).

6. Particular pairs of para-orthogonal rational matrix functions

We now consider specific left (resp., right) strictly para-orthogonal systems (Pj)τ
j=1

corresponding to some (α j)∞
j=1 ∈ T1 and F ∈ M q,τ

� (T,BT) with τ ∈ N or τ = ∞ .
By comparing Corollary 3.6 to [34, Theorem 6.8], we see that the extremal solu-

tions of a matrix moment problem discussed in [33], [34], and [43] make up a distin-
guished structure that is determined by special para-orthogonal rational matrix func-
tions. The para-orthogonal systems studied below are similarly associated to another
kind of extremal solutions having to do with the moment problem in question (cf. [32,
Section 9]). In particular, this kind of para-orthogonal system can be applied in the
scalar case q = 1 of rational functions to obtain quadrature formulas on the unit circle
T (see, e.g., [8] and [11]).

DEFINITION 6.1. Let (α j)∞
j=1 ∈T1 and let τ ∈N or τ = ∞ . Let F ∈M q

�(T,BT) .
A pair of para-orthogonal systems [(Pj)τ

j=1,(Rj)τ
j=1] corresponding to (α j)∞

j=1 and F
is called canonical if there exists a pair of orthonormal systems [(Xk)τ

k=0,(Yk)τ
k=0] cor-

responding to (α j)∞
j=1 and F such that, for each j ∈ N1,τ , the functions Pj and Rj

admit the representations

Pj = U jXj +Y [α , j]
j and Rj = YjU j +X [α , j]

j ,

where U j is some unitary q×q matrix.

Note that the representations in Definition 6.1 depend on the choice of the pair of
orthonormal systems [(Xk)τ

k=0,(Yk)τ
k=0] . Because of [30, Proposition 3.7] we, however,

see that this is not essential.
Following up on Remarks 3.2 and 3.3, we now present some elementary properties

relating to Definition 6.1. In doing so, unless otherwise indicated, let (α j)∞
j=1 ∈T1 and

let τ ∈ N or τ = ∞ . Furthermore, let F ∈ M q
�(T,BT) be arbitrary, but fixed.

REMARK 6.2. Let [(Pj)τ
j=1,(Rj)τ

j=1] be a pair of para-orthogonal systems corre-
sponding to (α j)∞

j=1 and F . Then:

(a) Let (V j)τ
j=1 and (W j)τ

j=1 be sequences of unitary q× q matrices. By The-
orem 3.5, (2.8), and [30, Remark 2.8 and Proposition 3.7] one can see that
[(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-orthogonal systems corresponding
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to (α j)∞
j=1 and F if and only if [(V jPj)τ

j=1,(RjW j)τ
j=1] is a canonical pair of

para-orthogonal systems corresponding to (α j)∞
j=1 and F .

(b) By using Theorem 3.5 along with [30, Remarks 2.11 and 3.5], a simple calcula-
tion shows that [(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-orthogonal systems

corresponding to (α j)∞
j=1 and F if and only if [(RT

j )
τ
j=1,(P

T
j )τ

j=1] is a canonical

pair of para-orthogonal systems corresponding to (α j)∞
j=1 and FT .

(c) From Theorem 3.5, (2.8), and [30, Remark 2.8 and Proposition 3.7] it follows
that [(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-orthogonal systems correspon-

ding to (α j)∞
j=1 and F if and only if [(R[α , j]

j )τ
j=1,(P

[α , j]
j )τ

j=1] is a canonical pair
of para-orthogonal systems corresponding to (α j)∞

j=1 and F .

(d) Let A ∈ Cq×q be nonsingular and let FA ∈ M q
�(T,BT) be given as in Re-

mark 3.3. Then [(Xk)τ
k=0,(Yk)τ

k=0] is a pair of orthonormal systems corresponding
to (α j)∞

j=1 and F if and only if [(XkA−∗)τ
k=0,(A

−1Yk)τ
k=0] is a pair of orthonor-

mal systems corresponding to (α j)∞
j=1 and FA . Thus, a pair [(Pj)τ

j=1,(Rj)τ
j=1]

is a canonical pair of para-orthogonal systems corresponding to (α j)∞
j=1 and F

if and only if [(PjA−∗)τ
j=1,(A

−1Rj)τ
j=1] is a canonical pair of para-orthogonal

systems corresponding to (α j)∞
j=1 and FA .

One crucial point for obtaining quadrature formulas in the scalar case q = 1 of ra-
tional functions based on para-orthogonal systems is that all zeros of the corresponding
functions are located on the unit circle T (see, e.g., [8, Theorem 4]). The next consider-
ations serve to clarify that canonical pairs of para-orthogonal systems of rational matrix
functions comprise a similar property concerning determinants. We first remark that,
by using the same argumentation as in the proof of [34, Lemma 4.9] (on the basis of
the Christoffel–Darboux formulas for orthonormal systems of rational matrix functions
stated in [30, Theorem 4.5]), one can verify the following result.

REMARK 6.3. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Let F ∈ M q,τ

� (T,BT)
and suppose that [(Xk)τ

k=0,(Yk)τ
k=0] is a pair of orthonormal systems corresponding to

(α j)∞
j=1 and F . Let j ∈ N1,τ . Then the rational matrix-valued function Θ̃ j given by

Θ̃ j :=

⎧⎨⎩
(
X [α , j]

j

)−1
Yj if α j ∈ D

Y−1
j X [α , j]

j if α j ∈ C\D

admits the representation

Θ̃ j =

⎧⎨⎩Xj
(
Y [α , j]

j

)−1
if α j ∈ D

Y [α , j]
j X−1

j if α j ∈ C\D ,

where the inverse values of matrix functions are well-defined on (D∪T) \Pα , j , the
matrix Θ̃ j(w) is strictly contractive for w ∈ D\Pα , j , and Θ̃ j(z) is a unitary matrix for
z ∈ T . Moreover, for all v,w ∈ (D∪T)\Pα , j , the following statements are equivalent:
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(i) Θ̃ j(w) = Θ̃ j(v) .

(ii) v = w or (A(α ,F)
j−1,w)[α , j−1](v) = 0q×q .

(iii) v = w or (C(α ,F)
j−1,w)[α , j−1](v) = 0q×q .

LEMMA 6.4. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Let F ∈ M q

�(T,BT)
and suppose that [(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-orthogonal systems

corresponding to (α j)∞
j=1 and F . Let j ∈ N1,τ and let πα , j be the polynomial given by

(2.1). Furthermore, let p j and r j be the complex q× q matrix polynomials of degree
not greater than j such that

Pj =
1

πα , j
p j and Rj =

1
πα , j

r j.

(a) There exists a unitary q×q matrix U j such that p j = U j r̃
[ j]
j . In particular, the

equalities det p j = u j det r̃[ j]
j and u j det p̃[ j]

j = detr j hold for some u j ∈ T . More-

over, N
(
p j(v)

)
= N

(
r̃[ j]

j (v)
)

for each v ∈ C and N
(
p j(z)

)
= N

(
(r j(z))∗

)
for each z ∈ T .

(b) There is a ŭ j ∈ T such that ŭ j det p j = detr j and det p̃[ j]
j = ŭ j det r̃[ j]

j .

(c) There exist at most j pairwise different complex numbers w1,w2, . . . ,wj such
that p j(ws) = 0 (resp., r j(ws) = 0) holds for each s ∈ N1, j and there exist at
most jq pairwise different complex numbers z1,z2, . . . ,z jq such that the complex
q×q matrix p j(zs) (resp., r j(zs)) is singular for each s ∈ N1, jq .

(d) If one of the matrices p j(z) , r j(z) , p̃[ j]
j (z) , or r̃[ j]

j (z) is singular for some z ∈ C ,
then all of them are singular and z ∈ T .

(e) Each of the functions p j , r j , p̃[ j]
j , and r̃[ j]

j is a complex q×q matrix polynomial
of degree j with a nonsingular matrix as leading coefficient.

Proof. (a) Because of Definition 6.1 there is a unitary q×q matrix U and a pair
of orthonormal systems [(Xk)τ

k=0,(Yk)τ
k=0] corresponding to (α j)∞

j=1 and F such that

Pj = UXj +Y [α , j]
j and Rj = YjU+X [α , j]

j .

Let x j and y j be the q×q matrix polynomials of degree not greater than j so that

Xj =
1

πα , j
x j and Yj =

1
πα , j

y j. (6.1)

Based on (6.1) and [30, Proposition 2.13] we see that there is a η ∈ T such that

X [α , j]
j = η

1
πα , j

x̃[ j]
j and Y [α , j]

j = η
1

πα , j
ỹ[ j]

j . (6.2)
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If U j := ηU , then U j is a unitary q×q matrix and from (6.1) and (6.2) it follows

p j = Ux j + η ỹ[ j]
j = U j(ηx j +U∗ỹ[ j]

j ) = U j r̃
[ j]
j .

This implies that N
(
p j(v)

)
= N

(
r̃[ j]

j (v)
)

for each v ∈ C and det p j = u j det r̃[ j]
j and

u j det p̃[ j]
j = detr j with u j := detU j , where u j ∈ T . Since r̃[ j]

j (z) = z j
(
r j(z)

)∗
for each

z ∈ T (see, e.g., [27, Lemma 1.2.2]), we get N
(
p j(z)

)
= N

(
(r j(z))∗

)
.

(b) From (6.2) and [30, Corollary 4.4 and Theorem 6.10] we get det x̃[ j]
j = ŭ j det ỹ[ j]

j for
some ŭ j ∈ T . Recalling (6.1), (6.2), [30, Corollary 4.4, Remark 6.2, and Lemma 6.5],

and [27, Lemma 1.1.8], for each v ∈ C\Pα , j satisfying det x̃[ j]
j (v) �= 0, we have

ŭ j det p j(v) = ŭ j det
(
Ux j(v)

(
ỹ[ j]

j (v)
)−1 + ηIq

)
det ỹ[ j]

j (v)

= ηq det
(

ηU
(
x̃[ j]

j (v)
)−1

y j(v)+ Iq

)
det x̃[ j]

j (v)

= det
(
y j(v)U

(
x̃[ j]

j (v)
)−1 + ηIq

)
det x̃[ j]

j (v) = detr j(v).

Thus, by using [30, Corollaries 4.4 and 4.7] and a continuity argument, we get

ŭ j det p j = detr j.

This directly leads us to det p̃[ j]
j = ŭ j det r̃[ j]

j (see, e.g., [30, Remark 2.6]).

(d) If one of the matrices p j(z) , r j(z) , p̃[ j]
j (z) , or r̃[ j]

j (z) is singular for a z ∈ C , then
we see that all of them are singular due to (a) and (b). Let α j ∈ D . Recalling [30,
Corollary 4.4 and Remark 6.2] and [31, Theorem 3.10 and Lemma 3.11], we know that

det ỹ[ j]
j (w) �= 0

for each w ∈ D . Furthermore, from [30, Corollary 4.4] and Remark 6.3 we find that
the matrix x j(w)

(
ỹ[ j]

j (w)
)−1

is strictly contractive for each w ∈ D \Pα , j . An elemen-
tary result for matricial Schur functions (see, e.g., [27, Lemma 2.1.5]) shows then that

x j(w)
(
ỹ[ j]

j (w)
)−1

is strictly contractive even for all w ∈ D . Therefore (use, e.g., [27,

Remark 1.1.2 and Lemma 1.1.13]), for each w ∈ D , the matrix ηUx j(w)
(
ỹ[ j]

j (w)
)−1 is

strictly contractive and

det p j(w) = ηq det
(

ηUx j(w)
(
ỹ[ j]

j (w)
)−1 + Iq

)
det ỹ[ j]

j (w) �= 0.

Similarly, in the case of α j ∈ C\D , based on [30, Corollary 4.4 and Remark 6.2], [31,
Theorem 3.10 and Lemma 3.11], and Remark 6.3 we find that detx j(w) �= 0, where the
matrix ηU∗ỹ[ j]

j (w)
(
x j(w)

)−1
is strictly contractive and det p j(w) �= 0 for each w ∈ D .

Combining this with (a) and (b) we obtain that

det p̃[ j]
j (w) �= 0
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for each w ∈ D . Finally, it follows from [27, Lemma 1.2.3] that if det p j(z) = 0 is
satisfied for some z ∈ C , then z belongs to T .

(e) By (d) we realize that p̃[ j]
j (0) , r̃[ j]

j (0) , p j(0) , and r j(0) are nonsingular matrices.

This implies that each of the functions p j , r j , p̃[ j]
j , and r̃[ j]

j are complex q×q matrix
polynomials of (exact) degree j with a nonsingular matrix as leading coefficient.
(c) Since from (e) we know that p j (resp., r j) is a complex q× q matrix polyno-
mial of degree j with a nonsingular matrix as leading coefficient, we see that (c) is an
immediate consequence of the Fundamental Theorem of Algebra. �

THEOREM 6.5. Let (α j)∞
j=1 ∈ T1 and let τ ∈ N or τ = ∞ . Let F ∈ M q

�(T,BT)
and suppose that [(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-orthogonal systems

corresponding to (α j)∞
j=1 and F . Furthermore, let j ∈ N1,τ . Then:

(a) There is a unitary q × q matrix U j such that Pj = U jR
[α , j]
j . In particular,

detPj = u j detR[α , j]
j and u j detP[α , j]

j = detRj hold for some u j ∈ T . Moreover,

N
(
Pj(v)

)
= N

(
R[α , j]

j (v)
)

for v ∈ C0 \ Pα , j and N
(
Pj(z)

)
= N

(
(Rj(z))∗

)
for z ∈ T .

(b) There is a ŭ j ∈ T such that ŭ j detPj = detRj and detP[α , j]
j = ŭ j detR[α , j]

j .

(c) There exist at most j pairwise different points w1,w2, . . . ,wj ∈ C0 \Pα , j such
that Pj(ws) = 0 (resp., R j(ws) = 0) holds for each s ∈ N1, j and there exist at
most jq pairwise different points z1,z2, . . . ,z jq ∈ C0 \Pα , j such that the complex
q×q matrix Pj(zs) (resp., R j(zs)) is singular for each s ∈ N1, jq .

(d) If one of the values Pj(z) , R j(z) , P[α , j]
j (z) , or R[α , j]

j (z) is a singular matrix for
some z ∈ C0 \Pα , j , then all of them are singular and z ∈ T .

(e) Each of the functions Pj , R j , P[α , j]
j , and R[α , j]

j belongs to Rq×q
α , j \Rq×q

α , j−1 .

(f) If Z0 is a constant function on C0 with a nonsingular complex q× q matrix as
value and if Zn∈{Pn,Rn,P

[α ,n]
n ,R[α ,n]

n } for n∈N1, j , then Z0,Z1, . . . ,Zj is a basis
of the right Cq×q -module Rq×q

α , j and of the left Cq×q -module Rq×q
α , j .

Proof. Recalling [30, Proposition 2.13], we see that the assertions of (a)–(d) are
a simple consequence of Lemma 6.4. Furthermore, from (d) we can then conclude
that the complex q× q matrices P[α , j]

j (α j) , R[α , j]
j (α j) , Pj(α j) , and Rj(α j) are all

nonsingular. This implies along with [30, Equation (2.10)] (resp., [30, Remark 2.17])
that (e) (resp., (f)) holds. �

It is worth noting that the statement of part (f) of Theorem 6.5 does not hold for ar-
bitrary pairs of para-orthogonal systems of rational matrix functions (cf. Remark 3.11).
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REMARK 6.6. Because of Definition 6.1, Theorem 3.5, and [30, Corollary 4.4]
there is a canonical pair of para-orthogonal systems [(Pj)τ

j=1,(Rj)τ
j=1] corresponding

to (α j)∞
j=1 and F if and only if the measure F belongs to M q,τ

� (T,BT) . Furthermore,
Definition 6.1, Theorem 3.5, and [30, Corollary 4.4] imply that [(Pj)τ

j=1,(Rj)τ
j=1]

is a pair of strictly para-orthogonal systems corresponding to (α j)∞
j=1 and F , where a

pair [(Xk)τ
k=0,(Yk)τ

k=0] of orthonormal systems corresponding to (α j)∞
j=1 and F exists

so that, for each j ∈ N1,τ , the complex q×q matrix
(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j) is unitary,(

Pj,B
(q)
α , j

)
F,l

X [α , j]
j (α j) = Y [α , j]

j (α j)
(
B(q)

α , j,Rj
)
F,r ,

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗ = Iq , and

(
Pj,B

(q)
α ,0

)
F,l(

Y [α , j]
j (α j)

)∗ =
(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r .

Taking Remark 6.6 into account, without loss of generality, we now assume that
the underlying measure F belongs to M q,τ

� (T,BT) .
In the q = 1 case for complex-valued functions, the para-orthogonal systems in

Definition 6.1 can be characterized up to multiplication with nonzero constants via
an invariance property with respect to the transformation given by (2.7) (see, e.g., [8,
Theorem 3]). In the pure matrix case q � 2, the situation comes across as somewhat
less elegant. Nevertheless, we now present a result which can be regarded as a matricial
version of that characterization.

PROPOSITION 6.7. Let (α j)∞
j=1 ∈T1 . Let τ ∈ N or τ = ∞ and suppose that F ∈

M q,τ
� (T,BT) . Furthermore, let (Pj)τ

j=1 (resp., (Rj)τ
j=1) be a sequence of complex

q×q matrix functions.

(a) Let [(Xk)τ
k=0,(Yk)τ

k=0] be a pair of orthonormal systems corresponding to (α j)∞
j=1

and F . Then the following statements are equivalent:

(i) [(Pj)τ
j=1,(Rj)τ

j=1] is a pair of para-orthogonal systems corresponding to
(α j)∞

j=1 and F such that, for j ∈ N1,τ , the following conditions hold:

(I) Rj = P[α , j]
j C j for some nonsingular complex q×q matrix C j .

(II) At least one of the matrices
(
Pj,B

(q)
α ,0

)
F,l ,

(
Pj,B

(q)
α , j

)
F,l ,

(
B(q)

α ,0,Rj
)
F,r ,

or
(
B(q)

α , j,Rj
)
F,r) is nonsingular.

(III)
(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗ =

(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r .

(IV)
(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j) = Y [α , j]

j (α j)
(
B(q)

α , j,Rj
)
F,r .

(V) At least one of the following identities holds:(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j)

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗

=
(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,rY

[α , j]
j (α j)

(
B(q)

α , j,Rj
)
F,r ,(

Pj,B
(q)
α , j

)
F,lX

[α , j]
j (α j)

(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r

=
(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗

Y [α , j]
j (α j)

(
B(q)

α , j,Rj
)
F,r ,
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Y [α , j]
j (α j)

(
B(q)

α , j,Rj
)
F,r

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗

=
(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r

(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j) .

(ii) For j ∈ N1,τ , there are nonsingular complex q× q matrices A j and B j

such that A jB−1
j is a unitary matrix, so that A jB j = B jA j , and that

Pj = A jXj +B jY
[α , j]
j and R j = YjA j +X [α , j]

j B j.

(b) Let (i) be satisfied. If j ∈N1,τ , then the q×q matrices
(
Pj,B

(q)
α ,0

)
F,l ,
(
Pj,B

(q)
α , j

)
F,l ,(

B(q)
α ,0,Rj

)
F,r , and

(
B(q)

α , j,Rj
)
F,r are nonsingular, the matrices A j and B j from

(ii) and the matrix C j from (I) are uniquely determined, where C j = B−∗
j A j

and C j = A−∗
j B j . In particular, [(B−1

j Pj)τ
j=1,(RjB−1

j )τ
j=1] is a canonical pair of

para-orthogonal systems corresponding to (α j)∞
j=1 and F . Moreover, for some

j ∈ N1,τ , in the case of A∗
jA j = A jA∗

j or B∗
jB j = B jB∗

j the matrix C j is unitary.

(c) If [(Pj)τ
j=1,(Rj)τ

j=1] is a given canonical pair of para-orthogonal systems cor-
responding to (α j)∞

j=1 and F , then there exists a pair of orthonormal systems
[(Xk)τ

k=0,
(Yk)τ

k=0] corresponding to (α j)∞
j=1 and F such that, for each j ∈ N1,τ , con-

ditions (I)–(V) of (i) are satisfied, where C j is a unitary q×q matrix.

Proof. Suppose that (i) holds. Let j ∈ N1,τ . Because of (i) and Theorem 3.5 we
already know that there exist complex q×q matrices A j , B j , D j , and E j , all not equal
to the zero matrix, such that the identities

Pj = A jXj +B jY
[α , j]
j and Rj = YjD j +X [α , j]

j E j

are satisfied, where

A j =
(
Pj,B

(q)
α , j

)
F,lX

[α , j]
j (α j), B j =

(
Pj,B

(q)
α ,0

)
F,l

(
Y [α , j]

j (α j)
)∗

and
D j = Y [α , j]

j (α j)
(
B(q)

α , j,Rj
)
F,r, E j =

(
X [α , j]

j (α j)
)∗(

B(q)
α ,0,Rj

)
F,r.

In view of (III) and (IV) we get B j = E j and A j = D j . Therefore, from (I) along with
(2.8) and [30, Remarks 2.7 and 2.8] it follows that

O = Rj −P[α , j]
j C j = YjA j +X [α , j]

j B j −X [α , j]
j A∗

jC j −YjB∗
jC j

=Yj(A j −B∗
jC j)+X [α , j]

j (B j −A∗
jC j).

Taking Remark 3.10 into account, we obtain A j = B∗
jC j and B j = A∗

jC j . Since C j

is a nonsingular matrix (see (I)) and since X [α , j]
j (α j) and Y [α , j]

j (α j) are nonsingular
matrices as well (see, e.g., [30, Theorem 4.5]), from (II) and the representations for
the matrices A j , B j , D j , and E j one can find that the complex q× q matrices A j

and B j as well as
(
Pj,B

(q)
α ,0

)
F,l ,

(
Pj,B

(q)
α , j

)
F,l ,

(
B(q)

α ,0,Rj
)
F,r , and

(
B(q)

α , j,Rj
)
F,r are all
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nonsingular. In particular, we get C j = B−∗
j A j and C j = A−∗

j B j . Furthermore, (V)

leads to A jB j = B jA j . This implies A jB−1
j = B−1

j A j and consequently we obtain that

A jB−1
j (A jB−1

j )∗ = A jB−1
j (B−1

j A j)∗ = A j(A−∗
j B j)−1B−∗

j

= A jC−1
j B−∗

j = A j(B−∗
j A j)−1B−∗

j = Iq,

i.e. that the matrix A jB−1
j (resp., B−1

j A j ) is unitary. In conclusion, we have proven

that (i) implies (ii) and we see that [(B−1
j Pj)τ

j=1,(RjB−1
j )τ

j=1] is a canonical pair of
para-orthogonal systems corresponding to (α j)∞

j=1 and F . In the special case that

A∗
jA j = A jA∗

j or B∗
jB j = B jB∗

j

for some j ∈ N1,τ , then A−∗
j A j or B−∗

j B j is a unitary q×q matrix. By using

C j = A−∗
j B j = A−∗

j A j(B−1
j A j)−1 or C j = B−∗

j A j = B−∗
j B jB−1

j A j

and the fact that B−1
j A j is a unitary q× q matrix, we find that the q× q matrix C j

is also unitary. Thus, part (b) is verified. Suppose now that (ii) holds. An application
of Theorem 3.5 gives us that [(Pj)τ

j=1,(Rj)τ
j=1] is a pair of para-orthogonal systems

corresponding to (α j)∞
j=1 and F such that, for each j ∈ N1,τ , the conditions (II)–(V)

are satisfied. It remains to be shown that (I) holds as well. Let j ∈ N1,τ . Because of
A jB j = B jA j we have A jB−1

j = B−1
j A j . Hence, the unitarity of A jB−1

j implies that

A∗
jB

−∗
j A jB−1

j = (B−1
j A j)∗A jB−1

j = (A jB−1
j )∗A jB−1

j = Iq,

i.e. that A−∗
j B j = B−∗

j A j . Finally, if we set C j := B−∗
j A j , then based on (2.8) and [30,

Remarks 2.7 and 2.8] we get

Rj =YjA j +X [α , j]
j B j = YjB∗

jB
−∗
j A j +X [α , j]

j A∗
jA

−∗
j B j

=
(
YjB∗

j +X [α , j]
j A∗

j

)
B−∗

j A j = P[α , j]
j C j.

Thus, we have shown that (i) follows from (ii). This completes the proof of (a). Part (c)
is a simple consequence of Definition 6.1 and (a). �

COROLLARY 6.8. Let (α j)∞
j=1 ∈T1 . Let τ ∈N or τ = ∞ and F ∈M q,τ

� (T,BT) .
Suppose that [(Xk)τ

k=0,(Yk)τ
k=0] is a pair of orthonormal systems corresponding to

(α j)∞
j=1 and F and that [(Pj)τ

j=1,(Rj)τ
j=1] is a pair of para-orthonormal systems cor-

responding to (α j)∞
j=1 and F such that, for each j ∈ N1,τ , the conditions (I)–(V) of

Proposition 6.7 are satisfied. Furthermore, let j ∈ N1,τ . Then:

(a) The equalities detPj = c j detR[α , j]
j and c j detP[α , j]

j = detRj are satisfied for some

c j ∈ C\{0} . Moreover, N
(
Pj(v)

)
= N

(
R[α , j]

j (v)
)

holds for each v∈ C0 \Pα , j

and N
(
Pj(z)

)
= N

(
(Rj(z))∗

)
for each z ∈ T .
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(b) There is a ŭ j ∈ T such that ŭ j detPj = detRj and detP[α , j]
j = ŭ j detR[α , j]

j .

(c) There exist at most j pairwise different points w1,w2, . . . ,wj ∈ C0 \Pα , j such
that Pj(ws) = 0 (resp., R j(ws) = 0) holds for each s ∈ N1, j and there exist at
most jq pairwise different points z1,z2, . . . ,z jq ∈ C0 \Pα , j such that the complex
q×q matrix Pj(zs) (resp., R j(zs)) is singular for each s ∈ N1, jq .

(d) If one of the values Pj(z) , R j(z) , P[α , j]
j (z) , or R[α , j]

j (z) is a singular matrix for
some z ∈ C0 \Pα , j , then all of them are singular and z ∈ T .

(e) Each of the functions Pj , R j , P[α , j]
j , and R[α , j]

j belongs to Rq×q
α , j \Rq×q

α , j−1 .

(f) If Z0 is a constant function on C0 with a nonsingular complex q× q matrix as
value and if Zn∈{Pn,Rn,P

[α ,n]
n ,R[α ,n]

n } for n∈N1, j , then Z0,Z1, . . . ,Zj is a basis
of the right Cq×q -module Rq×q

α , j u and of the left Cq×q -module Rq×q
α , j .

Proof. Use Proposition 6.7 along with Theorem 6.5. �
The considerations below following up on Corollaries 3.6, 3.7, 3.8, and 3.9. Some-

what different from earlier, the result corresponding to Corollary 3.6 for the para-
orthogonal systems introduced in Definition 6.1 leads to a kind of characterization for
such para-orthogonal systems. We first present a common result on linear fractional
matrix transformations.

LEMMA 6.9. Let a , b , c , and d be complex q×q matrices such that, by setting

A :=
(

a b
c d

)
and jqq :=

(
Iq 0
0 −Iq

)
,

the equality A∗jqqA = s jqq is satisfied, where s = 1 or s = −1 .

(a) If U is a unitary q× q matrix, then det(Ub+d) �= 0 and (Ub+d)−1(Ua+ c)
is a unitary q× q matrix. Moreover, if Ũ is a unitary q× q matrix, then there
exists a unitary q×q matrix U such that Ũ = (Ub+d)−1(Ua+ c) .

(b) If U is a unitary q× q matrix, then det(cU+d) �= 0 and (aU+b)(cU+d)−1

is a unitary q× q matrix. Moreover, if Ũ is a unitary q× q matrix, then there
exists a unitary q×q matrix U such that Ũ = (aU+b)(cU+d)−1 .

(c) Let z ∈ T and let
B := z

(
d∗ b∗
c∗ a∗

)
.

Then B∗jqqB = s jqq and, for a unitary q× q matrix U , the matrix c∗U+ a∗ is
nonsingular and (Ub+d)−1(Ua+ c) = (d∗U+b∗)(c∗U+a∗)−1 holds.

Proof. Using standard methods for linear fractional matrix transformations, the
proof is straightforward (cf. [2, Section 2.9] and [27, Section 1.6]). �
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PROPOSITION 6.10. Let (α j)∞
j=1 ∈ T1 . Let τ ∈ N or τ = ∞ and let F ∈

M q,τ
� (T,BT) . Suppose that [(Xk)τ

k=0,(Yk)τ
k=0] is a pair of orthonormal systems corre-

sponding to (α j)∞
j=1 and F.

(a) Let [(Pj)τ
j=1,(Rj)τ

j=1] be a canonical pair of para-orthogonal systems correspon-
ding to (α j)∞

j=1 and F . Furthermore, let j ∈N1,τ . Then there are a unitary q×q
matrix Ũ j and some nonsingular complex q×q matrices C̃ j and D̃ j such that

Pj(v) =
1−α j−1v

1−α jv
C̃ j
(
bα j−1(v)Ũ jXj−1(v)+Y [α , j−1]

j−1 (v)
)
,

(6.3)

Rj(v) =
1−α j−1v
1−α jv

(
bα j−1(v)Yj−1(v)Ũ j +X [α , j−1]

j−1 (v)
)
D̃ j

hold for each v ∈ C\Pα , j , where Ũ j , C̃ j , and D̃ j are uniquely determined.

(b) For each j ∈ N1,τ , let Ũ j be a unitary q×q matrix. Then there exists a canoni-
cal pair [(Pj)τ

j=1,(Rj)τ
j=1] of para-orthogonal systems corresponding to (α j)∞

j=1
and F , such that the identities in (6.3) hold for each j ∈ N1,τ and each point
v ∈ C\Pα , j with some nonsingular complex q×q matrices C̃ j and D̃ j .

Proof. Based on Lemma 6.9, [30, Remark 2.8 and Proposition 3.7], and [31, Re-
mark 3.5] a similar approach to the one used for Corollary 3.6 yields the assertion. �

REMARK 6.11. Let (α j)∞
j=1 ∈T1 . Let τ ∈N or τ = ∞ and let F ∈M q,τ

� (T,BT) .

(a) Let (Pj)τ
j=1 and (Rj)τ

j=1 be sequences of complex q×q matrix-valued functions.
By using [30, Corollary 4.4 and Theorem 4.5] as in the proof of Corollary 3.7,
one can see that the following statements are equivalent:

(i) [(Pj)τ
j=1,(Rj)τ

j=1] is a canonical pair of para-orthogonal systems correspon-
ding to (α j)∞

j=1 and F .

(ii) For j ∈ N1,τ , there are unitary q×q matrices W̆ j , V̆ j , and Ŭ j such that

Pj = W̆ j

(
Ŭ j

√
A(α ,F)

j,α j
(α j)

−1(
A(α ,F)

j,α j

)[α , j] +
√

C(α ,F)
j,α j

(α j)
−1

C(α ,F)
j,α j

)
,

Rj =
((

C(α ,F)
j,α j

)[α , j]
√

C(α ,F)
j,α j

(α j)
−1

Ŭ j +A(α ,F)
j,α j

√
A(α ,F)

j,α j
(α j)

−1)
V̆ j.

Moreover, if (i) holds, then the q× q matrices W̆ j , V̆ j , and Ŭ j in (ii) are

uniquely determined for each j ∈ N1,τ , where W̆ j =
(
Pj,B

(q)
α ,0

)
F,l

√
C(α ,F)

j,α j
(α j) ,

V̆ j =
√

A(α ,F)
j,α j

(α j)(
B(q)

α ,0,Rj
)
F,r , Ŭ j = W̆∗

j

(
Pj,B

(q)
α , j

)
F,l

√
A(α ,F)

j,α j
(α j) , and Ŭ j =

√
C(α ,F)

j,α j
(α j)(

B(q)
α , j,Rj

)
F,rV̆

∗
j .
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(b) Suppose that [(Xk)τ
k=0,(Yk)τ

k=0] is a pair of orthonormal systems corresponding
to (α j)∞

j=1 and F . Furthermore, for each j ∈ N1,τ , let z j ∈ T and let

Pj :=
(
1−bα j(z j)bα j

)(
Y [α , j]

j (z j)
)−∗

C(α ,F)
j−1,z j

,

Rj :=
(
1−bα jbα j(z j)

)
A(α ,F)

j−1,z j

(
X [α , j]

j (z j)
)−∗

.

Because of Remark 6.3 and [30, Remark 2.6, Corollary 4.7, Lemma 5.1, and
Theorem 5.4] one can see that [(Pj)τ

j=1,(Rj)τ
j=1] is a canonical pair of para-

orthogonal systems corresponding to (α j)∞
j=1 and F (cf. Corollary 3.8).

REMARK 6.12. Let (α j)∞
j=1 ∈T1 . Let n∈N0 and suppose that F ∈M q,n

� (T,BT) .

Let w ∈ D\Pα ,n and let F (α)
n,w be defined as in Corollary 3.9. Let τ ∈ N or τ = ∞ and

let (Pj)τ
j=1 and (Rj)τ

j=1 be sequences of rational q× q matrix functions. A similar
argument to the one used for Corollary 3.9 shows that the following statements are
equivalent:

(i) [(Pj)τ
j=1,(Rj)τ

j=1] is a canonical pair of para-orthogonal systems corresponding

to (α j)∞
j=1 and F (α)

n,w .

(ii) For each j ∈ N1,τ , with some pair [(Xk)n
k=0,(Yk)n

k=0] of orthonormal systems
corresponding to (αs)∞

s=1 and F there is a unitary q×q matrix U j such that

Pj = U jXj +Y [α , j]
j and Rj = YjU j +X [α , j]

j , j � n,

and, if j > n , then there are unitary q×q matrices W̆ j , V̆ j , and Ŭ j such that

Pj = h jW̆ j

(
bwb̃(α)

n, j−1Ŭ j

√
A(α ,F)

n,w (w)
−1(

A(α ,F)
n,w

)[α ,n] +b(α)
n, j−1

√
C(α ,F)

n,w (w)
−1

C(α ,F)
n,w

)
,

Rj = h j

(
bwb̃(α)

n, j−1

(
C(α ,F)

n,w
)[α ,n]

√
C(α ,F)

n,w (w)
−1

Ŭ j+b(α)
n, j−1A

(α ,F)
n,w

√
A(α ,F)

n,w (w)
−1)

V̆ j,

where h j is the function given by h j(v) :=
√

|1−|α j |2|
1−|w|2

1−wv
1−α jv

for v ∈ C\Pα , j .

If (i) holds, then U j,W̆ j,V̆ j , and Ŭ j in (ii) are uniquely determined for j∈N1,τ .
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Adv. and Appl. 43, Birkhäuser, Basel 1990, pp. 63–87.

[2] D. Z. AROV AND H. DYM, J -Contractive Matrix Valued Functions and Related Topics, Encyclopedia
of Math. and its Appl. 116, Cambridge University Press, Cambridge 2008.

[3] E. BERRIOCHOA, A. CACHAFEIRO, AND F. MARCELLÁN, A new numerical quadrature formula on
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