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CLOSED LINEAR RELATIONS AND THEIR REGULAR POINTS

J.-PH. LABROUSSE, A. SANDOVICI, H.S.V. DE SNOO AND H. WINKLER

(Communicated by A. C. M. Ran)

Abstract. For a closed linear relation A in a Hilbert space H the notions of resolvent set and
set of points of regular type are extended to the set of regular points. Such points are defined
in terms of quasi-Fredholm relations of degree 0 . The set of regular points is open and for
λ ∈ C in this set the spaces ker (A− λ) and ran(A− λ) are continuous in the gap metric.
Several characterizations of regular points are presented, in terms of the gap metric between
corresponding null spaces, and in terms of generalized resolvents of the linear relation A .

1. Introduction

Let A be a closed linear relation in a Hilbert space H . A point λ ∈ C is said to
belong to the resolvent set ρ(A) of A if

(R1) ran(A−λ ) = H ;

(R2) ker (A−λ ) = {0} .

The set ρ(A) is open and (A−λ )−1 , λ ∈ ρ(A) , is a holomorphic family of bounded
everywhere defined linear operators on H . Furthermore, λ ∈ C is said to belong to the
set of points of regular type γ(A) of A if

(T1) ran(A−λ ) is closed in H ;

(T2) ker (A−λ ) = {0} .

The set γ(A) is open and (A−λ )−1 , λ ∈ γ(A) , is a family of bounded linear operators
on ran(A−λ ) ; see for instance [7].

The purpose of the present paper is to extend the notion of points of regular type.
A point λ ∈ C is said to belong to the set reg(A) of regular points of A if

(F1) ran(A−λ ) is closed in H ;

(F2) ker (A−λ )⊂ ran(A−λ )n , n ∈ N .
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Here N stands for the positive natural numbers. It wil be shown that the set reg(A)
is open and that for λ ∈ reg(A) the mapping λ → ker (A−λ ) is continous in the gap
metric (for closed linear subspaces of H). Moreover, it will be shown that λ ∈ reg(A)
if and only if ran(A− λ ) is closed and there exists a neighborhood U of λ such
that ker (A− ζ ) is close to ker (A− λ ) in the gap metric for all ζ ∈ U . Finally, a
characterization of reg(A) is given in terms of generalized resolvents of A . For the
case where A is an operator, these results can be found in Labrousse’s paper [10], and
it turns out that the results in [10] remain valid in the context of relations. However, all
the previous arguments require an interpretation and an adaptation to make them work
for relations.

The present paper can be seen as a natural continuation of [10] and [11]. The
notations introduced in [11] will be used here as well. Recall that for a closed linear
relation A with ranA closed the following statements are equivalent:

(i) ker A ⊂ ranAn , n ∈ N ;

(ii) ker Am ⊂ ranA , m ∈ N ;

(iii) ker Am ⊂ ranAn , m,n ∈ N ,

cf. [11, Lemma 2.7]. A closed linear relation A is said to be a quasi-Fredholm relation
of degree 0, if ranA is closed and one of these equivalent conditions is satisfied. Hence,
λ ∈ reg(A) if and only if the closed linear relation A−λ is quasi-Fredholm of degree
0. In [11] it has been shown that A is quasi-Fredholm of degree 0 if and only if the
adjoint A∗ is quasi-Fredholm of degree 0. Hence, if A is a nondensely defined quasi-
Fredholm operator of degree 0, then A∗ is a multivalued quasi-Fredholm relation of
degree 0; this provides already examples of quasi-Fredholm relations which are not
operators.

The paper is organized as follows. Section 2 contains a short introduction to linear
relations in Hilbert spaces. In particular, the notions of operator part and minimum
modulus are introduced. Furthermore, there is a brief review of the opening and gap
between closed linear subspaces of a Hilbert space, which play a fundamental role in
the later arguments. Section 3 presents the definition of regular points for a closed
linear relation. Various estimates are presented in a neighborhood of a regular point.
Section 4 contains the characterization of points in reg(A) in terms of a gap estimate.
The regular points of the adjoint relation A∗ are studied in Section 5, which leads to
another characterization of reg(A) . In Section 6 it is shown that the set reg(A) is open
and that various spaces are continuous on reg(A) in terms of the gap metric. In Section
7 there is a characterization of reg(A) in terms of generalized resolvents of A . For
the convenience of the reader Section 8 returns to the notions of the opening and gap
between closed linear subspaces of a Hilbert space. The various connections for gaps
are illustrated.

The authors are grateful to a referee for constructive criticism, which gave rise to
an improved presentation.
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2. Preliminaries

In this section some basic material is presented concerning closed linear relations
in Hilbert spaces, their orthogonal operator parts, and their minimum modulus. For
general facts concerning relations in linear spaces and in Hilbert spaces, see for instance
[7], [14].

2.1. Relations, minimum moduli, and operator parts

Let A be a closed linear relation from a Hilbert space H to a Hilbert space K ;
i.e., A is a closed linear subspace of the product space H×K (in case K = H one
speaks of A as a relation in H). Then A is the graph of a linear operator if and only if
mulA = {0} . Here mulA stands for the multivalued part of A ; since A is closed, it is
automatically closed. The orthogonal operator part As of A is defined by

As = {{ f ,g} : { f ,g} ∈ A, (I−Q)g = 0} = A∩ (H⊕ (mulA)⊥),

where Q be the orthogonal projection from K onto (mulA)⊥ . In the sense of relations
one then has As = QA . Clearly As is a closed operator contained in A . Note that it
follows from the closed graph theorem that

domA closed ⇔ As bounded.

The adjoint A∗ of A is a closed linear relation from K to H , defined by

A∗ = {{ f , f ′} ∈ K×H : ( f ′,h) = ( f ,h′), {h,h′} ∈ A}.

The orthogonal operator part (A∗)s of A∗ is defined as above. Then As is a densely
defined operator from the Hilbert space domA to the Hilbert space domA∗ . Likewise
(A∗)s is a densely defined operator from domA∗ to domA . It is clear that

(As)× = (A∗)s,

where A× denotes the adjoint of the densely defined operator As (as defined between
domA and domA∗ ). It is obvious that As is bounded if and only if (A∗)s is bounded,
and in this case

‖As‖ = ‖(A∗)s‖, (2.1)

which follows from the usual identity ‖As‖ = ‖(As)×‖ . Equivalently one has

domA closed ⇔ domA∗ closed. (2.2)

For different proofs of this equivalence, see [7].
Let A be a closed linear relation from H to K . Then the minimum modulus of A

is defined by

r(A) = inf

{‖h′‖
‖h‖ : {h,h′} ∈ A, h ⊥ ker A

}
.
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This number belongs to [0,∞] . Note that r(A) > 0 if and only if (A−1)s is bounded, in
which case

r(A) =
1

‖(A−1)s‖ ,

cf. [5]. Moreover, it is clear from (2.1) that r(A) = r(A∗) , and that

ranA closed ⇔ ranA∗ closed,

which of course is also clear from (2.2) by going over to inverses.
The multivalued part mulA is a closed linear subspace of H which induces the

following closed restriction of A :

Amul = {0}×mulA.

An operator part B of A is a linear operator from H to K which satisfies

A = B +̂ Amul, direct sum,

where +̂ stands for a componentwise sum. The orthogonal operator part As of A is
an example of an operator part. Recall that As and A are related by As = QA , where
the product is in the sense of relations. The orthogonal operator part is based on the
orthogonal decomposition K = (mulA)⊥⊕mulA . For a different approach to operator
parts, see [7]. Now consider a closed linear subspace X of K , such that

K = X+mulA, direct sum, (2.3)

and let QX be the projection onto X parallel to mulA .

LEMMA 2.1. The relation AX defined by

AX = {{ f ,g} : { f ,g} ∈ A, g ∈ X} = A∩ (H⊕X) (2.4)

is a closed operator part of A and AX = QXA, so that

A = AX +̂ Amul, direct sum. (2.5)

Moreover, AX is bounded if and only if domA is closed.

Proof. The identity (2.4) shows that AX is closed. Furthermore AX ⊂ A and
Amul ⊂ A show that AX +̂ Amul ⊂ A . For the converse inclusion take {h,h′} ∈ A . Then
according to (2.3) h′ = k+ ϕ with k ∈ X and ϕ ∈ mulA , so that

{h,h′} = {h,k}+{0,ϕ}.
This shows that {h,k} ∈ A , since {0,ϕ} ∈ Amul ⊂ A . Hence {h,k} ∈ AX and thus
A ⊂ AX +̂ Amul . To see that AX is an operator, let {0,k} ∈ AX , so that k ∈ X∩mulA
and k = 0; cf. (2.3). The representation AX = QXA is straightforward. Finally, the last
statement follows from the closed graph theorem. �
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2.2. Projections associated with relations

Let A be a closed relation in a Hilbert space H and let λ ∈ C . Then the formal
inverse (A−λ )−1 is a closed relation in H defined by

(A−λ )−1 = {{h′ −λh,h} : {h,h′} ∈ A}.
Clearly mul(A−λ )−1 = ker (A−λ ) and the orthogonal operator part ((A−λ )−1)s of
(A−λ )−1 is given by

((A−λ )−1)s = {{h′ −λh,h} : {h,h′} ∈ A,h ⊥ ker (A−λ )}.
The minimum modulus of A−λ is given by

r(A−λ ) = inf

{ ‖h′ −λh‖
‖h‖ : {h,h′} ∈ A, h ⊥ ker (A−λ ), h �= 0

}
. (2.6)

Hence, ran(A−λ ) is closed if and only if r(A−λ ) > 0, and in this case

r(A−λ ) =
1

‖((A−λ )−1)s‖ .

In order to associate an everywhere defined closed operator with (A−λ )−1 some direct
sum decompositions of the Hilbert space H will be introduced.

Let X(λ ) be a closed linear subspace of H such that

H = X(λ )+ker (A−λ ), direct sum. (2.7)

Note that the special choice X(λ ) = ran(A∗ − λ) corresponds to an orthogonal de-
composition. Let Qλ be the projection onto X(λ ) parallel to ker (A− λ ) . Clearly,
ker Qλ = ker (A−λ ) and Qλ maps domA into itself. The relation Qλ (A−λ )−1 cor-
responding to the decomposition (2.7) is a closed operator and it satisfies

Qλ (A−λ )−1(k−λh) = Qλ h, {h,k} ∈ A. (2.8)

Moreover, parallel to (2.5) one has the direct sum decomposition

(A−λ )−1 = Qλ (A−λ )−1 +̂({0}×ker (A−λ )), direct sum. (2.9)

Hence if r(A−λ ) > 0 or, equivalently, if ran(A−λ ) is closed, then Qλ (A−λ )−1 is a
bounded operator; cf. Lemma 2.1.

Now assume that r(A− λ ) > 0 or, equivalently, that ran(A−λ ) is closed. Let
Y(λ ) be a closed linear subspace of H for which

H = Y(λ )+ ran(A−λ ), direct sum. (2.10)

Note that the special choice Y(λ ) = ker (A∗ − λ ) corresponds to an orthogonal de-
composition. Let Pλ be the projection onto ran(A− λ ) parallel to Y(λ ) . Clearly
ker Pλ = Y(λ ) .
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Corresponding to the direct sum decompositions (2.7) and (2.10) the operator
R(λ ) is defined by

R(λ ) = Qλ (A−λ )−1Pλ . (2.11)

Clearly, it belongs to B(H) , the Hilbert space of all bounded linear operators defined
on all of H . Note that if λ ∈ ρ(A) , then ran(A−λ ) = H and ker (A−λ ) = {0} , and
R(λ ) coincides with the usual resolvent of A . For λ ∈ C the following notation is
useful:

Nλ (A) = ker (A−λ ), N̂λ (A) = {{h,λh} : h ∈ Nλ (A)}.

LEMMA 2.2. Let A be a closed relation in a Hilbert space H and let λ ∈ C .
Assume that ran(A−λ ) is closed and that there are direct sum decompositions as in
(2.7) and (2.10). Let Pλ be the projection onto ran(A−λ ) parallel to Y(λ ) , let Qλ be
the projection onto X(λ ) parallel to ker (A−λ ) , and let R(λ ) be defined by (2.11).
Then

A = {{R(λ )ϕ ,Pλ ϕ + λR(λ )ϕ} : ϕ ∈ H} +̂ N̂λ (A), direct sum, (2.12)

and
R(λ )(k−λh) = Qλ h, {h,k} ∈ A. (2.13)

Moreover,
mulA = {Pλ ϕ : R(λ )ϕ ∈ ker (A−λ )}. (2.14)

Proof. First it will be shown that the righthand side of (2.12) belongs to A or,
equivalently, it will be shown that

{R(λ )ϕ ,Pλ ϕ + λR(λ )ϕ} ∈ A, ϕ ∈ H. (2.15)

Clearly, Pλ ϕ = k−λh for some {h,k} ∈ A . With the projection Pλ (2.8) reads as

Qλ (A−λ )−1Pλ (k−λh) = Qλ h, {h,k} ∈ A.

Next observe that ker Qλ = ker (A−λ ) implies

{0,(I−Qλ )h} ∈ (A−λ )−1.

Together with {k−λh,h} ∈ (A−λ )−1 , this gives

{k−λh,Qλh} ∈ (A−λ )−1

But with (2.8) this shows

{k−λh,Qλ(A−λ )−1Pλ (k−λh} ∈ (A−λ )−1

or, equivalently,
{Pλ ϕ ,R(λ )ϕ} ∈ (A−λ )−1, ϕ ∈ H,

which is equivalent to (2.15).
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Next it will be shown that

A ⊂ {{R(λ )ϕ ,Pλ ϕ + λR(λ )ϕ} : ϕ ∈ H} +̂ Nλ (A). (2.16)

Let {h,k} ∈ A . Then ker Qλ = ker (A−λ ) implies that

{h,k}−{(I−Qλ )h,λ (I−Qλ )h} = {Qλ h,k−λh+ λQλh} ∈ A,

and observe that with ϕ = k−λh

{Qλ h,k−λh+ λQλh} = {R(λ )ϕ ,Pλ ϕ + λR(λ )ϕ}.
Hence (2.15) and (2.16) show that (2.12) has been established.

The identity (2.13) follows immediately from (2.8).
Finally, write (2.12) as

A = {{R(λ )ϕ +h,λ (R(λ )ϕ +h)+Pλϕ} : ϕ ∈ H, h ∈ ker (A−λ )}.

Then it is clear that Pλ ϕ ∈mulA if and only R(λ )ϕ +h = 0. This completes the proof
of (2.14). �

2.3. Special properties of the corresponding projections

Assume that there is an open set U ⊂ C , such that for all λ ∈ U the subspace
ran(A−λ ) is closed. Furthermore, assume that there exist closed linear subspaces X
and Y of H , such that the following decompositions hold for all λ ∈ U :

H = ker (A−λ )+X, direct sum, (2.17)

and
H = ran(A−λ )+Y, direct sum. (2.18)

In other words, it is assumed that the closed linear subspaces X(λ ) and Y(λ ) in (2.7)
and (2.10) are independent of λ . The projection Qλ onto X parallel to ker (A−λ ) and
the projection Pλ onto ran(A−λ ) parallel to Y then satisfy some special properties.

LEMMA 2.3. Let A be a closed relation in a Hilbert space H . Assume that for all
λ in an open set U ran(A−λ ) is closed and that the direct sum decompositions (2.17)
and (2.18) hold. Then for all λ ,μ ∈ U one has for the corresponding projections:

Qλ Qμ = Qμ , PμPλ = Pμ .

Proof. Let h ∈ H , then

h = (I−Qλ )h+Qλh = (I−Qμ)h+Qμh,

so that
(I−Qμ)h = (I−Qλ )h+[Qλh−Qμh] ∈ ker (A−λ )+X.
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Hence
(I−Qλ )(I−Qμ) = I−Qλ ,

which leads to Qλ Qμ = Qμ . Similarly, for h ∈ H ,

h = Pλ h+(I−Pλ )h = Pμh+(I−Pμ)h,

so that
Pλ h = Pμh+[(I−Pμ)h− (I−Pλ )h] ∈ ran(A− μ)+Y,

which leads to PμPλ = Pμ . �

REMARK 2.4. Let Pλ be the projection onto ran(A−λ ) as in (2.10) and assume
that PμPλ = Pμ , λ ,μ ∈ U . Then

Y(λ ) = Y(μ), λ ,μ ∈ U ,

and (2.18) is satisfied. To see this, note that (I −Pμ)(I −Pλ ) = I −Pλ . Now observe
that for any h ∈ H there exists k ∈ H such that

(I−Pλ )h = Pμk+(I−Pμ)k ∈ ran(A− μ)+Y(μ).

This implies that
(I−Pλ )h = (I−Pμ)(I−Pλ )h = (I−Pμ)k.

Hence, Y(λ ) ⊂ Y(μ) . Symmetry leads to equality.
There is a similar result for the other projections. Let Qλ be the projection onto

X(λ ) as in (2.7) and assume that Qλ Qμ = Qμ , λ ,μ ∈ U . Then

X(λ ) = X(μ), λ ,μ ∈ U ,

and (2.17) is satisfied. This follows in an analogous way.

COROLLARY 2.5. Let A be a closed relation in a Hilbert space H . Assume that
for all λ in an open set U ran(A−λ ) is closed and that the direct sum decompositions
(2.17) and (2.18) hold. Then for all λ ,μ ∈ U , λ �= μ , one has

R(λ )−R(μ) = (λ − μ)R(λ )R(μ). (2.19)

Proof. Let h ∈ H , then {R(μ)h,Pμh+ μR(μ)h} ∈ A by (2.12). An application
of (2.13) gives

R(λ )(Pμh+ μR(μ)h−λR(μ)h)= Qλ R(μ)h,

or, equivalently,

(λ − μ)R(λ )R(μ) = R(λ )Pμ −QλR(μ) = R(λ )−R(μ),

which follows from Lemma 2.3. �
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2.4. Bounds in the graph norm

Let A be a closed linear relation in a Hilbert space H with multivalued part mulA
and operator part As . Let P be the orthogonal projection from H onto mulA . The
results in Lemma 2.2 can be rephrased as follows.

COROLLARY 2.6. Let A be a closed relation in a Hilbert space H , let λ ∈ C ,
and assume that ran(A−λ ) is closed. Let P be the orthogonal projection onto mulA.
Then the orthogonal operator part As acts as follows:

(As −λ )R(λ ) = (I−P)Pλ −λPR(λ ). (2.20)

and

R(λ )(As−λ )h = Qλ h, h ∈ domA. (2.21)

The orthogonal operator part As of a closed linear relation A induces a ”graph
norm” on domA :

‖h‖2
D = ‖h‖2 +‖Ash‖2, h ∈ domA,

so that the pair (domA, ‖ · ‖D) is a Hilbert space. An operator T ∈ B(H) , mapping H
into domA , is said to belong to D(H) if

‖T‖D = sup{‖Th‖D : ‖h‖ = 1} < ∞.

Observe that T ∈ D(H) satisfies

‖T‖ � ‖T‖D, ‖AsT‖ � ‖T‖D. (2.22)

In the situation of Corollary 2.5 the question arises about the continuity of the
family R(λ ) , λ ∈ U . Here this question is addressed under the assumption of a
uniform bound in the graph norm.

LEMMA 2.7. Let A be a closed linear relation in a Hilbert space H . Assume that
for all λ in an open set U ran(A−λ ) is closed and that the direct sum decompositions
(2.17) and (2.18) hold. Let Pλ be the projection onto ran(A− λ ) , let I −Qλ be the
projection onto ker (A−λ ) , and let R(λ ) be defined as in (2.11). Assume that there
is a constant K � 0 such that for all λ ∈ U

‖R(λ )h‖D � K‖h‖, h ∈ H. (2.23)

Then R(λ ) satisfies ‖R(λ )‖D � K for all λ ∈ U and, moreover,

‖R(λ )−R(μ)‖D � K′|λ − μ |, λ ,μ ∈ U , (2.24)

so that R(λ ) is continuous with respect to the ‖ · ‖D norm.
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Proof. It clearly follows from the assumption (2.23) that ‖R(λ )‖D � K . Further-
more (2.23) implies that

‖R(λ )R(μ)h‖D � K‖R(μ)h‖, h ∈ H,

so that, in particular,
‖R(λ )R(μ)‖D � K‖R(μ)‖. (2.25)

Since R(λ ) satisfies the resolvent identity (cf. (2.19)), it follows that

‖R(λ )h−R(μ)h‖D = |λ − μ |‖R(λ )R(μ)h‖D, h ∈ H.

Hence (2.25) gives the estimate

‖R(λ )−R(μ)‖D � K|λ − μ |‖R(μ)‖,
which leads to (2.24). �

2.5. The opening between subspaces

This subsection contains a collection of results concerning the various openings
between closed linear subspaces of a Hilbert space. A further discussion and proofs
can be found in Section 6.

Let H be a Hilbert space and let M and N be closed subspaces of H . Denote the
corresponding orthogonal projections by PM and PN . Define the opening δ (M,N)
between M and N by

δ (M,N) = ‖(I−PN)PM‖, (2.26)

so that clearly 0 � δ (M,N) � 1 and also

δ (N⊥,M⊥) = δ (M,N). (2.27)

Moreover, observe that

δ (M,N) < 1 ⇔ M+N⊥ closed, M∩N⊥ = {0}. (2.28)

The opening ε(M,N) between M and N is defined by

ε(M,N) = ‖(I−PN)PM
(M∩N⊥)‖. (2.29)

This leads to ε(M,N) = δ (M
 (M∩N⊥),N) and also to

ε(M,N) = ε(N,M), ε(M⊥,N⊥) = ε(M,N). (2.30)

Due to the symmetry in (2.30) it follows that

ε(M,N) < 1 ⇔ M+N⊥ closed ⇔ M⊥ +N closed. (2.31)

The gap g(M,N) between M and N is defined by

g(M,N) = ‖PM−PN‖, (2.32)
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so that g(M,N) � 1. Moreover, it is clear that

g(M,N) = g(N,M), g(M⊥,N⊥) = g(M,N). (2.33)

The gap in (2.32) provides a metric on the space S(H) of all closed linear subspaces of
H .

Recall that for any pair of not necessarily orthogonal projections QM and QN in
B(H) such that ranQM = M and ranQN = N one has

g(M,N) � ‖QM−QN‖. (2.34)

There is a chain of (in)equalities satisfied by the gap and the openings between the
subspaces M and N :

ε(M,N) � min(δ (M,N),δ (N,M)) � max(δ (M,N),δ (N,M)) = g(M,N). (2.35)

Observe that

g(M,N) < 1 ⇔ H = M+N⊥ direct sum ⇔ H = M⊥ +N, direct sum. (2.36)

If M∩N⊥ = {0} and M⊥∩N = {0} , then

ε(M,N) = δ (M,N) = δ (N,M) = g(M,N). (2.37)

Hence, if δ (M,N) < 1 and δ (M⊥,N⊥) < 1, and, in particular, if g(M,N) < 1, then
the identities in(2.37) are satisfied.

Finally, note that if H = M+N⊥ , M∩N⊥ = {0} , and P is the projection onto
M parallel to N⊥ , then

‖P‖ =
1√

1−g(M,N)2
, (2.38)

cf. Corollary 8.11. Furthermore, if g(M,N) < 1, then

dimM = dimN,

see [6] or [8].

3. Minimum moduli, openings, gaps, and regular points

Let A be a closed linear relation in a Hilbert space H and let λ0 ∈ C . Then
ran(A−λ0) is closed if and only if r(A−λ0) > 0. In this case λ0 ∈ C will be called
a regular point if A− λ0 additionally satisfies (F2). The disk |λ − λ0| < r(A− λ0)
will play an important role in estimating openings and gaps of closed linear subspaces
associated with A . In this section some useful facts and estimates are collected.

LEMMA 3.1. Let A be a closed linear relation in a Hilbert space H . Assume that
r(A−λ0) > 0 for some λ0 ∈ C . Then for all λ ∈ C:

δ (ker (A−λ ),ker (A−λ0)) � |λ −λ0|
r(A−λ0)

. (3.1)
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Proof. Observe that for all λ ∈ C :

‖(I−Pker (A−λ0))h‖ � |λ −λ0|
r(A−λ0)

‖h‖, h ∈ ker (A−λ ). (3.2)

To see this, let h ∈ ker (A− λ ) , so that {h,λh} ∈ A . Decompose the element h as
follows:

h = h0 +h1, h0 ∈ ker (A−λ0), h1 ⊥ ker (A−λ0).

Then {h0,λ0h0} ∈ A and clearly

{h1,λh−λ0h0} = {h,λh}−{h0,λ0h0} ∈ A.

Since λh−λ0h0−λ0h1 = (λ −λ0)h , it follows from (2.6) (with λ0 instead of λ ) that

r(A−λ0) � |λ −λ0|‖h‖
‖h1‖ .

Observe that h1 = (I−Pker (A−λ0))h , where Pker (A−λ0) is the orthogonal projection onto
ker (A−λ0) . Hence (3.2) follows. Next apply (3.2) to h = Pker (A−λ )ϕ , ϕ ∈ H , where
Pker (A−λ ) stands for the orthogonal projection onto ker (A−λ ) . This gives

‖(I−Pker (A−λ0))Pker (A−λ )ϕ‖ � |λ −λ0|
r(A−λ0)

‖Pker (A−λ )ϕ‖

� |λ −λ0|
r(A−λ0)

‖ϕ‖, ϕ ∈ H.

Therefore the definition in (2.26) implies (3.1). �

DEFINITION 3.2. Let A be a closed linear relation in a Hilbert space H . A point
λ0 ∈ C is said to be a regular point of A if

ran(A−λ0) is closed and ker (A−λ0) ⊂ ran(A−λ0)n for all n ∈ N. (3.3)

The set of regular points of A is denoted by reg(A) .

In other words, λ0 ∈ C is a regular point of A if and only if A− λ0 is a quasi-
Fredholm relation of degree 0. Therefore, λ0 ∈ C is a regular point of A if and only
if

ran(A−λ0) is closed and ker (A−λ0)n ⊂ ran(A−λ0) for all n ∈ N, (3.4)

or, equivalently,

ran(A−λ0) is closed and ker (A−λ0)n ⊂ ran(A−λ0)m for all n, m ∈ N,

cf. [11, Lemma 2.7].
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LEMMA 3.3. Let A be a closed linear relation in a Hilbert space H and let λ0 ∈
reg(A) . Then r(A−λ0) > 0 and for all λ ∈ C for which |λ −λ0| < r(A−λ0)

g(ker (A−λ ),ker (A−λ0)) < 1, (3.5)

or, equivalently,

H = ker (A−λ )+ (ker (A−λ0))⊥, direct sum. (3.6)

Proof. Assume that λ0 ∈ reg(A) . Then A−λ0 is quasi-Fredholm of degree 0; in
other words, ran(A−λ0) is closed and

ker (A−λ0)n ⊂ ran(A−λ0), n ∈ N; (3.7)

see (3.4). Then the condition that ran(A−λ0) is closed is equivalent to the condition
r(A−λ0) > 0.

First it will be shown that for all λ ∈ C with |λ −λ0| < r(A−λ0) the identity in
(3.6) holds or that for all λ ∈ C with |λ −λ0| < r(A−λ0) the inclusion

ker (A−λ0) ⊂ ker (A−λ )+ (ker (A−λ0))⊥, (3.8)

holds. In order to show (3.8), let h0 ∈ ker (A−λ0) or, equivalently, {h0,0} ∈ A−λ0 ,
and assume |λ − λ0| < r(A− λ0) . Since by (3.7) ker (A− λ0) ⊂ ran(A− λ0) , there
exists an element h1 ∈ H such that {h1,h0} ∈ A−λ0 . In fact, one may choose h1 such
that h1 ⊥ ker (A−λ0) . Note that {h1,0} ∈ (A−λ0)2 or, equivalently, h1 ∈ ker (A−
λ0)2 . Thus

{h1,h0} ∈ A−λ0, h1 ∈ ker (A−λ0)2∩ (ker (A−λ0))⊥.

In fact, there exists a sequence of elements (hn) , n ∈ N , which satisfies

{hn+1,hn} ∈ A−λ0, hn+1 ∈ ker (A−λ0)n+2∩ (ker (A−λ0))⊥, (3.9)

for n ∈ N∪ {0} . This claim will be verified. The existence of h1 such that (3.9)
is satisfied for n = 0 has been shown above. Now assume that there are elements
h1, . . . ,hm+1 such that (3.9) is satisfied for n = 0,1, . . . ,m . It follows from the assump-
tion (3.7) that hm+1 ∈ ran(A−λ0) , and hence there exists an element hm+2 ∈ H with
{hm+2,hm+1} ∈A−λ0 . Note that one may choose hm+2 such that hm+2 ⊥ ker (A−λ0) .
From hm+1 ∈ ker (A−λ0)m+2 it follows that hm+2 ∈ ker (A−λ0)m+3 . Clearly, for the
elements h1, . . . ,hm+2 the statements in (3.9) are satisfied for n = 0,1, . . . ,m,m + 1.
Thus the claim has been verified.

It follows from (3.9) and (2.6) that r(A−λ0)‖hn+1‖ � ‖hn‖ , and therefore

‖hn‖ � ‖h0‖
(r(A−λ0))n , n ∈ N∪{0}. (3.10)

Hence it follows from (3.9) and (3.10) that for |λ −λ0| < r(A−λ0) the sequence in{
m

∑
n=1

(λ −λ0)nhn,−
m

∑
n=1

(λ −λ0)nhn−1

}
∈ A−λ0, (3.11)
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converges for m → ∞ to some element

{ϕ ,(λ −λ0)(ϕ +h0)} ∈ H×H,

where the element ϕ is defined by the convergent series

ϕ =
∞

∑
n=1

(λ −λ0)nhn ⊥ ker (A−λ0), (3.12)

cf. (3.9). Since A is closed, it follows that {ϕ ,(λ − λ0)(ϕ + h0)} ∈ A− λ0 . Due to
{h0,0} ∈ A−λ0 it follows that

{ϕ +h0,(λ −λ0)(ϕ +h0)} ∈ A−λ0,

or, in other words,

{ϕ +h0,0} ∈ A−λ or ϕ +h0 ∈ ker (A−λ ).

Recall that ϕ ⊥ ker (A−λ0) , so that

h0 ∈ ker (A−λ )+ (ker (A−λ0))⊥.

This proves (3.8). Hence the identity in (3.6) has been established.
Next it will be shown that the sum in (3.6) is direct. Since r(A−λ0) > 0, it follows

from Lemma 3.1 that with |λ −λ0| < r(A−λ0) :

δ (ker (A−λ ),ker (A−λ0)) < 1. (3.13)

Hence (3.13) together with (2.28) lead to

ker (A−λ )∩ (ker (A−λ0))⊥ = {0}. (3.14)

Thus the sum in (3.6) is direct.
Therefore the direct sum decomposition in (3.6) has been established. The equiv-

alence between (3.5) and (3.6) follows from (2.36). �

LEMMA 3.4. Let A be a closed linear relation in a Hilbert space H and assume
that λ0 ∈ reg(A) . Then r(A− λ0) > 0 and for all λ ∈ C which satisfy |λ − λ0| <
r(A−λ0):

r(A−λ ) � r(A−λ0)−|λ −λ0| > 0, (3.15)

so that, in particular, ran(A−λ ) is closed, and

δ (ran(A−λ0), ran(A−λ )) � |λ −λ0|
r(A−λ0)

. (3.16)
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Proof. Since λ0 ∈ reg(A) , it follows from Lemma 3.3 that r(A−λ0) > 0 and that
the equivalent statements (3.5) and (3.6) are valid.

First (3.15) will be shown. For this purpose, let {h,k} ∈ A−λ and assume that
h ⊥ ker (A−λ ) . Then, according to the direct sum decomposition (3.6) one has

h = h1 +h2, h1 ∈ ker (A−λ ), h2 ⊥ ker (A−λ0),

and since h ⊥ ker (A−λ ) it follows for h2 = h−h1 that

‖h2‖2 = ‖h‖2 +‖h1‖2 � ‖h‖2. (3.17)

Due to {h,k} ∈ A−λ and {h1,0} ∈ A−λ it follows that

{h2,k} ∈ A−λ or {h2,k+ λh2} ∈ A.

Hence, one sees that

{h2,k+(λ −λ0)h2} ∈ A−λ0, h2 ⊥ ker (A−λ0),

so that from (2.6) (with λ0 instead of λ ) it follows that

‖k+(λ −λ0)h2‖ � r(A−λ0)‖h2‖. (3.18)

Therefore, via the triangle inequality, (3.17), and (3.18) one obtains

‖k‖ �
∣∣‖k+(λ −λ0)h2‖− |λ −λ0|‖h2‖

∣∣
� (r(A−λ0)−|λ −λ0|)‖h2‖ (3.19)

� (r(A−λ0)−|λ −λ0|)‖h‖,
where use has been made of |λ −λ0|< r(A−λ0) . Since the inequality (3.19) holds for
all {h,k} ∈ A−λ with h ⊥ ker (A−λ ) , it follows that (3.15) holds.

It follows from (3.15) that ran(A−λ ) is closed for |λ −λ0| < r(A−λ0) , so that
the lefthand side of (3.16) is well defined.

Next (3.16) will be shown. For this purpose, let k ∈ ran(A−λ0) . Then {h,k} ∈
A−λ0 for some h ∈ H and one may choose h ⊥ ker (A−λ0) . Hence

{h,k} ∈ A−λ0, h ⊥ ker (A−λ0),

so that, by (2.6) (with λ0 instead of λ )

r(A−λ0) � ‖k‖
‖h‖ . (3.20)

From k ∈ ran(A−λ0) and {h,k+(λ0−λ )h} ∈ A−λ it follows that

(I−Pran(A−λ ))Pran(A−λ0)k

= (I−Pran(A−λ ))k

= (λ −λ0)(I−Pran(A−λ ))h,
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where Pran(A−λ ) and Pran(A−λ0) are the orthogonal projections onto ran(A− λ ) and
ran(A−λ0) , respectively. Therefore, with (3.20), one obtains

‖(I−Pran(A−λ ))Pran(A−λ0)k‖ � |λ −λ0|‖h‖

� |λ −λ0|
r(A−λ0)

‖k‖, (3.21)

for all k ∈ ran(A−λ0) and hence for all k ∈H . Therefore the definition in (2.26) shows
that (3.16) holds. �

4. A characterization of regular points

The following theorem is one of the basic results of this paper. It characterizes
regular points of a closed linear relation in a Hilbert space, as defined in Definition 3.2,
in terms of the gap metric between appropriate null spaces.

THEOREM 4.1. Let A be a closed linear relation in a Hilbert space H and let
λ0 ∈C . Then λ0 ∈ reg(A) if and only if r(A−λ0) > 0 and there exists a neighborhood
U (λ0) of λ0 such that

g(ker (A−λ ),ker (A−λ0)) < 1, λ ∈ U (λ0). (4.1)

The neighborhood U (λ0) may be chosen so as to contain the disk

{λ ∈ C : |λ −λ0| < r(A−λ0)}, (4.2)

and on that disk

g(ker (A−λ ),ker (A−λ0)) � |λ −λ0|
r(A−λ0)

. (4.3)

Proof. (⇒) This implication has been shown in Lemma 3.3.
(⇐) For this implication assume that r(A− λ0) > 0 and that (4.1) holds for all

λ in a neighborhood U (λ0) of λ0 . It is useful to observe that (2.36) and (2.37) then
imply that

g(ker (A−λ ),ker (A−λ0)) = δ (ker (A−λ ),ker (A−λ0)). (4.4)

By assumption ran(A−λ0) is closed and it suffices to show that

ker (A−λ0) ⊂ ran(A−λ0)n, n ∈ N, (4.5)

cf. (3.3).
First observe that if ran(A−λ0) is closed and (4.1) holds, then

ker (A−λ0) ⊂ ran(A−λ0). (4.6)
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To see this, let h∈ ker (A−λ0) . Then h = Pker (A−λ0)h , where Pker (A−λ0) stands for the
orthogonal projection onto ker (A−λ0) . Furthermore, one has

Pker (A−λ )h ∈ ran(A−λ0), λ �= λ0, (4.7)

since ker (A−λ ) ⊂ ran(A−λ0) , λ �= λ0 , as is easily verified. Hence, it is clear from
(4.7) that

h− (Pker (A−λ0)−Pker (A−λ ))h = Pker (A−λ )h ∈ ran(A−λ0). (4.8)

Let Pran(A−λ0) be the orthogonal projection onto the closed subspace ran(A−λ0) . From
(4.8) it follows that

(I−Pran(A−λ0))h = (I−Pran(A−λ0))(Pker (A−λ0)−Pker (A−λ ))h. (4.9)

Hence, (4.1), (4.9), and (2.32) give

‖(I−Pran(A−λ0))h‖ � ‖(Pker (A−λ0)−Pker (A−λ ))h‖
� ‖Pker (A−λ0)−Pker (A−λ )‖‖h‖
= g(ker (A−λ ),ker (A−λ0))‖h‖.

(4.10)

Therefore (4.10), (4.4), and Lemma 3.1 give

‖(I−Pran(A−λ0))h‖ � |λ −λ0|
r(A−λ0)

‖h‖ (4.11)

for all λ ∈ U (λ0) with |λ − λ0| < r(A− λ0) . Thus the lefthand side of inequality
(4.11) vanishes, and it follows that

h = Pran(A−λ0)h ∈ ran(A−λ0).

Hence (4.6) has been shown.
With (4.6) established, the following statement will be proved by induction:

ran(A−λ0)n is closed , ker (A−λ0) ⊂ ran(A−λ0)n, n ∈ N. (4.12)

For n = 1 this is clearly satisfied. Assume that (4.12) is valid for some n ∈ N . The
statements in (4.12) will be shown with n replaced by n+1.

First it will be shown that

ran(A−λ0)n+1 is closed. (4.13)

Let k∈ ran(A−λ0)n+1 . Then there exist elements k j ∈ ran(A−λ0)n+1 such that k j → k
in H , and there are elements h j ∈ H such that

{h j,k j} ∈ (A−λ0)n+1.

Since (A−λ0)n+1 = (A−λ0)(A−λ0)n , there are elements χ j ∈ H such that

{h j,χ j} ∈ (A−λ0)n, {χ j,k j} ∈ A−λ0. (4.14)
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Decompose these elements χ j by

χ j = ϕ j + ψ j, ϕ j ∈ ker (A−λ0), ψ j ⊥ ker (A−λ0). (4.15)

Note that {ϕ j,0} ∈ A−λ0 , and it follows from (4.14) and (4.15) that

{ψ j,k j} = {χ j,k j}−{ϕ j,0} ∈ A−λ0, ψ j ⊥ ker (A−λ0). (4.16)

Therefore it follows from (4.16) and (2.6) that

‖ψ j −ψl‖ � r(A−λ0)‖k j − kl‖.
Hence (ψ j) is a Cauchy sequence, and thus ψ j → ψ for some ψ ∈ H . Therefore
{ψ j,k j} is a sequence in A−λ0 with the property

{ψ j,k j}→ {ψ ,k} ∈ A−λ0,

since A is closed.
Now recall that ψ j = χ j −ϕ j . Here by (4.14) one has χ j ∈ ran(A−λ0)n and by

(4.15) and the induction hypothesis one has

ϕ j ∈ ker (A−λ0) ⊂ ran(A−λ0)n.

Therefore ψ j ∈ ran(A − λ0)n and by the induction hypothesis that ran(A− λ0)n is
closed, it follows that ψ ∈ ran(A− λ0)n . Together with {ψ ,k} ∈ A− λ0 this shows
that k ∈ ran(A−λ0)n+1 . Hence ran(A−λ0)n+1 ⊂ ran(A−λ0)n+1 and thus (4.13) has
been shown.

Secondly, it will be shown that

ker (A−λ0) ⊂ ran(A−λ0)n+1. (4.17)

The argument involves the same principle as used for the earlier step in (4.6). Let
h ∈ ker (A− λ0) . Then h = Pker (A−λ0)h , where Pker (A−λ0) stands for the orthogonal
projection onto ker (A−λ0) . Furthermore, one has

Pker (A−λ )h ∈ ran(A−λ0)n+1, λ �= λ0, (4.18)

since ker (A−λ ) ⊂ ran(A−λ0)n for λ �= λ0 , n ∈ N , as is easily verified. Hence, it is
clear from (4.18) that

h− (Pker (A−λ0) −Pker (A−λ ))h = Pker (A−λ )h ∈ ran(A−λ0)n+1. (4.19)

It has been shown in (4.13) that the space ran(A−λ0)n+1 is closed, let Pran(A−λ0)n+1 be
the corresponding orthogonal projection. From (4.19) it follows that

(I−Pran(A−λ0)n+1)h = (I−Pran(A−λ0)n+1)(Pker (A−λ0) −Pker (A−λ ))h. (4.20)

Hence, (4.1), (4.20), and (2.32) give

‖(I−Pran(A−λ0)n+1)h‖ � ‖(Pker (A−λ0) −Pker (A−λ ))h‖
� ‖Pker (A−λ0)−Pker (A−λ )‖‖h‖
= g(ker (A−λ ),ker (A−λ0))‖h‖.

(4.21)
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Therefore (4.21) , (4.4), and Lemma 3.1 give

‖(I−Pran(A−λ0)n+1)h‖ � |λ −λ0|
r(A−λ0)

‖h‖ (4.22)

for all λ ∈ U (λ0) with |λ − λ0| < r(A− λ0) . Thus the lefthand side of inequality
(4.22) vanishes, and it follows that

h = Pran(A−λ0)n+1h ∈ ran(A−λ0)n+1.

Hence (4.17) has been shown.
With (4.13) and (4.17) the assertion (4.12) has been established. In particular, the

inclusions in (4.17) are valid. Hence, it follows that λ0 ∈ reg(A) .
If r(A−λ0) > 0 and U (λ0) is a neighborhood of λ0 on which (4.1) holds then

λ0 ∈ reg(A) . Furthermore, it follows from Lemma 3.3 that (4.1) holds for all λ ∈ C

for which |λ −λ0| < r(A−λ0) . �

5. Regular points for adjoint relations

The regular points of adjoint relations are described in the following theorem.
For completeness, a short proof is included; see [11]. For the operator case, see [10,
Corollaire 4.12]; due to the formal level of relations there is no need anymore to require
the operator A to be densely defined.

Recall that for a closed linear relation A with λ0 ∈ reg(A) the following identity
holds:

(ker (A−λ0)n)⊥ = ran(A∗ −λ 0)n, n ∈ N. (5.1)

For an elementary proof, see [11, Theorem 7.1].

THEOREM 5.1. Let A be a closed linear relation in a Hilbert space H . Then

λ0 ∈ reg(A) ⇔ λ 0 ∈ reg(A∗).

Proof. By symmetry it suffices to show the implication (⇒) . Let λ0 ∈ reg(A) , so
that A−λ0 is a quasi-Fredholm relation of order 0. Hence, ran(A−λ0) is closed and

ker (A−λ0)n ⊂ ran(A−λ0), n ∈ N, (5.2)

cf. (3.4). Take orthogonal complements in (5.2) and use (5.1) to obtain

ker (A∗ −λ 0) ⊂ ran(A∗ −λ 0)n, n ∈ N.

Hence A∗ −λ 0 is quasi-Fredholm of degree 0 and thus λ 0 ∈ reg(A∗) . �

This result leads to an analog of Lemma 3.3 involving ranges instead of kernels.
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LEMMA 5.2. Let A be a closed linear relation in a Hilbert space H and assume
that λ0 ∈ reg(A) . Then r(A− λ0) > 0 and for all λ ∈ C which satisfy |λ − λ0| <
r(A−λ0)

g(ran(A−λ ), ran(A−λ0)) < 1, (5.3)

or, equivalently,

H = ran(A−λ )+ (ran(A−λ0))⊥, direct sum. (5.4)

Proof. Let λ ∈ C satisfy |λ −λ0| < r(A−λ0) . By Theorem 5.1 it follows that

λ 0 ∈ reg(A∗) . Since |λ −λ 0| < r(A−λ0) = r(A∗ −λ 0) , it follows from Lemma 3.3
that

g(ker (A∗ −λ),ker (A∗ −λ 0)) < 1,

or, equivalently, by (2.33)

g(ran(A−λ ), ran(A−λ0)) < 1.

Moreover, recall from Lemma 3.4 that ran(A−λ ) is closed, which now leads to (5.3).
The equivalence between (5.3) and (5.4) follows from (2.36). �

It is now clear that there exists an analog of the description in Theorem 4.1, which
extends Lemma 5.2.

COROLLARY 5.3. Let A be a closed linear relation in a Hilbert space H and let
λ0 ∈C . Then λ0 ∈ reg(A) if and only if r(A−λ0) > 0 and there exists a neighborhood
U (λ0) of λ0 such that

ran(A−λ ) is closed, λ ∈ U (λ0), (5.5)

and
g(ran(A−λ ), ran(A−λ0)) < 1, λ ∈ U (λ0). (5.6)

The neighborhood U (λ0) may be chosen so as to contain the disk

{λ ∈ C : |λ −λ0| < r(A−λ0)}, (5.7)

and on that disk

g(ran(A−λ ), ran(A−λ0)) � |λ −λ0|
r(A−λ0)

. (5.8)

Let A be a closed linear relation in a Hilbert space H . Recall that λ ∈ ρ(A) if

and only if λ ∈ ρ(A∗) . However, when λ ∈ γ(A) , then, in general, only λ ∈ reg(A∗) .
A direct consequence of Theorem 4.1 is the following result, cf. [10, Corollaire 4.11],
which is applicable to normal relations, cf. [7].

COROLLARY 5.4. Let A be a closed linear relation in a Hilbert space for which

ker (A∗ −λ) = ker (A−λ ), λ ∈ C. (5.9)

Then reg(A) = ρ(A) .
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Proof. Since ρ(A)⊂ reg(A) , it suffices to show reg(A)⊂ ρ(A) . Let λ ∈ reg(A) ,
then (5.9) implies that

ker (A∗ −λ) = ker (A−λ )⊂ ran(A−λ ) = ker (A∗ −λ)⊥,

so that ker (A∗ − λ ) = {0} . Hence ker (A− λ ) = {0} and ran(A− λ ) = H , which
shows that λ ∈ ρ(A) . �

6. Regular points and continuity

Let A be a closed linear relation in a Hilbert space H and assume that λ0 ∈ reg(A) .
Then by Lemma 3.3, Lemma 3.4, and Lemma 5.2 there exists a neighborhood U of
λ0 , defined by

U = {λ ∈ C : |λ −λ0| < r(A−λ0)}, (6.1)

for which
r(A−λ ) � r(A−λ0)−|λ −λ0| > 0, λ ∈ U , (6.2)

so that ran(A−λ ) , λ ∈ U , is closed; and, moreover, for λ ∈ U the inequalities (3.5)
and (5.3) are valid. Recall from Lemma 3.1 and Lemma 3.3 that, due to (2.36) and
(2.37), in fact,

g(ker (A−λ ),ker (A−λ0)) � |λ −λ0|
r(A−λ0)

, λ ∈ U , (6.3)

and

g(ran(A−λ ), ran(A−λ0)) � |λ −λ0|
r(A−λ0)

, λ ∈ U . (6.4)

For all λ ∈ U one has the direct sum decompositions

H = ker (A−λ )+ker (A−λ0)⊥, direct sum, (6.5)

and
H = ran(A−λ )+ ran(A−λ0)⊥, direct sum. (6.6)

Likewise it follows from (6.5), (6.6), and (2.36) that

H = (ker (A−λ ))⊥+ker (A−λ0), direct sum, (6.7)

and
H = (ran(A−λ ))⊥+ ran(A−λ0), direct sum. (6.8)

The dependence on λ of the first summands in the direct sum decompositions (6.5),
(6.6), (6.7), and (6.8) is studied in the following proposition.

PROPOSITION 6.1. Let A be a closed linear relation in a Hilbert space H . Then
the set reg(A) is open, and the mappings

(i) reg(A) � λ �→ ker (A−λ );



702 J.-PH. LABROUSSE, A. SANDOVICI, H.S.V. DE SNOO AND H. WINKLER

(ii) reg(A) � λ �→ (ker (A−λ ))⊥ ;

(iii) reg(A) � λ �→ ran(A−λ );

(iv) reg(A) � λ �→ ran((A−λ ))⊥ ,

from reg(A) into the space S(H) of closed linear subspaces of H provided with the
gap metric, are continuous.

Proof. In order to show that the set reg(A) is open, let λ0 ∈ reg(A) . Then let the
point λ ∈ C satisfy

|λ −λ0| < r(A−λ0). (6.9)

It has been shown in Lemma 3.4 that ran(A−λ ) is closed. Now it will be shown that
there exists a neighborhood V of λ so that for all μ in that neighborhood one has
g(ker (A− μ),ker (A−λ )) < 1; in other words that λ is also a regular point of the
relation A ; cf. Theorem 4.1.

Let λ ∈ C satisfy (6.9). The neighborhood V of λ is defined by

V = {μ ∈ C : 2|μ −λ | < r(A−λ0)−|λ −λ0|}. (6.10)

For any μ ∈ V it follows from the definition in (6.10) and the assumption (6.9) that

|μ −λ0| � |μ −λ |+ |λ −λ0|
< (r(A−λ0)−|λ −λ0|)/2+ |λ −λ0| (6.11)

= (r(A−λ0)+ |λ −λ0|)/2.

Due to (6.9), the inequality (6.11) shows that any μ ∈ V also satisfies:

|μ −λ0| < r(A−λ0), (6.12)

Hence V is contained in the disk in (6.9). In particular, it follows from Lemma 3.4 that
ran(A− μ) is closed for all μ ∈ V .

For μ ∈ V the definition in (6.10) and the inequality in (3.15) imply that

|μ −λ |< 2|μ −λ |� r(A−λ0)−|λ −λ0| � r(A−λ ). (6.13)

Since ran(A−λ ) is closed, Lemma 3.1 may be applied, which gives with (6.13)

δ (ker (A− μ),ker (A−λ )) � |μ −λ |
r(A−λ )

< 1, μ ∈ V . (6.14)

Furthermore, (6.12) shows that (3.15) holds with λ replaced by μ :

r(A− μ) � r(A−λ0)−|μ −λ0| > 0, (6.15)

Hence, in (6.15) an application of (6.11) and the definition of V lead to

r(A− μ) � r(A−λ0)−|μ −λ0|
> (r(A−λ0)−|λ −λ0|)/2

> |λ − μ |.
(6.16)
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Since ran(A− μ) is closed, Lemma 3.1 may be applied, which gives with (6.16)

δ (ker (A−λ ),ker (A− μ)) � |λ − μ |
r(A− μ)

< 1, μ ∈ V . (6.17)

It follows from (6.14), (6.17), and (2.35) that g(ker (A−λ ),ker (A− μ)) < 1 for
μ ∈ V . In particular, this leads to λ ∈ reg(A) .

Therefore it has been shown that reg(A) is open in C . The continuity of the
mappings in the theorem follows from the majorization of the corresponding gap norms
in (6.3) and (6.4). �

7. Regular points and continuous generalized resolvents

Let A be a closed linear relation with multivalued part mulA and corresponding
orthogonal operator part As . Let P be the orthogonal projection onto mulA . Assume
that there is an open set U ⊂ C such that ran(A−λ ) is closed for all λ ∈ U . Let Pλ
and Qλ be projections with

ranPλ = ran(A−λ ), ker Qλ = ker (A−λ ), λ ∈ U .

Let R(λ ) ∈ D(H) be a family of operators from H to domA (with the graph norm),
which satisfy for λ ∈ U :

(As−λ )R(λ )h = (I−P)Pλh−λPR(λ )h, h ∈ H,

and
R(λ )(As−λ )h = Qλ h, h ∈ domA.

The family R(λ ) , λ ∈ U , will be called a generalized resolvent of A . The general-
ized resolvent R(λ ) will be called continuous, in the sense of the graph norm, if the
mapping λ ∈ U → R(λ ) ∈ D(H) is continuous, i.e., if

‖R(λ )−R(μ)‖D → 0 as λ → μ , λ ,μ ∈ U .

The following theorem is another one of the main results of this paper. It charac-
terizes the regular points reg(A) of a closed linear relation A in a Hilbert space H in
terms of the existence of a continuous generalized resolvent R(λ ) as defined above.

THEOREM 7.1. Let A be a closed linear relation in a Hilbert space H and let
λ0 ∈ C . Then the following statements are equivalent:

(i) λ0 ∈ reg(A);

(ii) there is a generalized resolvent of A, continuous in a neighborhood of λ0 , in the
sense of the graph norm.
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Proof. (i) ⇒ (ii) Assume that λ0 ∈ reg(A) . With the neighborhood

U = {λ ∈ C : |λ −λ0| < r(A−λ0)}
of λ0 one obtains the estimate (6.2), so that ran(A− λ ) , λ ∈ U , is closed. More-
over, one obtains the direct sum decompositions (6.5) and (6.6), and the corresponding
estimates (6.3) and (6.4).

For λ ∈ U let Qλ be the projection from H onto (ker (A− λ0))⊥ parallel to
ker (A−λ )

ker Qλ = ker (A−λ ),

and let Pλ be the projection from H onto ran(A−λ ) parallel to (ran(A−λ0))⊥

ranPλ = ran(A−λ ).

With these projections define the generalized resolvent R(λ ) , λ ∈ U :

R(λ ) = Qλ (A−λ )−1Pλ , λ ∈ U , (7.1)

and recall that R(λ ) ∈ B(H) ; cf. Lemma 2.2. Due to (6.5) and (6.6) the generalized
resolvent R(λ ) satisfies the resolvent identity (2.19). Then by (2.20)

AsR(λ ) = (I−P)Pλ + λ (I−P)R(λ ),

where P is the orthogonal projection onto mulA . Hence, for all h ∈ H this leads to

‖R(λ )h‖2
D = ‖AsR(λ )h‖2 +‖R(λ )h‖2

= ‖(I−P)Pλh+ λ (I−P)R(λ )h‖2 +‖R(λ )h‖2

� 2‖Pλh‖2 +(2|λ |2 +1)‖R(λ )h‖2.

(7.2)

Each of these terms will be estimated. First observe that

{Pker (A−λ )R(λ )h,0} ∈ A−λ ,

and thus (2.12) leads to

{(I−Pker (A−λ ))R(λ )h,Pλ h} ∈ A−λ ,

(I−Pker (A−λ ))R(λ )h ⊥ ker (A−λ ).
(7.3)

It follows from (7.3) and (2.6) that

r(A−λ )‖(I−Pker (A−λ ))R(λ )h‖ � ‖Pλ h‖, h ∈ H. (7.4)

Furthermore, it follows from the definition of Qλ that for all h ∈ H :

‖Pker (A−λ )R(λ )h‖ = ‖Pker (A−λ )(I−Pker (A−λ0))R(λ )h‖
� ‖Pker (A−λ )(I−Pker (A−λ0))‖‖R(λ )h‖
= g(ker (A−λ ),ker (A−λ0))‖R(λ )h‖.

(7.5)
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Note that (7.5) shows

(1−g(ker (A−λ ),ker (A−λ0))2)‖R(λ )h‖2

� ‖R(λ )h‖2−‖Pker (A−λ )R(λ )h‖2

= ‖(I−Pker (A−λ ))R(λ )h‖2,

(7.6)

where the first term in the inequality is postive due to the direct sum decomposition in
(6.5). Combine (7.4) and (7.6) to obtain

‖R(λ )h‖2 � 1
(1−g(ker (A−λ ),ker (A−λ0))2)(r(A−λ )2)

‖Pλh‖2. (7.7)

Recall that

‖Pλ‖2 =
1

1−g(ran(A−λ ), ran(A−λ0))2 , (7.8)

as follows from (2.38).
Now choose 0 < c < r(A−λ0) and consider a compact disk Uc of the form

Uc = {λ ∈ U : |λ −λ0| � c}

inside U . Then one obtains from (6.2), (6.3), and (6.4) the uniform bounds

r(A−λ ) � r(A−λ0)− c > 0, λ ∈ Uc, (7.9)

g(ker (A−λ ),ker (A−λ0)) � c
r(A−λ0)

< 1, λ ∈ Uc, (7.10)

and
g(ran(A−λ ), ran(A−λ0)) � c

r(A−λ0)
< 1, λ ∈ Uc. (7.11)

Hence (7.2), (7.7), and (7.8) together with (7.9), (5.8), and (7.11) lead to the existence
of Kc for which

‖R(λ )h‖D � Kc‖h‖, h ∈ H, (7.12)

for all λ ∈ Uc . Now apply Lemma 2.7 to obtain the desired result.
(ii) ⇒ (i) Assume that there exists a generalized resolvent R(λ ) of A which is

continuous in a neighborhood V of λ0 . By definition

ran(A−λ ) is closed, λ ∈ V . (7.13)

In particular, ran(A−λ0) is closed and in order to show that λ0 ∈ reg(A) it suffices to
show that for all n ∈ N

ker (A−λ0)n ⊂ ran(A−λ0), (7.14)

see (3.4).
First it will be shown by induction that for all n ∈ N

ker (A−λ0)n ⊂ ran(A−λ ), λ �= λ0. (7.15)
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If h ∈ ker (A− λ0) then {h,(λ0 − λ )h} ∈ A−λ , and it follows that h ∈ ran(A− λ )
when λ �= λ0 . This proves (7.15) for n = 1. Now assume for some n ∈ N that

ker (A−λ0)n−1 ⊂ ran(A−λ ), λ �= λ0.

If h ∈ ker (A− λ0)n then {h,ϕ} ∈ A− λ0 for some ϕ ∈ ker (A− λ0)n−1 . Therefore
ϕ +(λ0−λ )h ∈ ran(A−λ ) with ϕ ∈ ran(A−λ ) , which implies that h ∈ ran(A−λ ) ,
λ �= λ0 . Hence, (7.15) has been established.

Now (7.14) will be shown. Recall from (7.13) that ran(A−λ ) is closed for λ in
a neighborhood V of λ0 . Let Pran(A−λ ) be the orthogonal projection onto ran(A−λ )
and let P denote the orthogonal projection onto mulA . Since mulA ⊂ ran(A−λ ) for
all λ ∈ C , it follows for the orthogonal projection Pran(A−λ ) that

PPran(A−λ ) = Pran(A−λ )P = P, λ ∈ C, (7.16)

and for the projection Pλ associated with the generalized resolvent R(λ ) that

Pλ P = P, λ ∈ reg(A). (7.17)

Observe that (I−P)Pran(A−λ ) is a projection by (7.16), which is orthogonal since it is
selfadjoint, and that (I−P)Pλ is a bounded projection by (7.17). Moreover, it is easily
checked that each of these projections has the same range ran(A−λ )
mulA .

Finally, let h ∈ ker (A−λ0)n , then clearly by (7.15) Pran(A−λ )h = h . Hence

h−Pran(A−λ0)h = Pran(A−λ )h−Pran(A−λ0)h

= (I−P)(Pran(A−λ )−Pran(A−λ0)),

where (7.16) has been used. Therefore it follows that

‖h−Pran(A−λ0)h‖ = ‖(I−P)(Pran(A−λ )−Pran(A−λ0))h‖
� ‖(I−P)(Pran(A−λ )−Pran(A−λ0))‖‖h‖
= g((I−P)Pran(A−λ ),(I−P)Pran(A−λ0))‖h‖
� ‖(I−P)Pλ − (I−P)Pλ0

)‖‖h‖
= ‖(I−P)(Pλ −Pλ0

)‖‖h‖,

(7.18)

where (2.32) and (2.34) have been used. Now observe that the definition

(I−P)Pλ = AsR(λ )−λ (I−P)R(λ )

implies that

(I−P)(Pλ −Pλ0
) = As(R(λ )−R(λ0))− (I−P)(λR(λ )−λ0R(λ0)).

Since
‖As(R(λ )−R(λ0))‖ � ‖R(λ )−R(λ0)‖D

and R(λ ) is continuous in the graph norm, it follows that ‖(I −P)(Pλ −Pλ0
)‖ tends

to 0 for λ → λ0 . Hence one concludes from (7.18) that

h = Pran(A−λ0)h ∈ ran(A−λ0).

Therefore (7.14) has been established. �
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8. On the opening between subspaces

Let H be a Hilbert space and let M and N be closed linear subspaces of H . In
general, the sum M+N need not be closed (see [15] for an interesting example). This
section presents a review of necessary and sufficient conditions under which M+N is
closed.

The intersection M∩N is a closed linear subspace. Hence the Hilbert space H
has the following orthogonal decomposition

H = (M∩N)⊥⊕ (M∩N). (8.1)

Introduce the ’reduced’ subspaces M0 and N0 by

M0 = M∩ (M∩N)⊥, N0 = N∩ (M∩N)⊥. (8.2)

Then M0 and N0 are closed linear subspaces of (M∩N)⊥ and

M0 ∩N0 = {0}. (8.3)

Denote the orthogonal complements of M0 and N0 in (M∩N)⊥ by M⊥
0 and N⊥

0 ,
respectively.

LEMMA 8.1. Let M and N be closed linear subspaces of a Hilbert space H and
let M0 and N0 be defined by (2.26). Then, corresponding to (8.1), M and N have the
orthogonal decompositions

M = M0 ⊕ (M∩N), N = N0⊕ (M∩N). (8.4)

Moreover, the space (M∩N)⊥ has the following decompositions

(M∩N)⊥ = M0 ⊕M⊥, (M∩N)⊥ = N0 ⊕N⊥, (8.5)

in other words M⊥ = M⊥
0 and N⊥ = N⊥

0 .

COROLLARY 8.2. Let M and N be closed linear subspaces of a Hilbert space H
and let M0 and N0 be defined by (8.2). Then the following statements are equivalent:

(i) M+N is closed;

(ii) M0 +N0 is closed.

Moreover, the orthogonal complements satisfy

M⊥ +N⊥ = M⊥
0 +N⊥

0 ,

so that both sums are closed simultaneously.

If the subspace M + N is closed and M∩N = {0} , then M + N may be con-
sidered as a Hilbert space in its own right with corresponding projections from M+N
onto M or N . This leads to the following simple characterization, based on parallel
projections and the closed graph theorem.
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LEMMA 8.3. Let M and N be closed linear subspaces of a Hilbert space H .
Then the following statements are equivalent:

(i) M+N is closed and M∩N = {0} ;

(ii) there exists ρ > 0 such that

ρ
√
‖h‖2 +‖k‖2 � ‖h+ k‖, h ∈ M, k ∈ N. (8.6)

Let M and N be closed linear subspaces of a Hilbert space H and let PM and
PN denote the corresponding orthogonal projections. The opening c0(M,N) between
M and N is defined as

c0(M,N) = sup{|(h,k)| : h ∈ M, ‖h‖ � 1, k ∈ N, ‖k‖ � 1}. (8.7)

It is clear from this definition that c0(M,N) = c0(N,M) . Moreover, since

c0(M,N) = sup{|(PMh,PNk)| : ‖h‖ � 1, ‖k‖ � 1},

it follows that
c0(M,N) = ‖PMPN‖,

which characterizes c0(M,N) in terms of the orthogonal projections PM and PN .

PROPOSITION 8.4. Let M and N be closed linear subspaces of a Hilbert space
H . Then the following statements are equivalent:

(i) c0(M,N) < 1 ;

(ii) M+N is closed and M∩N = {0} .

Proof. (i) ⇒ (ii) Assume that c0(M,N) < 1. It is clear that M∩N = {0} . In
order to see that M+N is closed, observe that the identity

‖h+ k‖2 = ‖h‖2 +‖k‖2 +2Re(h,k), h,k ∈ H,

leads to the following inequalities

‖h‖2 +‖k‖2 � ‖h+ k‖2 +2|(h,k)|
� ‖h+ k‖2 +2c0(M,N)‖h‖‖k‖
� ‖h+ k‖2 + c0(M,N)(‖h‖2 +‖k‖2), h ∈ M, k ∈ N.

(8.8)

In particular, it follows that

(1− c0(M,N))(‖h‖2 +‖k‖2) � ‖h+ k‖2, h ∈ M, k ∈ N. (8.9)

Hence, by Lemma 8.3 M+N is closed.
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(ii) ⇒ (i) Assume that M+N is closed and M∩N = {0} . According to Lemma
8.3 the inequality (8.6) holds for some ρ > 0. Now suppose that c0(M,N) = 1. Then
there exist sequences hn ∈ M and kn ∈ N , such that

(hn,kn) → 1, ‖hn‖ = ‖kn‖ = 1.

Hence, it follows from (8.6) that

2ρ2 � ‖hn− kn‖2 = ‖hn‖2−2Re(hn,kn)+‖kn‖2

= 2(1−Re(hn,kn)) → 0,

which leads to a contradiction. Thus it follows that c0(M,N) < 1. �
Let M and N be closed linear subspaces of a Hilbert space H . The opening

c(M,N) between M and N is defined as

c(M,N) = c0(M0,N0), (8.10)

where M0 and N0 are defined as in (8.2). It is clear from this definition that c(M,N) =
c(N,M) . Moreover, it follows that

c(M,N) = sup{|(PM∩(M∩N)⊥h,PN∩(M∩N)⊥k)| : ‖h‖ � 1, ‖k‖ � 1}
= sup{|(P(M∩N)⊥PMh,P(M∩N)⊥PNk)| : ‖h‖ � 1, ‖k‖ � 1}
= sup{|PMh,P(M∩N)⊥PNk)| : ‖h‖ � 1, ‖k‖ � 1}
= sup{|(PMh,PN∩(M∩N)⊥k)| : ‖h‖ � 1, ‖k‖ � 1},

which leads to
c(M,N) = c0(M,N0) = c0(M0,N), (8.11)

where the last equality follows by symmetry. Observe that

c(M,N) = ‖PM∩(M∩N)⊥PN∩(M∩N)⊥‖ = ‖PMP(M∩N)⊥PNP(M∩N)⊥‖
= ‖PMPNP(M∩N)⊥‖ = ‖PMPN(I−PM∩N)‖
= ‖PMPN−PMPNPM∩N‖ = ‖PMPN−PM∩N‖,

which characterizes c(M,N) in terms of the orthogonal projections PM and PN .

PROPOSITION 8.5. Let M and N be closed linear subspaces of a Hilbert space
H . Then the following statements are equivalent:

(i) c(M,N) < 1 ;

(ii) M+N is closed.

Proof. The condition c(M,N) < 1 is equivalent to c0(M0,N0) < 1, where M0

and N0 are defined in (8.2) and satisfy (2.27). Hence by Proposition 8.4 the condition
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c(M,N) < 1 is equivalent to M0 +N0 is closed. Recall that M0 +N0 is closed if and
only if M+N is closed. �

Let H be a Hilbert space and let A ∈ B(H) (the bounded linear operators, defined
on all of H). The minimum modulus r(A) of A is now

r(A) = inf

{ ‖Ah‖
‖h‖ : h ∈ H
ker A

}
. (8.12)

Then ranA is closed if and only if r(A) > 0 and, furthermore, r(A∗) = r(A) .

THEOREM 8.6. Let M and N be closed linear subspaces of a Hilbert space H .
Then

c(M,N)2 + r((I−PN)PM)2 = 1. (8.13)

In particular,
c(M⊥,N⊥) = c(M,N). (8.14)

Proof. First observe that the following identity holds:

ker ((I−PN)PM) = (M∩N)⊕M⊥. (8.15)

To see this, note that the righthand side is contained in the lefthand side. For the reverse
inclusion, assume that (I−PN)PMh = 0 and write h = f +g with f ∈M and g∈M⊥ .
Then f = PN f , so that f ∈ M∩N . Hence, h ∈ (M∩N)⊕M⊥ . This completes the
proof of the reverse inclusion. It follows from (8.15) and (8.5) that

(ker ((I−PN)PM))⊥ = M∩ (M∩N)⊥. (8.16)

Hence, by means of (8.12) and (8.16), it can be seen that

r((I−PN)PM) = inf

{ ‖(I−PN)PMh‖
‖h‖ : h ∈ M∩ (M∩N)⊥

}
. (8.17)

The following straightforward identity

‖(I−PN)PMh‖2

‖h‖2 =
‖PMh‖2

‖h‖2 − ‖PNPMh‖2

‖h‖2 , h ∈ H\ {0},

and (8.17) lead to

r((I−PN)PM)2 = 1− sup

{ ‖PNPMh‖2

‖h‖2 : h ∈ M∩ (M∩N)⊥
}

. (8.18)

It follows from M∩ (M∩N)⊥ ⊂ M and the identity (8.5) that

sup

{ ‖PNPMh‖2

‖h‖2 : h ∈ M∩ (M∩N)⊥
}

= sup

{ ‖PNPM∩(M∩N)⊥h‖2

‖h‖2 : h ∈ M∩ (M∩N)⊥
}

= sup

{ ‖PNPM∩(M∩N)⊥h‖2

‖h‖2 : h ∈ H

}
.

(8.19)
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Hence, (8.18) and (8.19) show that

r((I−PN)PM)2 = 1− c0(N,M∩ (M∩N)⊥)2. (8.20)

This identity (8.20) together with (8.11) and the symmetry of c0 lead to (8.13).
Since the minimum modulus is invariant under taking adjoints, it follows that

r((I−PN)PM)) = r(PM(I−PN)). (8.21)

The identity (8.21), Theorem 8.6, and the symmetry property of c(M,N) lead to

c(M,N) = c(N⊥,M⊥) = c(M⊥,N⊥),

in other words (8.14) has been shown. �
The next result is a direct consequence of Theorem 8.6, when it is combined with

the characterization in Proposition 8.5.

THEOREM 8.7. Let M and N be closed linear subspaces of a Hilbert space H .
Then the following statements are equivalent:

(i) M+N is closed;

(ii) M⊥ +N⊥ is closed.

Morover, the following statements are equivalent:

(iii) M+N is closed and M∩N = {0} ;

(iv) M⊥ +N⊥ = H .

In particular, the following statements are equivalent:

(v) M+N = H and M∩N = {0} ;

(vi) M⊥ +N⊥ = H and M⊥ ∩N⊥ = {0} .

Let M and N be closed linear subspaces of a Hilbert space H . The gap g(M,N)
between M and N is defined as (2.32), where PM and PN are the orthogonal projec-
tions onto M and N , respectively. The identity

PM−PN = PM(I−PN)− (I−PM)PN

shows that g(M,N) � 1.

PROPOSITION 8.8. Let M and N be closed linear subspaces in H . Then

max(c0(M,N),c0(M⊥,N⊥)) = g(M,N⊥). (8.22)

In particular, if c0(M,N) = c0(M⊥,N⊥) , then c0(M,N) = g(M,N⊥) .
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COROLLARY 8.9. Let M and N be closed linear subspaces in H . Then

c(M,N) � min(c0(M,N),c0(M⊥,N⊥)

� max(c0(M,N),c0(M⊥,N⊥)) = g(M,N⊥).
(8.23)

Moreover, if M∩N = {0} and M⊥∩N⊥ = {0} , then

c(M,N) = c0(M,N) = c0(M⊥,N⊥) = g(M,N⊥). (8.24)

THEOREM 8.10. Let M and N be closed linear subspaces of a Hilbert space H .
Then the following statements are equivalent:

(i) g(M,N⊥) < 1 ;

(ii) M+N = H and M∩N = {0} .

If either of these equivalent conditions holds, then the chain of equalities in (8.24) is
satisfied.

COROLLARY 8.11. Let M and N be closed linear subspaces of a Hilbert space
H such that g(M,N⊥) < 1 , or equivalently, H = M+N and M∩N = {0} . Then

g(M,N⊥) =

√
1− 1

‖P‖2 (= c(M,N) = c0(M,N) = c0(M⊥,N⊥)), (8.25)

where P is the projection onto M , parallel to N .

Proof. Observe that the condition M∩N = {0} implies that

r((I−PN)PM) = inf

{‖(I−PN) f‖
‖ f‖ : f ∈ M

}
=

(
sup

{ ‖ f‖
‖(I−PN) f‖ : f ∈ M

})−1

.

(8.26)

Hence (8.25) follows from Theorem 8.6, Theorem 8.10, and (8.26), once the following
identity has been established:

‖P‖ = sup

{ ‖ f‖
‖(I−PN) f‖ : f ∈ M

}
. (8.27)

In order to show (8.27), note that

‖P‖ = sup

{ ‖ f‖
‖ f +g‖ : f ∈ M, g ∈ N

}
.

The decomposition f +g = (I−PN) f +h with h = PN f +g belonging to N gives

‖ f +g‖2 = ‖(I−PN) f‖2 +‖PN f +g‖2, f ∈ M, g ∈ N,
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and it follows that

‖P‖ = sup

{
‖ f‖√‖(I−PN) f‖2 +‖h‖2

: f ∈ M, h ∈ N

}
.

This representation clearly implies (8.27). �

The notion of opening between closed linear subspaces of a Hilbert space is due to
various people. The opening c0(M,N) has been introduced by J. Dixmier [3], whereas
the opening c(M,N) has been introduced by K. Friedrichs [4]. For related treatments,
see [2] and [10]; note that in [10] the notations

ε(M,N) = c(M,N⊥) and δ (M,N) = c0(M,N⊥)

have been used.
The results in Propositions 8.4 and 8.5 go back to J.-Ph. Labrousse [10] and to

F. Deutsch [2, Theorem 12]. Theorem 8.6 goes back to Labrousse [10]. According to
[2] the identity (8.14) was originally found by D.C. Salmon [13]; a different proof of it
was provided in [2]. Note that a similar result does not hold for the opening c0(M,N) .
Theorem 8.7 can be found, for instance, in [8].

Proposition 8.8 has a long history; see [1] and [10]. The result in Corollary
8.11 goes back to V.E. Lyantse [12]. In this particular case the identity c0(M,N) =
c0(M⊥,N⊥)(< 1) goes back to M.G. Kreı̆n, M.A. Krasnoselskiı̆, and D.P. Milman
[9]; for a different proof see [2], [6].
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[3] J. DIXMIER, Études sur les varietés et les opérateurs de Julia avec quelques applications, Bull. Soc.
Math. France 77 (1949), 11–101.

[4] K. FRIEDRICHS,On certain inequalities and characteristic value problems for analytic functions and
for functions of two variables, Trans. Amer. Math. Soc. 41 (1937), 321–364.

[5] S. GOLDBERG, Unbounded linear operators, Mc Graw Hill, New York, 1966.
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