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BISEPARATING MAPS BETWEEN SMOOTH

VECTOR–VALUED FUNCTIONS ON BANACH MANIFOLDS
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Abstract. An S -category consists all Banach manifolds as objects and subclasses of continuous
functions (with some kind of smoothness) as morphisms. This notion covers, for example, the
categories C∞ , Cn , C , and Liploc of all smooth functions, Cn -functions, continuous functions,
and local Lipschitz functions. It is shown by Garrido, Jaramillo and Prieto in 2000 that two C∞ -
smooth Banach manifolds X and Y are C∞ -diffeomorphic to each other if and only if there is an
algebra isomorphism from C∞(X ,R) onto C∞(Y,R) . We extend this result to general abstract
S -categories, and from algebra isomorphisms of scalar functions to the maps which are linear,
bijective and separating, between vector-valued functions.

1. Introduction

It is a classical result that the algebra structure of the algebra C(X) of continuous
functions determines the topological structure of a completely regular space X . More
precisely, if there exists a ring isomorphism T : C(X) →C(Y ) then the realcompactifi-
cations of X and Y are homeomorphic [15, pp. 115–118]. If we consider the algebra
C∞(X) of smooth functions on a smooth Banach manifold X , we know that the algebra
structure determines even the smooth structure of X . Indeed, Garrido, Jaramillo and
Prieto [13] showed that C∞ -smooth Banach manifolds X and Y are C∞ -diffeomorphic
if and only if there is an algebra isomorphism from C∞(X ,R) onto C∞(Y,R) .

In the vector-valued case, although there is no multiplicative structure equipping
C(X ,E) when X is a topological space and E is a general Banach space, we can still
consider its disjointness structure. We say that f ,g in C(X ,E) are disjoint, denoted by
f g = 0, if they have disjoint cozero sets, that is, ‖ f (x)‖‖g(x)‖ = 0,∀x ∈ X . A linear
map T between spaces of vector-valued functions is said to be disjointness preserving
or separating if

f g = 0 =⇒ T fTg = 0.

T is biseparating if it is bijective and both T and T−1 are separating.
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In [4], Araujo showed that: Assume X ⊂ Rp and Y ⊂ Rq are open subsets, and
E and F are Banach spaces. If T : Cn(X , E) →Cm(Y, F) is a linear biseparating map,
then p = q , n = m , and

T f (y) = h(y)( f (ϕ(y))) ∀ f ∈Cn(X , E), ∀y ∈Y,

where ϕ :Y →X is a diffeomorphismof class Cn and h(y) : E → F is a linear bijection
for all y in Y .

To set up a general framework for smoothness, Bonic and Frampton [8] gave an
abstract theory, called S -category, consisting of all Banach manifolds X , Y as objects
and subclasses S(X ,Y) of continuous functions as morphisms. This notion covers as
morphisms in the category Liploc of local Lipschitz functions, the category Cn of Cn -
functions, and the category Dn

α of Cn -functions with Hölder continuous n -derivatives
of order α , where n ∈ N∪{∞} and 0 < α < 1. See Section 2 for more details.

In this paper, S1 and S2 denote any S -categories, G1 is an S1 -smooth Banach
space, and G2 is an S2 -smooth Banach space. Suppose X is a separable S1 -smooth
G1 -manifold and Y is a separable S2 -smooth G2 -manifold, and E and F are general
Banach spaces.

We will show in Section 3 that every algebra isomorphism T : S1(X ,R)→ S2(Y,R)
induces a homeomorphism ϕ : Y → X such that T f = f ◦ϕ for all f in S1(X) . With a
mild continuity assumption, we will also see that a similar conclusion holds for bisep-
arating linear maps from S1(X ,E) onto S2(Y,F) . As shown in Theorem 3.7 below, we
will even see that X ∼= Y as smooth Banach manifolds in many interesting cases.

Disjointness preserving linear maps between function spaces or vector-valued func-
tion spaces are well-studied (see, e.g., [7, 1, 18, 9, 11, 17, 19, 25, 14]). In particu-
lar, Araujo and Jarosz ([2, 3, 4, 6]) investigated separating maps between spaces of
vector-valued uniformly continuous functions on complete metric spaces, and spaces
of vector-valued differentiable functions on open subsets of Rn . Dubarbie [10] studied
these maps between spaces of vector-valued absolutely continuous functions on com-
pact subsets of the real line. Moreover, Leung, Araujo and Dubarbie ([23, 5]) worked on
these maps between spaces of generalized Lipschitz vector-valued functions which in-
clude Lipschitz, little Lipschitz and local Lipschitz functions. In this paper, we work in
a general framework, i.e., S -categories, which include all function spaces mentioned
above.

We would like to express our deep gratitude to the referee for many helpful com-
ments which improve the presentation of this paper.

2. S -categories and S -smooth manifolds

Denote by C1(U,V ) the family of all Frechet differentiable maps between Banach
manifolds U,V with continuous derivatives. Similarly, we can define the notions of
Ck(U,V ) for k = 1,2, . . . ,∞ .
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DEFINITION 2.1. ([8]) An S -category is a category S whose objects consist of
all open subsets of Banach spaces. For any pair of objects U and V , the morphism
set S(U,V) consists of continuous functions from U into V , and the product of two
morphisms is taken as the usual composition. We also require that C∞(U,V )⊆ S(U,V)
and that the following conditions are satisfied:

(S1) f ∈ S(U,W ) whenever f ∈ S(U,V ) and W is an open subset of V containing
f (U) .

(S2) f ∈ S(U,V) whenever f ∈C(U,V ) and for each x in U there is an open set W
with x ∈W ⊆U such that f |W ∈ S(W,V) .

(S3) If f1 ∈ S(U1, V1) and f2 ∈ S(U2, V2) , then f1 × f2 ∈ S(U1×U2, V1×V2) .

If V is a Banach space, it follows from (S3) that S(U,V) is a vector space, and
indeed, an S(U)-module. Moreover, S(U,V) is an algebra if V is a Banach algebra.
In general, we have f + g and f g being S -smooth whenever the algebraic operations
make sense. A morphism f in S(U,V) will be called an S-smooth function or a func-
tion of class S . We write S(U) for S(U,V) if V is the scalar field, i.e., R or C .

A Banach space G is said to be S-smooth if there is a nonzero S -smooth function
with bounded support. It amounts to say that for any open neighborhood V of any point
x in G , there is an f in S(G) such that

f (x) �= 0 and supp( f ) = {x ∈ G : f (x) �= 0} ⊂V.

In other words, G is an S -smooth Banach space if and only if the norm topology on G
is equivalent to the projective topology σ(G,S(G)) , i.e., the weakest topology on G in
which all S -smooth functions in S(G) are continuous.

Let X be a Hausdorff space. A pair (U, ϕ) is called a chart if U is open in X ,
the image set ϕ(U) is open in a Banach space Eϕ , and ϕ : U → ϕ(U) is a homeomor-
phism. X is called a manifold of class S if there is a collection of charts {(Uα , ϕα)}
such that {Uα} is a covering of X , and ϕα ◦ϕ−1

β ∈ S(ϕβ (Uα ∩Uβ ), ϕα(Uα ∩Uβ )) for
all α,β . If all Banach spaces Eϕα are equivalent to a single Banach space E , we call
X an E -manifold of class S . If in addition E is S -smooth, X will be called a smooth
E -manifold of class S , or simply an S-smooth E -manifold.

The notion of S -category can be extended to the ones including as objects of all
Banach manifolds of class S . Given manifolds X and Y of class S , the morphism set
is defined to be

S(X ,Y ) = { f ∈C(X , Y ) : ψ ◦ f ◦ϕ−1 ∈ S(ϕ(U), ψ(V ))
for every charts (U, ϕ) of X and (V, ψ) of Y with f (U) ⊆V}

It is easy to check that this enlarged version of S -category satisfies the conditions
stated in Definition 2.1.
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Suppose X is a manifold of class S . A family {ϕα ∈ S(X)} of non-negative
functions is said to be an S-partition of unity if every point in X has a neighborhood
on which all but a finite number of ϕα vanish, and ∑ϕα(x) = 1 for all x in X . We say
that X admits S-partitions of unity if for every open covering {Vβ} of X there is an
S -partition of unity {ϕα} in which each ϕα is supported in some Vβ .

THEOREM 2.2. ([8]) Let X be a separable smooth E -manifold of class S . Then
X admits S-partitions of unity. Consequently, if A and B are disjoint closed sets in X ,
then there is an 0 � f � 1 in S(X) such that f = 0 in some neighborhood of A and
f = 1 in some neighborhood of B.

3. Recovering smooth structures of Banach manifolds from
smooth vector-valued functions

THEOREM 3.1. Let X ,Y be separable smooth G1,G2 -manifolds of class S1,S2 ,
respectively. If T : S1(X ,R) → S2(Y,R) is an algebra isomorphism, there is an home-
omorphism ϕ : Y → X such that T f = f ◦ϕ for all f in S1(X ,R) .

Proof. Note that X is a realcompact space, and S(X ,R) ⊂ C(X ,R) is a uni-
formly dense ([8, Theorem 2]), and a unital inverse-closed subalgebra of C(X ,R)
([22, pp. 153]), i.e., 1

f ∈ S(X ,R) whenever f in S(X ,R) is non-vanishing on X .
By [12, Theorem 21 and Corollary 24], there is a homeomorphism ϕ :Y → X such that
T f = f ◦ϕ ,∀ f ∈ S1(X ,R) . �

To extend Theorem 3.1 to the case of vector-valued functions with the disjointness
structure instead of the multiplicative structure, we introduce the notations

Ix = { f ∈ S1(X ,E) : x /∈ supp( f )} and Mx = { f ∈ S1(X ,E) : f (x) = 0}.

A sequence { fn} is said to be locally uniformly convergent to an f in S(X ,E) if for
each x in X there is a neighborhood of x in which fn converges uniformly to f .
A topology on S(X ,E) is said to be locally determined if every locally uniformly
convergent sequence converges. For example, the usual topologies of C(X ,E) and
Liploc(X ,E) are locally determined.

LEMMA 3.2. Let X be a separable smooth E -manifold of class S and x′ ∈ X .
For all g in Mx′ , there is a sequence {gn} in Ix′ locally uniformly converging to g. In
particular, in every locally determined topology of S(X ,E) , we have

Ix′ = Mx′ , ∀x′ ∈ X .

Proof. Given f in Mx′ . Let Un = {x ∈ X : ‖ f (x)‖E < 1
n} for all n in N . By

Theorem 2.2, for any n in N , there exists an fn in S1(X ,E) with ‖ fn(x)‖E � 1 for all
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x in X such that fn|X\Un = 0 and fn|U2n = 1. For any x in X , if ‖ f (x)‖ �= 0, choose
an integer N such that N > 2/‖ f (x)‖ . Let U = {u ∈ X : ‖ f (u)‖ > ‖ f (x)‖/2} . Then
U ∩Un = /0 whenever n > N . Hence, fn f = 0 on U for all n > N . If f (x) = 0, we
set U = {u ∈ X : ‖ f (u)‖ < 1} . Then ‖ fn f‖ < 1/n on U for all n = 1,2, . . . . In both
cases, we have (1− fn) f converging uniformly to f on a neighborhood U of each x
in X . �

Let T : S1(X ,E) → S2(Y,F) be a linear map. We say that T is locally uniform-
pointwisely continuous if T sends every sequence { fn} locally uniformly converging
to f in S1(X ,E) to a sequence {T fn} pointwisely convergent to T f in S2(Y,F) ,
i.e., T f (y) = limn T fn(y),∀y ∈ Y . This is the case, for example, if T is continuous
when S1(X ,E) is equipped with a locally determined topology and S2(Y,F) with the
topology of pointwise convergence.

In the following, we write B−1(E,F) for the set of all invertible bounded linear
operator from E onto F equipped with the strong operator topology.

THEOREM 3.3. Let X ,Y be separable smooth S1,S2 -manifolds, and E,F be Ba-
nach spaces, respectively. Suppose T : S1(X ,E) → S2(Y,F) is a bijective linear map
such that both T,T−1 are separating and locally uniform-pointwisely continuous. Then
T is a weighted composition operator of the form

T f (y) = h(y)( f (ϕ(y))), ∀ f ∈ S1(X ,E),∀y ∈ Y.

Here, ϕ : Y → X is a homeomorphism, and h : Y → (B−1(E,F),SOT ) is a continuous
map.

Proof. We divide the proof into several claims. For each x in X and y in Y , define

Sy = {x ∈ X : TIx ⊆ My} .

CLAIM 1. Sy �= /0 for each y in Y .

Suppose on the contrary that for each x in X , there exists an fx in Ix such that
T fx(y) �= 0. Let Ux be an open neighborhood of x on which fx = 0. By the separability
of X , we have X =

⋃∞
n=1Uxn for at most countably many points xn in X . By Theorem

2.2, we can assume there is an S1 -partition of unity {hn : n ∈ N} such that supp(hn) ⊆
Uxn for all n in N .

For any f in S1(X ,E) and each n in N , observe that

( f hn) fxn = 0 =⇒ T ( f hn)T fxn = 0 =⇒ T ( f hn)(y) = 0.

Since ∑∞
n=1 f hn locally uniformly converges to f , we have T f (y) = 0. This contradicts

to the surjectivity of T and Theorem 2.2.



720 C.-J. LIAO AND Y.-S. WANG

CLAIM 2. Sy consists of exactly one point for all y in Y .

Assume x1, x2 ∈ Sy . If x1 �= x2 , by Theorem 2.2, there exists an f in S1(X) such that
f (x) = 0 in a neighborhood of x1 and f (x) = 1 in a neighborhood of x2 . For any g in
S1(X ,E) , we have

g = f g+(1− f )g, f g ∈ Ix1 , and (1− f )g ∈ Ix2 .

Therefore Tg(y) = 0 for all g in S1(X ,E) by the definition of Sy , a contradiction.

By Claim 2, we can define a map ϕ : Y → X by Sy = {ϕ(y)} .

CLAIM 3. ϕ : Y → X is continuous.

Suppose on the contrary that there exists a net {yλ} in Y converging to y in
Y , but {ϕ(yλ )} does not converge to ϕ(y) . Passing to a subnet, we can assume by
the complete regularity of X that there exists an open set V not containing ϕ(y) , but
ϕ(yλ ) ∈ V for all λ . Let f be in S1(X ,E) with f |V = 0. Then, f |V = 0 implies
f ∈ Iϕ(yλ ) , and hence T f ∈ Myλ . By the continuity of T f and that T f (yλ ) = 0 for
all λ , we conclude T f (y) = 0. By Theorem 2.2, there is an k in S1(X) such that
k(x) = 1 in a neighborhood of ϕ(y) and k|V = 0. For each f in S1(X ,E) , we have
f = k f + (1− k) f . Thus T f (y) = 0 since (k f )|V = 0 and (1− k) f ∈ Iϕ(y) . This
conflicts with Theorem 2.2 and the surjectivity of T .

By Claim 3, there is a continuous map ϕ :Y →X such that TIϕ(y) ⊆My for all y in
Y . It follows from the locally uniform-pointwise continuity of T and Lemma 3.2 that
TMϕ(y) ⊆ My for all y in Y . In other words, ker(δϕ(y)) ⊆ ker(δy ◦T ),∀y ∈ Y . Hence
for each y in Y , there exists a linear map h(y) : E → F such that δy ◦T = h(y)δϕ(y) .
In other words,

T f (y) = h(y)( f (ϕ(y))), ∀y ∈ Y, ∀ f ∈ S1(X ,E). (3.1)

CLAIM 4. h(y) is bounded for all y in Y . Moreover, h : Y → (B(E,F),SOT ) is
continuous.

Let {en} be a sequence in E converging to e in norm. By Theorem 2.2, we
can choose a function g from S(X) such that g(ϕ(y)) = 1. Note that as a continuous
function, g is locally bounded on X . Then gen in S1(X ,E) converges locally uniformly
to ge in S1(X ,E) , and

h(y)(en) = T (gen)(y) −→ T (ge)(y) = h(y)(e)

since T is locally uniform-pointwisely continuous. Therefore, h(y) is continuous for
all y in Y .

For every e in E , set ẽ(x) := e constantly on X . By the continuity of T ẽ , the
map y �−→ h(y)e from Y into F is continuous. That is, h is continuous in the strong
operator topology.
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CLAIM 5. ϕ : Y → X is a homeomorphism, and h(y) is invertible for all y in Y .

Applying the above arguments to T−1 , we shall obtain a continuous map k : X →
(B(F,E),SOT) and a continuous map μ : Y → X such that

T−1g(x) = k(x)g(μ(x)), ∀x ∈ X .

It is then easy to see that ϕ = μ−1 is a homeomorphism from Y onto X , and h(y)−1 =
k(ϕ(x)),∀y ∈Y . �

Let f : U → V be a function from an open set U of a Banach space E into an
open set V of a Banach space F . We call f a weak S(U,V)-morphism if v∗ ◦ f ∈ S(E)
for all v∗ in the Banach dual space F∗ of F .

DEFINITION 3.4. A component S(U,V) of an S -category S is called weakly
determined if every weak S(U,V)-morphism is an S(U,V)-morphism.

In [16, Example 3.9], Gutiérrez and Llavona show that not all weak S(U,V)-
morphisms are S(U,V)-morphisms. However, they also show that C∞(U,V ) is weakly
determined for any Banach spaces E and F , and Cn(U,V ) is also weakly determined
when F is a reflexive Cn -smooth Banach space for 1 � n < ∞ .

LEMMA 3.5. For any S -category S and finite dimensional Banach space E , the
morphism set S(X ,E) is weakly determined.

Proof. Let {e1, . . . ,en} be a Hamel basis for E . Write any weak S(X ,E)-morphism
f : X → E as

f (x) =
n

∑
i=1

fi(x)ei,

where f1, . . . , fn are the coordinate functions, which are all in S(E) . Since S(X ,E) is
an S(X)-module, f is in S(X ,E) . �

Recall that a map f : X → Y between metric spaces is called locally Lipschitz if
at each point of X , there is a neighborhood on which f is Lipschitz. Scanlon [26,
Theorem 2.1] shows that f : X → Y is locally Lipschitz if and only if f is Lipschitz on
each compact subset of X .

LEMMA 3.6. Let X and E be open subsets in Banach spaces. Then the local
Lipschitz function space Liploc(X ,E) is weakly determined.

Proof. Without loss of generality, we can assume E is a Banach space. Let f :
X → E with ψ ◦ f in Liploc(X ,R) for all ψ in E∗ . Suppose f is not in Liploc(X ,E) .
So there exist a nonempty compact subset K of X and sequences {xn} and {yn} in K
such that

‖ f (xn)− f (yn)‖ � n‖xn− yn‖, ∀n = 1,2, . . . .
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For every n in N , define Tn : E∗ → R by

Tn(ψ) = ψ
(

f (xn)− f (yn)
‖xn− yn‖

)
.

Hence ‖Tn(ψ)‖� Lψ for some constant Lψ and for all n in N since ψ ◦ f ∈Liploc(X ,R) .
By the Principle of Uniform Boundedness, there is a constant L such that ‖Tn‖ � L .
Therefore,

n � ‖ f (xn)− f (yn)‖
‖xn− yn‖ � L, n = 1,2, . . . .

This is a contradiction. �

THEOREM 3.7. Let X ,Y be separable smooth G1,G2 -manifolds of class S , re-
spectively. Assume there is any linear biseparating map T : S(X ,E) → S(Y,F) , which
is locally uniform-pointwisely continuous in two directions. Then

T f (y) = h(y)( f (ϕ(y))), ∀ f ∈ S(X ,E),∀y ∈ Y.

Here, ϕ : Y → X is a homeomorphism and h : Y → (B−1(E,F),SOT ) is a continuous
map.

(1) If S(G2,G1) is weakly determined, ϕ is in S(Y,X) .

(2) If S(G1,G2) is weakly determined, ϕ−1 is in S(X ,Y) .

(3) If both S(G1,G2) and S(G2,G1) are weakly determined, X ∼= Y as S-smooth
manifolds.

Proof. The first part of the assertions follows from Theorem 3.3.

Let y0 ∈ Y , and consider φ : U → G2 and ψ : V → G1 , the S -charts around
y0 and ϕ(y0) , respectively. We can assume ϕ(U) = V . Since G1 is an S -smooth
Banach space and ϕ is a homeomorphism, we can find open neighborhoods U0 ⊆U
and V0 ⊆ V , of y0 and ϕ(y0) , respectively, and θ in S(X) such that ϕ(U0) = V0 ,
θ |V0 = 1 and supp(θ ) ⊆V . Given a continuous linear functional v∗ in G∗

1 , we define

g(x) =
{

θ (x)v∗(ψ(x)), x ∈V ;
0, x ∈ X \V.

By (S2), g ∈ S(X) .

As in Claim 5 in the proof of Theorem 3.3,

T−1 f (x) = k(x)( f (μ(x))), ∀ f ∈ S(Y,F),∀x ∈ X .

Here μ = ϕ−1 and k(ϕ(y)) = h(y)−1 . Let e ∈ F and define

f̃ (x) = g(x)k(x)e, ∀x ∈ X .
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We see that f̃ = gT−1(ẽ) ∈ S(X ,E) , since the constant function ẽ(y) = e is in S(Y,F) .
Then (T f̃ )(y) = g(ϕ(y))e ∈ S(Y,F) . Let e∗ ∈ F∗ ⊂C∞(F,K) ⊂ S(F) with e∗(e) = 1.
Since g(ϕ(y)) = e∗(g(ϕ(y))e) , we have g◦ϕ ∈ S(Y ) . Thus v∗ ◦ψ ◦ϕ ◦φ−1 ∈ S(φ(U0))
for each v∗ in G∗

1 , and hence ψ ◦ϕ ◦φ−1 ∈ S(φ(U0),ψ(V0)) since S(G2,G1) is weakly
determined. Therefore, ϕ ∈ S(Y,X) . In a similar way, we can prove that ϕ−1 ∈ S(X ,Y ) ,
provided S(G1,G2) is weakly determined. �

COROLLARY 3.8. Suppose X ,Y are separable Lipschitz smooth manifolds, and
E,F are Banach spaces. If there exists a linear biseparating map, locally uniform-
pointwisely continuous in two directions, from Liploc(X ,E) onto Liploc(Y,F) , then
X ∼= Y as Lipschitz manifolds.
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