
Operators
and

Matrices

Volume 6, Number 4 (2012), 725–734 doi:10.7153/oam-06-47

SPECTRAL PROPERTIES OF n–PERINORMAL OPERATORS
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(Communicated by R. Curto)

Abstract. In this paper we study spectral properties of class (M,n) or n -perinormal operators.
It is shown that if T belongs to class (M,n) , then its point spectrum and joint point spectrum are
identical. As an application we show that the spectral mapping theorem holds for the essential
approximate point spectrum and for Weyl spectrum. It is also shown that a -Browder’s theorem
holds for n -perinormal operators. A general version of the famous Fuglede-Putnam’s theorem
for n -perinormal operator is also presented.

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting on infinite dimen-
sional separable complex Hilbert space H . An operator T ∈ B(H) is said to be of
class (M,n) or n -perinormal if T ∗nTn− (T ∗T )n � 0, for each n � 2 [5]. The operator
T is said to be a p -hyponormal operator if and only if (T ∗T )p � (TT ∗)p for a pos-
itive number p . In [17] is defined the class of log-hyponormal operators as follows:
T is a log-hyponormal operator if it is invertible and satisfies the following relation
logT ∗T � logTT ∗ . Class of p -hyponormal operators and class of log-hyponormal
operators were defined as extension class of hyponormal operators, i.e, T ∗T � TT ∗ .
An operator T ∈ B(H) is said to be quasihyponormal if T ∗(T ∗T −TT ∗)T � 0.

If T ∈ B(H) , write N(T ) and ran(T ) for null space and range of T ; α(T ) =
dimN(T ) ; β (T ) = dim(T ∗) ; σ(T ),σa(T ),σp(T ),σ jp(T ),σ ja(T ) for the spectrum of
T , the approximate point spectrum of T , the point spectrum of T , the joint point
spectrum, the joint approximate point spectrum of T , respectively.

A complex number λ ∈C is said to be in the point spectrum σp(T ) of the operator
T if there is a unit vector x satisfying (T − λ )x = 0. If in addition, (T ∗ − λ)x = 0,
then λ is said to be in the joint point spectrum σ jp(T ) of T . A complex number
λ ∈ C is said to be in the approximate point spectrum σa(T ) of the operator T if
there is a sequence {xn} of unit vectors satisfying (T − λ )xn → 0. If in addition,
(T ∗ −λ)xn → 0, then λ is said to be in the joint approximate point spectrum σ ja(T )
of T . The boundary ∂σ(T ) of the spectrum of T of the operator T is known to be
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a subset of σa(T ) . Although, in general, one has σ jp(T ) ⊂ σp(T ),σ ja(T ) ⊂ σa(T ) .
There are many classes of operators for which

σ jp(T ) = σp(T ), (1)

σ ja(T ) = σa(T ). (2)

For example , if T is either normal or hyponormal, then T satisfies (1) and (2). More
generally, (1) and (2) holds if T is semi-hyponormal (cf. [19]), p -hyponormal (cf. [3])
or log-hyponormal (cf. [17]).

In this paper, we show that n -perinormal operators T satisfy (1). Let T ∈ B(H) .
N(T ) denotes the null space of T and let α(T ) = dimN(T ) . ran T denotes the range
of T and let

β (T ) = dimN(T ∗) = dim[ran T ]⊥,

where [ran T ] denotes the closure of ran T . T is called semi-Fredholm if it has closed
range and either α(T ) < ∞ or β (T ) < ∞ . T is called Fredholm if it is semi-Fredholm
and both α(T ) < ∞,β (T ) < ∞ . T is called Weyl if it is Fredholm of index zero, i.e.,
i(T ) = α(T )−β (T) = 0. The Weyl spectrum of T is defined by

w(T ) = {λ ∈ C |T −λ is not Weyl }.

π00(T ) denotes the set of all eigenvalues of T such that λ is an isolated point of σ(T )
and 0 < α(T −λ ) < ∞ . We say that Weyl’s theorem holds for T if

σ(T )\ω(T) = π00(T ).

T is said to have the single valued extension property if there exists no nonzero analytic
function f such that (T − z) f (z) ≡ 0 and T is called isoloid if every isolated point of
σ(T ) is an eigenvalue of T .

H. Weyl [18] studied the spectrum of compact perturbations of self-adjoint oper-
ators and proved that Weyl’s theorem holds for self-adjoint operators. This result has
been extended to hyponormal operators, p -hyponormal operators and to many other
non-normal operators (cf. [11]) and references therein. In this paper it is shown that
Weyl’s theorem holds for n -perinormal operator T ∈ B(H) .

Let C2 denote the Hilbert-Schmidt class. Let T ∈C2 and assume that {en} is an
orthonormal basis for H . We define the Hilbert-Schmidt norm to be

||T ||2 = (
∞

∑
n=1

||Ten||2) 1
2 .

If ||T ||2 < ∞ , then T is said to be a Hilbert-Schmidt operator.

THEOREM 1.1. (Fuglede) Let X ,N be linear bounded operators on a complex
Hilbert space and assume that N is normal. If NX = XN , then N∗X = XN∗ .

Colloquially, the theorem claims that commutativity between operators is transi-
tive under the given assumptions. The claim does not hold in general if N is not normal.
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A simple counterexample is provided by letting N be the unilateral shift and X = N .
Also, when X is self-adjoint, the claim is trivial regardless of whether N is normal:
XN∗ = (NX)∗ = (XN)∗ = N∗X . In the following theorem Putnam obtained Fuglede’s
result as a special case.

THEOREM 1.2. (Putnam) Let M,N,X be linear bounded operators on a complex
Hilbert space and assume that M,N are normal. If MX = XN , then M∗X = XN∗ .

This theorem was originally proved in [7] under the assumption that M = N . As
stated, the theorem was proved in [14]. Another proof is given by Radjavi and Rosenthal
(1973) [16]. In [1] the author observed that Putnam’s version can be derived from
Fuglede’s original theorem by the following matrix trick. If

L =
(

N 0
0 M

)
, Y =

(
0 X
0 0

)
.

Then L is normal on H⊕H and LX = XL . Hence L∗X = XL∗ , and this gives Putnam’s
version.

In the past several years, many authors have extended this theorem for several
classes of nonnormal operators. In [1], the author has extended the result by assuming
N,M∗ are hyponormal and X is a Hilbert-Schmidt operator. [4] showed that the hy-
ponormality in the result of [1] can be replaced by the quasihyponormality of N and M∗
under some additional conditions. [12] showed that the result of [4] remains true with-
out any additional condition. In this paper we will extended Fuglede-Putnam’s theorem
to the case in which T and S∗ are n -perinormal and X a Hilbert-Schmidt operator.

Let A,B∈B(H) . The operator Γ defined on C2 by ΓX = AXB has been studied in
[1]. It is easy to see that ||Γ||� ||A|||B|| and the adjoint of Γ is given by Γ∗X = A∗XB∗ .
Indeed,

〈Γ∗X ,Y 〉 = 〈X ,Γ〉 = 〈X ,AYB〉 = tr((AYB)∗X)
= tr(XB∗Y ∗A∗) = tr(A∗XB∗Y ∗) = 〈A∗XB∗,Y 〉.

If A � 0 and B � 0, then Γ � 0 and

Γ
1
2 X = A

1
2 XB

1
2 .

Indeed,

〈ΓX ,X〉 = tr(AXBX∗) = tr(A
1
2 XBX∗A

1
2 ) = tr(A

1
2 XB

1
2 (A

1
2 XB

1
2 ))∗ � 0.

2. Fuglede-Putnams theorem

In the following lemmas we will present some properties of n -perinormal opera-
tors.

LEMMA 2.1. If A,B∗ are n- perinormal operators, then the operator Γ in C2

defined by ΓX = AXB is also n-perinormal operator.
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Proof. We have

(Γn∗Γn− (Γ∗Γ)n)X = (An∗An− (A∗A)n)XBnB∗n +(A∗A)nX(BnB∗n− (BB∗)n) � 0.

Thus Γn∗Γn � (Γ∗Γ)n . �
Recall that

(T ∗T )α = T ∗(TT ∗)α−1T, for all real numberα � 0. (3)

LEMMA 2.2. If T is an invertible n-perinormal operator for each positive integer
n � 2 , then T−1 is also n-perinormal operator.

Proof. We will prove the lemma by induction. For n = 2, T ∗|T |2T � (T ∗T )2

holds because T is quasihyponormal operator and that every invertible quasihyponor-
mal operator is hyponormal. Suppose that the result holds for some n � 2, that is,
|T−n|2 � (T ∗−1T−1)n . We have by (3)

|T−1|2n+2 = (T ∗−1T−1)n+1 = T ∗−1(T−1T ∗−1)nT−1

= T ∗−1(T ∗T )−nT−1

� T ∗−1(T ∗−nT−n)T−1.

Thus
(T−1∗)n+1(T−1)n+1 � (T−1∗T−1)n+1.

Hence T−1 is n -perinormal operator. �
Before proving the following theorem we need a lemma.

LEMMA 2.3. (Hö lder-McCarthy Inequality). Let P be a positive operator. Then
the following inequalities hold for all x ∈ H .

(i) 〈Pαx,x〉 � 〈Px,x〉α ||x||2(1−α) , for 0 < α � 1 .
(ii) 〈Pαx,x〉 � 〈Px,x〉||x||2(1−α) for α � 1 .

THEOREM 2.1. Let T ∈ B(H) be n-perinormal operator. If (T −λ )x = 0,λ �= 0 ,
then (T −λ )∗x = 0 .

Proof. We have |||Tn|x|| = ||Tnx|| = |λ |n||x|| and

|λ |n||x||n = ||Tnx|| = 〈Tx,Tx〉 n
2 = 〈|T |2x,x〉 n

2

� 〈|T |nx,x〉||x||n−2 by Hölder-McCarthy Inequality (i), with α =
2
n

� |||Tn|x||||x||n−1 = |λ |n||x||n.
It follows that |Tn|x and x are linearly dependent, we have |Tn|x = |λ |nx . Now from

||(|Tn| 2
n −|T |2)

1
2 x||2 = 〈|Tn| 2

n x,x〉− 〈|T 2|x,x〉 = 0
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we get,

T ∗Tx = |Tn| 2
n x = |λ |2x.

Hence T ∗x = λx . �
Now we are ready to prove a generalized Fuglede-Putnam’s theorem.

THEOREM 2.2. Let A be a n-perinormal operator and B∗ an invertible n-peri-
normal operator. If AX = XB for some X ∈C2 , Then A∗X = XB∗ .

Proof. Let Γ be a Hilbert-Schmidt operator defined by ΓX = TXS−1 for all X ∈
C2 . Since (S∗)−1 = (S−1)∗ is n -perinormal, Lemma 2.1 implies that Γ is n -perinormal.
The rest follows as in the proof of [12, Theorem 2.2]. �

3. Some spectral properties

In this section we will show that n -perinormal operator T satisfies equality (1)
and a -Browder’s theorem holds for n -perinormal operators.

THEOREM 3.1. It T is n-perinormal operator, then
(1) σ jp(T ) = σp(T ) ,
(2) Tx = λx , Ty = μy with λ �= μ , then 〈x,y〉 = 0 .

Proof. (1) it is obvious from Theorem 2.1.
(2) As λ 〈x,y〉 = 〈Tx,y〉 = 〈x,T ∗y〉 with λ �= μ , then 〈x,y〉 = 0. �

COROLLARY 3.1. If T ∗ is n-perinormal, then β (T −λ ) � α(T −λ ) for all λ ∈
C .

Proof. Obvious from Theorem 2.1 �
Now we will show that the spectral mapping theorem holds for Weyl’s spectrum.

THEOREM 3.2. If T or T ∗ is n-perinormal, then w( f (T )) = f (w(T )) for every
f ∈ H(σ(T )) , where H(σ(T )) denotes the set of all analytic functions on some open
neighborhood of σ(T ) .

Proof. Since w( f (T )) ⊆ f (w(T )) holds for any operator. We need only to prove
that

f (w(T )) ⊆ w( f (T )). (4)

Note that (4) clearly holds if f is constant on some open neighborhood of σ(T ) . Let
λ �∈ w( f (T )) , we may assume that f (z)− λ have only finitely many zeros in some
open neighborhood G of σ(T ) . Now write

f (z)−λ = (z−λ1)...(z−λn)g(z),
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where λ j, j = 1, ...,n are the zeros of f (z)−λ in G , listed according to multiplicity,
and g(z) �= 0 for all z ∈ G . Thus

f (T )−λ = (T −λ1)...(T −λn)g(T ). (5)

Clearly, λ ∈ f (w(T )) if and only if λ j ∈ w(T ) for some j . Therefore, to prove (4),
it suffices to show that λ j �∈ w(T ) for all j . First, suppose that T is n -perinormal.
Since f (T )−λ is Weyl and the operators T −λ1, ...,T −λn commute, each T −λ j is
Fredholm. Moreover, since N(T −λ j)⊆N( f (T )−λ ) and N((T −λ j)∗)⊆N(( f (T )−
λ )∗) , both N(T −λ j) and N((T −λ j)∗) are finite dimensional. Then i(T −λ j) � 0 by
Theorem 2.1. Then i( f (T )−λ ) = i(g(T )) = 0, it follows from (5) that i(T −λ j) = 0
for all j . Consequently, T − λ j is Weyl, and λ j �∈ w(T ) . Now assume that T ∗ is
n -perinormal. Then by Corollary 3.1 i(T −λ ) � 0 for each j = 1,2, ...,n . However,

n

∑
i=1

i(T −λ j) = i( f (T )−λ ) = 0,

and so T −λ j is Weyl for each j = 1,2, ...,n . Hence λ �∈ f (w(T )) . Therefore w( f (T ))
= f (w(T )) . �

An operator T ∈ B(H) is said to have finite ascent if kerTm = kerTm+1 for some
positive integer m , and finite descent if ran Tn = ran Tn+1 for some positive integer n .

LEMMA 3.1. If T is n-perinormal operator, then T −λ has finite ascent for each
λ .

Proof. Since T is n -perinormal operator, it follows that N(T −λ ) ⊂ N(T ∗ −λ),
for each λ ∈ C by Theorem 2.1. Thus we can represent T −λ as the following 2x2
operator matrix with respect to the decomposition N(T −λ )⊕N(T −λ )⊥ :

T −λ =
(

0 0
0 S

)
.

Let x ∈ N((T − λ )2). Write x = y + z, where y ∈ N(T − λ ) and z ∈ N(T − λ )⊥ .
Then 0 = (T −λ )2x = (T −λ )2z, so that (T −λ )z ∈ N(T −λ )∩N(T −λ )⊥ = {0},
which implies that z ∈ N(T −λ ) , and hence x ∈ N(T −λ ) . Therefore N(T −λ ) =
N(T −λ )2. �

Let T ∈ B(H) . The essential approximate point spectrum σea(T ) is defined by

σea(T ) = ∩{σa(T +K) : K is a compact operator},
where σa(T ) is the approximate point spectrum of T . We consider the set

Φ−
+(H) = {T ∈ B(H) : T is left semi-Fredholm and ind(T ) � 0}.

V. Rakočević[15] proved that

σea(T ) = {λ ∈ C : T −λ �∈ Φ−
+(H)}
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and the inclusion σea( f (T )) ⊂ f (σea(T )) holds for all function f which is analytic
on some open neighborhood of σ(T ) with no restriction on T . The next theorem
shows the spectral mapping theorem on the essential approximate point spectrum of
n -perinormal operator.

THEOREM 3.3. Let T or T ∗ be n-perinormal. Then σea( f (T )) = f (σea(T )) for
every f ∈ H(σ(T )).

Proof. Proof is similar to Theorem 2.9 given in [8], based on Corollary 3.1 and
Lemma 3.1 . �

COROLLARY 3.2. If T is n-perinormal operator, then T has SVEP.

Proof. Proof of the corollary follows directly from lemma 3.1 and Proposition 1.8
in [9]. �

Recall [10] that S,T ∈ B(H) are said to be quasisimilar if there exist injections
X ,Y ∈ B(H) with dense range such that XS = TX and YT = SY , respectively, and this
relation is denoted by S ∼ T .

THEOREM 3.4. Let T ∈ B(H) be n-perinormal. If S ∼ T , then S has SVEP.

Proof. Since T is n -perinormal, it follows from Corollary 3.2 that T has SVEP.
Let U be any open set and f :U →H be any analytic function such that (S−λ ) f (λ ) =
0 for all λ ∈U . Since S∼ T , there exists an injective operator A with dense range such
that AS = TA . Thus A(S−λ ) = (T −λ )A for all λ ∈U . Since (S−λ ) f (λ ) = 0 for all
λ ∈U , A(S−λ ) = 0 = (T −λ )A for all λ ∈U . But T has SVEP, hence A f (λ ) = 0
for all λ ∈U . Since A is injective, f (λ ) = 0 for all λ ∈U . Thus S has SVEP. �

Now we will show that a -Browder’s theorem holds for n -perinormal operators.
For this we need the following definitions. The browder essential approximate point
spectrum σab(T ) of T is defined by

σab(T ) = ∩{σa(T +K) : TK = KT, K is a compact operator}.
We say that a -Browder’s theorem holds for T if σea(T ) = σab(T ) . It is well

known that
Weyl’s theorem⇒ Browder’s theorem,

a-Browder’s theorem ⇒ Browder’s theorem.

THEOREM 3.5. Let T ∈ B(H) be n-perinormal operator. Then T obeys a-Brow-
der’s theorem.

Proof. Since a n -perinormal operator has SVEP, [11, Theorem 2.8] implies that
T obeys a -Browder’s theorem. �
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THEOREM 3.6. Let T ∈ B(H) be n- perinormal operator. Then a-Browder’s
theorem holds for f (T ) for every analytic function f on some open neighborhood of
σ(T ) .

Proof. Since σea( f (T )) = f (σea(T )) , the rest of the proof follows as in the proof
of [11, Corollary 2.3]. �

THEOREM 3.7. Let T ∈ B(H) be n-perinormal. If S ∼ T , then a-Browder’s
theorem holds for f (S) for every analytic function f on some open neighborhood of
σ(T ) .

Proof. Since a -Browder’s theorem holds for S , it follows from Theorem 3.3 that

σab( f (s)) = f (σab(S)) = f (σea(S)) = σea( f (s)).

Hence a -Browder’s theorem holds for f (s) . �

4. Examples of n -perinormal operators

In what follows we will give some examples of n -perinormal operators.

EXAMPLE 4.1. An example of n-perinormal operator which is not normaloid.
Suppose H is a direct sum of denumerable copies of two dimensional Hilbert space
R×R. Let A and B be any two positive operators on R×R. For any fixed n ∈ N

define operator T = TA,B,n on H as follows:

T (x1,x2, · · · ,) = (0,Ax1,Ax2, · · · ,Axn,Bxn+1, · · ·),
and from this we have the adjoint operator:

T ∗(x1,x2, · · · ,) = (Ax2,Ax3, · · · ,Axn+1,Bxn+2, · · ·).
The operator T belong to class (M,n) if and only if ABnA−A2n � 0 (see Proposition

4.1 in [2]). Let us denote by A =
(

1 0
0 0

)
and B =

(
1 1
1 1

)
positive matrices. Then we

get
ABnA−A2n � 0,

from which follows that T ∈ (M,n). Now we will prove that T is not normaloid. From
above definition of the operator T we have:

T n(x1,x2, · · · ,xn, · · ·) = (0,0, · · · ,0︸ ︷︷ ︸
n-times

,An(x1),BAn−1(x2), · · ·). (6)

From relation (6) it follows that

||Tn|| = ||T ||n
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does not hold. For example, let e2 = (0,1,0 · · ·) be the second vector on canonical
bases, then we get

||Te2||n = 1,

and after some calculations we get that

||T ||n = 1.

But

||Tne2|| �= 1,

and

||Tn|| �= 1.

EXAMPLE 4.2. There is a normaloid operator which is not n-perinormal opera-
tor. Let T be the operator defined by:

T =

⎛
⎝1 0 0

0 0 0
0 1 0

⎞
⎠ .

Then it follows that T is normaloid, because the following relation holds:

||Tn|| = ||T ||n,

for all positive integers n. In what follows we will show that T is not n-perinormal
operator. The operator T belongs to class (M,n) (for n � 2 ) if and only if

‖|T |n(x)‖ � ‖Tn(x)‖ , (7)

for every x ∈ H (see Proposition 4.1 in [2]). After some calculations we show that

|T |n =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ and Tn =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ .

For e2 = (0,1,0) relation (7) does not hold, and this implies that T /∈ (M,n).

We close this paper by asking the following open question. As we have mentioned
in the introduction, if T is either normal or hyponormal, then T satisfies σ ja(T ) =
σa(T ) . But it is not known that σ ja(T ) = σa(T ) holds for n -perinormal operator
T ∈ B(H) . It is natural to pose the following open question.

Open Question: Does σ ja(T ) = σa(T ) for n -perinormal operator T ∈ B(H)?
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