SPECTRA AND APPROXIMATIONS OF A CLASS OF SIGN-SYMMETRIC MATRICES

OLGA Y. KUSHEL

(Communicated by L. Rodman)

Abstract. A new class of sign-symmetric matrices is introduced in this paper. Such matrices are called *J*-sign-symmetric. The spectrum of a *J*-sign-symmetric irreducible matrix is studied under the assumption that its second compound matrix is also *J*-sign-symmetric. The conditions for such matrices to have complex eigenvalues on the spectral circle are given. The existence of two positive simple eigenvalues $\lambda_1 > \lambda_2 > 0$ of a *J*-sign-symmetric irreducible matrix *A* is proved under some additional conditions. The question when the approximation of a *J*-sign-symmetric matrices with strictly *J*-sign-symmetric second compound matrices is possible is also answered in this paper.

1. Introduction

The classical theorem of Gantmacher and Krein (see [1, p. 263, Theorem 9]) allows one to infer the positivity of the first two eigenvalues of a matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$ from simple positivity properties of \mathbf{A} .

A matrix **A** is said to be *positive (non-negative)* if all its elements a_{ij} are positive (respectively, nonnegative). A matrix **A** is said to be 2-*strictly totally positive (2-STP)* if **A** is positive and its second compound matrix $\mathbf{A}^{(2)}$ is also positive. Recall that $\mathbf{A}^{(2)}$ is the matrix that consists of all the minors $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, where $1 \le i < j \le n$, $1 \le k < l \le n$, of the initial matrix **A**. The minors are listed in the lexicographic order. The matrix $\mathbf{A}^{(2)}$ is $\binom{n}{2} \times \binom{n}{2}$ dimensional, where $\binom{n}{2} = \frac{n(n-1)}{2}$.

We denote by $\rho(A)$ the spectral radius of **A**. Arrange the eigenvalues $\{\lambda_i\}_{i=1}^n$ of **A** into a sequence (taking into account their multiplicities), so that

$$\rho(A) = |\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Keywords and phrases: Totally positive matrices, sign-symmetric matrices, irreducible matrices, compound matrices, exterior powers, Gantmacher–Krein theorem, eigenvalues.

Mathematics subject classification (2010): Primary 15A48; Secondary 15A18, 15A75.

THEOREM A. (Gantmacher, Krein [1, p. 263]) If A is a 2-STP matrix, then

(a) $\rho(A) = \lambda_1 > \lambda_2 > |\lambda_3| \ge \cdots \ge |\lambda_n| \ge 0;$

(b) both λ_1 and λ_2 are simple.

The first result of this paper (Theorem 8) extends the Gantmacher–Krein theorem to a wider class of matrices. To specify this class we take any subset *J* of $[n] := \{1, 2, ..., n\}$ and a matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$. As usual, $J^{c} := [n] \setminus J$. Then

$$[n] \times [n] = (J \times J) \cup (J^c \times J^c) \cup (J \times J^c) \cup (J^c \times J)$$

is a partition of $[n] \times [n]$ into four pairwise disjoint subsets.

DEFINITION 1. A matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^n$ is called *strictly J-sign-symmetric (SJS)* if

 $a_{ij} > 0$ on $(J \times J) \cup (J^c \times J^c);$

and

$$a_{ij} < 0$$
 on $(J \times J^c) \cup (J^c \times J)$.

Note, that the subset J is uniquely determined (up to J^c) by A.

A matrix **A** is called 2-*strictly totally J-sign-symmetric* (2-*STJS*) if **A** is SJS, and its second compound matrix $\mathbf{A}^{(2)}$ is also SJS.

THEOREM 8. If A is a 2-STJS matrix, then

- (a) $\rho(A) = \lambda_1 > \lambda_2 > |\lambda_3| \ge \cdots \ge |\lambda_n| \ge 0;$
- (b) both λ_1 and λ_2 are simple.

We also extend the second Gantmacher–Krein theorem (see [1, p. 269, Theorem 13]). A matrix **A** is said to be 2-*totally positive* (2-*TP*) if **A** is nonnegative and its second compound matrix $\mathbf{A}^{(2)}$ is also nonnegative.

THEOREM B. (Gantmacher, Krein [1, p. 269]) If A is a 2-TP matrix, then

 $\rho(A) = \lambda_1 \geqslant \lambda_2 \geqslant |\lambda_3| \geqslant \cdots \geqslant |\lambda_n| \geqslant 0.$

Theorem B comes out from Theorem A and from the following statement (see [1, p. 268, Theorem 12].

THEOREM C. (Gantmacher, Krein [1, p. 268]) If **A** is a 2-TP matrix, then there exists a sequence $\{\mathbf{A}\}_{n=1}^{\infty}$ of 2-STP matrices which converges to **A**.

DEFINITION 2. A matrix $\mathbf{A} = \{a_{ij}\}_{i, j=1}^{n}$ is called *J*-sign-symmetric (JS) if

 $a_{ij} \ge 0$ on $(J \times J) \cup (J^c \times J^c);$

and

$$a_{ij} \leq 0$$
 on $(J \times J^c) \cup (J^c \times J)$.

In this case the subset J may not be uniquely determined, but there is a finite number of ways to determine it.

A matrix **A** is called 2-*totally J*-sign-symmetric (2-TJS) if **A** is JS and its second compound matrix $\mathbf{A}^{(2)}$ is also JS.

We show that not every 2-TJS matrix is similar to a 2-TP matrix. So the following results can not be deduced from similarity transformations of the well-known class of 2-TP matrices. We show that, although the set of all 2-STP matrices is dense in the set of all 2-TP matrices, the set of all 2-STJS matrices is not dense in the set of all 2-TJS matrices. So Theorem B can be extended only to a certain subclass of 2-TJS matrices, which can be approximated by 2-STJS matrices. This approximation exists under certain requirements on both sets $J \subseteq [n]$ and $J_2 \subseteq [\binom{n}{2}]$. (The sets J and J_2 are given in Definition 1 for the matrices **A** and $\mathbf{A}^{(2)}$, respectively.) These requirements are described in Section 10 in terms of the properties of a special binary relation $W(J,J_2)$ on [n]. The obtained conditions are necessary as Example 4 of a 2-TJS matrix, for which such an approximation does not exist, demonstrates.

Our proof of the extension of Theorem B consists of two steps.

First, for a given 2-TJS matrix, we find a 2-TP matrix $\hat{\mathbf{A}}$, a permutation matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{D}\mathbf{Q}\tilde{\mathbf{A}}\mathbf{Q}^T\mathbf{D}^{-1}$ (Theorem 10). Note that this construction is not possible for every 2-TJS matrix, but is possible under our assumptions.

Applying Theorem C, we find a sequence $\{\widetilde{\mathbf{A}}_n\}_{n=1}^{\infty}$ of 2-STP matrices that converges to $\widetilde{\mathbf{A}}$. Then each $\mathbf{A}_n = \mathbf{D}\mathbf{Q}\widetilde{\mathbf{A}}_n\mathbf{Q}^T\mathbf{D}^{-1}$ is a 2-STJS matrix and the sequence $\{\mathbf{A}_n\}_{n=1}^{\infty}$ converges to \mathbf{A} . Thus we obtain

THEOREM 12. If **A** is a 2-TJS matrix and at least one of the possible binary relations $W(J,J_2)$ is transitive, then

$$\rho(A) = \lambda_1 \ge \lambda_2 \ge |\lambda_3| \ge \cdots \ge |\lambda_n| \ge 0.$$

If all the possible binary relations $W(J, J_2)$ are not transitive, the spectral properties of a 2-TJS matrix **A** are completely different and the matrix **A** cannot be approximated by 2-STJS matrices. However, we can still describe the peripheral spectrum of such a matrix under some additional conditions.

The matrix **A** is said to be *reducible* if there is a permutation of coordinates which reduces it to the form $\begin{pmatrix} A_1 & 0 \\ B & A_2 \end{pmatrix}$, where A_1 , A_2 are square matrices. Otherwise the matrix **A** is said to be *irreducible* [6].

THEOREM 13. Let **A** be an irreducible 2-TJS matrix. Then one of the following two cases occurs:

(1) At least one of the possible binary relations $W(J,J_2)$ is transitive. Then **A** has a positive simple eigenvalue λ_1 and a nonnegative eigenvalue λ_2 :

$$\rho(A) = \lambda_1 > \lambda_2 \ge |\lambda_3| \ge \cdots \ge |\lambda_n| \ge 0.$$

(2) All W(J,J₂) are not transitive. Then there is an odd number k≥1 of eigenvalues on the spectral circle |λ| = ρ(A). Each of them is simple and they coincide with the kth roots of (ρ(A))^k. A matrix **A** is called 2-*totally irreducible J-sign-symmetric* (2-*TIJS*) if **A** is irreducible *J*-sign-symmetric and its second compound matrix $\mathbf{A}^{(2)}$ is also irreducible *J*-sign-symmetric. In this case both the sets *J* and *J*₂ are uniquely determined. Thus the binary relation $W(J, J_2)$ is uniquely determined. So we have the statement

THEOREM 14. Let A be a 2-TIJS matrix. Then one of the following two cases occurs:

(1) The binary relation $W(J,J_2)$ is transitive. Then **A** has two positive simple eigenvalues λ_1 , λ_2 :

 $\rho(A) = \lambda_1 > \lambda_2 \geqslant |\lambda_3| \geqslant \cdots \geqslant |\lambda_n|.$

(2) The binary relation W(J,J₂) is not transitive. Then there are exactly three eigenvalues on the spectral circle |λ| = ρ(A). Each of them is simple and they coincide with the cube roots of (ρ(A))³.

We also give examples illustrating both cases of Theorem 14.

Then we give a sufficient condition of the existence of the second nonnegative eigenvalue.

THEOREM 15. Let $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$ be an irreducible 2-TJS matrix. Let at least one entry a_{ii} (i = 1, ..., n) be nonzero. Then \mathbf{A} has a positive simple eigenvalue $\lambda_1 = \rho(A)$ and a nonnegative eigenvalue λ_2 :

$$\rho(A) = \lambda_1 > \lambda_2 \ge |\lambda_3| \ge \cdots \ge |\lambda_n| \ge 0.$$

The following statement generalizes Theorem 13 to the case of arbitrary 2-TJS matrices.

THEOREM 16. Let **A** be a 2-TJS matrix with $\rho(A) > 0$. Then $\lambda_1 = \rho(A)$ is a positive eigenvalue of **A**. Moreover, there are *m* sets of eigenvalues on the spectral circle $|\lambda| = \rho(A)$, where *m* is the algebraic multiplicity of $\lambda_1 = \rho(A)$. The *j*th set (j = 1, ..., m) contains an odd number $k_j \ge 1$ of eigenvalues which coincide with the k_j th roots of $(\rho(A))^{k_j}$.

2. Tensor and exterior powers of \mathbb{R}^n

Since tensor and exterior powers of function spaces can be realized also as function spaces, we consider \mathbb{R}^n as the *n*-dimensional function space \mathbb{X} , defined on the discrete set $[n] = \{1, 2, ..., n\}$. The standard basis of \mathbb{X} is formed by the functions $e_1, e_2, ..., e_n$, defined by

$$e_i(j) = \delta_{ij} = \begin{cases} 1, \text{ if } i = j; \\ 0, \text{ if } i \neq j. \end{cases}$$

The tensor square $\otimes^2 \mathbb{X}$ of the space \mathbb{X} is the space of all functions defined on the set $[n] \times [n]$, which consists of n^2 pairs of the form (i, j), where $i, j \in [n]$. If $x, y \in \mathbb{X}$, then their tensor product

$$(x \otimes y)(i, j) = x(i)y(j)$$

is a function on $[n] \times [n]$. All the possible tensor products $\{e_i \otimes e_j\}_{i,j=1}^n$ of the initial basis functions form a basis in $\otimes^2 \mathbb{X}$ (see [2], [3]). It follows that dim $(\otimes^2 \mathbb{X}) = n^2$.

The exterior square $\wedge^2 \mathbb{X}$ of the space \mathbb{X} is a subspace of the space $\otimes^2 \mathbb{X}$, consisting of antisymmetric functions, i.e. functions f(i, j), satisfying the equality f(i, j) = -f(j, i) on $[n] \times [n]$.

The space $\wedge^2 \mathbb{X}$ is spanned by elementary exterior products $x \wedge y$:

$$(x \wedge y)(i,j) = (x \otimes y)(i,j) - (y \otimes x)(i,j) = x(i)y(j) - x(j)y(i).$$

Given any subset $W \subset [n] \times [n]$, we denote by W^s its symmetric reflection in $[n] \times [n]$ with respect to the main diagonal $\Delta = \{(i, i) : i = 1, ..., n\}$:

$$W^{s} = \{(j,i): (i,j) \in W\}.$$

Let $W \subset [n] \times [n]$ satisfy

$$W \cup W^s = [n] \times [n]; \tag{1}$$

$$W \cap W^s = \Delta. \tag{2}$$

LEMMA 1. Given any $W \subset [n] \times [n]$ satisfying (1) and (2), the space $\wedge^2 \mathbb{X}$ is isomorphic to the space $\mathbb{X}(W \setminus \Delta)$ of all real functions on $W \setminus \Delta$.

Proof. Any function on $W \setminus \Delta$ can be extended via antisymmetry to $[n] \times [n]$ by the unique way. The received antisymmetric function is supposed to be zero on Δ . \Box

REMARK. This simple fact is no doubt well known, but we could not find it in the literature.

LEMMA 2. Given any $W \subset [n] \times [n]$ satisfying (1) and (2), the size of the set $W \setminus \Delta$, Card $(W \setminus \Delta)$, is equal to $\binom{n}{2}$.

The proof of Lemma 2 is quite obvious.

Lemma 2 implies that for any W satisfying (1) and (2) the following spaces are isomorphic:

$$\wedge^2 \mathbb{R}^n \cong \mathbb{X}(W \setminus \Delta) \cong \mathbb{R}^{\binom{n}{2}}$$

It is easy to see that we can define $2^{\binom{n}{2}}$ different sets $W \subset [n] \times [n]$, satisfying (1) and (2). In this way, we get $2^{\binom{n}{2}}$ different constructions for the space $\wedge^2 \mathbb{X} \cong \mathbb{X}(W \setminus \Delta)$.

3. Binary relations on [*n*]

Binary relations on [n] are defined by the subsets of $[n] \times [n]$ (see [4]). Given an arbitrary $W \subset [n] \times [n]$, we write $i \stackrel{W}{\prec} j$ to denote $(i, j) \in W$.

As usual, we say that a binary relation W is:

— reflexive if $i \stackrel{W}{\prec} i$ for any $i \in [n]$; equivalently, if $\Delta \subset W \cap W^s$;

— antisymmetric if $i \stackrel{W}{\prec} j$, $j \stackrel{W}{\prec} i$ imply i = j for any $i, j \in [n]$; equivalently, if $W \cap W^s = \Delta$;

— transitive if $i \stackrel{W}{\prec} j$ and $j \stackrel{W}{\prec} k$ imply $i \stackrel{W}{\prec} k$ for any $i, j, k \in [n]$; equivalently, if $(i, j) \in W$ and $(j, k) \in W$ imply $(i, k) \in W$;

— *connected* if, for any $i, j \in [n]$, we have either $i \stackrel{W}{\prec} j$ or $j \stackrel{W}{\prec} i$; equivalently, if $W \cup W^s = [n] \times [n]$.

A binary relation $\overset{"}{\prec}$ is said to be a *linear order*, if it is reflexive, antisymmetric, transitive and connected (see [5]).

LEMMA 3. Any set $W \subset [n] \times [n]$ satisfying (1) and (2) determines a connected antisymmetric reflexive binary relation on [n]. If in addition W is transitive, then it determines a linear order on [n].

Conversely, any connected antisymmetric reflexive binary relation on [n] is generated by a set $W \subset [n] \times [n]$ satisfying (1) and (2), and any linear order on [n] is generated by a transitive set $W \subset [n] \times [n]$ satisfying (1) and (2).

Proof. \Rightarrow The first part of the proof follows from the reasoning preceding the lemma.

 \leftarrow Given a binary relation \prec on [n], we define:

$$W = \{(i, j) \in [n] \times [n] : i \prec j\};$$
$$W^{s} = \{(i, j) \in [n] \times [n] : j \prec i\}.$$

Then the necessary properties of W and W^s follows from the corresponding properties of \prec . \Box

The set $M = \{(i, j) \in [n] \times [n] : i \leq j\}$, which defines the natural linear order on [n], is used in the classical theory of 2-TP matrices (see [1]).

4. Bases in $\wedge^2 \mathbb{R}^n$

Given an arbitrary basis e_1, \ldots, e_n of \mathbb{R}^n , we consider the set of all possible exterior products of the form $\{e_i \land e_j\}$, where $1 \le i < j \le n$ to be the canonical basis of the space $\wedge^2 \mathbb{R}^n$ (see [2], [3]). However, there exist other bases of $\wedge^2 \mathbb{R}^n$ consisting of exterior products of the initial basic vectors. Namely, we can construct $2^{\binom{n}{2}}$ different bases by choosing an arbitrary element from every pair $e_i \land e_j$ and $e_j \land e_i$ ($i \ne j$).

LEMMA 4. Every $W \subset [n] \times [n]$ satisfying (1) and (2) uniquely defines a basis in $\wedge^2 \mathbb{R}^n$, consisting of the exterior products of e_1, \ldots, e_n . The converse is also true: every basis in $\wedge^2 \mathbb{R}^n$ consisting of some exterior products of e_1, \ldots, e_n uniquely defines a set $W \subset [n] \times [n]$, satisfying (1) and (2).

Proof. \Rightarrow Given a set $W \subset [n] \times [n]$ satisfying (1) and (2), we examine the system $\Lambda = \{e_i \wedge e_j\}_{(i,j) \in W \setminus \Delta}$. Show that Λ is a basis in $\wedge^2 X$. For any $e_i \wedge e_j \in \Lambda$ and for any $(k,l) \in W \setminus \Delta$ we have

$$(e_i \wedge e_j)(k,l) = \begin{cases} 1 \text{ if } (i,j) = (k,l); \\ 0 \text{ otherwise.} \end{cases}$$

This shows that the system Λ is linearly independent. Since $\wedge^2 \mathbb{X} = \mathbb{X}(W \setminus \Delta)$ is $\binom{n}{2}$ -dimensional and Λ contains exactly $\binom{n}{2}$ elements, the system Λ also spans the whole space $\wedge^2 \mathbb{X}$.

 \leftarrow Given a basis Λ of the space $\wedge^2 \mathbb{X}$ consisting of some exterior products of e_1, \ldots, e_n , we define the set W:

$$W = \{(i, j) \in [n] \times [n] : e_i \wedge e_j \in \Lambda\} \cup \Delta.$$

Show that *W* satisfies (1). Take a pair $(i_0, j_0) \in W \cap W^s$. In this case we have $(i_0, j_0) \in W$ and $(j_0, i_0) \in W$. If $i_0 \neq j_0$, then $e_{i_0} \wedge e_{j_0} \in \Lambda$ and $e_{j_0} \wedge e_{i_0} \in \Lambda$. It follows that $e_{i_0} \wedge e_{j_0}$ and $e_{j_0} \wedge e_{i_0}$ are linearly independent. This contradicts the equality $e_{i_0} \wedge e_{j_0} = -(e_{j_0} \wedge e_{i_0})$. So we have $i_0 = j_0$ for any pair $(i_0, j_0) \in W \cap W^s$.

We now verify condition (2). Assume that there exists a pair (i_0, j_0) , $i_0 \neq j_0$, in $([n] \times [n]) \setminus (W \cup W^s)$. Then we have $(j_0, i_0) \in ([n] \times [n]) \setminus (W \cup W^s)$. It follows that neither $e_{i_0} \wedge e_{j_0}$ no $e_{j_0} \wedge e_{i_0}$ is in Λ . Add $e_{i_0} \wedge e_{j_0}$ to the system Λ . It is easy to see that the obtained system remains linearly independent. This contradicts the condition that Λ is a maximal linearly independent system in $\wedge^2 X$. \Box

A basis $\{e_i \wedge e_j\}_{(i,j) \in W \setminus \Delta}$ defined by the set W is called a W-basis. We enumerate the elements of a W-basis in the lexicographic order.

EXAMPLE 1. Let $M = \{(i, j) \in [n] \times [n] : i \leq j\}$. Then $M \setminus \Delta = \{(i, j) \in [n] \times [n] : i < j\}$, and the corresponding basis is $\{e_i \land e_j\}_{i < j}$, i.e., the canonical basis of the space $\wedge^2 \mathbb{R}^n$ (see [1], [3]).

5. Exterior square of a linear operator in \mathbb{R}^n

The exterior square $\wedge^2 A$ of the operator $A : \mathbb{X} \to \mathbb{X}$ acts on the space $\wedge^2 \mathbb{X}$ according to the rule:

$$(\wedge^2 A)(x \wedge y) = Ax \wedge Ay.$$

Recall the following properties of $\wedge^2 A$ (see [1], p. 64).

1. $\wedge^2(AB) = (\wedge^2 A)(\wedge^2 B)$ for any linear operators $A, B : \mathbb{X} \to \mathbb{X}$.

2. $(\wedge^2 A)^{-1} = \wedge^2 (A^{-1})$ for any invertible linear operator $A : \mathbb{X} \to \mathbb{X}$.

Below we study spectral properties of the operator A, assuming that its exterior square $\wedge^2 A$ leaves invariant a cone in $\wedge^2 X$. For this condition to hold, it is enough to have the matrix of $\wedge^2 A$ positive in some basis in $\wedge^2 X$.

Let an operator A be defined by a matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$ in the basis $\{e_1, \ldots, e_n\}$. To examine the matrix of $\wedge^2 A$ in a *W*-basis defined by a set *W* satisfying (1) and (2) we recall the following definitions.

A determinant $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, formed by the rows indexed by the integers *i* and *j* and the columns indexed by *k* and *l* (*i*, *j*, *k*, *l* \in [*n*]) of the matrix **A**, is called a *generalized minor of the second order*.

We call the matrix consisting of all generalized minors $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, where $(i, j), (k, l) \in (2)$

 $(W \setminus \Delta)$, the *second W*-*matrix* of the initial matrix **A** and denote it by $\mathbf{A}_{W}^{(2)}$. The generalized minors are listed in the lexicographic order.

EXAMPLE 2. Let $W = M = \{(i, j) \in [n] \times [n] : i \leq j\}$. Then the corresponding W-matrix is a matrix consisting of all minors $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$ with i < j, k < l, i.e., the second compound matrix.

We now demonstrate the connection between $\mathbf{A}_W^{(2)}$ and the matrix of $\wedge^2 A$.

THEOREM 1. Let the operator A be defined by a matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$ in the basis e_1, \ldots, e_n . Then, for any $W \subset [n] \times [n]$ satisfying (1) and (2), the matrix of the exterior square $\wedge^2 A$ of the operator A in the W-basis $\{e_i \wedge e_j\}_{(i,j) \in W \setminus \Delta}$ coincides with the second W-matrix $\mathbf{A}_W^{(2)}$.

Proof. Since $A(e_k) = \sum_{i=1}^n a_{ik}e_i$ for k = 1, ..., n, we have

$$(\wedge^2 A)(e_i \wedge e_j) = Ae_i \wedge Ae_j = \left(\sum_{k=1}^n a_{ki}e_k\right) \wedge \left(\sum_{l=1}^n a_{lj}e_l\right) = \sum_{k,l=1}^n a_{ki}a_{lj}(e_k \wedge e_l) =$$

$$= \sum_{(k,l)\in(W\setminus\Delta)} a_{ki}a_{lj}(e_k\wedge e_l) + \sum_{k=l=1}^n a_{ki}a_{lj}(e_k\wedge e_l) + \sum_{(k,l)\in(W^s\setminus\Delta)} a_{ki}a_{lj}(e_k\wedge e_l) =$$
$$= \sum_{(k,l)\in(W\setminus\Delta)} a_{ki}a_{lj}(e_k\wedge e_l) + 0 - \sum_{(k,l)\in(W^s\setminus\Delta)} a_{ki}a_{lj}(e_l\wedge e_k).$$

Interchange the indices l and k in the third sum:

$$\sum_{(k,l)\in(W\setminus\Delta)} a_{ki}a_{lj}(e_k\wedge e_l) - \sum_{(k,l)\in(W\setminus\Delta)} a_{li}a_{kj}(e_k\wedge e_l) =$$
$$= \sum_{(k,l)\in(W\setminus\Delta)} (a_{ki}a_{lj} - a_{li}a_{kj})(e_k\wedge e_l) = \sum_{(k,l)\in(W\setminus\Delta)} A\begin{pmatrix}k & l\\ i & j\end{pmatrix} (e_k\wedge e_l),$$

where $A\begin{pmatrix} k & l \\ i & j \end{pmatrix}$ are the elements of the corresponding column of the matrix $\mathbf{A}_{W}^{(2)}$. So the matrix of $\wedge^{2}A$ in the basis $\{e_{i} \wedge e_{j}\}_{(i,j) \in W \setminus \Delta}$ coincides with $\mathbf{A}_{W}^{(2)}$. \Box

It follows from Theorem 1 that the matrix of $\wedge^2 A$ in the basis $\{e_i \wedge e_j\}_{i < j}$ coincides with $\mathbf{A}^{(2)}$, i.e., the second compound matrix of \mathbf{A} .

THEOREM 2. Let $W \subset [n] \times [n]$ satisfy (1) and (2). Let $\{\lambda_i\}_{i=1}^n$ be the set of all eigenvalues of the matrix **A** repeated according to their multiplicity. Then all possible

products of the type $\{\lambda_i \lambda_j\}$, where $1 \leq i < j \leq n$, form the set of all eigenvalues of the second *W*-matrix $\mathbf{A}_W^{(2)}$ repeated according to their multiplicity.

Proof. Recall that all possible products of the type $\{\lambda_i \lambda_j\}$, where $1 \le i < j \le n$, form the set of all eigenvalues of $\wedge^2 A$, repeated according to their multiplicity (see [3]). Then apply Theorem 1. \Box

Note, that in the case W = M Theorem 2 turns into the Kronecker theorem (see [1, p. 65, Theorem 23]) about the eigenvalues of $A^{(2)}$. The proof of the Kronecker theorem that does not make use of exterior products is given in [1].

6. Nonnegative and J-sign-symmetric matrices

The proof of Theorem A is based on the well-known result of Perron and Frobenius (see [6]).

THEOREM 3. (Perron) Let the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be (entrywise) positive. Then the spectral radius $\rho(A) > 0$ is a simple positive eigenvalue of the operator A. Moreover, $\rho(A)$ is srictly bigger than the absolute value of any other eigenvalue of A, and the eigenvector x_1 corresponding to $\lambda_1 = \rho(A)$ is (entrywise) positive.

It is easy to see, that the Perron theorem also holds for any matrix similar to a positive matrix. Here a natural question arises: how to determine if an arbitrary matrix is similar to some positive matrix? We now prove a criterion of similarity, which will be used later.

THEOREM 4. The matrix **A** is SJS if and only if $\mathbf{A} = \mathbf{D}\widetilde{\mathbf{A}}\mathbf{D}^{-1}$ for some positive matrix $\widetilde{\mathbf{A}}$ and diagonal matrix **D**.

Proof. \Rightarrow Define the diagonal matrix **D**:

$$d_{ii} = \begin{cases} -1 & \text{if } i \in J; \\ 1 & \text{otherwise.} \end{cases}$$

Then $\widetilde{\mathbf{A}} = \mathbf{D}^{-1}\mathbf{A}\mathbf{D}$ is positive. \Leftarrow Define $J \subseteq [n]$ as follows:

$$J = \{i \in [n] : \operatorname{sign}(d_{ii}) = -1\}.$$

Then A can be seen to be strictly J-sign-symmetric. \Box

COROLLARY 1. Let the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be SJS. Then the spectral radius $\rho(A) > 0$ is a simple positive eigenvalue of the operator A, strictly bigger than the absolute value of any other eigenvalue of A.

Note that the number of all different types of $n \times n$ SJS matrices is equal to 2^{n-1} , while the number of all different types of $\binom{n}{2} \times \binom{n}{2}$ SJS matrices is equal to $2^{\binom{n}{2}-1}$.

The class of positive matrices is a subclass of irreducible nonnegative matrices. The following result of Frobenius is widely known: THEOREM 5. (Frobenius) Let the matrix **A** of a linear operator A be nonnegative and irreducible. Then the spectral radius $\rho(A) > 0$ is a simple positive eigenvalue of the operator A. The eigenvector x_1 corresponding to the eigenvalue $\lambda_1 = \rho(A)$ is positive. If h is a number of the eigenvalues of the operator A whose absolute values are equal to $\rho(A)$, then all of them are simple and they coincide with the hth roots of $(\rho(A))^h$. Moreover, the spectrum of A is invariant under rotations by $\frac{2\pi}{h}$ about the origin.

The number *h* of the eigenvalues whose absolute values are equal to $\rho(A)$ is called *the index of imprimitivity* of the irreducible operator *A*. The operator *A* is called *primitive* if h(A) = 1, and *imprimitive* if h(A) > 1.

THEOREM 6. The matrix **A** is JS if and only if $\mathbf{A} = \mathbf{D}\widetilde{\mathbf{A}}\mathbf{D}^{-1}$ for some nonnegative matrix $\widetilde{\mathbf{A}}$ and diagonal matrix **D**. Moreover, if **A** is irreducible, then $\widetilde{\mathbf{A}}$ is also irreducible.

Proof. The proof is analogical to the proof of Theorem 4. \Box

COROLLARY 2. Let the matrix **A** of a linear operator A be irreducible JS. Then the spectral radius $\rho(A) > 0$ is a simple positive eigenvalue of the operator A. If h is a number of the eigenvalues of the operator A whose absolute values are equal to $\rho(A)$, then all of them are simple and they coincide with the hth roots of $(\rho(A))^h$. Moreover, the spectrum of A is invariant under rotations by $\frac{2\pi}{h}$ about the origin.

Note, that if the matrix **A** is irreducible JS, then the set J is uniquely determined (up to the set J^c).

The following sufficient criteria of primitivity was proved in [7] (see [7], p. 49, Corollary 1.1): *if a matrix* $\mathbf{A} = \{a_{ij}\}_{i,j=1}^{n}$ *is irreducible, and* $\sum_{i=1}^{n} a_{ii} > 0$, *then* \mathbf{A} *is primitive.* This implies

LEMMA 5. Let the matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^n$ of a linear operator A be JS. Let at least one element a_{ii} be nonzero. Then $\rho(A) > 0$ and if A is irreducible then it is primitive.

Proof. Since **A** is JS we have $a_{ii} \ge 0$ for i = 1, ..., n. Since at least one of $a_{ii} \ne 0$, we have the following estimate

$$\rho(A) \geqslant \frac{1}{n} \sum_{i=1}^{n} \lambda_i = \frac{1}{n} \sum_{i=1}^{n} a_{ii} > 0,$$

where $\{\lambda_i\}_{i=1}^n$ is the set of all eigenvalues of the operator *A*, repeated according to multiplicity. \Box

Let us recall also the following result of Frobenius (see, for example, [6]).

THEOREM 7. (Frobenius) Let the matrix **A** of a linear operator A be nonnegative and reducible. Then there is a $n \times n$ permutation matrix **P** such that

$$\mathbf{PAP}^{-1} = \widehat{\mathbf{A}},$$

where $\widehat{\mathbf{A}}$ is a block-triangular form with the finite number $l \leq n$ of square irreducible (or zero) blocs \mathbf{A}_j (j = 1,...,l) on the principal diagonal and zero entries above the principal diagonal:

$$\widehat{\mathbf{A}} = \begin{pmatrix} \mathbf{A}_{1} & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \mathbf{A}_{2} & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \mathbf{A}_{r} & 0 & 0 & \dots & 0 \\ \mathbf{B}_{r+11} & \mathbf{B}_{r+12} & \dots & \mathbf{B}_{r+1r} & \mathbf{A}_{r+1} & 0 & \dots & 0 \\ \mathbf{B}_{r+21} & \mathbf{B}_{r+22} & \dots & \mathbf{B}_{r+2r} & \mathbf{B}_{r+2r+1} & \mathbf{A}_{r+2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{B}_{l1} & \mathbf{B}_{l2} & \dots & \mathbf{B}_{lr} & \mathbf{B}_{lr+1} & \mathbf{B}_{lr+2} & \dots & \mathbf{A}_{l} \end{pmatrix}.$$
(3)

 $\widehat{\mathbf{A}}$ is uniquely defined (up to a permutation of the blocks).

The spectral radius $\rho(A)$ is an eigenvalue of the operator A with the corresponding nonnegative eigenvector x_1 . Moreover, the following equalities hold:

$$\sigma_p(A) = \bigcup_{j=1}^l \sigma_p(A_j), \quad \rho(A) = \max_{j=1,\dots,l} \{\rho(A_j)\},$$

where $\sigma_p(A_j)$ are the sets of all eigenvalues and $\rho(A_j)$ are the spectral radii of the irreducible blocks \mathbf{A}_j (j = 1, ..., l).

If the matrix **A** is reducible JS, then we have the representation $\mathbf{A} = \mathbf{D}\mathbf{P}\widehat{\mathbf{A}}\mathbf{P}^{-1}\mathbf{D}^{-1}$, where $\widehat{\mathbf{A}}$ is the block-diagonal form of a nonnegative reducible matrix $\widetilde{\mathbf{A}}$. Note, that the algebraic multiplicity of any eigenvalue λ with $|\lambda| = \rho(A)$ does not exceed the algebraic multiplicity of $\rho(A)$.

7. Proof of Theorem 8

Enumerate the eigenvalues of the operator *A* decreasing order of their absolute values (taking into account their multiplicities):

$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Applying Corollary 1 to the SJS matrix **A**, we get $\lambda_1 = \rho(A) > 0$ is a simple positive eigenvalue of **A**. Applying Corollary 1 to the matrix $\mathbf{A}^{(2)}$, we get $\rho(\mathbf{A}^{(2)}) > 0$ is a simple positive eigenvalue of $\mathbf{A}^{(2)}$.

It follows from Theorem 2 that the matrix $\mathbf{A}^{(2)}$ has no eigenvalues other than the products of the form $\lambda_i \lambda_j$, where i < j. Therefore $\rho(\mathbf{A}^{(2)}) > 0$ is a product $\lambda_i \lambda_j$ for some indices i, j, i < j. Since the eigenvalues are enumerated in decreasing order, and since there is only one eigenvalue on the spectral circle $|\lambda| = \rho(\mathbf{A})$, we get $\rho(\mathbf{A}^{(2)}) = \lambda_1 \lambda_2$. So $\lambda_2 = \frac{\rho(\mathbf{A}^{(2)})}{\lambda_1} > 0$. \Box

8. Connection between $\mathbf{A}_{W}^{(2)}$ and $\mathbf{A}^{(2)}$

In Section 10 we will study the case when the matrix **A** is 2-TJS, i.e., **A** is similar to some nonnegative matrix, and its second compound matrix $\mathbf{A}^{(2)}$ is also similar to some nonnegative matrix. Note that these two conditions do not mean that **A** is similar to a 2-TP matrix and do not guarantee the reality of the peripheral spectrum of the matrix **A**. This can be seen by invoking the above conception of a *W*-basis and a *W*-matrix. The following theorem describes the link between the matrices $\mathbf{A}_W^{(2)}$ and $\mathbf{A}^{(2)}$.

THEOREM 9. Let the second compound matrix $\mathbf{A}^{(2)}$ of the matrix \mathbf{A} be JS. Then there exists a set $W \subset [n] \times [n]$ satisfying (1) and (2) such that the corresponding Wmatrix $\mathbf{A}_W^{(2)}$ is nonnegative. Moreover, if $\mathbf{A}^{(2)}$ is irreducible, then $\mathbf{A}_W^{(2)}$ is also irreducible.

The converse is also true. Suppose for some set $W \subset [n] \times [n]$ satisfying (1) and (2), the matrix $\mathbf{A}_{W}^{(2)}$ is nonnegative. Then the second compound matrix $\mathbf{A}^{(2)}$ is JS. Moreover, if $\mathbf{A}_{W}^{(2)}$ is irreducible, then $\mathbf{A}^{(2)}$ is also irreducible.

Proof. \leftarrow Given a set $W \subset [n] \times [n]$ satisfying (1) and (2) such that the corresponding W-matrix $\mathbf{A}_{W}^{(2)}$ is nonnegative, we show that $\mathbf{A}^{(2)}$ is JS. Define the set $J_2 \subseteq [\binom{n}{2}]$:

 $J_2 = \{ \alpha(i,j) : (i,j) \in (M \cap W) \setminus \Delta \},\$

where $\alpha(i, j) = \sum_{k=1}^{i-1} (n-k) + j - i$ is the number of the pairs (i, j) in the lexicographic order. Notice that $J_2^c = [\binom{n}{2}] \setminus J_2$. We get

$$J_2^c = \{ \alpha(i,j) : (i,j) \in (M \cap W^s) \setminus \Delta \}.$$

Then

$$\begin{bmatrix} \binom{n}{2} \end{bmatrix} \times \begin{bmatrix} \binom{n}{2} \end{bmatrix} = (J_2 \times J_2) \cup (J_2 \times J_2^c) \cup (J_2^c \times J_2) \cup (J_2^c \times J_2^c).$$

Since $M = (M \cap W) \cup (M \cap W^s)$, we get the corresponding partition of $M \times M$:

$$M \times M = ((M \cap W) \times (M \cap W)) \cup ((M \cap W) \times (M \cap W^s)) \cup ((M \cap W^s) \times (M \cap W)) \cup ((M \cap W^s) \times (M \cap W^s)).$$

Examine an arbitrary minor $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, where i < j, k < l. We have the following four cases.

Case 1. If $(i, j), (k, l) \in J_2$, then $(i, j), (k, l) \in (M \cap W)$, and $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$ is an element of $\mathbf{A}_W^{(2)}$ and hence is nonnegative.

Case 2. If $(i, j), (k, l) \in J_2^c$, then $(i, j), (k, l) \in (M \cap W^s)$ and $(j, i), (l, k) \in (M \cap W)$. The equality $A \begin{pmatrix} i & j \\ k & l \end{pmatrix} = A \begin{pmatrix} j & i \\ l & k \end{pmatrix}$ implies that $A \begin{pmatrix} j & i \\ l & k \end{pmatrix}$ is an element of $\mathbf{A}_W^{(2)}$ and is also nonnegative.

Case 3. If $(i,j) \in J_2$ and $(k,l) \in J_2^c$, then $(i,j) \in M \cap W$ and $(k,l) \in M \cap W^s$. The equality $A \begin{pmatrix} i & j \\ k & l \end{pmatrix} = -A \begin{pmatrix} i & j \\ l & k \end{pmatrix}$ implies that $A \begin{pmatrix} i & j \\ k & l \end{pmatrix}$ is nonpositive.

Case 4. This case $(i, j) \in M \cap W^s$, and $(k, l) \in M \cap W$ is analogous to Case 3. Here $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$ is again nonpositive.

The remaining proof of irreducibility of $\mathbf{A}_{W}^{(2)}$ is obvious. \Rightarrow Now let $\mathbf{A}^{(2)}$ be JS. Then we can find a set $J_2 \subseteq [\binom{n}{2}]$, such that

 $a_{ij} \ge 0$ on $(J_2 \times J_2) \cup (J_2^c \times J_2^c);$

and

$$a_{ij} \leq$$
 on $(J_2 \times J_2) \cup (J_2^c \times J_2^c).$

Define a set W:

$$(i, j) \in W \Leftrightarrow$$
 either $i < j$ and $\alpha(i, j) \in J_2$ or $i > j$ and $\alpha(j, i) \in J_2^c$. (4)

It is easy to see that W satisfies (1) and (2). The nonnegativity and irreducibility of $\mathbf{A}_{W}^{(2)}$ are proved analogously to the proof of the first part. \Box

9. Permutations and isomorphisms of the space X

It is well known (see Theorem B), that the two eigenvalues of a matrix \mathbf{A} with largest absolute values are real and nonnegative whenever \mathbf{A} is 2-TP. However, it is not true for a 2-TJS matrix \mathbf{A} . In Section 10 we will give some sufficient conditions for the reality of the peripheral spectrum of a 2-TJS matrix.

Let us study the case when W is transitive.

LEMMA 6. Every transitive W satisfying (1) and (2) is uniquely defined by a permutation $\sigma_n = (\sigma(1), \dots, \sigma(n))$. The converse is also true: every permutation σ_n of [n] is uniquely defined by a transitive W satisfying (1) and (2).

Proof. \Rightarrow Given a permutation $\sigma_n = (\sigma(1), \dots, \sigma(n))$, we define *W*:

$$W = \{(i,j) \in [n] \times [n] : \sigma_n^{-1}(i) \leqslant \sigma_n^{-1}(j)\}.$$

Properties (1) and (2) are obvious. To check transitivity, we let $(i, j), (j, k) \in W$ for some $i, j, k \in [n]$. Then we have $\sigma_n^{-1}(i) \leq \sigma_n^{-1}(j)$ and $\sigma_n^{-1}(j) \leq \sigma_n^{-1}(k)$. Since σ_n^{-1} maps $(\sigma(1), \ldots, \sigma(n))$ to [n], these inequalities imply $\sigma_n^{-1}(i) \leq \sigma_n^{-1}(k)$ and the inclusion $(i, k) \in W$ holds.

 \leftarrow Given a transitive W satisfying (1) and (2), we define σ_n by induction:

- 1) $\sigma_1(1) := 1$.
- 2) $\sigma_2(1) := 2$, $\sigma_2(2) := 1$, if $(2,1) \in W$ and $\sigma_2(1) := 1$, $\sigma_2(2) := 2$ otherwise.

3) Given σ_{i-1} , we define

$$l := \max\{k : 1 \leq k \leq j-1; (\sigma_{j-1}(k), j) \in W\}.$$

If $(\sigma_{j-1}(k), j) \in W^s$ for all $k = 1, \ldots, j-1$, let l := 0. Define

$$\sigma_j(i) := \begin{cases} \sigma_{j-1}(i), & i = 1, \dots, l; \\ j, & i = l+1; \\ \sigma_{j-1}(i-1), i = l+2, \dots, j \end{cases}$$

Show that the resulting permutation σ_n defines the same set W. Let

$$V := \{(i,j) \in [n] \times [n] : \sigma_n^{-1}(i) \leqslant \sigma_n^{-1}(j) \}.$$

Show that *V* coincides with *W*. Let $(i, j) \in V$. In this case the inequality $\sigma_n^{-1}(i) \leq \sigma_n^{-1}(j)$ implies $i \leq j$ in $\sigma_n([n])$. Let k_1, \ldots, k_m be all indices between *i* and *j* in $\sigma_n([n])$. Write $\sigma_n([n])$ in the following form:

$$\sigma_n([n]) = \sigma_n(1), \ldots, i, k_1, \ldots, k_m, j, \ldots, \sigma_n(n).$$

It follows from the construction of σ_n that all the pairs (i,k_1) , (k_2,k_3) , ..., (k_{m-1},k_m) , (k_m, j) belong to W. Since W is transitive, the inclusion $(i,k_2) \in W$ follows from the inclusions $(i,k_1) \in W$, $(k_1,k_2) \in W$. Repeating this reasoning m times, we get the inclusion $(i, j) \in W$. Therefore the inclusion $V \subseteq W$ holds. Show that $W \subseteq V$. Suppose the contrary: $\sigma_n^{-1}(i_0) > \sigma_n^{-1}(j_0)$ for some $(i_0, j_0) \in W \setminus \Delta$. Then $\sigma_n^{-1}(j_0) < \sigma_n^{-1}(i_0)$ implies $j_0 < i_0$ in $\sigma_n([n])$, and it follows from the above reasoning that $(j_0, i_0) \in W \setminus \Delta$. This contradicts condition (2). \Box

Define a permutation operator Q_{σ_n} :

$$Q_{\sigma_n}(e_i) = e_{\sigma_n(i)}, \quad i = 1, \ldots, n.$$

THEOREM 10. Let the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be nonnegative, and let its second compound matrix $\mathbf{A}^{(2)}$ be JS. Let $W \subset [n] \times [n]$, defined by (4), be transitive. Then there exists a permutation operator Q_{σ_n} such that the matrix $\mathbf{P} = \mathbf{Q}_{\sigma_n}^T \mathbf{A} \mathbf{Q}_{\sigma_n}$ is 2-TP. Moreover, if **A** and $\mathbf{A}^{(2)}$ are irreducible, the **P** and $\mathbf{P}^{(2)}$ are also irreducible.

Proof. Define σ_n as in the proof of Lemma 6. Notice that $p_{ij} = a_{\sigma_n(i)\sigma_n(j)}$. The matrix $\mathbf{P} = \mathbf{Q}_{\theta}^T \mathbf{A} \mathbf{Q}_{\theta}$ is obviously nonnegative. Prove that $\mathbf{P}^{(2)}$ is nonnegative. Examine an arbitrary minor $P\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, where i < j, k < l. It is equal to the generalized minor $A\begin{pmatrix} \sigma_n(i) & \sigma_n(j) \\ \sigma_n(k) & \sigma_n(l) \end{pmatrix}$.

It follows from the construction of σ_n that $(\sigma_n(i), \sigma_n(j)) \in W$ if and only if $\sigma_n^{-1}\sigma_n(i) \leq \sigma_n^{-1}\sigma_n(j)$. So the inequalities i < j, k < l imply $(\sigma_n(i), \sigma_n(j)), (\sigma_n(k), \sigma_n(l))$

 $\in W$. Hence the minor $A\begin{pmatrix} \sigma_n(i) & \sigma_n(j) \\ \sigma_n(k) & \sigma_n(l) \end{pmatrix}$ is an element of the *W*-matrix $\mathbf{A}_W^{(2)}$. So the matrix $\mathbf{P}^{(2)}$ coincides (up to a permutation of coordinates) with $\mathbf{A}_W^{(2)}$. Applying Theorem 9 to $\mathbf{A}_W^{(2)}$, we get that $\mathbf{A}_W^{(2)}$ is nonnegative and irreducible. \Box

Note that Theorem 10 may not hold if W is not transitive.

10. Approximation of a 2-TJS matrix by 2-STJS matrices

Let us prove the generalization of Theorem C using Theorem 10.

Given a 2-TJS matrix **A**, we find two sets $J \subseteq [n]$ and $J_2 \subseteq [\binom{n}{2}]$ from Definition 2 for the matrices **A** and **A**⁽²⁾, respectively.

Given the sets J and J_2 , we construct a set $W(J,J_2) \subseteq [n] \times [n]$: a pair of indices $(i, j) \in W(J, J_2)$ if and only if one of the following four cases occurs:

- (a) $i < j, i, j \in J$ or $i, j \in J^c$, and $\alpha(i, j) \in J_2$;
- (b) $i < j, i \in J, j \in J^c$ or $j \in J, i \in J^c$, and $\alpha(i, j) \in J_2^c$;
- (c) i > j, $i, j \in J$ or $i, j \in J^c$, and $\alpha(j, i) \in J_2^c$;
- (d) $i > j, i \in J, j \in J^c$ or $j \in J, i \in J^c$, and $\alpha(j,i) \in J_2$.

Note that since J and J_2 are not uniquely determined, the set $W(J,J_2)$ is also not uniquely determined.

Let us prove the following statement.

THEOREM 11. Let **A** be a 2-TJS matrix. Let at least one of the possible $W(J,J_2)$ be transitive. Then there exists a sequence $\{A_n\}$ of 2-STJS matrices which converges to **A**.

Proof. Since A is JS, we can apply Theorem 6:

$$\mathbf{A} = \mathbf{D}\mathbf{A}\mathbf{D}^{-1},\tag{5}$$

where $\widetilde{\mathbf{A}}$ is a nonnegative matrix. Examine the second compound matrix $\mathbf{A}^{(2)}$. It follows from Properties 1 and 2 of $\wedge^2 A$ that the matrix $\mathbf{A}^{(2)}$ can be represented in the form:

$$\mathbf{A}^{(2)} = \mathbf{D}^{(2)} \widetilde{\mathbf{A}}^{(2)} (\mathbf{D}^{-1})^{(2)}.$$

The equality $(\mathbf{D}^{-1})^{(2)} = (\mathbf{D}^{(2)})^{-1}$ implies

$$\mathbf{A}^{(2)} = \mathbf{D}^{(2)} \widetilde{\mathbf{A}}^{(2)} (\mathbf{D}^{(2)})^{-1}.$$

Hence $\widetilde{\mathbf{A}}^{(2)}$ can be written as

$$\widetilde{\mathbf{A}}^{(2)} = (\mathbf{D}^{(2)})^{-1} \mathbf{A}^{(2)} \mathbf{D}^{(2)}.$$
(6)

Since both matrices $\mathbf{D}^{(2)}$ and $(\mathbf{D}^{(2)})^{-1}$ are diagonal and the matrix $\mathbf{A}^{(2)}$ is JS, the matrix $\widetilde{\mathbf{A}}^{(2)}$ is also JS. Given a JS matrix $\widetilde{\mathbf{A}}^{(2)}$, we construct *W*, according to (4). Let

us show that the obtained set W coincides with $W(J,J_2)$. Applying Theorem 6 to $\mathbf{A}^{(2)}$, we get:

$$\mathbf{A}^{(2)} = \widehat{\mathbf{D}}\widehat{\mathbf{A}}^{(2)}\widehat{\mathbf{D}}^{-1},$$

where $\widehat{\mathbf{A}}^{(2)}$ is a nonnegative $\binom{n}{2} \times \binom{n}{2}$ matrix, $\widehat{\mathbf{D}}$ is a diagonal matrix. The following equality follows from (6):

$$\widetilde{\mathbf{A}}^{(2)} = (\mathbf{D}^{(2)})^{-1} \widehat{\mathbf{D}} \widehat{\mathbf{A}}^{(2)} \widehat{\mathbf{D}}^{-1} \mathbf{D}^{(2)}.$$
(7)

Write equality (7) in the following form:

$$\widetilde{\mathbf{A}}^{(2)} = \widetilde{\mathbf{D}}\widehat{\mathbf{A}}^{(2)}\widetilde{\mathbf{D}}^{-1},$$

where $\widetilde{\mathbf{D}} = (\mathbf{D}^{(2)})^{-1} \widehat{\mathbf{D}}$. Since $\mathbf{D}^{(2)}$ is a diagonal matrix with diagonal elements equal to ± 1 , we have $(\mathbf{D}^{(2)})^{-1} = \mathbf{D}^{(2)}$ and $\widetilde{\mathbf{D}} = \mathbf{D}^{(2)} \widehat{\mathbf{D}}$.

For the JS matrix $\widetilde{\mathbf{A}}^{(2)}$ we define the set \widetilde{J}_2 as in the proof of Theorem 6:

$$\widetilde{J}_2 = \left\{ i \in \left[\binom{n}{2} \right] : \operatorname{sign}(\widetilde{d}_{ii}) = -1 \right\}.$$

The equality $\tilde{d}_{\alpha\alpha} = d_{\alpha\alpha}^{(2)} \hat{d}_{\alpha\alpha}$ for the elements of $\tilde{\mathbf{D}}$ holds for all $\alpha = 1, \ldots, \binom{n}{2}$. The elements $d_{\alpha\alpha}^{(2)}$ of the matrix $\mathbf{D}^{(2)}$ are defined by the set J:

$$d_{\alpha\alpha}^{(2)} := \begin{cases} -1, \text{ if for } (i,j), \text{ such that } \alpha = \alpha(i,j) \text{ we have } i \in J, j \in J^c \text{ or } i \in J^c, j \in J; \\ 1, \text{ if for } (i,j), \text{ such that } \alpha = \alpha(i,j) \text{ we have } i \in J, j \in J \text{ or } i \in J^c, j \in J^c. \end{cases}$$

The elements $\hat{d}_{\alpha\alpha}$ of $\hat{\mathbf{D}}$ are defined by the set J_2 :

$$\widehat{d}_{lpha lpha} := \left\{ egin{array}{c} -1, ext{ if } lpha \in J_2; \ 1, & ext{if } lpha \in J_2^c. \end{array}
ight.$$

Hence $\alpha \in \widetilde{J}_2$ if and only if one of the following two cases occurs:

- (a) for (i, j) such that $\alpha = \alpha(i, j)$ we have $i \in J, j \in J$ or $i \in J^c, j \in J^c$, and $\alpha \in J_2$;
- (b) for (i, j) such that $\alpha = \alpha(i, j)$ we have $i \in J, j \in J^c$ or $i \in J^c, j \in J$, and $\alpha \in J_2^c$.

Now (4) shows that the set W constructed from \widetilde{J}_2 coincides with $W(J,J_2)$.

Since $W(J, J_2)$ is transitive, so is W, and we apply Theorem 10 to the nonnegative matrix $\widetilde{\mathbf{A}}$ with a JS second compound matrix $\widetilde{\mathbf{A}}^{(2)}$. We get that for some permutation σ_n the matrix $\mathbf{P} = \mathbf{Q}_{\sigma_n}^T \widetilde{\mathbf{A}} \mathbf{Q}_{\sigma_n}$ is 2-TP. Applying Theorem C, we find a sequence of 2-STP matrices $\{\mathbf{P}_n\}_{n=1}^{\infty}$, which converges to \mathbf{P} . We construct the sequence $\{\mathbf{A}_n\}$ via the rule $\mathbf{A}_n = \mathbf{D} \mathbf{Q}_{\sigma_n} \widetilde{\mathbf{A}}_n \mathbf{Q}_{\sigma_n}^T \mathbf{D}^{-1}$, where \mathbf{D} is a diagonal matrix from (5). It follows from Theorem 4 that the matrices \mathbf{A}_n are 2-STJS for any $n = 1, 2, \ldots$ Finally, it is easy to see that the sequence $\{\mathbf{A}_n\}$ converges to the matrix \mathbf{A} .

The proof of Theorem 12 follows from Theorem 11 and from the continuity of eigenvalues.

Note that if $W(J, J_2)$ is not transitive, then the approximation of a 2-TJS matrix by 2-STJS matrices is not always possible, and the statement of Theorem 12 may not hold.

11. Proofs

Proof of Theorem 13. Enumerate the eigenvalues of the operator *A*, repeated according to their multiplicity, in decreasing order of their absolute values:

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|.$$

Let us examine the first case when $W(J,J_2)$ is transitive. The positivity of λ_1 and the nonnegativity of λ_2 is proved analogously to the proof of Theorem 8. Applying Corollary 2 to A, we get that $\rho(A)$ is a simple eigenvalue of A.

Now let us examine the second case when all the possible $W(J,J_2)$ are not transitive. As usual, h(A) denotes the index of imprimitivity of A. Assume that h(A) = 2q, where q is a positive integer. Applying Corollary 2 to A we obtain that A has a simple positive eigenvalue $\lambda_1 = \rho(A) > 0$, all the eigenvalues of the operator A equal in absolute value to $\rho(A)$ are simple and they can be written as $\lambda_j = \rho(A)e^{\frac{\pi(j-1)i}{q}}$ (j = 1, ..., 2q).

Let h(A) = 2. Then there are two eigenvalues $\rho(A) > 0$ and $-\rho(A)$ on the spectral circle $|\lambda| = \rho(A)$. Hence there is only one negative eigenvalue $-\rho^2(A)$ on the spectral circle $|\lambda| = \rho(\wedge^2 A)$ of the operator $\wedge^2 A$. This fact contradicts Theorem 7.

Theorem 2 implies that all the eigenvalues equal in absolute value to $\rho(\wedge^2 A)$ can be written as $\lambda_j \lambda_m = \rho^2(A) e^{\frac{\pi(j-1)i}{q}} e^{\frac{\pi(m-1)i}{q}}$, where $1 \le j < m \le 2q$. Thus there are exactly $\binom{2q}{2}$ eigenvalues (taking into account their multiplicities) on the spectral circle $|\lambda| = \rho(\wedge^2 A)$. The equality

$$\rho^{2}(A) = \rho^{2}(A)e^{\frac{\pi i}{q}}e^{\frac{\pi(2q-1)i}{q}} = \rho^{2}(A)e^{\frac{2\pi i}{q}}e^{\frac{\pi(2q-2)i}{q}} = \dots = \rho^{2}(A)e^{\frac{\pi(q-1)i}{q}}e^{\frac{\pi(q-1)i}{q}}$$

shows that the algebraic multiplicity of $\rho(\wedge^2 A) = \rho^2(A)$ is equal to q - 1.

Applying Theorems 6 and 7 to $\wedge^2 A$ we obtain, that the algebraic multiplicity of any eigenvalue λ of $\wedge^2 A$ with $|\lambda| = \rho(\wedge^2 A)$ does not exceed the algebraic multiplicity of $\rho(\wedge^2 A)$. Since all eigenvalues on $|\lambda| = \rho(\wedge^2 A)$ coincide with all the 2*q*th roots of $(\rho(A))^{2q}$, we have 2*q* different eigenvalues with the greatest multiplicity q-1. Thus the common number of eigenvalues on $|\lambda| = \rho(\wedge^2 A)$ taking into account their multiplicities is not greater than 2q(q-1). We came to the contradiction because $2q(q-1) < \binom{2q}{2}$. \Box

Now let us assume the irreducibility of $A^{(2)}$.

Proof of Theorem 14. Enumerate the eigenvalues of the operator *A*, repeated according to their multiplicity, in decreasing order of their absolute values:

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|.$$

Let us examine the first case when $W(J, J_2)$ is transitive. The equality h(A) = 1 follows from Theorem 12. The positivity of λ_1 and λ_2 is proved analogously to the proof of Theorem 8. Applying Corollary 2 to A and $\wedge^2 A$, we get that $\rho(A)$ and $\rho(\wedge^2 A)$ are simple eigenvalues of A and $\wedge^2 A$ respectively. Then the equality $\lambda_2 = \frac{\rho(\wedge^2 A)}{\rho(A)}$ implies that λ_2 is a simple eigenvalue of A. If $h(A) = h(\wedge^2 A) = 1$, then λ_2 is obviously different from the other eigenvalues. If $h(\wedge^2 A) > 1$, the equality $\lambda_j = \frac{\rho(\wedge^2 A)e^{\frac{2\pi i(j-1)i}{h(\wedge^2 A)}}}{\rho(A)}$, where $j = 2, \ldots, h(\wedge^2 A) + 1$ follows from Theorem 2 and Corollary 2.

Now let us examine the second case when $W(J, J_2)$ is not transitive. We prove that $h(A) = h(\wedge^2 A) = 3$ by contradiction, excluding all the possible values h(A), except for h(A) = 3.

Applying Theorem 6, we get

$$\mathbf{A} = \mathbf{D}\widetilde{\mathbf{A}}\mathbf{D}^{-1},$$

where $\widetilde{\mathbf{A}}$ is a nonnegative irreducible matrix, **D** is a diagonal matrix. Then

$$\mathbf{A}^{(2)} = \mathbf{D}^{(2)} \widetilde{\mathbf{A}}^{(2)} (\mathbf{D}^{(2)})^{-1}.$$

The above equality implies that $\widetilde{\mathbf{A}}^{(2)}$ is irreducible JS. Applying Theorem 9 to $\widetilde{\mathbf{A}}^{(2)}$, we get that the matrix $\widetilde{\mathbf{A}}^{(2)}_W$ where $W = W(J, J_2)$ is nonnegative and irreducible.

Suppose h(A) = 1. Applying Theorem 5 to the matrix $\widetilde{\mathbf{A}}$, we get that the operator A has the first positive simple eigenvalue $\lambda_1 = \rho(A) > 0$, with the corresponding positive eigenvector x_1 . Applying the Frobenius theorem to the matrix $\widetilde{\mathbf{A}}_W^{(2)}$, which is also nonnegative and irreducible, we get that $\rho(\wedge^2 A)$ is a simple positive eigenvalue of $\wedge^2 A$, with the corresponding positive eigenvector φ .

Since λ_1 is different in absolute value from the other eigenvalues and since $\rho(\wedge^2 A)$ is simple, Theorem 2 shows that $\rho(\wedge^2 A) = \lambda_1 \lambda_m$ for some unique value m > 1. Without loss of generality, we can assume that m = 2, i.e., $\rho(\wedge^2 A) = \lambda_1 \lambda_2$. Then $\varphi = x_1 \wedge x_2$, where x_1 is the positive eigenvector corresponding to λ_1 and x_2 is the eigenvector corresponding to λ_2 . Let us examine the coordinates of the vector φ in the corresponding W-basis. Since W is not transitive, there exists at least one triple of indices $i, j, k \in [n]$ for which the inclusions $(i, j), (j, k) \in W, (i, k) \in W^s$ hold. In this case the coordinates of $\varphi = x_1 \wedge x_2$ in the corresponding W-basis satisfy the following inequalities:

$$\begin{split} \varphi_{\alpha(i,j)} &= x_i^1 x_j^2 - x_j^1 x_i^2 > 0; \\ \varphi_{\alpha(j,k)} &= x_j^1 x_k^2 - x_k^1 x_j^2 > 0; \\ \varphi_{\alpha(k,i)} &= x_k^1 x_k^2 - x_i^1 x_k^2 > 0. \end{split}$$

(Here x_i^l , x_j^l , x_k^l are the coordinates of the vectors x_l , l = 1, 2.) Adding the first two expressions multiplied by $x_k^1 > 0$ and $x_i^1 > 0$ respectively, we get:

$$x_j^1(x_i^1x_k^2 - x_k^1x_i^2) > 0;$$

$$x_k^1 x_i^2 - x_i^1 x_k^2 > 0.$$

This system has no solutions. So the case of h(A) = 1 is excluded.

Let h(A) = 2. Then there are two eigenvalues $\rho(A) > 0$ and $-\rho(A)$ on the spectral circle $|\lambda| = \rho(A)$ of the operator A. Hence there is only one negative eigenvalue $-\rho^2(A)$ on the spectral circle $|\lambda| = \rho(\wedge^2 A)$ of the operator $\wedge^2 A$. This fact contradicts Corollary 2.

It remains to exclude the case of h(A) > 3. Since all eigenvalues of the operator A on the spectral circle $|\lambda| = \rho(A)$ can be written in the form $\lambda_j = \rho(A)e^{\frac{2\pi(j-1)j}{h(A)}}$ (j = 1, ..., h(A)), Theorem 2 implies:

$$\lambda_2 \lambda_{h(A)} = \lambda_3 \lambda_{h(A)-1} = \cdots = \lambda_k \lambda_{h(A)-(k-2)} = \cdots = \rho^2(A).$$

Hence the eigenvalue $\rho(\wedge^2 A) = \rho^2(A)$ of the operator $\wedge^2 A$ is not simple. This fact also contradicts Corollary 2.

Finally prove that $h(\wedge^2 A) = 3$ when h(A) = 3. Indeed, in this case there are exactly three eigenvalues $\lambda_1 = \rho(A)$, $\lambda_2 = \rho(A)e^{\frac{2\pi i}{3}}$, $\lambda_3 = \rho(A)e^{\frac{4\pi i}{3}}$ on the spectral circle $|\lambda| = \rho(A)$, and there are also exactly three eigenvalues $\lambda_1 \lambda_2 = \rho^2(A)e^{\frac{2\pi i}{3}}$, $\lambda_1 \lambda_3 = \rho^2(A)e^{\frac{4\pi i}{3}}$ and $\lambda_2 \lambda_3 = \rho(A)e^{\frac{2\pi i}{3}}\rho(A)e^{\frac{4\pi i}{3}} = \rho^2(A)$ on the spectral circle $|\lambda| = \rho(\wedge^2 A)$. \Box

COROLLARY 3. If the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is 2-STJS, then the set $W(J,J_2)$ is transitive.

Let us give the examples illustrating both cases of Theorem 14.

EXAMPLE 3. Let the operator $A : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by the matrix

$$\mathbf{A} = \begin{pmatrix} 8.5 & 0 & 6.1 \\ -5.6 & 3.2 & -7.4 \\ 6 & -2.8 & 6.6 \end{pmatrix}$$

This matrix is irreducible JS with $J = \{1, 3\}$.

In this case the second compound matrix is the following:

$$\mathbf{A}^{(2)} = \begin{pmatrix} 27.2 & -28.74 & -19.52 \\ -23.8 & 19.5 & 17.08 \\ -3.52 & 7.44 & 0.4 \end{pmatrix}.$$

The matrix $A^{(2)}$ is also irreducible JS with $J_2 = \{2, 3\}$. Examine the set $W(J, J_2)$. We have $(1,2) \in W(J, J_2)$, since 1 < 2, $1 \in J$, $2 \in J^c$, and $\alpha(1,2) = 1 \in J_2^c$; $(1,3) \in W(J, J_2)$, since 1 < 3, $1,3 \in J$, and $\alpha(1,3) = 2 \in J_2$; $(3,2) \in W(J, J_2)$, since 3 > 2, $3 \in J$, $2 \in J^c$, and $\alpha(2,3) = 3 \in J_2$.

Illustration 1. The set $W(J,J_2)$.

Applying Lemma 6, we get that $W(J,J_2)$ defines the linear order $1 \prec 3 \prec 2$ on [3]. The operator *A* satisfies the conditions of Theorem 14, case (1). The two largest eigenvalues of *A* are $\lambda_1 = \rho(A) = 15.102$ and $\lambda_2 = 3.53642$; all other eigenvalues have smaller absolute values.

EXAMPLE 4. Let the operator $A : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by the matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

This matrix is obviously nonnegative and irreducible.

In this case the second compound matrix is the following:

$$\mathbf{A}^{(2)} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.$$

The matrix $A^{(2)}$ is irreducible JS with $J_2 = \{1, 3\}$. Examine the set W, corresponding to the set of indices $J_2 = \{1, 3\}$. It consists of the pairs (1,2), (2,3) and (3,1) (see Illustration 2).

Illustration 2. The set W.

The set *W* defines the non-transitive binary relation $1 \prec 2$, $2 \prec 3$, $3 \prec 1$ on the set of the indices [3]. The operator *A* satisfies the conditions of Theorem 14, case (2). Then $\lambda = \rho(A) = 1$, and there are exactly three eigenvalues 1, $e^{\frac{2\pi i}{3}}$ and $e^{\frac{4\pi i}{3}}$ on the spectral circle $|\lambda| = 1$, all of which are simple and coincide with 3 th roots of unity.

The proof of Theorem 15 follows from Lemma 5.

Proof of Theorem 16. Applying Theorems 6 and 7 we obtain block representation (3) of the matrix **A**. We consider only those blocks \mathbf{A}_j with $\rho(A_j) = \rho(A)$. The number of such blocks is equal to the algebraic multiplicity *m* of $\rho(A)$. Every square

submatrix \mathbf{A}_j (j = 1, ..., m) is obviously irreducible 2-TJS. Applying Theorem 13 to every \mathbf{A}_j , we obtain that there is an odd number $k_j \ge 1$ of eigenvalues on the spectral circle $|\lambda| = \rho(A_j)$. Each eigenvalue is simple and they coincide with the k_j -th roots of $(\rho(A))^{k_j}$. The equality

$$\sigma_p(A) = \bigcup_j \sigma_p(A_j)$$

completes the proof. \Box

REFERENCES

- F. R. GANTMACHER, M. G. KREIN, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore, 2002.
- [2] TSOY-WO MA, Classical Analysis on Normed Spaces, World Scientific Publishing, 1995.
- [3] I. M. GLAZMAN, JU. I. LIUBICH, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form, MIT Press, 1974.
- [4] J. L. KELLEY, General Topology, Birkhäuser, 1975.
- [5] K. KURATOVSKI, Topology, I, II, revised 2nd ed., Academic Press, New York, 1966.
- [6] F. GANTMACHER, The Theory of Matrices, Volume 1, Volume 2, Chelsea, Publ. New York, 1990.
- [7] H. MINC, Nonnegative Matrices, John Wiley and Sons, New York, 1988.

(Received January 11, 2011)

Olga Y. Kushel Institut für Mathematik, MA 4-5 Technische Universität Berlin D-10623 Berlin Germany e-mail: kushel@math.tu-berlin.de

Operators and Matrices www.ele-math.com oam@ele-math.com