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Abstract. A new class of sign-symmetric matrices is introduced in this paper. Such matrices
are called J -sign-symmetric. The spectrum of a J -sign-symmetric irreducible matrix is studied
under the assumption that its second compound matrix is also J -sign-symmetric. The con-
ditions for such matrices to have complex eigenvalues on the spectral circle are given. The
existence of two positive simple eigenvalues λ1 > λ2 > 0 of a J -sign-symmetric irreducible
matrix A is proved under some additional conditions. The question when the approximation
of a J -sign-symmetric matrix with a J -sign-symmetric second compound matrix by strictly J -
sign-symmetric matrices with strictly J -sign-symmetric second compound matrices is possible
is also answered in this paper.

1. Introduction

The classical theorem of Gantmacher and Krein (see [1, p. 263, Theorem 9]) al-
lows one to infer the positivity of the first two eigenvalues of a matrix A = {ai j}n

i, j=1
from simple positivity properties of A .

A matrix A is said to be positive (non-negative) if all its elements ai j are positive
(respectively, nonnegative). A matrix A is said to be 2 -strictly totally positive (2 -STP)
if A is positive and its second compound matrix A(2) is also positive. Recall that A(2)

is the matrix that consists of all the minors A

(
i j
k l

)
, where 1 � i < j � n, 1 � k < l �

n , of the initial matrix A . The minors are listed in the lexicographic order. The matrix

A(2) is
(n
2

)× (n2) dimensional, where
(n
2

)
=

n(n−1)
2

.

We denote by ρ(A) the spectral radius of A . Arrange the eigenvalues {λi}n
i=1 of

A into a sequence (taking into account their multiplicities), so that

ρ(A) = |λ1| � |λ2| � |λ3| � · · · � |λn|.
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THEOREM A. (Gantmacher, Krein [1, p. 263]) If A is a 2-STP matrix, then

(a) ρ(A) = λ1 > λ2 > |λ3| � · · · � |λn| � 0 ;

(b) both λ1 and λ2 are simple.

The first result of this paper (Theorem 8) extends the Gantmacher–Krein theorem
to a wider class of matrices. To specify this class we take any subset J of [n] :=
{1,2, . . . ,n} and a matrix A = {ai j}n

i, j=1 . As usual, Jc := [n]\ J . Then

[n]× [n] = (J× J)∪ (Jc× Jc)∪ (J× Jc)∪ (Jc× J)

is a partition of [n]× [n] into four pairwise disjoint subsets.

DEFINITION 1. A matrix A = {ai j}n
i, j=1 is called strictly J-sign-symmetric (SJS)

if
ai j > 0 on (J× J)∪ (Jc× Jc);

and
ai j < 0 on (J× Jc)∪ (Jc × J).

Note, that the subset J is uniquely determined (up to Jc ) by A .
A matrix A is called 2 -strictly totally J –sign-symmetric (2 -STJS) if A is SJS,

and its second compound matrix A(2) is also SJS.

THEOREM 8. If A is a 2-STJS matrix, then

(a) ρ(A) = λ1 > λ2 > |λ3| � · · · � |λn| � 0 ;

(b) both λ1 and λ2 are simple.

We also extend the second Gantmacher–Krein theorem (see [1, p. 269, Theorem
13]). A matrix A is said to be 2 -totally positive (2 -TP) if A is nonnegative and its
second compound matrix A(2) is also nonnegative.

THEOREM B. (Gantmacher, Krein [1, p. 269]) If A is a 2 -TP matrix, then

ρ(A) = λ1 � λ2 � |λ3| � · · · � |λn| � 0.

Theorem B comes out from Theorem A and from the following statement (see [1,
p. 268, Theorem 12].

THEOREM C. (Gantmacher, Krein [1, p. 268]) If A is a 2-TP matrix, then there
exists a sequence {A}∞

n=1 of 2-STP matrices which converges to A .

DEFINITION 2. A matrix A = {ai j}n
i, j=1 is called J-sign-symmetric (JS) if

ai j � 0 on (J× J)∪ (Jc× Jc);

and
ai j � 0 on (J× Jc)∪ (Jc × J).
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In this case the subset J may not be uniquely determined, but there is a finite number
of ways to determine it.

A matrix A is called 2 -totally J –sign-symmetric (2 -TJS) if A is JS and its second
compound matrix A(2) is also JS.

We show that not every 2-TJS matrix is similar to a 2-TP matrix. So the following
results can not be deduced from similarity transformations of the well-known class of
2-TP matrices. We show that, although the set of all 2-STP matrices is dense in the
set of all 2-TP matrices, the set of all 2-STJS matrices is not dense in the set of all
2-TJS matrices. So Theorem B can be extended only to a certain subclass of 2-TJS
matrices, which can be approximated by 2-STJS matrices. This approximation exists
under certain requirements on both sets J ⊆ [n] and J2 ⊆ [

(n
2

)
] . (The sets J and J2 are

given in Definition 1 for the matrices A and A(2) , respectively.) These requirements are
described in Section 10 in terms of the properties of a special binary relation W (J,J2)
on [n] . The obtained conditions are necessary as Example 4 of a 2-TJS matrix, for
which such an approximation does not exist, demonstrates.

Our proof of the extension of Theorem B consists of two steps.
First, for a given 2-TJS matrix, we find a 2-TP matrix Ã , a permutation matrix Q

and a diagonal matrix D such that A = DQÃQTD−1 (Theorem 10). Note that this con-
struction is not possible for every 2-TJS matrix, but is possible under our assumptions.

Applying Theorem C, we find a sequence {Ãn}∞
n=1 of 2-STP matrices that con-

verges to Ã . Then each An = DQÃnQT D−1 is a 2-STJS matrix and the sequence
{An}∞

n=1 converges to A . Thus we obtain

THEOREM 12. If A is a 2 -TJS matrix and at least one of the possible binary
relations W (J,J2) is transitive, then

ρ(A) = λ1 � λ2 � |λ3| � · · · � |λn| � 0.

If all the possible binary relations W (J,J2) are not transitive, the spectral proper-
ties of a 2-TJS matrix A are completely different and the matrix A cannot be approx-
imated by 2-STJS matrices. However, we can still describe the peripheral spectrum of
such a matrix under some additional conditions.

The matrix A is said to be reducible if there is a permutation of coordinates which

reduces it to the form

(
A1 0
B A2

)
, where A1 , A2 are square matrices. Otherwise the

matrix A is said to be irreducible [6].

THEOREM 13. Let A be an irreducible 2-TJS matrix. Then one of the following
two cases occurs:

(1) At least one of the possible binary relations W (J,J2) is transitive. Then A has a
positive simple eigenvalue λ1 and a nonnegative eigenvalue λ2 :

ρ(A) = λ1 > λ2 � |λ3| � · · · � |λn| � 0.

(2) All W (J,J2) are not transitive. Then there is an odd number k � 1 of eigenvalues
on the spectral circle |λ | = ρ(A) . Each of them is simple and they coincide with
the k th roots of (ρ(A))k .
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A matrix A is called 2 -totally irreducible J -sign-symmetric (2-TIJS) if A is ir-
reducible J -sign-symmetric and its second compound matrix A(2) is also irreducible
J -sign-symmetric. In this case both the sets J and J2 are uniquely determined. Thus
the binary relation W (J,J2) is uniquely determined. So we have the statement

THEOREM 14. Let A be a 2-TIJS matrix. Then one of the following two cases
occurs:

(1) The binary relation W (J,J2) is transitive. Then A has two positive simple eigen-
values λ1 , λ2 :

ρ(A) = λ1 > λ2 � |λ3| � · · · � |λn|.
(2) The binary relation W (J,J2) is not transitive. Then there are exactly three eigen-

values on the spectral circle |λ |= ρ(A) . Each of them is simple and they coincide
with the cube roots of (ρ(A))3 .

We also give examples illustrating both cases of Theorem 14.
Then we give a sufficient condition of the existence of the second nonnegative

eigenvalue.

THEOREM 15. Let A = {ai j}n
i, j=1 be an irreducible 2-TJS matrix. Let at least

one entry aii (i = 1, . . . , n) be nonzero. Then A has a positive simple eigenvalue
λ1 = ρ(A) and a nonnegative eigenvalue λ2 :

ρ(A) = λ1 > λ2 � |λ3| � · · · � |λn| � 0.

The following statement generalizes Theorem 13 to the case of arbitrary 2-TJS
matrices.

THEOREM 16. Let A be a 2-TJS matrix with ρ(A) > 0 . Then λ1 = ρ(A) is a
positive eigenvalue of A . Moreover, there are m sets of eigenvalues on the spectral
circle |λ | = ρ(A) , where m is the algebraic multiplicity of λ1 = ρ(A) . The j th set
( j = 1, . . . , m) contains an odd number k j � 1 of eigenvalues which coincide with the
k j th roots of (ρ(A))k j .

2. Tensor and exterior powers of R
n

Since tensor and exterior powers of function spaces can be realized also as function
spaces, we consider R

n as the n -dimensional function space X , defined on the discrete
set [n] = {1,2, . . . ,n} . The standard basis of X is formed by the functions e1,e2, . . . ,en ,
defined by

ei( j) = δi j =

⎧⎨⎩1, if i = j;

0, if i �= j.

The tensor square ⊗2
X of the space X is the space of all functions defined on the

set [n]× [n] , which consists of n2 pairs of the form (i, j) , where i, j ∈ [n] . If x,y ∈ X ,
then their tensor product

(x⊗ y)(i, j) = x(i)y( j)
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is a function on [n]× [n] . All the possible tensor products {ei ⊗ e j}n
i, j=1 of the initial

basis functions form a basis in ⊗2
X (see [2], [3]). It follows that dim(⊗2

X) = n2 .
The exterior square ∧2

X of the space X is a subspace of the space ⊗2
X , consist-

ing of antisymmetric functions, i.e. functions f (i, j) , satisfying the equality f (i, j) =
− f ( j, i) on [n]× [n] .

The space ∧2
X is spanned by elementary exterior products x∧ y :

(x∧ y)(i, j) = (x⊗ y)(i, j)− (y⊗ x)(i, j) = x(i)y( j)− x( j)y(i).

Given any subset W ⊂ [n]× [n] , we denote by Ws its symmetric reflection in
[n]× [n] with respect to the main diagonal Δ = {(i, i) : i = 1, . . . , n} :

Ws = {( j, i) : (i, j) ∈W}.
Let W ⊂ [n]× [n] satisfy

W ∪Ws = [n]× [n]; (1)

W ∩Ws = Δ. (2)

LEMMA 1. Given any W ⊂ [n]× [n] satisfying (1) and (2), the space ∧2
X is

isomorphic to the space X(W \Δ) of all real functions on W \Δ .

Proof. Any function on W \Δ can be extended via antisymmetry to [n]× [n] by
the unique way. The received antisymmetric function is supposed to be zero on Δ . �

REMARK. This simple fact is no doubt well known, but we could not find it in the
literature.

LEMMA 2. Given any W ⊂ [n]× [n] satisfying (1) and (2), the size of the set
W \Δ , Card(W \Δ) , is equal to

(n
2

)
.

The proof of Lemma 2 is quite obvious.
Lemma 2 implies that for any W satisfying (1) and (2) the following spaces are

isomorphic:

∧2
R

n ∼= X(W \Δ)∼= R
(n
2).

It is easy to see that we can define 2(n
2) different sets W ⊂ [n]× [n] , satisfying (1)

and (2). In this way, we get 2(n
2) different constructions for the space ∧2

X∼= X(W \Δ) .

3. Binary relations on [n]

Binary relations on [n] are defined by the subsets of [n]× [n] (see [4]). Given an

arbitrary W ⊂ [n]× [n] , we write i
W≺ j to denote (i, j) ∈W .

As usual, we say that a binary relation W is:

— reflexive if i
W≺ i for any i ∈ [n] ; equivalently, if Δ ⊂W ∩Ws ;

— antisymmetric if i
W≺ j, j

W≺ i imply i = j for any i, j ∈ [n] ; equivalently, if
W ∩Ws = Δ ;
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— transitive if i
W≺ j and j

W≺ k imply i
W≺ k for any i, j,k ∈ [n] ; equivalently, if

(i, j) ∈W and ( j,k) ∈W imply (i,k) ∈W ;

— connected if, for any i, j ∈ [n] , we have either i
W≺ j or j

W≺ i ; equivalently, if
W ∪Ws = [n]× [n] .

A binary relation
W≺ is said to be a linear order, if it is reflexive, antisymmetric,

transitive and connected (see [5]).

LEMMA 3. Any set W ⊂ [n]× [n] satisfying (1) and (2) determines a connected
antisymmetric reflexive binary relation on [n] . If in addition W is transitive, then it
determines a linear order on [n] .

Conversely, any connected antisymmetric reflexive binary relation on [n] is gen-
erated by a set W ⊂ [n]× [n] satisfying (1) and (2), and any linear order on [n] is
generated by a transitive set W ⊂ [n]× [n] satisfying (1) and (2).

Proof. ⇒ The first part of the proof follows from the reasoning preceding the
lemma.

⇐ Given a binary relation ≺ on [n] , we define:

W = {(i, j) ∈ [n]× [n] : i ≺ j};
Ws = {(i, j) ∈ [n]× [n] : j ≺ i}.

Then the necessary properties of W and Ws follows from the corresponding properties
of ≺ . �

The set M = {(i, j) ∈ [n]× [n] : i � j} , which defines the natural linear order on
[n] , is used in the classical theory of 2-TP matrices (see [1]).

4. Bases in ∧2
R

n

Given an arbitrary basis e1, . . . , en of R
n , we consider the set of all possible

exterior products of the form {ei ∧ e j} , where 1 � i < j � n to be the canonical basis
of the space ∧2

R
n (see [2], [3]). However, there exist other bases of ∧2

R
n consisting

of exterior products of the initial basic vectors. Namely, we can construct 2(n
2) different

bases by choosing an arbitrary element from every pair ei ∧ e j and e j ∧ ei (i �= j) .

LEMMA 4. Every W ⊂ [n]× [n] satisfying (1) and (2) uniquely defines a basis
in ∧2

R
n , consisting of the exterior products of e1, . . . , en . The converse is also true:

every basis in ∧2
R

n consisting of some exterior products of e1, . . . , en uniquely defines
a set W ⊂ [n]× [n] , satisfying (1) and (2).

Proof. ⇒ Given a set W ⊂ [n]× [n] satisfying (1) and (2), we examine the system
Λ = {ei∧e j}(i, j)∈W\Δ . Show that Λ is a basis in ∧2

X . For any ei ∧e j ∈ Λ and for any
(k, l) ∈W \Δ we have

(ei ∧ e j)(k, l) =

⎧⎨⎩1 if (i, j) = (k, l);

0 otherwise.



SPECTRA AND APPROXIMATIONS OF A CLASS OF SIGN-SYMMETRIC MATRICES 741

This shows that the system Λ is linearly independent. Since ∧2
X = X(W \Δ) is

(n
2

)
-

dimensional and Λ contains exactly
(n
2

)
elements, the system Λ also spans the whole

space ∧2
X .

⇐ Given a basis Λ of the space ∧2
X consisting of some exterior products of

e1, . . . , en , we define the set W :

W = {(i, j) ∈ [n]× [n] : ei ∧ e j ∈ Λ}∪Δ.

Show that W satisfies (1). Take a pair (i0, j0) ∈W ∩Ws . In this case we have (i0, j0) ∈
W and ( j0, i0) ∈ W . If i0 �= j0 , then ei0 ∧ e j0 ∈ Λ and e j0 ∧ ei0 ∈ Λ . It follows that
ei0 ∧e j0 and e j0 ∧ei0 are linearly independent. This contradicts the equality ei0 ∧e j0 =
−(e j0 ∧ ei0) . So we have i0 = j0 for any pair (i0, j0) ∈W ∩Ws .

We now verify condition (2). Assume that there exists a pair (i0, j0), i0 �= j0 , in
([n]× [n]) \ (W ∪Ws) . Then we have ( j0, i0) ∈ ([n]× [n]) \ (W ∪Ws) . It follows that
neither ei0 ∧ e j0 no e j0 ∧ ei0 is in Λ . Add ei0 ∧ e j0 to the system Λ . It is easy to see
that the obtained system remains linearly independent. This contradicts the condition
that Λ is a maximal linearly independent system in ∧2

X . �

A basis {ei∧e j}(i, j)∈W\Δ defined by the set W is called a W –basis. We enumerate
the elements of a W –basis in the lexicographic order.

EXAMPLE 1. Let M = {(i, j)∈ [n]× [n] : i � j} . Then M\Δ = {(i, j) ∈ [n]× [n] :
i < j} , and the corresponding basis is {ei∧e j}i< j , i.e., the canonical basis of the space
∧2

R
n (see [1], [3]).

5. Exterior square of a linear operator in R
n

The exterior square ∧2A of the operator A : X → X acts on the space ∧2
X ac-

cording to the rule:

(∧2A)(x∧ y) = Ax∧Ay.

Recall the following properties of ∧2A (see [1], p. 64).
1. ∧2(AB) = (∧2A)(∧2B) for any linear operators A,B : X → X .
2. (∧2A)−1 = ∧2(A−1) for any invertible linear operator A : X → X .
Below we study spectral properties of the operator A , assuming that its exterior

square ∧2A leaves invariant a cone in ∧2
X . For this condition to hold, it is enough to

have the matrix of ∧2A positive in some basis in ∧2
X .

Let an operator A be defined by a matrix A = {ai j}n
i, j=1 in the basis {e1, . . . , en} .

To examine the matrix of ∧2A in a W –basis defined by a set W satisfying (1) and (2)
we recall the following definitions.

A determinant A

(
i j
k l

)
, formed by the rows indexed by the integers i and j and

the columns indexed by k and l (i, j, k, l ∈ [n]) of the matrix A , is called a generalized
minor of the second order.
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We call the matrix consisting of all generalizedminors A

(
i j
k l

)
, where (i, j), (k, l)∈

(W \Δ) , the second W –matrix of the initial matrix A and denote it by A(2)
W . The gen-

eralized minors are listed in the lexicographic order.

EXAMPLE 2. Let W = M = {(i, j) ∈ [n]× [n] : i � j} . Then the corresponding

W –matrix is a matrix consisting of all minors A

(
i j
k l

)
with i < j, k < l , i.e., the

second compound matrix.

We now demonstrate the connection between A(2)
W and the matrix of ∧2A .

THEOREM 1. Let the operator A be defined by a matrix A = {ai j}n
i, j=1 in the

basis e1, . . . ,en . Then, for any W ⊂ [n]× [n] satisfying (1) and (2), the matrix of the
exterior square ∧2A of the operator A in the W –basis {ei∧e j}(i, j)∈W\Δ coincides with

the second W –matrix A(2)
W .

Proof. Since A(ek) =
n
∑
i=1

aikei for k = 1, . . . , n , we have

(∧2A)(ei ∧ e j) = Aei∧Ae j =

(
n

∑
k=1

akiek

)
∧
(

n

∑
l=1

al jel

)
=

n

∑
k,l=1

akial j(ek ∧ el) =

= ∑
(k,l)∈(W\Δ)

akial j(ek ∧ el)+
n

∑
k=l=1

akial j(ek ∧ el)+ ∑
(k,l)∈(Ws\Δ)

akial j(ek ∧ el) =

= ∑
(k,l)∈(W\Δ)

akial j(ek ∧ el)+0− ∑
(k,l)∈(Ws\Δ)

akial j(el ∧ ek).

Interchange the indices l and k in the third sum:

∑
(k,l)∈(W\Δ)

akial j(ek ∧ el)− ∑
(k,l)∈(W\Δ)

aliak j(ek ∧ el) =

= ∑
(k,l)∈(W\Δ)

(akial j −aliak j)(ek ∧ el) = ∑
(k,l)∈(W\Δ)

A

(
k l
i j

)
(ek ∧ el),

where A

(
k l
i j

)
are the elements of the corresponding column of the matrix A(2)

W . So

the matrix of ∧2A in the basis {ei∧ e j}(i, j)∈W\Δ coincides with A(2)
W . �

It follows from Theorem 1 that the matrix of ∧2A in the basis {ei ∧ e j}i< j coin-
cides with A(2) , i.e., the second compound matrix of A .

THEOREM 2. Let W ⊂ [n]× [n] satisfy (1) and (2). Let {λi}n
i=1 be the set of all

eigenvalues of the matrix A repeated according to their multiplicity. Then all possible
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products of the type {λiλ j} , where 1 � i < j � n, form the set of all eigenvalues of the

second W –matrix A(2)
W repeated according to their multiplicity.

Proof. Recall that all possible products of the type {λiλ j} , where 1 � i < j � n ,
form the set of all eigenvalues of ∧2A , repeated according to their multiplicity (see [3]).
Then apply Theorem 1. �

Note, that in the case W = M Theorem 2 turns into the Kronecker theorem (see
[1, p. 65, Theorem 23]) about the eigenvalues of A(2) . The proof of the Kronecker
theorem that does not make use of exterior products is given in [1].

6. Nonnegative and J -sign-symmetric matrices

The proof of Theorem A is based on the well-known result of Perron and Frobenius
(see [6]).

THEOREM 3. (Perron) Let the matrix A of a linear operator A : R
n → R

n be
(entrywise) positive. Then the spectral radius ρ(A) > 0 is a simple positive eigenvalue
of the operator A. Moreover, ρ(A) is srictly bigger than the absolute value of any other
eigenvalue of A, and the eigenvector x1 corresponding to λ1 = ρ(A) is (entrywise)
positive.

It is easy to see, that the Perron theorem also holds for any matrix similar to a
positive matrix. Here a natural question arises: how to determine if an arbitrary matrix
is similar to some positive matrix? We now prove a criterion of similarity, which will
be used later.

THEOREM 4. The matrix A is SJS if and only if A = DÃD−1 for some positive
matrix Ã and diagonal matrix D .

Proof. ⇒ Define the diagonal matrix D :

dii =

⎧⎨⎩−1 if i ∈ J;

1 otherwise.

Then Ã = D−1AD is positive.
⇐ Define J ⊆ [n] as follows:

J = {i ∈ [n] : sign(dii) = −1}.
Then A can be seen to be strictly J-sign-symmetric. �

COROLLARY 1. Let the matrix A of a linear operator A : R
n → R

n be SJS. Then
the spectral radius ρ(A) > 0 is a simple positive eigenvalue of the operator A, strictly
bigger than the absolute value of any other eigenvalue of A.

Note that the number of all different types of n×n SJS matrices is equal to 2n−1 ,

while the number of all different types of
(n
2

)× (n2) SJS matrices is equal to 2(n
2)−1 .

The class of positive matrices is a subclass of irreducible nonnegative matrices.
The following result of Frobenius is widely known:
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THEOREM 5. (Frobenius) Let the matrix A of a linear operator A be nonnegative
and irreducible. Then the spectral radius ρ(A) > 0 is a simple positive eigenvalue of
the operator A. The eigenvector x1 corresponding to the eigenvalue λ1 = ρ(A) is
positive. If h is a number of the eigenvalues of the operator A whose absolute values
are equal to ρ(A) , then all of them are simple and they coincide with the hth roots of
(ρ(A))h . Moreover, the spectrum of A is invariant under rotations by 2π

h about the
origin.

The number h of the eigenvalues whose absolute values are equal to ρ(A) is
called the index of imprimitivity of the irreducible operator A . The operator A is called
primitive if h(A) = 1, and imprimitive if h(A) > 1.

THEOREM 6. The matrix A is JS if and only if A = DÃD−1 for some nonneg-
ative matrix Ã and diagonal matrix D . Moreover, if A is irreducible, then Ã is also
irreducible.

Proof. The proof is analogical to the proof of Theorem 4. �

COROLLARY 2. Let the matrix A of a linear operator A be irreducible JS. Then
the spectral radius ρ(A) > 0 is a simple positive eigenvalue of the operator A. If h is a
number of the eigenvalues of the operator A whose absolute values are equal to ρ(A) ,
then all of them are simple and they coincide with the hth roots of (ρ(A))h . Moreover,
the spectrum of A is invariant under rotations by 2π

h about the origin.

Note, that if the matrix A is irreducible JS, then the set J is uniquely determined
(up to the set Jc ).

The following sufficient criteria of primitivity was proved in [7] (see [7], p. 49,
Corollary 1.1): if a matrix A = {ai j}n

i, j=1 is irreducible, and ∑n
i=1 aii > 0 , then A is

primitive. This implies

LEMMA 5. Let the matrix A = {ai j}n
i, j=1 of a linear operator A be JS. Let at least

one element aii be nonzero. Then ρ(A) > 0 and if A is irreducible then it is primitive.

Proof. Since A is JS we have aii � 0 for i = 1, . . . , n . Since at least one of
aii �= 0, we have the following estimate

ρ(A) � 1
n

n

∑
i=1

λi =
1
n

n

∑
i=1

aii > 0,

where {λi}n
i=1 is the set of all eigenvalues of the operator A , repeated according to

multiplicity. �

Let us recall also the following result of Frobenius (see, for example, [6]).

THEOREM 7. (Frobenius) Let the matrix A of a linear operator A be nonnegative
and reducible. Then there is a n×n permutation matrix P such that

PAP−1 = Â,
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where Â is a block-triangular form with the finite number l � n of square irreducible
(or zero) blocs A j ( j = 1, . . . , l) on the principal diagonal and zero entries above the
principal diagonal:

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 0 . . . 0 0 0 . . . 0
0 A2 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . Ar 0 0 . . . 0

Br+11 Br+12 . . . Br+1 r Ar+1 0 . . . 0
Br+21 Br+22 . . . Br+2 r Br+2 r+1 Ar+2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
Bl 1 Bl 2 . . . Bl r Bl r+1 Bl r+2 . . . Al

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Â is uniquely defined (up to a permutation of the blocks).
The spectral radius ρ(A) is an eigenvalue of the operator A with the correspond-

ing nonnegative eigenvector x1 . Moreover, the following equalities hold:

σp(A) =
l⋃

j=1

σp(Aj), ρ(A) = max
j=1,...,l

{ρ(Aj)},

where σp(Aj) are the sets of all eigenvalues and ρ(Aj) are the spectral radii of the
irreducible blocks A j ( j = 1, . . . , l) .

If the matrix A is reducible JS, then we have the representation A =DPÂP−1D−1 ,
where Â is the block-diagonal form of a nonnegative reducible matrix Ã . Note, that
the algebraic multiplicity of any eigenvalue λ with |λ | = ρ(A) does not exceed the
algebraic multiplicity of ρ(A) .

7. Proof of Theorem 8

Enumerate the eigenvalues of the operator A decreasing order of their absolute
values (taking into account their multiplicities):

|λ1| � |λ2| � |λ3| � · · · � |λn|.

Applying Corollary 1 to the SJS matrix A , we get λ1 = ρ(A) > 0 is a simple positive
eigenvalue of A . Applying Corollary 1 to the matrix A(2) , we get ρ(A(2)) > 0 is a
simple positive eigenvalue of A(2) .

It follows from Theorem 2 that the matrix A(2) has no eigenvalues other than the
products of the form λiλ j , where i < j . Therefore ρ(A(2)) > 0 is a product λiλ j for
some indices i, j , i < j . Since the eigenvalues are enumerated in decreasing order, and
since there is only one eigenvalue on the spectral circle |λ | = ρ(A) , we get ρ(A(2)) =

λ1λ2 . So λ2 = ρ(A(2))
λ1

> 0. �
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8. Connection between A(2)
W and A(2)

In Section 10 we will study the case when the matrix A is 2-TJS, i.e., A is similar
to some nonnegative matrix, and its second compound matrix A(2) is also similar to
some nonnegative matrix. Note that these two conditions do not mean that A is similar
to a 2-TP matrix and do not guarantee the reality of the peripheral spectrum of the
matrix A . This can be seen by invoking the above conception of a W –basis and a

W –matrix. The following theorem describes the link between the matrices A(2)
W and

A(2) .

THEOREM 9. Let the second compound matrix A(2) of the matrix A be JS. Then
there exists a set W ⊂ [n]× [n] satisfying (1) and (2) such that the corresponding W –

matrix A(2)
W is nonnegative. Moreover, if A(2) is irreducible, then A(2)

W is also irre-
ducible.

The converse is also true. Suppose for some set W ⊂ [n]× [n] satisfying (1) and

(2), the matrix A(2)
W is nonnegative. Then the second compound matrix A(2) is JS.

Moreover, if A(2)
W is irreducible, then A(2) is also irreducible.

Proof. ⇐ Given a set W ⊂ [n]× [n] satisfying (1) and (2) such that the cor-

responding W –matrix A(2)
W is nonnegative, we show that A(2) is JS. Define the set

J2 ⊆ [
(n
2

)
] :

J2 = {α(i, j) : (i, j) ∈ (M∩W )\Δ},
where α(i, j) = ∑i−1

k=1(n−k)+ j− i is the number of the pairs (i, j) in the lexicographic
order. Notice that Jc

2 = [
(n
2

)
]\ J2 . We get

Jc
2 = {α(i, j) : (i, j) ∈ (M∩Ws)\Δ}.

Then [(
n
2

)]
×
[(

n
2

)]
= (J2× J2)∪ (J2× Jc

2)∪ (Jc
2 × J2)∪ (Jc

2 × Jc
2).

Since M = (M∩W )∪ (M∩Ws) , we get the corresponding partition of M×M :

M×M = ((M∩W )× (M∩W ))∪ ((M∩W )× (M∩Ws))∪
∪((M∩Ws)× (M∩W ))∪ ((M∩Ws)× (M∩Ws)).

Examine an arbitrary minor A

(
i j
k l

)
, where i < j , k < l . We have the following

four cases.

Case 1. If (i, j),(k, l) ∈ J2 , then (i, j),(k, l) ∈ (M ∩W ) , and A

(
i j
k l

)
is an element of

A(2)
W and hence is nonnegative.

Case 2. If (i, j),(k, l) ∈ Jc
2 , then (i, j),(k, l) ∈ (M∩Ws) and ( j, i),(l,k) ∈ (M∩W ) . The

equality A

(
i j
k l

)
= A

(
j i
l k

)
implies that A

(
j i
l k

)
is an element of A(2)

W and is

also nonnegative.
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Case 3. If (i, j) ∈ J2 and (k, l) ∈ Jc
2 , then (i, j) ∈ M ∩W and (k, l) ∈ M ∩Ws . The

equality A

(
i j
k l

)
= −A

(
i j
l k

)
implies that A

(
i j
k l

)
is nonpositive.

Case 4. This case (i, j) ∈ M ∩Ws , and (k, l) ∈ M ∩W is analogous to Case 3. Here

A

(
i j
k l

)
is again nonpositive.

The remaining proof of irreducibility of A(2)
W is obvious.

⇒ Now let A(2) be JS. Then we can find a set J2 ⊆ [
(n
2

)
] , such that

ai j � 0 on (J2× J2)∪ (Jc
2 × Jc

2);

and
ai j � on (J2× J2)∪ (Jc

2 × Jc
2).

Define a set W :

(i, j) ∈W ⇔ either i < j and α(i, j) ∈ J2 or i > j and α( j, i) ∈ Jc
2 . (4)

It is easy to see that W satisfies (1) and (2). The nonnegativity and irreducibility

of A(2)
W are proved analogously to the proof of the first part. �

9. Permutations and isomorphisms of the space X

It is well known (see Theorem B), that the two eigenvalues of a matrix A with
largest absolute values are real and nonnegative whenever A is 2-TP. However, it is not
true for a 2-TJS matrix A . In Section 10 we will give some sufficient conditions for the
reality of the peripheral spectrum of a 2-TJS matrix.

Let us study the case when W is transitive.

LEMMA 6. Every transitive W satisfying (1) and (2) is uniquely defined by a
permutation σn = (σ(1), . . . ,σ(n)) . The converse is also true: every permutation σn

of [n] is uniquely defined by a transitive W satisfying (1) and (2).

Proof. ⇒ Given a permutation σn = (σ(1), . . . ,σ(n)) , we define W :

W = {(i, j) ∈ [n]× [n] : σ−1
n (i) � σ−1

n ( j)}.

Properties (1) and (2) are obvious. To check transitivity, we let (i, j),( j,k) ∈ W
for some i, j,k ∈ [n] . Then we have σ−1

n (i) � σ−1
n ( j) and σ−1

n ( j) � σ−1
n (k) . Since

σ−1
n maps (σ(1), . . . ,σ(n)) to [n] , these inequalities imply σ−1

n (i) � σ−1
n (k) and the

inclusion (i,k) ∈W holds.
⇐ Given a transitive W satisfying (1) and (2), we define σn by induction:
1) σ1(1) := 1.
2) σ2(1) := 2, σ2(2) := 1, if (2,1) ∈W and σ2(1) := 1, σ2(2) := 2 otherwise.
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3) Given σ j−1 , we define

l := max{k : 1 � k � j−1; (σ j−1(k), j) ∈W}.

If (σ j−1(k), j) ∈Ws for all k = 1, . . . , j−1, let l := 0. Define

σ j(i) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ j−1(i), i = 1, . . . , l;

j, i = l +1;

σ j−1(i−1), i = l +2, . . . , j.

Show that the resulting permutation σn defines the same set W . Let

V := {(i, j) ∈ [n]× [n] : σ−1
n (i) � σ−1

n ( j)}.
Show that V coincides with W . Let (i, j)∈V . In this case the inequality σ−1

n (i)�
σ−1

n ( j) implies i � j in σn([n]) . Let k1, . . . , km be all indices between i and j in
σn([n]) . Write σn([n]) in the following form:

σn([n]) = σn(1), . . . , i, k1, . . . , km, j, . . . , σn(n).

It follows from the construction of σn that all the pairs (i,k1) , (k2,k3), . . . , (km−1,km) ,
(km, j) belong to W . Since W is transitive, the inclusion (i,k2) ∈ W follows from
the inclusions (i,k1) ∈W, (k1,k2) ∈W . Repeating this reasoning m times, we get the
inclusion (i, j)∈W . Therefore the inclusion V ⊆W holds. Show that W ⊆V . Suppose
the contrary: σ−1

n (i0) > σ−1
n ( j0) for some (i0, j0) ∈W \Δ . Then σ−1

n ( j0) < σ−1
n (i0)

implies j0 < i0 in σn([n]) , and it follows from the above reasoning that ( j0, i0)∈W \Δ .
This contradicts condition (2). �

Define a permutation operator Qσn :

Qσn(ei) = eσn(i), i = 1, . . . , n.

THEOREM 10. Let the matrix A of a linear operator A : Rn →R
n be nonnegative,

and let its second compound matrix A(2) be JS. Let W ⊂ [n]× [n] , defined by (4), be
transitive. Then there exists a permutation operator Qσn such that the matrix P =
QT

σn
AQσn is 2-TP. Moreover, if A and A(2) are irreducible, the P and P(2) are also

irreducible.

Proof. Define σn as in the proof of Lemma 6. Notice that pi j = aσn(i)σn( j) . The

matrix P = QT
θ AQθ is obviously nonnegative. Prove that P(2) is nonnegative. Examine

an arbitrary minor P

(
i j
k l

)
, where i < j , k < l . It is equal to the generalized minor

A

(
σn(i) σn( j)
σn(k) σn(l)

)
.

It follows from the construction of σn that (σn(i),σn( j)) ∈ W if and only if
σ−1

n σn(i)� σ−1
n σn( j) . So the inequalities i < j , k < l imply (σn(i),σn( j)),(σn(k),σn(l))
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∈W . Hence the minor A

(
σn(i) σn( j)
σn(k) σn(l)

)
is an element of the W –matrix A(2)

W . So the

matrix P(2) coincides (up to a permutation of coordinates) with A(2)
W . Applying Theo-

rem 9 to A(2)
W , we get that A(2)

W is nonnegative and irreducible. �
Note that Theorem 10 may not hold if W is not transitive.

10. Approximation of a 2-TJS matrix by 2-STJS matrices

Let us prove the generalization of Theorem C using Theorem 10.
Given a 2-TJS matrix A , we find two sets J ⊆ [n] and J2 ⊆ [

(n
2

)
] from Definition

2 for the matrices A and A(2) , respectively.
Given the sets J and J2 , we construct a set W (J,J2) ⊆ [n]× [n] : a pair of indices

(i, j) ∈W (J,J2) if and only if one of the following four cases occurs:

(a) i < j , i, j ∈ J or i, j ∈ Jc , and α(i, j) ∈ J2 ;

(b) i < j , i ∈ J, j ∈ Jc or j ∈ J, i ∈ Jc , and α(i, j) ∈ Jc
2 ;

(c) i > j , i, j ∈ J or i, j ∈ Jc , and α( j, i) ∈ Jc
2 ;

(d) i > j , i ∈ J, j ∈ Jc or j ∈ J, i ∈ Jc , and α( j, i) ∈ J2 .

Note that since J and J2 are not uniquely determined, the set W (J,J2) is also not
uniquely determined.

Let us prove the following statement.

THEOREM 11. Let A be a 2-TJS matrix. Let at least one of the possible W (J,J2)
be transitive. Then there exists a sequence {An} of 2-STJS matrices which converges
to A .

Proof. Since A is JS, we can apply Theorem 6:

A = DÃD−1, (5)

where Ã is a nonnegative matrix. Examine the second compound matrix A(2) . It
follows from Properties 1 and 2 of ∧2A that the matrix A(2) can be represented in the
form:

A(2) = D(2)Ã(2)(D−1)(2).

The equality (D−1)(2) = (D(2))−1 implies

A(2) = D(2)Ã(2)(D(2))−1.

Hence Ã(2) can be written as

Ã(2) = (D(2))−1A(2)D(2). (6)

Since both matrices D(2) and (D(2))−1 are diagonal and the matrix A(2) is JS, the
matrix Ã(2) is also JS. Given a JS matrix Ã(2) , we construct W , according to (4). Let
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us show that the obtained set W coincides with W (J,J2) . Applying Theorem 6 to A(2) ,
we get:

A(2) = D̂Â(2)D̂−1,

where Â(2) is a nonnegative
(n
2

)× (n2) matrix, D̂ is a diagonal matrix. The following
equality follows from (6):

Ã(2) = (D(2))−1D̂Â(2)D̂−1D(2). (7)

Write equality (7) in the following form:

Ã(2) = D̃Â(2)D̃−1,

where D̃ = (D(2))−1D̂ . Since D(2) is a diagonal matrix with diagonal elements equal
to ±1, we have (D(2))−1 = D(2) and D̃ = D(2)D̂ .

For the JS matrix Ã(2) we define the set J̃2 as in the proof of Theorem 6:

J̃2 =
{

i ∈
[(

n
2

)]
: sign(d̃ii) = −1

}
.

The equality d̃αα = d(2)
αα d̂αα for the elements of D̃ holds for all α = 1, . . . ,

(n
2

)
.

The elements d(2)
αα of the matrix D(2) are defined by the set J :

d(2)
αα :=

⎧⎨⎩−1, if for (i, j), such that α = α(i, j) we have i ∈ J, j ∈ Jc or i ∈ Jc, j ∈ J;

1, if for (i, j), such that α = α(i, j) we have i ∈ J, j ∈ J or i ∈ Jc, j ∈ Jc.

The elements d̂αα of D̂ are defined by the set J2 :

d̂αα :=

⎧⎨⎩−1, if α ∈ J2;

1, if α ∈ Jc
2.

Hence α ∈ J̃2 if and only if one of the following two cases occurs:

(a) for (i, j) such that α = α(i, j) we have i ∈ J, j ∈ J or i ∈ Jc, j ∈ Jc , and α ∈ J2 ;

(b) for (i, j) such that α = α(i, j) we have i ∈ J, j ∈ Jc or i ∈ Jc, j ∈ J , and α ∈ Jc
2 .

Now (4) shows that the set W constructed from J̃2 coincides with W (J,J2) .
Since W (J,J2) is transitive, so is W , and we apply Theorem 10 to the nonnegative

matrix Ã with a JS second compound matrix Ã(2) . We get that for some permutation
σn the matrix P = QT

σn
ÃQσn is 2-TP. Applying Theorem C, we find a sequence of 2-

STP matrices {Pn}∞
n=1 , which converges to P . We construct the sequence {An} via

the rule An = DQσnÃnQT
σn

D−1, where D is a diagonal matrix from (5). It follows from
Theorem 4 that the matrices An are 2-STJS for any n = 1,2, . . . . Finally, it is easy to
see that the sequence {An} converges to the matrix A . �
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The proof of Theorem 12 follows from Theorem 11 and from the continuity of
eigenvalues.

Note that if W (J,J2) is not transitive, then the approximation of a 2-TJS matrix
by 2-STJS matrices is not always possible, and the statement of Theorem 12 may not
hold.

11. Proofs

Proof of Theorem 13. Enumerate the eigenvalues of the operator A , repeated ac-
cording to their multiplicity, in decreasing order of their absolute values:

|λ1| � |λ2| � · · · � |λn|.
Let us examine the first case when W (J,J2) is transitive. The positivity of λ1 and
the nonnegativity of λ2 is proved analogously to the proof of Theorem 8. Applying
Corollary 2 to A , we get that ρ(A) is a simple eigenvalue of A .

Now let us examine the second case when all the possible W (J,J2) are not transi-
tive. As usual, h(A) denotes the index of imprimitivity of A . Assume that h(A) = 2q ,
where q is a positive integer. Applying Corollary 2 to A we obtain that A has a sim-
ple positive eigenvalue λ1 = ρ(A) > 0, all the eigenvalues of the operator A equal in

absolute value to ρ(A) are simple and they can be written as λ j = ρ(A)e
π( j−1)i

q ( j =
1, . . . ,2q) .

Let h(A) = 2. Then there are two eigenvalues ρ(A) > 0 and −ρ(A) on the spec-
tral circle |λ | = ρ(A) . Hence there is only one negative eigenvalue −ρ2(A) on the
spectral circle |λ | = ρ(∧2A) of the operator ∧2A . This fact contradicts Theorem 7.

Theorem 2 implies that all the eigenvalues equal in absolute value to ρ(∧2A) can

be written as λ jλm = ρ2(A)e
π( j−1)i

q e
π(m−1)i

q , where 1 � j < m � 2q . Thus there are
exactly

(2q
2

)
eigenvalues (taking into account their multiplicities) on the spectral circle

|λ | = ρ(∧2A) . The equality

ρ2(A) = ρ2(A)e
πi
q e

π(2q−1)i
q = ρ2(A)e

2πi
q e

π(2q−2)i
q = . . . = ρ2(A)e

π(q−1)i
q e

π(q+1)i
q

shows that the algebraic multiplicity of ρ(∧2A) = ρ2(A) is equal to q−1.
Applying Theorems 6 and 7 to ∧2A we obtain, that the algebraic multiplicity of

any eigenvalue λ of ∧2A with |λ |= ρ(∧2A) does not exceed the algebraic multiplicity
of ρ(∧2A) . Since all eigenvalues on |λ | = ρ(∧2A) coincide with all the 2q th roots
of (ρ(A))2q , we have 2q different eigenvalues with the greatest multiplicity q− 1.
Thus the common number of eigenvalues on |λ | = ρ(∧2A) taking into account their
multiplicities is not greater than 2q(q− 1) . We came to the contradiction because
2q(q−1) <

(2q
2

)
. �

Now let us assume the irreducibility of A(2) .

Proof of Theorem 14. Enumerate the eigenvalues of the operator A , repeated ac-
cording to their multiplicity, in decreasing order of their absolute values:

|λ1| � |λ2| � · · · � |λn|.
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Let us examine the first case when W (J,J2) is transitive. The equality h(A) = 1 follows
from Theorem 12. The positivity of λ1 and λ2 is proved analogously to the proof of
Theorem 8. Applying Corollary 2 to A and ∧2A , we get that ρ(A) and ρ(∧2A) are

simple eigenvalues of A and ∧2A respectively. Then the equality λ2 = ρ(∧2A)
ρ(A) implies

that λ2 is a simple eigenvalue of A . If h(A) = h(∧2A) = 1, then λ2 is obviously

different from the other eigenvalues. If h(∧2A) > 1, the equality λ j = ρ(∧2A)e
2π( j−1)i
h(∧2A)

ρ(A) ,

where j = 2, . . . , h(∧2A)+1 follows from Theorem 2 and Corollary 2.
Now let us examine the second case when W (J,J2) is not transitive. We prove that

h(A) = h(∧2A) = 3 by contradiction, excluding all the possible values h(A) , except for
h(A) = 3.

Applying Theorem 6, we get

A = DÃD−1,

where Ã is a nonnegative irreducible matrix, D is a diagonal matrix. Then

A(2) = D(2)Ã(2)(D(2))−1.

The above equality implies that Ã(2) is irreducible JS. Applying Theorem 9 to Ã(2) ,

we get that the matrix Ã(2)
W where W = W (J,J2) is nonnegative and irreducible.

Suppose h(A) = 1. Applying Theorem 5 to the matrix Ã , we get that the opera-
tor A has the first positive simple eigenvalue λ1 = ρ(A) > 0, with the corresponding

positive eigenvector x1 . Applying the Frobenius theorem to the matrix Ã(2)
W , which is

also nonnegative and irreducible, we get that ρ(∧2A) is a simple positive eigenvalue of
∧2A , with the corresponding positive eigenvector ϕ .

Since λ1 is different in absolute value from the other eigenvalues and since ρ(∧2A)
is simple, Theorem 2 shows that ρ(∧2A) = λ1λm for some unique value m > 1. With-
out loss of generality, we can assume that m = 2, i.e., ρ(∧2A) = λ1λ2 . Then ϕ =
x1 ∧ x2 , where x1 is the positive eigenvector corresponding to λ1 and x2 is the eigen-
vector corresponding to λ2 . Let us examine the coordinates of the vector ϕ in the
corresponding W –basis. Since W is not transitive, there exists at least one triple of
indices i, j,k ∈ [n] for which the inclusions (i, j), ( j,k) ∈W , (i,k) ∈Ws hold. In this
case the coordinates of ϕ = x1∧x2 in the corresponding W –basis satisfy the following
inequalities:

ϕα(i, j) = x1
i x

2
j − x1

jx
2
i > 0;

ϕα( j,k) = x1
j x

2
k − x1

kx
2
j > 0;

ϕα(k,i) = x1
kx

2
i − x1

i x
2
k > 0.

(Here xl
i , xl

j , xl
k are the coordinates of the vectors xl , l = 1,2.) Adding the first two

expressions multiplied by x1
k > 0 and x1

i > 0 respectively, we get:

x1
j(x

1
i x

2
k − x1

kx
2
i ) > 0;
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x1
kx

2
i − x1

i x
2
k > 0.

This system has no solutions. So the case of h(A) = 1 is excluded.
Let h(A) = 2. Then there are two eigenvalues ρ(A) > 0 and −ρ(A) on the spec-

tral circle |λ | = ρ(A) of the operator A . Hence there is only one negative eigenvalue
−ρ2(A) on the spectral circle |λ |= ρ(∧2A) of the operator ∧2A . This fact contradicts
Corollary 2.

It remains to exclude the case of h(A) > 3. Since all eigenvalues of the operator

A on the spectral circle |λ | = ρ(A) can be written in the form λ j = ρ(A)e
2π( j−1)i

h(A) ( j =
1, . . . , h(A)) , Theorem 2 implies:

λ2λh(A) = λ3λh(A)−1 = · · · = λkλh(A)−(k−2) = · · · = ρ2(A).

Hence the eigenvalue ρ(∧2A) = ρ2(A) of the operator ∧2A is not simple. This fact
also contradicts Corollary 2.

Finally prove that h(∧2A) = 3 when h(A) = 3. Indeed, in this case there are

exactly three eigenvalues λ1 = ρ(A) , λ2 = ρ(A)e
2πi
3 , λ3 = ρ(A)e

4πi
3 on the spectral

circle |λ | = ρ(A) , and there are also exactly three eigenvalues λ1λ2 = ρ2(A)e
2πi
3 ,

λ1λ3 = ρ2(A)e
4πi
3 and λ2λ3 = ρ(A)e

2πi
3 ρ(A)e

4πi
3 = ρ2(A) on the spectral circle |λ | =

ρ(∧2A) . �

COROLLARY 3. If the matrix A of a linear operator A : R
n → R

n is 2-STJS, then
the set W (J,J2) is transitive.

Let us give the examples illustrating both cases of Theorem 14.

EXAMPLE 3. Let the operator A : R
3 → R

3 be defined by the matrix

A =

⎛⎝ 8.5 0 6.1
−5.6 3.2 −7.4

6 −2.8 6.6

⎞⎠ .

This matrix is irreducible JS with J = {1, 3} .
In this case the second compound matrix is the following:

A(2) =

⎛⎝ 27.2 −28.74 −19.52
−23.8 19.5 17.08
−3.52 7.44 0.4

⎞⎠ .

The matrix A(2) is also irreducible JS with J2 = {2, 3} .
Examine the set W (J,J2) . We have
(1,2) ∈W (J,J2) , since 1 < 2, 1 ∈ J , 2 ∈ Jc , and α(1,2) = 1 ∈ Jc

2 ;
(1,3) ∈W (J,J2) , since 1 < 3, 1,3 ∈ J , and α(1,3) = 2 ∈ J2 ;
(3,2) ∈W (J,J2) , since 3 > 2, 3 ∈ J , 2 ∈ Jc , and α(2,3) = 3 ∈ J2 .
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Illustration 1. The set W (J,J2) .

Applying Lemma 6, we get that W (J,J2) defines the linear order 1 ≺ 3 ≺ 2 on
[3] . The operator A satisfies the conditions of Theorem 14, case (1). The two largest
eigenvalues of A are λ1 = ρ(A) = 15.102 and λ2 = 3.53642; all other eigenvalues
have smaller absolute values.

EXAMPLE 4. Let the operator A : R
3 → R

3 be defined by the matrix

A =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ .

This matrix is obviously nonnegative and irreducible.
In this case the second compound matrix is the following:

A(2) =

⎛⎝0 −1 0
0 0 −1
1 0 0

⎞⎠ .

The matrix A(2) is irreducible JS with J2 = {1, 3} . Examine the set W , corre-
sponding to the set of indices J2 = {1, 3} . It consists of the pairs (1,2) , (2,3) and
(3,1) (see Illustration 2).

�

�

�

�

�

�

�

�

�

Illustration 2. The set W .

The set W defines the non-transitive binary relation 1 ≺ 2, 2 ≺ 3, 3 ≺ 1 on the
set of the indices [3] . The operator A satisfies the conditions of Theorem 14, case (2).

Then λ = ρ(A) = 1, and there are exactly three eigenvalues 1, e
2πi
3 and e

4πi
3 on the

spectral circle |λ | = 1, all of which are simple and coincide with 3th roots of unity.
The proof of Theorem 15 follows from Lemma 5.

Proof of Theorem 16. Applying Theorems 6 and 7 we obtain block representation
(3) of the matrix A . We consider only those blocks A j with ρ(Aj) = ρ(A) . The
number of such blocks is equal to the algebraic multiplicity m of ρ(A) . Every square
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submatrix A j ( j = 1, . . . , m) is obviously irreducible 2-TJS. Applying Theorem 13 to
every A j , we obtain that there is an odd number k j � 1 of eigenvalues on the spectral
circle |λ |= ρ(Aj) . Each eigenvalue is simple and they coincide with the k j -th roots of
(ρ(A))k j . The equality

σp(A) =
⋃
j

σp(Aj)

completes the proof. �
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