APPROXIMATE INNER PRODUCTS ON HILBERT C^{*}-MODULES; A FIXED POINT APPROACH

M. Eshaghi Gordji and M. Ramezani

(Communicated by L. Rodman)

Abstract

We present a fixed point method to investigate the stability and superstability of inner products on Banach modules over a C^{*}-algebra. Moreover, we show that under some conditions on approximate inner product, the Banach modules over a C^{*}-algebra has a Hilbert C^{*}-module structure.

1. Introduction

The study of stability problems for functional equations is strongly related to the following question of S. M. Ulam [26] concerning the stability of group homomorphisms:

Let G_{1} be a group and let G_{2} be a metric group with the metric d. Given $\varepsilon>0$ does there exist a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$, then a homomorphism $H: G_{1} \rightarrow G_{2}$ exists with $d(h(x), H(x))<\varepsilon$ for all $x \in G_{1}$?
D. H. Hyers[12] gave the first affirmative answer to the question of Ulam, for Banach spaces. Th. M. Rassias in [24] and Z. Gajda in [10] considered the stability problem with unbounded Cauchy differences. For more details about the results concerning such problems, the reader refer to $[3,4,9,11,16,18,21]$. Subsequently, the stability theory was extended and generalized in several ways (see e.g. [13, 23, 5, 14, 19, 25]).

In 2003 Cǎdariu and Radu applied the fixed point method to the investigation of the Jensen functional equation [5]. They could present a short and a simple proof (different from the "direct method", initiated by Hyers in to the 1941) for the generalized HyersUlam stability of Jensen functional equation [5], for Cauchy functional equation [2].

Hilbert C^{*}-modules provide a natural generalization of Hilbert spaces arising when the field of scalars \mathbb{C} is replaced by an arbitrary C^{*}-algebra.

Definition 1.1. Suppose that M is a left A-module over the C^{*}-algebra A. An inner product is a mapping $\langle.,\rangle:. M \times M \rightarrow A$ satisfying the following conditions:
(i) $\langle x, x\rangle \geqslant 0$ for all $x \in M$ and $\langle x, x\rangle=0$ iff $x=0$;
(ii) $\langle x, y\rangle=\langle y, x\rangle^{*}$. for all $x, y \in M$;
(iii) $\langle.,$.$\rangle is A$-linear in the first variable.

The pair $(M,\langle.,\rangle$.$) is inner product space, M$ is said to be a Hilbert C^{*}-module if M is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$.

Mathematics subject classification (2010): 46L06, 39B82, 39B52.
Keywords and phrases: stability, superstability, inner product, C^{*}-algebra, Hilbert C^{*}-module.

Throughout this paper, we assume that M is a left A-module over the C^{*}-algebra $A, n_{0} \in \mathbb{N}$ is a positive integer. Suppose that $\mathbb{T}^{1}:=\{z \in \mathbb{C}:|z|=1\}$ and that $\mathbb{T}_{\frac{1}{n_{o}}}^{1}:=$ $\left\{e^{i \theta} ; 0 \leqslant \theta \leqslant \frac{2 \pi}{n_{o}}\right\}$. It is easy to see that $\mathbb{T}^{1}=\mathbb{T}_{\frac{1}{\mathrm{~T}}}^{1}$. Moreover, we suppose that A is a unital $C^{*}-$ algebra, $U:=\{a \in A:\|a\|=1\}$ and suppose that A^{+}is the set of all positive elements of A. Recall that an element a in a C^{*} - algebra A is positive if and only if there exists $b \in A$ such that $a=b^{*} b$.

In this paper, by using fixed point methods, we prove the Hyers-Ulam-Rassias stability of inner products associated with the following Jensen- type functional equation

$$
f(x, 2 z)=r f\left(\frac{x+y}{r}, z\right)+r f\left(\frac{x-y}{r}, z\right)
$$

where r is a fixed positive real number in $(1, \infty)$. For a given mapping $f: M \times M \rightarrow A$, we define

$$
D_{\mu} f(x, y, z)=r \mu f\left(\frac{x+y}{r}, z\right)+r \mu f\left(\frac{x-y}{r}, z\right)-f(\mu x, 2 z)
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$ and all $x, y \in M$. Moreover, under some conditions on f, the left A-module M has a Hilbert C^{*}-module structure. For more details about the results concerning such problems, the reader refer to works of Chmielin'ski (see for example $[1,6,7,8])$.

We recall the fundamental result in fixed point theory.

Theorem 1.2. ([20,22]) Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive function $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either

$$
d\left(T^{m} x, T^{m+1} x\right)=\infty \text { for all } m \geqslant 0
$$

or other exists a natural number m_{0} such that

- $d\left(T^{m} x, T^{m+1} x\right)<\infty$ for all $m \geqslant m_{0}$;
- the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
- y^{*} is the unique fixed point of T in $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
- $d\left(y, y^{*}\right) \leqslant \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.

2. Main results

Before proceeding to the main results, we recall the following theorem by R. V. Kadison and G. Pedersen.

THEOREM 2.1. ([15]) If the element s of a C^{*} - algebra B has the property that $\|s\|<1-2 n^{-1}$ for some integer greater than 2, then there are n unitary elements u_{1}, \cdots, u_{n} in B such that $s=n^{-1}\left(u_{1}+u_{2}+\cdots+u_{n}\right)$.

THEOREM 2.2. Let $f: M \times M \rightarrow A$ be a mapping for which there exists a function $\phi: M \times M \times M \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\left\|D_{\mu} f(x, y, z)\right\| & \leqslant \phi(x, y, 2 z), \tag{2.1}\\
\left\|f(a x, z)-\left(f(z, x) a^{*}\right)^{*}\right\| & \leqslant \phi(x, 0, z), \tag{2.2}\\
\lim _{n} 2^{-n} r^{-n} f\left(2^{n} z, r^{n} x\right) & =\lim _{n} 2^{-n} r^{-n}\left(f\left(r^{n} x, 2^{n} z\right)\right)^{*}, \tag{2.3}\\
\lim _{n} 2^{-n} r^{-n} f\left(r^{n} x, 2^{n} x\right) & =0 \Longrightarrow x=0 \tag{2.4}
\end{align*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}, x, y, z \in M$ and $a \in U$. If there exists a $L<1$ such that $\phi(x, y, z) \leqslant$ $2 r L \phi\left(\frac{x}{r}, \frac{y}{r}, \frac{z}{2}\right)$ for all $x, y, z \in M$, then there exists a unique A-bilinear mapping T : $M \times M \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-T(x, z)\| \leqslant \frac{L}{1-L} \phi(x, 0, z) \tag{2.5}
\end{equation*}
$$

for all $x, z \in M$. Moreover, if

$$
\begin{equation*}
\lim _{n} 2^{-n} r^{-n} f\left(r^{n} x, 2^{n} x\right) \in A^{+} \tag{2.6}
\end{equation*}
$$

for all $x \in M$, then (M, T) is an inner product space with inner product $\langle x, y\rangle=T(x, y)$ for all $x, y \in M$.

Proof. Put $\mu=1$ and $y=0$ in (2.1), we get

$$
\left\|2 r f\left(\frac{x}{r}, z\right)-f(x, 2 z)\right\| \leqslant \phi(x, 0,2 z)
$$

for all $x, z \in M$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2 r} f(r x, 2 z)-f(x, z)\right\| \leqslant \frac{1}{2 r} \phi(r x, 0,2 z) \leqslant L \phi(x, 0, z) \tag{2.7}
\end{equation*}
$$

for all $x, z \in M$. Consider the set $X:=\{g \mid g: M \times M \rightarrow A\}$ and introduce the generalized metric on X :

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x, z)-h(x, z)\| \leqslant C \phi(x, 0, z) \text { for all } x, z \in M\right\}
$$

It is easy to show that (X, d) is complete. Now we define mapping $J: X \rightarrow X$ by

$$
J(h)(x, z)=\frac{1}{2 r} h(r x, 2 z)
$$

for all $x, z \in M$. We have

$$
\begin{aligned}
d(g, h)<C & \Rightarrow\|g(x, z)-h(x, z)\| \leqslant C \phi(x, 0, z), \quad \forall x, z \in M \\
& \Rightarrow\left\|\frac{1}{2 r} g(r x, 2 z)-\frac{1}{2 r} h(r x, 2 z)\right\| \leqslant \frac{1}{2 r} C \phi(r x, 0,2 z) \quad \forall x, z \in M \\
& \Rightarrow d(J(g), J(h)) \leqslant L C .
\end{aligned}
$$

for all $g, h \in X$. Therefore, we see that

$$
d(J(g), J(h)) \leqslant L d(g, h)
$$

for all $g, h \in X$. It follows from (2.7) that

$$
d(f, J(f)) \leqslant L
$$

Then J has a unique fixed point in the set $X_{1}:=\{I \in X: d(f, I)<\infty\}$. Let T be the fixed point of J. We have $\lim _{n} d\left(J^{n}(f), T\right)=0$. It follows that

$$
\begin{equation*}
\lim _{n} \frac{1}{2^{n} r^{n}} f\left(r^{n} x, 2^{n} z\right)=T(x, z) \tag{2.8}
\end{equation*}
$$

for all $x, z \in M$. On the other hand, we have $d(f, J(f)) \leqslant L$ and $J(T)=T$, then

$$
d(f, T) \leqslant d(f, J(f))+d(J(f), J(T)) \leqslant L+L d(f, T)
$$

So

$$
d(f, T) \leqslant \frac{L}{1-L}
$$

This implies the inequality (2.5). By inequality $\phi(x, y, z) \leqslant 2 r L \phi\left(\frac{x}{r}, \frac{y}{r}, \frac{z}{2}\right)$, we have

$$
\begin{equation*}
\lim _{j} 2^{-j} r^{-n} \phi\left(r^{j} x, r^{j} y, 2^{j} z\right)=0 \tag{2.9}
\end{equation*}
$$

for all $x, y, z \in M$. It follows from (2.1), (2.8) and (2.9) that

$$
\begin{aligned}
& \left\|r T\left(\frac{x+y}{r}, z\right)+r T\left(\frac{x-y}{r}, z\right)-T(x, 2 z)\right\| \\
& \quad=\lim _{n} \frac{1}{2^{n}} r^{-n}\left\|r f\left(\frac{r^{n} x+r^{n} y}{r}, 2^{n} z\right)+r f\left(\frac{r^{n} x-r^{n} y}{r}, 2^{n} z\right)-f\left(r^{n} x, 2^{n+1} z\right)\right\| \\
& \quad \leqslant \lim _{n} \frac{1}{2^{n} r^{n}} \phi\left(2^{r} x, 2^{r} y, 2^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in M$. So

$$
r T\left(\frac{x+y}{r}, z\right)+r T\left(\frac{x-y}{r}, z\right)=T(x, 2 z)
$$

for all $x, y, z \in M$. This shows that

$$
\begin{equation*}
T\left(\frac{r(x+y)}{2}, 2 z\right)=r T(x, z)+r T(y, z) \tag{2.10}
\end{equation*}
$$

for all $x, y, z \in M$. By putting $a=1$ in (2.2), we get

$$
\left\|f(x, z)-(f(z, x))^{*}\right\| \leqslant \phi(x, 0, z)
$$

for all $x, z \in M$. Hence

$$
\left\|\frac{f\left(r^{n} x, 2^{n} z\right)}{2^{n} r^{n}}-\left(\frac{f\left(2^{n} z, r^{n} x\right)}{2^{n} r^{n}}\right)^{*}\right\| \leqslant \frac{\phi\left(r^{n} x, 0,2^{n} z\right)}{2^{n} r^{n}}
$$

for all $x, z \in M$. This implies that

$$
\begin{equation*}
T(x, z)=(T(z, x))^{*} \tag{2.11}
\end{equation*}
$$

for all $x, z \in M$. It is easy to see that $T(0,0)=0$ and $T(x, 0)=0$ for all $x \in M$. Also

$$
r T\left(\frac{2 x}{r}, z\right)=T(x, 2 z)
$$

for all $x, z \in M$. It follows from $T(x, 0)=0$ and (2.11) that $T(0, x)=0$ for all $x \in M$. By putting $y:=x$ in (2.1), we have

$$
\left\|r \mu f\left(\frac{2 x}{r}, z\right)+r \mu f(0, z)-f(\mu x, 2 z)\right\| \leqslant \phi(x, x, 2 z)
$$

for all $x, z \in M$ and all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$. So

$$
\begin{aligned}
& \left\|r \mu T\left(\frac{2 x}{r}, z\right)-T(\mu x, 2 z)\right\| \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}}\left\|r \mu f\left(r^{n} \frac{2 x}{r}, 2^{n} z\right)+r \mu f\left(0,2^{n} z\right)-f\left(r^{n} \mu x, 2^{n+1} z\right)\right\| \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}} \phi\left(r^{n} x, r^{n} x, 2^{n+1} z\right)=0
\end{aligned}
$$

for all $x, z \in M$ and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$. Hence

$$
\begin{equation*}
T(\mu x, 2 z)=r \mu T\left(\frac{2 x}{r}, z\right) \tag{2.12}
\end{equation*}
$$

for all $x, z \in M$ and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$. Hence, we get

$$
\begin{aligned}
\|T(\mu x, 2 z)-\mu T(x, 2 z)\| & =\left\|r \mu T\left(\frac{2 x}{r}, z\right)-\mu T(x, 2 z)\right\| \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}}\left\|r f\left(r^{n} \frac{2 x}{r}, 2^{n} z\right)+r f\left(0,2^{n} z\right)-f\left(r^{n} x, 2^{n+1} z\right)\right\| \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}} \phi\left(r^{n} x, r^{n} x, 2^{n+1} z\right)=0
\end{aligned}
$$

for all $x, z \in M$ and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$. Hence, $T(\mu x, 2 z)=\mu T(x, 2 z)$ for all $x, z \in M$ and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$. If λ belongs to \mathbb{T}^{1}, then there exists $\theta \in[0,2 \pi]$ such that $\lambda=e^{i \theta}$. We set $\lambda_{1}=e^{\frac{i \theta}{n_{o}}}$, thus λ_{1} belongs to $\mathbb{T}_{\frac{1}{n_{o}}}^{1}$. By using (2.12), we have

$$
T(\lambda x, 2 z)=T\left(\lambda_{1}^{n_{0}} x, 2 z\right)=\lambda_{1}^{n_{0}} T(x, 2 z)
$$

for all $x, z \in M$. If λ belongs to $n \mathbb{T}^{1}=\left\{n z ; z \in \mathbb{T}^{1}\right\}$, then for some $n \in \mathbb{N}, \lambda=n \lambda_{1}$ such that $\lambda_{1} \in \mathbb{T}^{1}$, by (2.10) we have

$$
\begin{aligned}
T(\lambda x, 2 z) & =T\left(n \lambda_{1} x, 2 z\right)=T\left(\lambda_{1}(n x), 2 z\right) \\
& =\lambda_{1} T(n x, 2 z) \\
& =\lambda_{1} T\left(\frac{r}{2}\left(\frac{2}{r} x+\frac{2}{r}(n-1) x\right), 2 z\right) \\
& =\lambda_{1}\left[r T\left(\frac{2}{r} x, z\right)+r T\left(\frac{2}{r}(n-1) x, z\right)\right] \\
& =\lambda_{1}[T(x, 2 z)+T((n-1) x, 2 z] \\
& =\lambda_{1}\left[T(x, 2 z)+r T\left(\frac{2}{r} x, z\right)+r T\left(\frac{2}{r}(n-2) x, z\right)\right] \\
& =\lambda_{1}[T(x, 2 z)+(T(x, 2 z)+T((n-2) x, 2 z)] \\
& \vdots \\
& =n \lambda_{1} T(x, 2 z)=\lambda T(x, 2 z)
\end{aligned}
$$

for all $x, z \in M$. Let $t \in(0, \infty)$ then by archimedean property of \mathbb{C}, there exists a positive real number n such that the point $(t, 0)$ lies in the interior of circle with center at origin and radius n. Putting $t_{1}:=t+\sqrt{n^{2}-t^{2}} i, t_{2}:=t-\sqrt{n^{2}-t^{2}} i$. Then we have $t=\frac{t_{1}+t_{2}}{2}$ and $t_{1}, t_{2} \in n \mathbb{T}^{1}$. It follows from (2.10) that

$$
\begin{aligned}
T(t x, 2 z) & =T\left(\frac{t_{1}+t_{2}}{2} x, 2 z\right)=T\left(t_{1} \frac{x}{2}+t_{2} \frac{x}{2}, 2 z\right) \\
& =T\left(\frac{r}{2}\left(t_{1} \frac{2}{r} \frac{x}{2}+t_{2} \frac{2}{r} \frac{x}{2}\right), 2 z\right) \\
& =r T\left(t_{1} \frac{x}{r}, z\right)+r T\left(t_{2} \frac{x}{r}, z\right) \\
& =t_{1} r T\left(\frac{x}{r}, z\right)+t_{2} r T\left(\frac{x}{r}, z\right) \\
& =\frac{t_{1}+t_{2}}{2} 2 r T\left(\frac{x}{r}, z\right) \\
& =t T(x, 2 z)
\end{aligned}
$$

for all $x, z \in M$. On the other hand, if λ belongs to \mathbb{C} then there exists $\theta \in[0,2 \pi]$ such that $\lambda=|\lambda| e^{i \theta}$. Then

$$
\begin{equation*}
T(\lambda x, 2 z)=T\left(|\lambda| e^{i \theta} x, 2 z\right)=|\lambda| T\left(e^{i \theta} x, 2 z\right)=|\lambda| e^{i \theta} T(x, 2 z)=\lambda T(x, 2 z) \tag{2.13}
\end{equation*}
$$

for all $x, z \in M$. Hence $T: M \times M \rightarrow A$ is homogeneous in the first variable. It follows from (2.10), (2.11) and (2.13) that

$$
\begin{aligned}
T(x+y, z) & =T\left(\frac{r}{2}\left(\frac{2}{r} x+\frac{2}{r} y\right), z\right)=r T\left(\frac{2}{r} x, \frac{z}{2}\right)+r T\left(\frac{2}{r} y, \frac{z}{2}\right) \\
& =2 T\left(x, \frac{z}{2}\right)+2 T\left(y, \frac{z}{2}\right) \\
& =2\left(T\left(\frac{z}{2}, x\right)\right)^{*}+2\left(T\left(\frac{z}{2}, y\right)\right)^{*} \\
& =(T(z, x))^{*}+\left(T(z, y)^{*}\right. \\
& =T(x, z)+T(y, z)
\end{aligned}
$$

for all $x, y, z \in M$. This implies that T is additive in the first variable. It follows from (2.2) that

$$
\begin{gathered}
\frac{1}{2^{n} r^{n}}\left\|f\left(r^{n} a x, 2^{n} z\right)-\left(f\left(2^{n} z, r^{n} x\right) a^{*}\right)^{*}\right\| \\
\leqslant \lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}} \phi\left(r^{n} a x, 0,2^{n} z\right)=0
\end{gathered}
$$

for all $x, z \in M$ and $a \in U$. Hence, by (2.11) and (2.3)

$$
\begin{equation*}
T(a x, z)=\left(T(x, z)^{*} a^{*}\right)^{*}=a T(x, z) \tag{2.14}
\end{equation*}
$$

for all $x, z \in M$ and $a \in U$. Now, let $a \in A(a \neq 0)$ and M an integer greater than $4\|a\|$. Then $\left\|\frac{a}{m}\right\|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By Theorem (2.1), there exists three elements $a_{1}, a_{2}, a_{3} \in U$ such that $3 \frac{a}{m}=a_{1}+a_{2}+a_{3}$. So by (2.14), we have

$$
\begin{aligned}
T(a x, z) & =T\left(\frac{M}{3} \cdot 3 \frac{a}{M} x, z\right)=\frac{M}{3} T\left(3 \frac{a}{M} x, z\right)=\frac{M}{3} T\left(\left(a_{1}+a_{2}+a_{3}\right) x, z\right) \\
& =\frac{M}{3}\left[T\left(a_{1} x, z\right)+T\left(a_{2} x, z\right)+T\left(a_{3} x, z\right)\right] \\
& =\frac{M}{3}\left(a_{1}+a_{2}+a_{3}\right) T(x, z) \\
& =a T(x, z)
\end{aligned}
$$

for all $x, z \in M$. On the other hand by (2.4)

$$
T(x, x)=0 \Leftrightarrow x=0
$$

for all $x \in M$ and by (2.6), $T(x, x) \in A^{+}$for all $x \in M$. Thus $T: M \times M \rightarrow A$ is an inner product satisfying (2.8), and (M, T) is Hilbert C^{*}-module. To prove the uniqueness property of T, let $T^{\prime}: M \times M \rightarrow A$ be an other inner product satisfies (2.8), then we have

$$
\begin{aligned}
\left\|T(x, z)-T^{\prime}(x, z)\right\| & =\lim _{n \rightarrow \infty}\left\|\frac{f\left(r^{n} x, 2^{n} z\right)}{2^{n} r^{n}}-\frac{T^{\prime}\left(r^{n} x, 2^{n} z\right)}{2^{n} r^{n}}\right\| \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{2^{n} r^{n}}\left(\frac{L}{1-L}\right) \phi\left(r^{n} x, 0,2^{n} z\right)=0
\end{aligned}
$$

for all $x, z \in M$. This means that $T=T^{\prime}$.
We continue to suppose that M is a Banach left A-module.
Corollary 2.3. Let $p \in(0,1)$ and $\theta \in[0, \infty)$ be real numbers. Let $f: M \times$ $M \rightarrow A$ be a mapping satisfying

$$
\begin{aligned}
\left\|D_{\mu} f(x, y, z)\right\| & \leqslant \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{p} \\
\left\|f(a x, z)-\left(f(z, x) a^{*}\right)^{*}\right\| & \leqslant \theta\|x\|^{p}\|z\|^{p} \\
\lim _{n} 2^{-n} r^{-n} f\left(2^{n} z, r^{n} x\right) & =\lim _{n} 2^{-n} r^{-n}\left(f\left(r^{n} x, 2^{n} z\right)\right)^{*} \\
\lim _{m} 2^{-m} r^{-m} f\left(r^{m} x, 2^{m} x\right) & =0 \Longrightarrow x=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$, all $x, y, z \in M$ and all $a \in U$. Then there exists a unique A-bilinear mapping $T: M \times M \rightarrow A$ such that

$$
\|f(x, z)-T(x, z)\| \leqslant \frac{\theta}{2^{(1-p)} r^{(1-p)}-1}\left(\|x\|^{p}\|z\|^{p}\right)
$$

for all $x, z \in M$. Moreover, if

$$
\lim _{m} 2^{-m} r^{-m} f\left(r^{m} x, 2^{m} x\right) \in A^{+}
$$

for all $x \in M$, then (M, T) is an inner product space with inner product T.
Proof. It follows from Theorem 2.2 by putting $\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{p}$ for all $x, y, z \in M$, and $L=2^{p-1} r^{p-1}$.

We have the following superstability of inner products on Banach A-modules.
Corollary 2.4. Let $p \in\left(0, \frac{1}{2}\right)$ and $\theta \in[0, \infty)$ be real numbers. Let $f: M \times$ $M \rightarrow A$ be a mapping satisfying

$$
\begin{aligned}
\left\|D_{\mu} f(x, y, z)\right\| & \leqslant \theta\left(\|x\|^{p}\|y\|^{p}\|z\|^{p}\right), \\
f(a x, z) & =a(f(z, x))^{*} \\
\lim _{m} 2^{-m} r^{-m} f\left(r^{m} x, 2^{m} x\right) & =0 \Longrightarrow x=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$, all $x, y, z \in M$ and all $a \in U$. Moreover, if

$$
\lim _{m} 2^{-m} r^{-m} f\left(r^{m} x, 2^{m} x\right) \in A^{+}
$$

for all $x \in M$, then f is an inner product on M.

Proof. It follows from Theorem 2.2 by putting $\phi(x, y, z):=\theta\left(\|x\|^{p}\|y\|^{p}\|z\|^{p}\right)$ for all $x, y, z \in M$, and $L=2^{(p-1)} r^{(2 p-1)}$.

Acknowledgement

The authors would like to thank the referees for their valuable suggestions.

REFERENCES

[1] R. BADORA, J. Chmielin'ski, Decomposition of mappings approximately inner product preserving, Nonlinear Anal. 62, 6 (2005), 1015-1023.
[2] L. CĂDARIU, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte 346 (2004), 43-52.
[3] L. CĂDariu, V. Radu, The fixed point method to stability properties of a functional equation of Jensen type, An. Ştiin. Univ. Al. I. Cuza Iaşi, Ser. Nouă Mat. 54, 2 (2008), 307-318.
[4] L. CĂDARIU, V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics 23 (2007), 63-72.
[5] L. CĂDARIU, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), Article ID 4.
[6] J. Chmielin'ski, Almost approximately inner product preserving mappings, Aequationes Math. 59, 3 (2000), 214-221.
[7] J. Chmielin'ski, R. Ger, On mappings preserving inner product modulo an ideal, Arch. Math. (Basel) 73, 3 (1999), 186-192.
[8] J. Chmielin'ski, D. Ilišević, M. S. Moslehian, Gh. Sadeghi, Perturbation of the Wigner equation in inner product C^{*}-modules, J. Math. Phys. 49, 3 (2008), 033519, 8 pp.
[9] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, LAP LAMBERT Academic Publishing, 2010.
[10] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[11] P. GǍVRUTA And L. GǍVRUTA, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1, 2 (2010), 11-18.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[13] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[14] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[15] R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57, 2 (1985), 249-266.
[16] Pl. Kannappan, Functional equations and inequalities with applications, Springer Monographs in Mathematics, Springer, New York, 2009.
[17] G. G. Kasparov, Hilbert C^{*}-modules: Theorems of Stinespring and Voiculescu, Journal of Operator Theory 4 (1980), 133-150.
[18] H. Khodaei, Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1, 1 (2010), 22-41.
[19] Y.-H. Lee, K.-W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensens equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[20] B. Margolis, J. B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
[21] C. PARK, Isomorphisms between unital C*-algebras, J. Math. Anal. Appl. 307 (2005), 753-762.
[22] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4, 1 (2003), 91-96.
[23] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae 62 (2000), 23-130.
[24] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[25] T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl. 250 (2000), 579-588.
[26] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.
(Received March 2, 2011)

M. Eshaghi Gordji
Department of Mathematics Semnan University
P. O. Box 35195-363, Semnan

e-mail: madjid.eshaghi@gmail.com
M. Ramezani
Department of Mathematics
Semnan University P. O. Box 35195-363, Semnan
Iran
e-mail: mar.ram.math@gmail.com

