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ERROR REPRESENTATION FORMULA FOR EIGENVALUE

APPROXIMATIONS FOR POSITIVE DEFINITE OPERATORS

LUKA GRUBIŠIĆ AND IVICA NAKIĆ

(Communicated by B. Jacob)

Abstract. The main contribution of this paper is an error representation formula for eigenvalue
approximations for positive definite operators defined as quadratic forms. The formula gives
an operator theoretic framework for treating discrete eigenvalue approximation/estimation prob-
lems for unbounded positive definite operators independent of the multiplicity. Furthermore,
by the use of the error representation formula, we give computable lower and upper estimates
for discrete eigenvalues of such operators. The estimates could be seen as being of the Kato–
Temple type. Our estimates can be applied to the Rayleigh–Ritz approximation on the test sub-
space which is a subset of the corresponding form domain of the operator. We present several
completely soluble prototype examples for an application of the presented theory and argue the
optimality of our approach in this context.

1. Introduction

The purpose of this paper is to establish estimates for discrete eigenvalues of pos-
itive definite operators in a Hilbert space which have the following three properties:

• they are of relative type, which means that the estimates are scaled with respect
to the magnitude of the approximated eigenvalues,

• the test subspace from which we are approximating the eigenvalues need not be
a subset of the domain of the operator; it is sufficient that it is a subset of the
domain of the corresponding form of the operator,

• the estimates take into account the multiplicity of the eigenvalues.

The main contribution of the paper is the new eigenvalue error representation for-
mula which is given as an operator identity to facilitate the treatment of eigenvalue
multiplicity, cf. Theorem 6.
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To illustrate the power of the new error representation formula we will show how
they can be used to obtain tight asymptotical estimates for the eigenvalues of two classes
of spectral problems.

Our approach uses the theory of quadratic forms from [18, Chapters VI–VIII] and
an adaptation of the matrix relative perturbation theory. As a result we establish the
same high performance residual type estimates from [9] in our more general setting,
cf. [5] for most recent matrix results. For a review of the matrix relative perturbation
theory see [23] and the references therein.

We emphasize that we are interested solely in residual based eigenvalue estimation
techniques for unbounded positive definite operators which are defined by quadratic
forms. On the other hand, there have been several recent studies of similar estimates in
other contexts. Most notable are reference [3] and recent surveys [25, 26] which contain
a large list of references. Such methods are frequently proved for bounded operators,
and then applied to unbounded operators by a suitable regularization.

The rest of the present paper is organized as follows. In Section 2 we give basic
definitions of the objects of study together with some useful properties, and give a
precise formulation of the problem. In Section 3 we prove the main result, and in
Section 4 we compare our approach with other estimation techniques. In Section 5
we apply our result to three problems: spectral convergence in the large coupling limit
for an analytically solvable 1D model, finite element computations for an analytically
solvable 1D model and spectral convergence in the large coupling limit for a model
problem in higher dimensions.

2. Formulation of the problem

Let h be a closed, symmetric and positive form in a Hilbert space H which has
a dense domain Dom(h) . Here by positive form we mean that there exists γ > 0 such
that h(ψ ,ψ) > γ‖ψ‖ for all ψ ∈ H \ {0} .

We know by the Kato’s second representation thorem [18] that such form defines
in H the self–adjoint postitive definite operator H which has the following properties:
Dom(H1/2) = Dom(h) and h(φ ,ψ) = (H1/2φ ,H1/2ψ) for all φ ,ψ ∈ Dom(h) .

Let P be an orthogonal projector such that dimRan(P)= m and Ran(P)⊂Dom(h)
We will call Ran(P) a test subspace of dimension m . The operator M defined by the
form h(P·,P·) in Ran(P) will be called (generalized) Rayleigh quotient. Its eigenval-
ues μ1 � . . . � μm will be called the Ritz values from the test subspace Ran(P) and
the vectors ui ∈ Ran(P) such that Mui = μiui , ‖ui‖ = 1 will be called the Ritz vectors.
Since h is positive it follows μ1 > 0.

Let P = I−P . We define the operator W : Ran(P) → Ran(P) as the one defined
by the form h(P·,P·) on Ran(P) .

We will need the following result to compare the eigenvalues of H and W .

LEMMA 1. (Stenger’s inequality, [34]) 1 Let us assume that the lower parts of the
spectra of H and W consist of isolated eigenvalues λ1 � λ2 � . . . and λ ′

1 � λ ′
2 � . . .

1The use of Stenger’s inequality has been suggested to the authors by an anonymous referee. The authors
are thankful for this suggestion.
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each having finite multiplicity. Then we have

λ1 + λi+ j � μi + λ ′
j. (1)

We now construct the positive form h̃(φ ,ψ) := h(Pφ ,Pψ)+ h(Pφ ,Pψ) , φ ,ψ ∈
Dom(h) . This form — called the (P,P)-diagonal part of h — defines the positive
definite self-adjoint operator H̃ .

We define the operator K : Ran(P) → Ran(P) as the unique operator which satis-
fies

(ψ ,Kφ) = h(H̃−1/2ψ ,H̃−1/2φ), for all ψ ∈ Dom(h)∩Ran(P),φ ∈ Ran(P).

We call K the scaled residual.
We also define the form r̃(φ ,ψ) = h(Pφ ,Pψ) + h(Pφ ,Pψ) , φ ,ψ ∈ Dom(h) ,

which is an approximation defect in Ran(P) , since Ran(P) is an invariant subspace
of H if and only if r̃ ≡ 0. For a proof see [15]. Furthermore, it was shown in [13] that

P1. Ran(P) reduces H̃

P2. M = PH̃P

P3. Ran(H−1− H̃−1) is finite dimensional which implies Specess(H) = Specess(H̃) .

Here Spec denotes the spectrum and Specess denotes the essential spectrum.
The properties P1, P2 and P3 imply that μi ∈ Spec(H̃) . We set the scene for

an application of the relative perturbation theory from [18, Chapters VI–VIII] and so
we will be able, regardless of the fact that Dom(H) 	= Dom(H̃) , to interpret H as a
perturbation of H̃ and thus bring μi ’s in connection with some component of Spec(H) .

Let us now look into the structure of this construction in more detail. According to
[13, Theorem 4.5] the form s̃(·, ·) := r̃(H̃−1/2·,H̃−1/2·) defines the bounded operator
S̃ and dimRan(S̃) < ∞ . The standard perturbation result from [18] implies that the
estimates

ωi(1−‖S̃‖) � λi � ωi(1+‖S̃‖)
hold for all discrete eigenvalues ω1 � · · · � ωq � · · · < λess(H) = λess(H̃) of H̃ . Here
λess(H) denotes the infinum of the essential spectrum of the operator H . The property
P1 implies that some ωi — together with multiplicities — are identical with the Ritz
values μ1 � · · · � μm . This results yields a computable estimates of a collection of
eigenvalues of joint multiplicity m . To turn this into a practical estimate we need to
localize this subset in Spec(H) , e.g. if we assume that m and P are such that ‖S̃‖ <
1
2

λm+1−λm
λm+1+λm

holds then

|λi− μi|
μi

� ‖S̃‖, i = 1, · · · ,m . (2)

As is given our definition of S̃ is not constructive. The properties of the operator S̃
have been analyzed in detail in [13] and we point an interested reader there for further
discussion. We collect the relevant properties for this paper in the following lemma.
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LEMMA 2. Define

ηi :=
[

max
S⊂Ran(P),

dim(S )=m−i+1

min
{(ψ ,H−1ψ)− (ψ ,H̃−1ψ)

(ψ ,H−1ψ)

∣∣ ψ ∈ S ,‖ψ‖ = 1
}]1/2

, (3)

i = 1, · · · ,m. Then ηi < 1 , i = 1, · · · ,m and there exists r � m such that ηr+1, . . . , ηm

are all the nonzero singular values of S̃ . Furthermore, ηr+1, . . . , ηm are all non-zero
singular values of the scaled residual K .

At this point we note that for every ψ ∈ Ran(P) we have the following identity

(ψ ,H−1ψ)− (ψ ,H̃−1ψ) = ‖HM−1ψ −ψ‖2
H−1 = ‖H−1ψ −M−1ψ‖2

H . (4)

Here ‖ · ‖H = ‖H1/2 · ‖ and ‖ · ‖H−1 = ‖H−1/2 · ‖ .

Assume that the eigenvalues of H which are below the infimum of its essential
spectrum λess(H) are ordered according to multiplicity and that for some q,m ∈ N we
have

λ1 � · · · � λq−1 < λq = λq+m−1 < λq+m � · · · < λess(H) .

The singular values of the operator I−λqM−1 are the relative errors |λq−μi|
μi

, i =
1, . . . ,m for the Ritz values μi . Our aim is to find a lower and upper bound on I −
λqM−1 in terms of the scaled residual K . From Lemma 2 it follows that our bounds
can (and henceforth will) be written in terms of numbers ηi .

REMARK 3. The definition of ηi indicates that the problem of computing (or es-
timating) ηi requires the solution of the m×m positive definite generalized eigenvalue
problem, cf. (4). Since m is the multiplicity of the eigenvalue of interest, the compu-
tational cost of the solution of such problem is negligible. The main problem is how to
evaluate or estimate the moments (ui,H−1u j) , i, j = 1, . . . ,m without actually inverting
the operator H−1 . For some possibilities to do this see [1, Section 3.], [11, Section 5.]
or [8, Remark 8].

3. Main result

We now present the main contribution of this article, the relative eigenvalue esti-
mates in the presence of Ritz value clusters. Our technique is based on the Wilkinson’s
trick from matrix analysis, cf. [27, p. 183], which we now present in the context of
operator matrices.

THEOREM 4. (Wilkinson’s trick) Let A : H1 →H1 and X : H2 →H1 be bounded
operators and let A be self-adjoint. Assume further that B : H2 → H2 is self-adjoint

and that it has a bounded inverse and define T =
[

A X
X∗ B

]
, to be understood as operator

on H1 ⊕H2 . If dimNull(T ) = dimH1 < ∞ then

A = XB−1X∗.



ERROR REPRESENTATION FORMULA FOR EIGENVALUE APPROXIMATIONS FOR OPERATORS 797

Proof. We shall adapt the Schur-complement technique from [27, p. 183]. Since
B−1 is assumed to be bounded we can write

T =
[
I XB−1

0 I

][
A−XB−1X∗ 0

0 B

][
I 0

B−1X∗ I

]
=: L∗DL. (5)

Both of the operator matrices L and L−1 define bounded operators on H1 ⊕H2 , and
so D = L−∗TL−1 . This implies that Dom(T ) = Dom(D) and as a consequence of a
simple dimension counting we obtain that dimNull(T ) = dimNull(D) < ∞ . Since B
has a bounded inverse this can only be true if A−XB−1X∗ = 0. �

REMARK 5. Note that the theorem remains valid if we only assume that B is
injective and B−1X∗ is bounded. In this case we conclude that A = X(B−1X∗) . In the
case when H1 is infinite dimensional the dimension counting cannot be used to prove
the result. Some spectral properties of Schur complements in a general situation can be
found in [22].

THEOREM 6. (Representation formula for the relative error in λq ) If there exists
q ∈ N such that λq−1 < λq = λq+m−1 < λq+m and

ηm

1−ηm
< min

{
λq+m− μm

λq+m + μm
,

μ1 −λq−1

μ1 + λq−1

}
holds, then

I−λqM
−1 = K∗(I−λqW

−1)−1K (6)

= K∗K + λqK
∗W−1/2(I−λqW

−1)−1W−1/2K. (7)

Proof. A modification of [13, Theorems 5.1 and 5.2] implies that the form

h(H̃−1/2·,H̃−1/2·)−λq(H̃−1/2·,H−1/2·)

defines the bounded operator I + S̃−λqH̃−1 , which allows the operator matrix repre-
sentation

I + S̃−λqH̃
−1 =

[
I−λqM−1 K∗

K I−λqW−1

]
, (8)

with respect to H = Ran(P)⊕Ran(P) . Now, [13, Theorem 5.1] implies that I −
λqW−1 is invertible and we may use the Wilkinson’s trick to derive the quadratic esti-
mates. Now set Brel := (I−λqW−1) . Then

I + S̃−λqH̃
−1 =
[
I K∗B−1

rel
0 I

][
(I−λqM−1)−K∗B−1

rel K 0
0 Brel

][
I 0

B−1
rel K I

]
,

and Theorem 4 yields I − λqM−1 = K∗(I − λqW−1)−1K, hence we obtained (6). By
the simple manipulation the last equation can be rewritten as

I−λqM
−1 = K∗K + λqK

∗W−1/2(I−λqW
−1)−1W−1/2K. �
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Set

δq =
(
min{|λq− μ |μ−1 : μ ∈ Spec(H̃)\ {μ1, . . . ,μm}}

)−1
,

as the measure of the relative gap in the spectrum and let ||| · ||| be any unitary invariant
norm.

COROLLARY 7. Assume the setting of Theorem 6. Then we have

||| I−λqM
−1 |||� ηmδq |||diag(η1, · · · ,ηm) ||| . (9)

Proof. From (6) and the definition of δq it immediately follows

||| I−λqM
−1 |||� δq |||K∗K ||| .

Now (9) can be obtained by the use of the relation |||K∗K |||� ‖K∗‖ |||K ||| (cf. [33]).
We also use that for the singular values ηi , i = 1, . . . ,m of K we have ||| K |||=|||
diag(η1, · · · ,ηm) |||, where diag(η1, · · · ,ηm) is the m×m diagonal matrix with ηi on
the diagonal. �

COROLLARY 8. Assume the setting of Theorem 6. If μm < λm+1 , q = 1 and the
minimum of the spectrum of W is an isolated eigenvalue of finite multiplicity. Then we
have:

|||diag(η2
1 , · · · ,η2

m) |||�||| I−λ1M
−1 |||� λm+1

λm+1− μm
|||diag(η2

1 , · · · ,η2
m) |||, (10)

m

∑
i=1

η2
i �

m

∑
i=1

μi −λi

μi
� λm+1

λm+1− μm

m

∑
i=1

η2
i . (11)

Proof. To prove the right hand side of (10) it is sufficient to prove that

|||(I−λmW−1)−1 |||� λm+1

λm+1 − μm
. (12)

To prove (12) we will use Lemma 1 with i = m , j = 1 which implies

W � (λm + λm+1− μm)I. (13)

Now we can use functional calculus and the fact that λ1 = λm � μ1 � μm (Rayleigh–
Ritz bound, see eg. [30]) to prove (12). The left hand side in (10) follows from the
fact that I−λqW−1 is positive definite which follows from (13). Analogously one can
prove — using (7) —

K∗K � I−λqM
−1 � λm+1

λm+1− μm
K∗K. (14)
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The bound (11) now readily follows by an application of the trace operator tr(·)
on (14). �

The relation (11) indicates that the size of the approximation error ∑m
i=1

μi−λi
μi

is
essentially related to the singular values of K plus a correction term. This result is a
mixture of the measure of the relative gap — which is expressed by the quantity δq —
and the measure of the approximation defects η2

i , since P is the eigenprojection of H
if and only if ηi = 0, i = 1, . . . ,m .

A lower bound for the approximation error similar to the left hand side in (11) can
be obtained even when some of the assumptions of Corollary 8 do not hold. Indeed, let
λm < λm+1 and let Ran(P) be the test space such that 2ηm < 1. Then

μ1

2μm

m

∑
i=1

η2
i �

m

∑
i=1

μi−λi

μi
. (15)

The proof follows from

m

∑
i=1

[
(ui,H

−1ui)− (ui,M
−1ui)

]
=

m

∑
i=1

[
(ui,H

−1ui)− 1
μi

]
�

m

∑
i=1

[ 1
λi

− 1
μi

]
=

m

∑
i=1

μi −λi

λiμi
(16)

and the relation — guaranteed by the assumption 2ηm < 1 —

1
2
(u,Mu) � (u,Hu) � 3

2
(u,Mu), u ∈ Ran(P).

The upper estimate in (15) can be achieved by a repeated application of the trace
operator and to the identity (6). The estimate is rather technical and we leave it out.
However, we emphasize that we can recreate the framework of [10, Proposition 2.3]
completely.

4. A comparison with other estimates

The standard form of Kato–Temple inequality (originally proved in [17]) says that
if λ is the unique eigenvalue in some interval (α,β ) of a self–adjoint operator H , then

μ − r2

β − μ
� λ � μ +

r2

μ −α
, (17)

where μ = (u,Hu) and r = ‖(H − μ)u‖ , under the assumptions μ ∈ (α,β ) , r2 �
(β − μ)(μ −α) .

For the proof we can consider — without reducing the level of generality — the
case μ = 0 and simply observe that (H −αI)(H − λ I) and (H − β I)(H − λ I) are
positive definite operators. We can then apply this positivity property for the vector u .

Temple inequality is a special case of the left hand side of (17) when λ is addi-
tionally the smallest element from the spectrum.
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In the case of clustered eigenvalues, one needs a generalization of this result and
Kato’s original paper [17] contains such a result which however is not suitable for
computational practice (but there are modifications which are developed precisely for
the purposes of practical eigenvalue bracketing, see [3], [29] and [28] for details).

Now we will show that under some additional assumptions, we can recover a form
of the standard Kato–Temple inequality for the clustered eigenvalues given in Theorem
6 and Corollaries 7 and 8.

Let us assume Ran(P) ⊂ Dom(H) then H : Dom(H) → H can be written as

H =
[
M R∗
R W

]
,

with R a bounded operator. Under these assumptions and the assumptions of Theorem
6 we can prove, again using the Wilkinson’s trick, that we have

M−λ I = R∗(W −λ I)−1R. (18)

If we assume μm < λm+1 , we can use Lemma 1 to obtain ‖(W − λ I)−1‖ � (λm+1 −
μm)−1 .

If we denote the norm of the (single) Ritz vector residuals by ri := ‖Hui− μiui‖
and apply the trace operator tr(·) on (18), we obtain

m

∑
i=1

|μi−λ | � 1
λm+1− μm

m

∑
i=1

r2
i . (19)

Estimate (19) can be regarded as a generalization of the Temple inequality. Indeed, if
we take m = 1, β = λm+1 , λ = λm , μ = μm , then the left hand side of (17) can be

written as |λ − μ | � r2

λm+1−μ .
Inequality (19) is of the same vein as the inequality in [24], in fact it is an un-

bounded variant of the result in [24].
If we apply (18) to the operator H̃−1/2HH̃−1/2 we obtain the equation (6), which

means we can formally think of (6) as a Kato–Temple inequality in the norm ‖ · ‖H̃−1 .
But we stress that, in general, (6) cannot be obtained from (18) without additional
assumptions. For an alternative way to utilize (17) to approximate the eigenvalue by
the Ritz value from the form domain of the operator see Remark 10.

5. Kato–Temple bounds in the asymptotic regime

The main contribution of this paper is the error representation formula (7). Its
main feature is that the contribution of the scaled residual K is separated from the
contribution of the relative gap operator Brel . Furthermore, unlike in the approach from
[24] — which is directly generalized in (18) — the operator Brel is both bounded and
has — unlike the operator (W − λ I)−1 a bounded inverse. This makes the formula
(7) particularly suitable for the study of asymptotic processes. So far this has been
successfully applied in the design of high performance stopping criteria for modern
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mathematical software in [10]. We apply our generalization of those techniques to
study several infinite dimensional prototype eigenvalue approximation problems.

More to the point, it is the aim of this section to demonstrate a way to use the error
representation formula (7) to prove

||| I−λqM
−1 |||=|||diag(η2

1 , · · · ,η2
m) |||+o(|||diag(η2

1 , · · · ,η2
m) |||) . (20)

This formula is to be read in the context of ηi ’s being the computable (in the sense of
Remark 3) first order correctors (as ηi → 0) for μi ’s as approximations of λq . Rather
than to present general proofs, which would require too much additional technical de-
tail for the intended scope of this article, we prove this fact for two concrete prototype
model problems. The significance of this formula is that it indicates that as ηi → 0, the
contribution of the distance to the unwanted component of the spectrum is asymptoti-
cally of higher order and the behavior of the eigenvalue approximations are effectively
controlled by the computable quantities ηi . An interested reader can look up further
technical details in [12].

5.1. Spectral convergence in the large coupling limit: analytically solvable 1D
model problem

The main feature of the matrix eigenvalue algorithms from [10] is that they are
robust when applied to extremely badly scaled input matrices. We bring this in cor-
respondence with the behavior of the spectrum of stiffly/singularly perturbed operators
from [6, 7, 32]. To be more precise let us consider a class of eigenvalue problems which
is given by the family of positive definite forms

hκ (u,v) = hb(u,v)+ κ2he(u,v), κ large. (21)

Without affecting the generality of our results, we assume that hb is positive definite
and densely defined and that Dom(he) satisfies Dom(hb) ⊂ Dom(he) . An extensive
study of non-inhibited stiff families of operators has been performed, with the help of
the results from this article, in [12, 16]. We will now consider a very simple problem
of this form. Let H1

0 [0,1] and H1
0 (R+) , R+ := [0,∞) be the standard Sobolev spaces.

We also identify the functions from H1
0 [0,1] with their extension by zero to the whole

of R+ and write H1
0 [0,1] ⊂ H1

0 (R+) . Consider the family of positive definite forms

hκ (u,v) =
∫ ∞

0
u′v′ + κ2

∫ ∞

1
uv, u,v ∈ H1

0 (R+). (22)

By Hκ we denote the positive definite operator defined by hκ in (22). The operators
Hκ converge in the generalized sense to the operator H∞ , which is defined by the form
h∞(u,v) =

∫ 1
0 u′v′ , u,v ∈ H1

0 [0,1] . Such operators are representative for those which
appear in the modeling of semiconductor nano-devices, cf. [21]. We also formally write
Hκ = −∂xx + κ2χ[1,∞〉 and H∞ = −∂xx . As a test function(s) we chose

uq(x) =

{√
2sin(qπx), 0 � x � 1

0, 1 � x
,q ∈ N. (23)
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Note that here uq ∈ Dom(hκ ) = H1
0 (R+) but uq 	∈ Dom(Hκ) . The space Dom(Hκ) is

the space of all functions ψ ∈ H2(R+) which satisfy the boundary condition ψ(0) =
0 and we have used H1

0 (R+) and H2(R+) to denote the usual Sobolev spaces with
the Hilbert space structure. The eigenvalues of the operator Hκ have to be described
implicitly, cf. [36]. Let Hκvκ = λ κvκ . Then vκ is a smooth function given by the
formula

vκ(x) =

⎧⎨⎩sin(
√

λ κx), 0 � x � 1
sin

√
λ κ

e−
√

κ2−λκ e−
√

κ2−λ κ x, 1 � x

and λ κ is a solution of the equation√
κ2−λ κ = −

√
λ κ cot(

√
λ κ). (24)

The smallest eigenvalue of Hκ is given as the smallest positive root λ κ
1 of (24), whereas

λ ∞
1 = π2 is the smallest eigenvalue of H∞ . The quotient λ ∞

1 −λ κ
1

λ ∞
1

can be represented (for

κ → ∞) by a convergent Taylor series

λ ∞
1 −λ κ

1

λ ∞
1

= 2
1
κ
−3

1
κ2 +8

(
1
2!

+
1
4!

π2
)

1
κ3 −10

(
1
2!

+
4
4!

π2
)

1
κ4 +O

(
1

κ5

)
. (25)

We directly compute

(uq,H
−1
κ uq−H−1

∞ uq) =
∫ 1

0

[∫ x

0
2

(
y(1+κ (1−x))

1+κ
−y(1−x)

)
sin(qπy)sin(qπx) dy

+
∫ 1

x
2

(
x(1+κ (1−y))

1+κ
−x(1−y)

)
sin(qπy)sin(qπx) dy

]
dx

=
2

(1+ κ)π2q2 , (26)

where we have abused the notation for the action of H−1
∞ onto the function defined on

the whole R+ . Similarly, we obtain

(uq,H
−1
κ uq) =

∫ 1

0

[∫ x

0

y (1+ κ (1− x))
1+ κ

2sin(qπ y)sin(qπ x) dy

+
∫ 1

x

x (1+ κ (1− y))
1+ κ

2 sin(qπ y)sin(qπ x) dy

]
dx

=
3+ κ

(1+ κ)π2q2 . (27)

Now, definition (3) and identities (26)–(27) yield that for the given κ and independently
of q ∈ N we have

η2
1 =

2
3+ κ

.
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We now combine η2
1 = 2

3+κ with (24) and the first order estimate from [13, Theo-

rem 4.5] to obtain
(
1−
√

2
3+κ
)
4π2 =: D(κ) � λ2(H) , κ � 5. Corollary 8 now yields

2
3+ κ

� λ ∞
1 −λ κ

1

λ ∞
1

� D(κ)
D(κ)−π2

2
3+ κ

=
8
3κ

− 8
√

2
9

1

κ3/2
+O
( 1

κ2

)
, κ � 5, (28)

which is a tight estimate on the behavior of
λ ∞

1 −λ κ
1

λ ∞
1

. Similar estimates hold for other

eigenvalues, too. This example illustrates the “efficiency” of this a posteriori estimator.
Furthermore, it indicates the role which is played by the first order estimates from [13]
in the general theory. For some further details of the computation see [12]. In our κ
dependent problem we can improve (20) and prove (cf. (25) and (28))

lim
κ→∞

λ ∞
q −λ κ

q
λ ∞

q

η2
1

= lim
κ→∞

λ ∞
q −λ κ

q
λ ∞

q

2
3+κ

= 1, q ∈ N. (29)

Furthermore, we can check that this convergence is pretty rapid.

REMARK 9. The general proof of (29) follows from the fact that ‖W−1/2
κ K‖2 =

o(η2
m) , since we have that

sup{‖W−1/2
κ ψ‖ : ψ , hb(ψ ,φ) = 0,∀φ ∈ Null(he)}→ 0 (30)

as κ → ∞ .

REMARK 10. It should be noted here that the estimate (28) can be obtained from
the standard Kato–Temple inequality (17). To do this we have to apply the standard
inequality to the operator H−1

κ in the Hκ scalar product2, and then utilize the formulae
(4) and (17).

Let us assume we want to assess the accuracy of the approximation of the eigen-

value λ κ
1 by the Ritz value λ ∞

1 = (H1/2
κ u1,H

1/2
κ u1) = π2 . In this case we have for the

vector v1 = 1
π u1 the following

(v1,H
−1
κ v1)Hκ = (H1/2

κ v1,H
1/2
κ H−1

κ v1) =
1

‖H1/2
κ u1‖2

=
1

λ ∞
1

,

r2 =
(u1,H−1

κ u1)

(H1/2
κ u1,H

1/2
κ u1)

η2
1 =

3+κ
(1+κ)π2

π2

2
3+ κ

.

Setting α = 1/D(κ) and using the inequality λ κ
1 � π2 we obtain from (17)

1
λ κ

1
� 1

λ ∞
1

+
r2

1
λ ∞

1
− 1

D(κ)

,

2The use of the Kato–Temple formula in the changed scalar product has been suggested to the authors by
an anonymous referee. Authors are thankful for this suggestion.
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and then the error estimate

λ ∞
1 −λ κ

1

λ ∞
1

� 8(
√

2−√
3+ κ)

(1+ κ)(4
√

2−3
√

3+ κ)
=

8
3κ

− 8
√

2
9

1

κ3/2
+O

(
1

κ2

)
. (31)

follows. The estimates (28) and (31) are identical in the first two terms. However, the
terms hidden in the notation O

( 1
κ2

)
differ. Since both formulae are explicitly available,

a more detailed analysis shows that (28) is sharper than (31) for κ � 5. We point out
that (29) together with the estimate

λ κ
1 � (1−η2

1 )λ ∞
1 =
(

1− 2
3+ κ

)
π2 < π2 = λ ∞

1

yields an improvement over the standard Rayleigh estimate. This indicates that (7) pro-
vides a framework for computing first order corrections — as κ → ∞ — to the Ritz
value λ ∞

1 . Examining the optimality of various approaches in the case of the multi-
ple eigenvalue λ is technically much more involved and — in the authors’ opinion —
would not bring further understanding to the main topic of this paper. If such com-
parison is to be attempted, then one approach might be to use an adaptation of the
majorization technique from [19].

5.1.1. A model problem in higher dimensions.

Schroedinger like operators in higher dimensions can also been studied using our
framework. The estimate for η2

i can in this case be computed by the use of the ad-
vanced probabilistic techniques from [7] or by the use of the boundary layer techniques
from [6] (naturally, under the assumption that the domain is finite). In this section,
we concentrate on the similar higher dimensional problems which can be treated by
algebraic techniques in higher dimensional setting, too. Let us consider the differential
operator Hκ which is defined by the expression

Hκu = ∇ · [(1+ κ2χC )∇
]
u, u ∈C∞

0 (Ω) (32)

in H1
0 (Ω) . Here we use χC to denote the characteristic function of the bounded domain

C and C∞
0 (Ω) denotes the space of infinitely differentiable functions with compact

support in the domain Ω ⊂R
d , d > 1. It is assumed that the boundary ∂C is Lipschitz

and that closure of C is subset of Ω .
In the quadratic form formulation we have — assuming O = Ω\C —

hκ(u,v) =
∫

Ω
∇u ·∇v+ κ2

∫
Ω

χC ∇u ·∇v, u,v ∈ H1
0 (Ω)

h∞(u,v) =
∫

O
∇u ·∇v, u,v ∈ H1

0 (O) .

Let Hκ and H∞ be the self-adjoint operators which are defined by these expressions
in the appropriate Hilbert spaces in the sense of Kato’s second representation theorem.
The standard monotone convergence theory of [35] implies that Hκ converges to H∞ in
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the generalized strong resolvent sense and that the corresponding spectral projections
converge in norm. See also [2, 4, 6, 7, 16, 32] for further references.

Let λ κ
1 � · · ·� λ κ

i � · · · be the eigenvalues of Hκ and let λ ∞
1 � · · · � λ ∞

i � · · · be
the eigenvalues of H∞ . We assume that we are counting the eigenvalues by multiplicity.
Under the assumption that ∂C is Lipschitz we can apply the theory from [20, Section
2 and 3] to estimate the speed of the convergence of the resolvents. Let u∞

i , i ∈ N

be eigenvectors of H∞ which are associated to λ ∞
i and span an orthonormal basis of

H1
0 (O) . Using [20, Lemma 3.6] and [16] we can conclude

(u,H̃−1
κ v) = O

(
(u,v)

κ2

)
, u,v ⊥1 H1

0 (O)

m

∑
i=1

η2
i = O

(
1

κ2

)
, i = 1, . . . ,m,

were we use P to denote the projection onto the span of {u∞
1 , . . .u∞

m} and ⊥1 to denote
the relation of being perpendicular in the scalar product induced by the form (u,v)1 =∫

Ω ∇u ·∇v . To apply [20, Lemma 3.6] we note that — in the notation of [20, Lemma
3.6] — we have ω = 1 and c̃ = O(κ2) . We put together these two results and (11) to
obtain

m

∑
i=1

η2
i �

m

∑
i=1

λ ∞
i −λ κ

i

λ ∞
i

�
m

∑
i=1

η2
i +O

(
∑m

i=1 η2
i

κ2

)
�

m

∑
i=1

η2
i +O

(
1

κ4

)
.

The values of η2
i cannot be computed explicitly in a general higher dimensional case.

Efficient finite element algorithm for the numerical approximation of η2
i — which is

sharp enough to be used in this correction formulae — has been developed and de-
scribed in [14]. Instead of presenting practical details of that algorithm, for this report
we concentrate on the academic explicitly solvable finite element example in the next
section.

5.2. Finite element computations: analytically solvable 1D model problem

Let us consider the family of eigenvalue problems which are given in the weak
formulation by: Find all λi ∈ R and vi ∈ Dom(h) , ‖vi‖ = 1, i ∈ N such that

h(ψ ,vi) =
∫ 2π

0

(
ψ ′φ ′ −αψφ

)
= λi(ψ ,vi), ψ ∈ Dom(h), (33)

Dom(h) =
{

ψ | ψ ,ψ ′ ∈ L2(0,2π),eiθ ψ(0) = ψ(2π)
}

. (34)

The eigenvalues of the problem (33) as well as the Green function of the operator H ,
which is defined by h(·, ·) are known explicitly, see [31, 36] (also cf. [12, Section
2.7.2 pp. 57] for computational details). Let us now choose θ = π and α = 0.2499
for our numerical experiment. With this choice of parameter all eigenvalues have the
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multiplicity two and in particular it holds that λ1 = λ2 = 1
4 −α = 10−4 . For N ∈ N

define the finite element space

V 1
N =
{

ψ | ψ ∈C[0,2π ],−ψ(0) = ψ(2π),ψ is linear in Ip, p = 1, . . . ,N
}

,

where Ip :=
〈

(p−1)2π
N , p 2π

N

〉
, and use

μN
i := max

S⊂V 1
N

dimS =dimV 1
N −i

min
ψ∈S \{0}

h(ψ ,ψ)
(ψ ,ψ)

, i = 1,2

to define the Rayleigh-Ritz approximations to the eigenvalue λ1 = λ2 . Let also uN
i ∈

V 1
N , i = 1,2 be two vectors of norm one for which μN

i = h(uN
i ,uN

i ) , i = 1,2 holds.

Now, let P
N

be an orthogonal projection onto the linear span of {uN
1 ,uN

2 } . We now

apply Corollary 8 on P
N and display the results in Table 1.

N estimate (10) ||| I−λ1M−1 |||HS estimate (10)

40 7.9540e-001 7.9540e-001 7.9558e-001

60 5.1413e-001 5.1413e-001 5.1422e-001

80 3.4389e-001 3.4389e-001 3.4393e-001

100 2.4120e-001 2.4120e-001 2.4123e-001

120 1.7671e-001 1.7671e-001 1.7673e-001

Table 1: The performance of the estimates (10) on the family of test spaces Ran(PN)
and for the choice of the norm |||· |||=|||· |||HS . Here |||· |||HS denotes the Hilbert–Schmidt
norm. The computational details can be found in [12, Section 2.7.3, pp. 64].

The results from Table 1 show that η1 , η2 accurately capture the behavior of the
relative error as 1

N → 0. However, the explicit knowledge of the Green function is
most certainly an information which cannot in general be assumed when considering
higher dimensional eigenvalue problems. A possibility to use these estimates in the
context of finite element computations for higher dimensional eigenvalue problems has
been presented in [14]. To summarize, the arguments of Remark 3 indicate that it is
possible to estimate the H−1 norm of the residual cheaper than it takes to solve the
linear system (i.e. approximately solve the associated boundary value problem). This
numerical example illustrates the sharpness of this approach in case of degenerate or
clustered eigenvalues. Using the Green functions and the recursion formulae for the
Ritz vectors from [12, Section 2.7.3] we can now prove (20) — as N → ∞ — for the
sequence which is generated by P

N
. In this case this reads

lim
N→∞

√[
λ1−μN

1
μN

1

]2
+
[

λ2−μN
2

μN
2

]2
η2

1 + η2
2

= 1,
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and as can be seen from Table 1, the convergence can be rapid. Similar behavior has
been proved (and observed in experiments) in [14] for higher dimensional operators.
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