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MONOTONICITY OF GENERALIZED FURUTA TYPE FUNCTIONS

JIANGTAO YUAN AND GUOXING JI

(Communicated by R. Bhatia)

Abstract. The monotonicity of generalized Furuta type operator function Fs0 (r,s) =C
−r
2 (C

r
2 (A

t
2

BpA
t
2 )sC

−r
2 )

(p+t)s0+r
(p+t)s+r C

−r
2 is discussed via the equivalent relations between operator inequalities.

Let −1 � t < 0 , p � 1 (p+ t �= 0) , C � A � B � 0 with A > 0 . It is shown that, for each s0
such that t

p+t < s0 , the function Fs0 (r,s) is decreasing for both r � −t and s � max{1,s0} .
Moreover, some examples are given which imply that, for each s0 � 1 and r �−t , the monotone
interval [s0,∞) of s in Fs0 (r,s) is unique in the interval [− r

p+t ,∞) .

1. Introduction

Throughout this paper, an operator T means a bounded linear operator on a Hilbert
space. The classical Loewner-Heinz inequality (L-H) is stated below.

THEOREM 1.1. (Loewner-Heinz inequality (L-H), [23]) Let p ∈ [0,1] , then A �
B � 0 ensures

Ap � Bp.

In general, (L-H) is not true for p > 1 [23, page 3]. In order to overcome the
restraint p ∈ [0,1] in (L-H), Furuta developed a kind of order preserving operator in-
equality [4, Theorem 1].

THEOREM 1.2. (Furuta inequality, [4]) Let r � 0 , p > 0 . Then A � B � 0 en-
sures

(
A

r
2 ApA

r
2
)min{1,p}+r

p+r �
(
A

r
2 BpA

r
2
)min{1,p}+r

p+r .

(
B

r
2 BpB

r
2
)min{1,p}+r

p+r �
(
B

r
2 ApB

r
2
)min{1,p}+r

p+r .

Tanahashi [11] proved the optimality of the outer exponent min{1, p}+ r in The-
orem 1.2.

In [22], the complete form of Furuta inequality was introduced to establish the
order structure on Aluthge transform of nonnormal operators.
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THEOREM 1.3. (Complete form, [22]) Let δ > 0 , r � 0 , p > 0 , p > p0 > 0 and
s(δ ) = min{p,2p0 +min{δ ,r}} . Then A � 0 and B � 0 such that Aδ � Bδ ensures

(A
r
2 Bp0A

r
2 )

s(δ )+r
p0+r � (A

r
2 BpA

r
2 )

s(δ )+r
p+r .

(B
r
2 Ap0B

r
2 )

s(δ )+r
p0+r � (B

r
2 ApB

r
2 )

s(δ )+r
p+r .

We call Theorem 1.3 the complete form of Furuta inequality Theorem 1.2, because
the case p0 = δ = 1 of it implies the essential part ( p > 1) of Theorem 1.2 by (L-H)
for 1+r

s(1)+r ∈ (0,1] .

Inspired by Ando-Hiai log majorization, Uchiyama showed a kind of generalized
Furuta type inequalities.

THEOREM 1.4. ([13]) Let t ∈ [−1,0] and p � 1 . Then C � A � B � 0 with A > 0
ensures the function

F(r,s) = C
−r
2

(
C

r
2 (A

t
2 BpA

t
2 )sC

r
2
) 1+t+r

(p+t)s+r C
−r
2

is decreasing for both r � −t and s � 1 . In particular, the inequality

C1+t+r �
(
C

r
2 (A

t
2 BpA

t
2 )sC

r
2
) 1+t+r

(p+t)s+r (1.1)

holds for r � −t and s � 1 .

Furuta [5] proved the case C = A of Theorem 1.4 which interpolates the essential
part of Theorem 1.2 (as extremal case t = 0 in (1.1)) and Ando-Hiai inequality (A-H)
[1] (as extremal case t = −1 and r = s in (1.1)). See [3, 19] for alternate proofs of
Theorem 1.4.

It is known that there are many applications of Furuta type inequalities, we cite
[2], [10], [14].

This paper is to consider the generalized Furuta type function

Fs0(r,s) = C
−r
2 (C

r
2 (A

t
2 BpA

t
2 )sC

r
2 )

(p+t)s0+r
(p+t)s+r C

−r
2 .

Let −1 � t < 0, p � 1 (p+ t �= 0) , C � A � B � 0 with A > 0. It is shown in section 2
that, for each s0 such that t

p+t < s0 , the function Fs0(r,s) is decreasing for both r �−t
and s � max{1,s0} (see Theorem 2.1). In section 3, some examples (Theorem 3.1 and
Theorem 3.3) on Furuta type inequalities are given. In particular, it is proved that, for
each s0 � 1 and r � −t , the monotone interval [s0,∞) of s in Fs0(r,s) is unique in the
interval [− r

p+t ,∞) .
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2. Monotonicity of Fs0(r,s)

Denote D := (A
t
2 BpA

t
2 )

1
p+t .

THEOREM 2.1. (Main result) Let −1 � t < 0 , p � 1 (p+ t �= 0) , C � A � B � 0
with A > 0 .

(1) For each r such that r � −t and s0 such that s0 > −r
p+t , the function

Fs0(s) =
(
C

r
2 (A

t
2 BpA

t
2 )sC

r
2
) (p+t)s0+r

(p+t)s+r

is decreasing for s � max{1,s0} .

(2) For each s such that s � 1 and s0 such that s0 < s, the function

Gs0(r) = (D
(p+t)s

2 CrD
(p+t)s

2 )
(p+t)(s−s0)

(p+t)s+r

is increasing for r � max{−t,−(p+ t)s0} .

(3) For each s0 such that t
p+t < s0 , the function

Fs0(r,s) = C− r
2
(
C

r
2 D(p+t)sC

r
2
) (p+t)s0+r

(p+t)s+r C− r
2

is decreasing for both r � −t and s � max{1,s0} .

We remark that the special case s0 = 1+t
p+t of Theorem 2.1 (3) is just Uchiyama’s

result Theorem 1.4 (GF).
In order to give a proof, we prepare some results in advance.
For A � 0, A0 means the projection P(kerA)⊥ .

THEOREM 2.2. ([9]) Let r > 0 , 0 � p0 < p, A � 0 and B � 0 .

(1) If ker(AB
p0
2 ) ⊆ kerB, then for each r , p0 and p, the following inequalities are

equivalent to each other.

(
B

p
2 ArB

p
2
) p−p0

r+p �
(
B

p
2 BrB

p
2
) p−p0

r+p . (2.1)

(A
r
2 Bp0A

r
2 )

p0+r
p0+r � (A

r
2 BpA

r
2 )

p0+r
p+r . (2.2)

In particular, (2.1) implies (2.2) without the condition ker(AB
p0
2 ) ⊆ kerB.

(2) For each r , p0 and p, the following inequalities are equivalent to each other.

(
A

p
2 BrA

p
2
) p−p0

r+p �
(
A

p
2 ArA

p
2
) p−p0

r+p . (2.3)

(B
r
2 Ap0B

r
2 )

p0+r
p0+r � (B

r
2 ApB

r
2 )

p0+r
p+r . (2.4)
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The case p0 = 0 of Theorem 2.2 is an extension of [8, Theorem 1], and (2.2)
ensures (2.1) is not true without the condition ker(AB

p0
2 ) ⊆ kerB [9, Remark 1].

THEOREM 2.3. ([18]) Let r > 0 , 0 < p0 < p, A � 0 and B � 0 .

(1) If ker(AB
p0
2 ) ⊆ kerB, then for each r , p0 and p, the following inequalities are

equivalent to each other.

(
B

p0
2 ArB

p0
2
) p−p0

r+p0 �
(
B

p0
2 BrB

p0
2
) p−p0

r+p0 . (2.5)

(A
r
2 Bp0A

r
2 )

p+r
p0+r � (A

r
2 BpA

r
2 )

p+r
p+r . (2.6)

In particular, (2.5) implies (2.6) without the condition ker(AB
p0
2 ) ⊆ kerB.

(2) If ker(BA
p0
2 ) ⊆ kerA, then for each r , p0 and p, the following inequalities are

equivalent to each other.

(
A

p0
2 BrA

p0
2
) p−p0

r+p0 �
(
A

p0
2 ArA

p0
2
) p−p0

r+p0 . (2.7)

(B
r
2 Ap0B

r
2 )

p+r
p0+r � (B

r
2 ApB

r
2 )

p+r
p+r . (2.8)

In particular, (2.7) implies (2.8) without the condition ker(BA
p0
2 ) ⊆ kerA.

Theorem 2.3 can be regarded as a parallel result to Theorem 2.2, and (2.6) ensures
(2.5) is not true without the condition ker(AB

p0
2 ) ⊆ kerB [18].

THEOREM 2.4. ([17]) Let α > 0 , β0 > 0 , A � 0 , B � 0 . For δ such that −β0 <
δ � α , if

(B
β0
2 AαB

β0
2 )

δ+β0
α+β0 � (resp. �)Bδ+β0 , (2.9)

then

(B
β
2 AαB

β
2 )

δ+β
α+β � (resp. �)Bδ+β (2.10)

where β � β0 . Moreover, for each δ ′ > −α , the function

f (β ) = (A
α
2 Bβ A

α
2 )

δ ′+α
β+α

is decreasing (resp. increasing) for β � max{β0,δ ′} .

The case δ = 0 of Theorem 2.4 is just Yanagida [16, Proposition 4].
It should be pointed out that, if δ = 0 and 0 < β < β0 , the assertion that (2.9)

ensures (2.10) is not true [21, Theorem 2.8].
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LEMMA 2.5. Let −1 � t < 0 , p � 1 (p + t �= 0) and s � 1 . Then A > 0 and
C � A � B � 0 ensures the function

f (s) =
(
C− t

2 (A
t
2 BpA

t
2 )sC− t

2
) 1

(p+t)s−t

is decreasing for s � 1 . In particular,

C �
(
C− t

2 (A
t
2 BpA

t
2 )sC− t

2
) 1

(p+t)s−t (2.11)

Lemma 2.5 is the steps (I)-(II) in [19, Proof of Theorem 1.2].

LEMMA 2.6. Let r > 0 , A � 0 and B � 0 . Then the following assertion (1)
implies (2).

(1) There exists an increasing function d(t) : (0,∞) → (0,∞) such that, for each
t0 > 0 , if t0 < t � t0 +d(t0) then

(A
r
2 Bt0A

r
2 )

t+r
t0+r � (resp. �)(A

r
2 BtA

r
2 )

t+r
t+r .

(2) There exists an increasing function d(p) : (0,∞) → (0,∞) such that, for each
p0 > 0 , if p0 < p then

(A
r
2 Bp0A

r
2 )

min{p,p0+d(p0)}+r
p0+r � (resp. �)(A

r
2 BpA

r
2 )

min{p,p0+d(p0)}+r
p+r .

Lemma 2.6 is an improvement of Step 2 in [22, Proof of Theorem 1.3].

Proof. It is sufficient to prove the case � for the case � can be proved in a similar
manner. We need to show that the function d in (1) satisfies the conditions of (2).

For each p0 > 0 and p0 < p , if p � p0 + d(p0) , then (2) follows by (1) im-
mediately. Suppose pn < p � pn+1 = pn + d(pn) for some positive integer n and
p1 = p0 +d(p0) . By (1), for k = 0,1, · · · ,n−1, we have

(A
r
2 BpkA

r
2 )

pk+1+r
pk+r �(A

r
2 Bpk+1A

r
2 )

pk+1+r
pk+1+r ,

(A
r
2 BpnA

r
2 )

p+r
pn+r �(A

r
2 BpA

r
2 )

p+r
p+r .

Noting that p1+r
pk+1+r ∈ [0,1] and p1+r

p+r ∈ [0,1] , these together with (L-H) deduce that

(A
r
2 Bp0A

r
2 )

p1+r
p0+r � (A

r
2 Bp1A

r
2 )

p1+r
p1+r

� · · · � (A
r
2 BpnA

r
2 )

p1+r
pn+r � (A

r
2 BpA

r
2 )

p1+r
p+r .

Therefore the function d in (1) satisfies the conditions of (2). �

LEMMA 2.7. Let −1 � t < 0 , p � 1 (p+ t �= 0) , r �−t and C � A � B � 0 with
A > 0 .
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(1) For each s0 � 1 and s0 < s � 2s0 , the inequalities below holds and they are
equivalent to each other.

(D
(p+t)s0

2 CrD
(p+t)s0

2 )
(p+t)(s−s0)
(p+t)s0+r � (D

(p+t)s0
2 DrD

(p+t)s0
2 )

(p+t)(s−s0)
(p+t)s0+r . (2.12)

(
C

r
2 D(p+t)s0C

r
2
) (p+t)s+r

(p+t)s0+r �
(
C

r
2 D(p+t)sC

r
2
) (p+t)s+r

(p+t)s+r . (2.13)

(2) Let δ = min{(p+ t)s,2(p+ t)s0} , then

(
C

r
2 D(p+t)s0C

r
2
) δ+r

(p+t)s0+r �
(
C

r
2 D(p+t)sC

r
2
) δ+r

(p+t)s+r . (2.14)

Proof. (1) It is enough to prove (2.12) by Theorem 2.3. By (2.11) and Theorem
2.4 for s0 � 1 and r � −t , we have

C1+t−t �
(
C

−t
2 D(p+t)s0C

−t
2
) 1+t−t

(p+t)s0−t ,

C1+t+r �
(
C

r
2 D(p+t)s0C

r
2
) 1+t+r

(p+t)s0+r ,

Cr �
(
C

r
2 D(p+t)s0C

r
2
) r

(p+t)s0+r .

This together with the case p0 = 0 of Theorem 2.2 (or [8, Theorem 1]) implies

(D
(p+t)s0

2 CrD
(p+t)s0

2 )
(p+t)s0

(p+t)s0+r � (D
(p+t)s0

2 DrD
(p+t)s0

2 )
(p+t)s0

(p+t)s0+r .

So (2.12) holds by (L-H) for s−s0
s0

∈ (0,1] .
(2) follows by (2.13) and Lemma 2.6 easily. �
Proof of Theorem 2.1. It is obvious that (1) is a direct result of Lemma 2.7 (2) and

(L-H).
(2) (2.11) in Lemma 2.5 means

C1+t−t � (C− t
2 (A

t
2 BpA

t
2 )sC− t

2 )
1+t−t

(p+t)s−t .

This together with Theorem 2.4 implies that, for each s0 such that s0 < s , the function

Gs0(r) = (D
(p+t)s

2 CrD
(p+t)s

2 )
(p+t)(s−s0)

(p+t)s+r

is increasing for r � max{−t,−(p+ t)s0} .
(3) Since r � −t , s0 > t

p+t � −r
p+t holds and (1) implies the monotonicity of s in

the function Fs0(r,s) . On the other hand, assume that B is invertible without loss of
generality, then

Fs0(r,s) =C− r
2
(
C

r
2 D(p+t)sC

r
2
) (p+t)s0+r

(p+t)s+r C− r
2

=D
(p+t)s

2 (D
(p+t)s

2 CrD
(p+t)s

2 )
−(p+t)(s−s0)

(p+t)s+r D
(p+t)s

2 .

So Fs0(r,s) is decreasing for r � max{−t,−(p+ t)s0} = −t by (2). �
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3. Examples

Furuta [6] showed some concrete counterexamples on Theorem 1.4. Now we gave
some counterexamples on Theorem 2.1.

THEOREM 3.1. (Main result) For each −1 � t < 0 , p � 1 (p+ t �= 0) , r > 0 and
s0 � 1+t

p+t . If s1 and s2 satisfy − r
p+t < s1 < s2 < s0 , then there exist two operators A

and B such that

A � B > 0, Fs0(s1) �� Fs0(s2)(C = A).

The case s0 � 1 of Theorem 3.1 means that the monotone interval [s0,∞) in The-
orem 2.1 (1) is unique in the interval [− r

p+t ,∞) .
To give a proof, we need the following result.

THEOREM 3.2. ([20]) Denote fδ (p) :=
(
A

r
2 BpA

r
2
) δ+r

p+r .

(1) For each r > 0 and δ > −r , if p1 and p2 satisfy −r < p1 < p2 < δ , then there
exist two operators A and B such that

A � B > 0, fδ (p1) �� fδ (p2).

(2) For each r > 0 and δ >−r , the monotone interval [max{δ ,0},∞) of p in fδ (p)
under the order logA � logB is unique in the interval [−r,∞) .

Proof of Theorem 3.1. The proof is inspired by Yamazaki’s technique [15]. In
the case that −1 < t < 0 and s0 � 1+t

p+t , and the case that t = −1 and s0 > 1+t
p+t = 0,

denote r1 = r
(p+t)s0

, δ1 = 1, p1 = s1
s0

and p2 = s2
s0

. Then r1 > 0, δ1 > −r1 and

−r1 < p1 < p2 < δ1 by − r
p+t < s1 < s2 < s0 . (1) of Theorem 3.2 implies that there

exist operators A1 > 0 and B1 > 0 satisfy

A1 � B1, (A
r1
2

1 Bp1
1 A

r1
2

1 )
1+r1
p1+r1 �� (A

r1
2

1 Bp2
1 A

r1
2 )

1+r1
p1+r1 .

Denote A = A
1

(p+t)s0
1 , B = (A

−t
2(p+t)s0
1 B

1
s0
1 A

−t
2(p+t)s0
1 )

1
p , then A � B by Theorem 1.2 and

(L-H) for s0 � 1+t
p+t and 1

p = 1
p+t−t �

min{1, 1
s0
}+ −t

(p+t)s0
1
s0

+ −t
(p+t)s0

. Meanwhile, it is easy to check

that, if C = A , then

Fs0(si) = (A
r1
2

1 Bpi
1 A

r1
2

1 )
1+r1
pi+r1

where i = 1,2. Therefore, Theorem 3.1 follows.
In the case that t = −1 and s0 = 1+t

p+t = 0, denote r1 = r , q1 = 0, p1 = (p−1)s1

and p2 = (p−1)s2 . Then r1 > 0, q1 >−r1 and −r1 < p1 < p2 < q1 by − r
p−1 < s1 <

s2 < s0 . By Theorem 3.2 (2), there exist operators A1 > 0 and B1 > 0 satisfy

logA1 � logB1, (A
r1
2

1 Bp1
1 A

r1
2

1 )
r1

p1+r1 �� (A
r1
2

1 Bp2
1 A

r1
2 )

r1
p2+r1 .
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Denote A = A1 , B = (A
1
2
1 Bp−1

1 A
1
2
1 )

1
p , then A � B by logA1 � logB1 and the Furuta

inequality under chaotic order ([7, page 139]) for 1
p = 1

p−1+1 . Therefore, Theorem 3.1
holds. �

THEOREM 3.3. (Main result) Let −1 � t < 0 , p > 1 , r � −t , s > s0 > 0 and
δ ′ = min{(p + t)s,2(p + t)s0 + min{1 + t,r}} . For each α > 1 , if (p + t)s � 2(p +
t)s0 +min{1+ t,r} , then there exist operators A > 0 and B > 0 satisfy A � B and

(
A

r
2 (A

t
2 BpA

t
2 )s0A

r
2
) (δ ′+r)α

(p+t)s0+r �� (
A

r
2 (A

t
2 BpA

t
2 )sA

r
2
) (δ ′+r)α

(p+t)s+r .

Theorem 3.3 implies that the outer exponent δ + r in (2.14) is optimal when s0 <
s � 2s0 . We prepare some results to prove Theorem 3.3.

THEOREM 3.4. Let r > 0 , p > 0 , s(0) = min{p,2p0} , A > 0 and B > 0 . Then
logA � logB ensures

(A
r
2 Bp0A

r
2 )

s(0)+r
p0+r � (A

r
2 BpA

r
2 )

s(0)+r
p+r .

Proof. We use Uchiyama’s method [12] (see also [7, page 139]). Denote An =
1+ logA

n and Bn = 1 + logB
n . Then for sufficiently large n , by Theorem 1.3 we have

An � Bn and

(A
nr
2
n Bnp0

n A
nr
2
n )

sn(1)+nr
np0+nr � (A

nr
2
n Bnp

n A
nr
2
n )

sn(1)+nr
np+nr

where sn(1) = min{np,2np0 +min{1,nr}} . Letting n → ∞ , The assertion holds by

An
n → A , Bn

n → B and sn(1)
n → s(0) . �

Theorem 3.4 can be regarded as the case q = 0 of Theorem 1.3.

THEOREM 3.5. For each α > 1 , r > 0 and p > p0 > 0 , there exist operators
A > 0 and B > 0 satisfy

logA � logB, (A
r
2 Bp0A

r
2 )

(s(0)+r)α
p0+r �� (A

r
2 BpA

r
2 )

(s(0)+r)α
p+r .

This result implies that the outer exponent s(0)+ r in Theorem 3.4 is optimal.

Proof. If 2p0 � p , then 2p0 +min{q,r} � p for q > 0. By [22, Theorem 3.6],
there exist operators A > 0 and B > 0 satisfy

Aq � Bq, (A
r
2 Bp0A

r
2 )

(p+r)α
p0+r �� (A

r
2 BpA

r
2 )α .

So Theorem 3.5 holds because Aq � Bq implies logA � logB .
If 2p0 < p , take a sufficiently small q such that 0 < q < min{r, p− 2p0,(2p0 +

r)(α − 1)} and αq = (2p0+r)α
2p0+q+r > 1. By [22, Theorem 3.6 (2)], there exist A > 0 and

B > 0 satisfy Aq � Bq and

(A
r
2 Bp0A

r
2 )

(2p0+q+r)αq
p0+r �� (A

r
2 BpA

r
2 )

(2p0+q+r)αq
p+r .



MONOTONICITY OF FURUTA TYPE OPERATOR FUNCTIONS 817

Hence Theorem 3.5 follows. �
Proof of Theorem 3.3. If (p+ t)s � 2(p+ t)s0 +min{1+ t,r} and −1 < t < 0,

denote r1 = r
1+t , p1 = (p+t)s0

1+t , p2 = (p+t)s
1+t and δ1 = δ ′

1+t . Then r1 > 0, p2 > p1 >
0 and δ1 = min{p2,2p1 + min{1,r1}} = p2 . By [22, Theorem 3.6 (1)], there exist
operators A1 > 0 and B1 > 0 satisfy

A1 � B1, (A
r1
2

1 Bp1
1 A

r1
2

1 )
(p2+r1)α

p1+r1 �� (A
r1
2

1 Bp2
1 A

r1
2

1 )α . (3.1)

Take A = A
1

1+t
1 , B = (A

− t
2(1+t)

1 B
p+t
1+t
1 A

− t
2(1+t)

1 )
1
p , then A � B by Theorem 1.2 for p+t

1+t � 1

and 1
p =

1+ −t
1+t

p+t
1+t +

−t
1+t

. Meanwhile, it is easy to check that

(
A

r
2 D(p+t)siA

r
2
) δ ′+r

(p+t)si+r = (A
r1
2

1 Bpi
1 A

r1
2

1 )
δ1+r1
pi+r1

where i = 1,2, s1 = s0 and s2 = s . Therefore, Theorem 3.3 follows by (3.1).
If (p+ t)s � 2(p+ t)s0 +min{1+ t,r} and t = −1, then 2(p− 1)s0 � (p− 1)s

and r � 1. Denote r1 = r , p1 = (p−1)s0 , p2 = (p−1)s and δ1 = δ ′ . Then r1 > 0,
p2 > p1 > 0 and δ1 = min{p2,2p1} = p2 . By Theorem 3.5, there exist operators
A1 > 0 and B1 > 0 satisfy

logA1 � logB1, (A
r1
2

1 Bp1
1 A

r1
2

1 )
(p2+r1)α

p1+r1 �� (A
r1
2

1 Bp2
1 A

r1
2 )α . (3.2)

Take A = A1 , B = (A
1
2
1 Bp−1

1 A
1
2
1 )

1
p , then A � B by logA1 � logB1 and the Furuta in-

equality under chaotic order ([7, page 139]) for 1
p = 1

p−1+1 . Therefore, Theorem 3.3
holds by (3.2). �
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