LINEAR MAPS STRONGLY PRESERVING MOORE-PENROSE INVERTIBILITY

MARÍA BURGOS, A. C. MÁRQUEZ-GARCÍA AND A. MORALES-CAMPOY

(Communicated by Peter Šemrl)

Abstract. Let A and B be C^* -algebras. We investigate linear maps from A to B strongly preserving Moore-Penrose invertibility, where A is unital, and either it is linearly spanned by its projections, or has large socle, or has real rank zero (in this last case the map T is assumed to be bounded).

1. Introduction

Let A be a (complex) Banach algebra. An element a in A is (von Neumann) regular if it has a generalized inverse, that is, if there exists b in A such that a = aba (b is an inner inverse of a) and b = bab (b is an outer inverse of a). Observe that the first equality a = aba is a necessary and sufficient condition for a to be regular, and that, if a has generalized inverse b, then p = ab and q = ba are idempotents in A with aA = pA and Aa = Aq.

The generalized inverse of a regular element a is not unique. For an element a in A let us consider the left and right multiplication operators $L_a : x \mapsto ax$ and $R_a : x \mapsto xa$, respectively. If a is regular, then so are L_a and R_a , and thus their ranges $aA = L_a(A)$ and $Aa = R_a(A)$ are both closed. The *conorm* (or the *reduced minimum modulus*) of an element a in a Banach algebra A, is defined as the reduced minimum modulus of the left multiplication operator by a,

$$\gamma(a) := \gamma(L_a) = \begin{cases} \inf\{\|ax\| : \operatorname{dist}(x, \operatorname{ker}(L_a)) \ge 1\} & \text{if } a \neq 0\\ \infty & \text{if } a = 0. \end{cases}$$

If b is a generalized inverse of a, with $a \neq 0$, then

 $||b||^{-1} \leq \gamma(a) \leq ||ba|| \, ||ab|| \, ||b||^{-1}$

The authors are partially supported by I+D MEC projects no. MTM 2011-23843, MTM 2010-17687 and Junta de Andalucía grants FQM 0199, FQM 0194 and FQM 3737. The second author is supported by a Plan Propio contract from the Universidad de Almería. They wish to thank A. Peralta, A. Kaidi and P. García-Sánchez for their kindly hospitality and help during the preparation of this manuscript, and the referee for their comments and suggestions.

Mathematics subject classification (2010): 47B49, 46L05, 47B48.

Keywords and phrases: Linear preservers, C^* -algebras, Moore-Penrose invertibility, Jordan *-homomorphism.

(see [11, Theorem 2]).

Regular elements in unital C^{*}-algebras have been studied by Harte and Mbekhta in [10] and [11]. The main results in those papers state that an element *a* in a C^{*}-algebra *A* is regular if and only if *aA* is closed, equivalently $\gamma(a) > 0$, and that

$$\gamma(a)^2 = \gamma(a^*a) = \inf\{\lambda : \lambda \in \sigma(a^*a) \setminus \{0\}\} = \gamma(a^*)^2.$$

Given a and b in A, b is said to be a *Moore-Penrose inverse* of a if b is a generalized inverse of a and the associated idempotents ab and ba are selfadjoint. It is known that every regular element a in A has a unique Moore-Penrose inverse that will be denoted by a^{\dagger} , and that

$$\gamma(a) = \|a^{\dagger}\|^{-1}.$$

Denote by A^{\dagger} the set of regular elements in the C^{*}-algebra A.

Let *A* and *B* be C^{*}-algebras. We say that a map $T : A \to B$ strongly preserves Moore-Penrose invertibility if $T(a^{\dagger}) = T(a)^{\dagger}$, for all $a \in A^{\dagger}$. If *A* and *B* are both unital, with identity elements $\mathbf{1}_A$ and $\mathbf{1}_B$ respectively, the mapping *T* is called *unital* if $T(\mathbf{1}_A) = \mathbf{1}_B$.

In [21] Mbekhta started the study of the so called *Hua type theorems* and *strongly preserver problems* between Banach algebras. In the context of C^{*}-algebras, he proved that a surjective unital bounded linear map from a real rank zero C^{*}-algebra to a prime C^{*}-algebra strongly preserves Moore-Penrose invertibility if and only if it is either a *-homomorphism or a *-antihomomorphism, and he conjectures that the same holds without any assumption on the C^{*}-algebras and when T is not assumed to be unital. (Linear maps strongly preserving Moore-Penrose invertibility for matrix algebras over some fields were previously considered by Zhang, Cao and Bu, [24].)

Recall that a linear (additive) map $T: A \to B$ between Banach algebras is a *Jordan homomorphism* if $T(a^2) = T(a)^2$, for all $a \in A$, or equivalently, T(ab + ba) = T(a)T(b) + T(b)T(a) for every a, b in A. A bijective Jordan homomorphism is called *Jordan isomorphism*. Clearly every homomorphism and every antihomomorphism is a Jordan homomorphism. It is well known that if $T: A \to B$ is a Jordan homomorphism then

$$T(abc+cba) = T(a)T(b)T(c) + T(c)T(b)T(a),$$
(1)

for all $a, b, c \in A$.

If *A* and *B* are C^{*}-algebras, then *T* is called *selfadjoint* if $T(a^*) = T(a)^*$, for every $a \in A$. Selfadjoint Jordan homomorphism are named *Jordan* *-*homomorphisms*. Notice that every Jordan *-homomorphism strongly preserves Moore-Penrose invertibility (see Remark 8).

The study of linear maps strongly preserving Moore-Penrose invertibility is connected with regularity linear preserver problems in C^{*}-algebras. Recall that a linear map $T: A \to B$ between C^{*}-algebras *preserves regularity* if $T(a) \in B^{\dagger}$ whenever $a \in A^{\dagger}$, and that T preserves regularity in both directions when $T(a) \in B^{\dagger}$ if and only if $a \in A^{\dagger}$.

In [3] the authors showed that every surjective linear map $T : A \rightarrow B$ preserving regularity in both directions factorizes as a Jordan isomorphism through the generalized

Calkin algebras, in the case that *A* and *B* are prime C^* -algebras with non zero socle and *A* has real rank zero. Also if *A* has real rank zero and *B* has zero socle, it is proved that *T* preserves regularity if and only if it is a Jordan homomorphism.

Linear maps between C^{*}-algebras (strongly) preserving the conorm are considered in [4]. In that paper the authors proved that every unital (respectively, surjective) linear map $T : A \to B$, between unital C^{*}-algebras such that $\gamma(a) = \gamma(T(a))$, for every $a \in A$, is an isometric Jordan *-isomorphism (respectively, multiplied by a unitary element of *B*). Notice that every linear map strongly preserving the conorm preserves regularity in both directions, and that every bounded linear map $T : A \to B$ strongly preserving Moore-Penrose invertibility satisfies

$$\gamma(a) \leq ||T|| \gamma(T(a)) \qquad (a \in A).$$

The present manuscript focusses on the study of strongly Moore-Penrose invertibility preservers in C*-algebras with a rich structure of projections. Section 2 gathers some technical preliminary results. In Section 3 we consider C*-algebras in which every element is a linear combination of projections. We prove that a linear map strongly preserving Moore-Penrose invertibility $T : A \rightarrow B$ between C*-algebras, is a Jordan *-homomorphism multiplied by a regular element of *B* commuting with T(A), whenever *A* is unital and linearly spanned by its projections, or when *A* is unital and has real rank zero and *T* is bounded.

Section 4 deals with C^{*}-algebras having large socle. We show that if $T: A \rightarrow B$ is a linear map strongly preserving Moore-Penrose invertibility between C^{*}-algebras, and A is unital with non zero socle, then T restricted to the socle of A is a Jordan *-homomorphism multiplied by a regular element commuting with the range of T. Also, we prove that every bijective linear map strongly preserving Moore-Penrose invertibility from a unital C^{*}-algebra with essential socle is a Jordan *-isomorphism multiplied by an involutory element.

Notice that our mappings are never assumed to be unital, and even the codomains do not necessarily have an identity element.

2. Preliminaries

In [21], Mbekhta showed that every unital linear continuous mapping $T : A \rightarrow B$ between unital C^{*}-algebras that strongly preserves Moore-Penrose invertibility is a Jordan homomorphism and preserves projections. In particular, *T* sends mutually orthogonal projections into mutually orthogonal projections. In the following proposition we generalize this result by showing that every linear mapping between C^{*}-algebras (not necessarily unital), strongly preserving Moore-Penrose invertibility, preserves orthogonality of regular elements. Recall that two elements a, b in a C^{*}-algebra *A* are said to be *orthogonal*, denoted by $a \perp b$, if $ab^* = b^*a = 0$.

PROPOSITION 1. Let A and B be C^* -algebras, and let $T : A \to B$ be a linear map strongly preserving Moore-Penrose invertibility. Then $a \perp b$ implies $T(a) \perp T(b)$ for all $a, b \in A^{\dagger}$.

Proof. Let $a, b \in A^{\dagger}$ with $a \perp b$. For every $\alpha \in \mathbb{Q} \setminus \{0\}$ it is easy to see that $(a + \alpha b)^{\dagger} = a^{\dagger} + \alpha^{-1}b^{\dagger}$. By assumption,

$$(T(a) + \alpha T(b))(T(a)^{\dagger} + \alpha^{-1}T(b)^{\dagger})(T(a) + \alpha T(b)) = T(a) + \alpha T(b),$$

which yields

$$\begin{aligned} \alpha^{-1}T(a)T(b)^{\dagger}T(a) &+ (T(a)T(b)^{\dagger}T(b) + T(b)T(b)^{\dagger}T(a)) \\ &+ \alpha(T(b)T(a)^{\dagger}T(a) + T(a)T(a)^{\dagger}T(b)) \\ &+ \alpha^{2}T(b)T(a)^{\dagger}T(b) = 0, \end{aligned}$$

for every $\alpha \in \mathbb{Q} \setminus \{0\}$. Hence

$$T(a)T(b)^{\dagger}T(b) + T(b)T(b)^{\dagger}T(a) = 0$$

By multiplying the last equation on the right, and on the left, respectively, by $T(b)^{\dagger}$ it follows that

$$T(a)T(b)^{\dagger} = -T(b)T(b)^{\dagger}T(a)T(b)^{\dagger}, \qquad (2)$$

and

$$T(b)^{\dagger}T(a) = -T(b)^{\dagger}T(a)T(b)^{\dagger}T(b).$$
(3)

As

$$(T(a)^{\dagger} + \alpha^{-1}T(b)^{\dagger})(T(a) + \alpha T(b))(T(a)^{\dagger} + \alpha^{-1}T(b)^{\dagger}) = T(a)^{\dagger} + \alpha^{-1}T(b)^{\dagger}$$

for every $\alpha \in \mathbb{Q} \setminus \{0\}$, we get analogously

$$T(b)^{\dagger}T(a)T(b)^{\dagger} = 0.$$
 (4)

From Equations (2), (3) and (4) we deduce that $T(a)T(b)^{\dagger} = 0$ and $T(b)^{\dagger}T(a) = 0$. Equivalently, $T(a)T(b)^* = 0$ and $T(b)^*T(a) = 0$, that is, $T(a) \perp T(b)$. \Box

Let *A* and *B* be C^* -algebras. In what follows, let us assume that *A* is unital with identity element **1**. It is clear that the zero map strongly preserves Moore-Penrose invertibility. In the next proposition we show that this is the only map strongly preserving Moore-Penrose invertibility that annihilates the identity element.

PROPOSITION 2. Let A and B be C^* -algebras, and let $T : A \to B$ be a linear map strongly preserving Moore-Penrose invertibility. Then either $T(\mathbf{1}) \neq 0$ or T = 0.

Proof. If b and 1+b are invertible elements in A, then as consequence of Hua's identity (see [13])

$$\mathbf{1} = (\mathbf{1} + b)^{-1} + (\mathbf{1} + b^{-1})^{-1}$$

Since T strongly preserves Moore-Penrose invertibility,

$$T(\mathbf{1}) = T((\mathbf{1}+b)^{-1}) + T((\mathbf{1}+b^{-1})^{-1}) = (T(\mathbf{1})+T(b))^{\dagger} + (T(\mathbf{1})+T(b)^{\dagger})^{\dagger}.$$

If we assume that $T(\mathbf{1}) = 0$, then we get

$$T(b)^{\dagger} + T(b) = 0,$$

for every invertible element $b \in A$ with 1 + b invertible. Thus, let *a* be an invertible element in *A*, and $\alpha \in \mathbb{Q} \setminus \{0\}$ be such that $|\alpha| < ||a||^{-1}$. It is clear that αa and $1 + \alpha a$ are invertible, and therefore $T(a)^{\dagger} = -\alpha^2 T(a)$. By the uniqueness of the Moore-Penrose inverse, it follows that T(a) = 0. Thus *T* is the zero map. \Box

Notice that if $T : A \to B$ is a non zero linear map strongly preserving Moore-Penrose invertibility, and T(1) commutes with T(A), then $B' = T(1)^2 BT(1)^2$ is a C^* -algebra with identity $T(1)^2$ ($T(1)^2 \neq 0$ in view of the preceding proposition), the map $S = T(1)^2 T$ from A to B' strongly preserves Moore-Penrose invertibility, and S(1) is invertible. A closer look at the arguments employed in Theorem 3.5, Lemma 3.7 and Proposition 3.10 in [5], where the authors only required the Hua's identity and the inner relation of the generalized inverse on invertible elements, reveals that the same reasoning works with Moore-Penrose invertibility. Obviously B' has an identity element even if B is not unital.

PROPOSITION 3. Let A and B be C^* -algebras, and T be a linear map such that T(1) commutes with the range of T. If T strongly preserves Moore-Penrose invertibility, then T(1)T is a Jordan homomorphism.

We finish this section with a technical lemma which together with Proposition 3 will be the key tool for the next sections. It describes the behaviour of a linear map strongly preserving Moore-Penrose invertibility with respect to the projections.

LEMMA 4. Let A and B be C^* -algebras. Let $T : A \to B$ be a linear map strongly preserving Moore-Penrose invertibility. For every projection $p \in A$:

(a) $T(p)T(\mathbf{1})^* = T(\mathbf{1})T(p)^*$ and $T(\mathbf{1})^*T(p) = T(p)^*T(\mathbf{1})$,

(b)
$$T(p) = T(p)T(\mathbf{1})^2 = T(\mathbf{1})^2T(p)$$
,

(c)
$$T(p)T(\mathbf{1}) = T(\mathbf{1})T(p) = (T(p)T(\mathbf{1}))^*$$
.

Proof. For the sake of simplicity, write h = T(1). Let p be a non zero projection in A. As $p \perp (1-p)$, and by Proposition 1, T preserves orthogonality of regular elements, then $T(p) \perp (h - T(p))$, that is, $T(p)h^* = T(p)T(p)^*$ and $h^*T(p) = T(p)^*T(p)$. In particular, $T(p)h^* = hT(p)^*$ and $h^*T(p) = T(p)^*h$. Since $h = h^{\dagger}$, it is clear that $h^3 = h$, and $h^2 = (h^2)^*$. Hence

$$T(p)^*T(p)h^2 = h^*T(p)h^2 = T(p)^*hh^2 = T(p)^*h$$

= $h^*T(p) = T(p)^*T(p)$.

Again, $T(p) = T(p)^{\dagger}$ gives $T(p)^3 = T(p)$ and thus $T(p)^*T(p)(h^2 - T(p)^2) = 0$. By the cancellation law, $T(p)h^2 = T(p)^3 = T(p)$. In the same way, $T(p) = h^2T(p)$,

 $T(p)^* = h^2 T(p)^*$ and $T(p)^* h^2 = T(p)^*$. Also,

$$T(p)h = h^2 T(p)h = h^* h^* T(p)h = h^* T(p)^* h^2 = h^* T(p)^*$$

= $(T(p)h)^*$.

Analogously, $(hT(p))^* = hT(p)$.

It only remains to prove that hT(p) = T(p)h. Since $T(p) = h^2T(p) = T(p)h^2$, it suffices to show that T(p) = hT(p)h. Having in mind the uniqueness of the Moore-Penrose inverse, and that $T(p)^{\dagger} = T(p^{\dagger}) = T(p)$ we proceed by checking that hT(p)his the Moore-Penrose inverse of T(p). As $T(p)h = h^*T(p)^*$, $hT(p) = T(p)^*h^*$, $T(p)^*T(p) = h^*T(p)$, $h^2 = (h^2)^*$ and $h^3 = h$, we get

$$T(p)(hT(p)h)T(p) = T(p)hh^*T(p)^*T(p) = T(p)hh^*h^*T(p)$$

= T(p)hT(p) = T(p)T(p)^*h^* = T(p)(h^*)^2 = T(p)

From this it is clear that, (hT(p)h)T(p)(hT(p)h) = hT(p)h, and since

$$T(p)(hT(p)h) = (T(p)h)T(p)h = h^{*}T(p)^{*}T(p)h = h^{*}h^{*}T(p)h = T(p)h$$

and similarly (hT(p)h)T(p) = hT(p), are selfadjoint, this shows that $hT(p)h = T(p)^{\dagger}$, as desired. \Box

REMARK 5. Note that, as every additive map $T: A \rightarrow B$ between Banach algebras is \mathbb{Q} -linear, the results in this section also hold if we change the linearity with additivity.

3. C*-algebras linearly spanned by their projections and real rank zero C*-algebras

In many C^{*}-algebras every element can be expressed as a finite linear combination of projections: properly infinite C^{*}-algebras, von Neumann algebras of type II_1 , unital simple C^{*}-algebras of real rank zero with no tracial states, unital simple AF C^{*}-algebras with finitely many extremal states, UHF C^{*}-algebras, Bunce-Deddens algebras, irrotational rotation algebras...(See for instance [17], [18], [19], [22], [15] and the references therein.) The following theorem describes linear maps strongly preserving Moore-Penrose invertibility from C^{*}-algebras linearly spanned by their projections. In particular, by [22, Corollary 2.3], it applies to the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space (compare with Theorem 3.3 $(i) \Rightarrow (ii)$ in [21], where T is assumed to be bounded, unital, and bijective).

THEOREM 6. Let $T : A \to B$ be a linear map strongly preserving Moore-Penrose invertibility between C^* -algebras, where A is unital. Assume that every element of A is a finite linear combination of projections. Then $T(\mathbf{1})T$ is a Jordan *-homomorphism and $T(\mathbf{1})$ commutes with the range of T. *Proof.* From *A* being linearly spanned by its projections, by Lemma 4 it is clear that $T(x)T(\mathbf{1}) = (T(x^*)T(\mathbf{1}))^* = T(\mathbf{1})T(x)$, for every $x \in A$. The conclusions can be obtained directly by applying Proposition 3. \Box

Recall that a C^* -algebra A is of *real rank zero* if the set of all real linear combinations of orthogonal projections is dense in the set of all hermitian elements of A (see [7]). Notice that every von Neumann algebra, and, in particular, the algebra of all bounded linear operators on a complex Hilbert space H is of real rank zero.

THEOREM 7. Let A and B be C^* -algebras, and $T : A \to B$ be a bounded linear map strongly preserving Moore-Penrose invertibility. Suppose that A is unital of real rank zero. Then:

- 1. $T(\mathbf{1})$ commutes with the range of T,
- 2. T(1)T is a Jordan *-homomorphism.

Proof. As T is continuous and A has real rank zero, the theorem can be proved as the previous one by applying Lemma 4 and Proposition 3. \Box

REMARK 8. Every Jordan *-homomorphism between C*-algebras strongly preserves Moore-Penrose invertibility. Indeed if $a \in A^{\dagger}$, and $b = a^{\dagger}$, from Equation (1) it is clear that T(a) = T(a)T(b)T(a) and T(b) = T(b)T(a)T(b). Thus it remains to show that T(b)T(a) and T(a)T(b) are selfadjoint. As $a = b^*a^*a = aa^*b^*$, in particular $2a = b^*a^*a + aa^*b^*$, and since T is a Jordan *-homomorphism, it is clear that

$$2T(a) = T(b)^*T(a)^*T(a) + T(a)T(a)^*T(b)^*.$$

By multiplying on the left by $T(a)^*$, we get that

$$T(a)^*T(a) = T(a)^*T(a)T(a)^*T(b)^*,$$

or equivalently $T(a)^*T(a)(T(b)T(a) - T(a)^*T(b)^*) = 0$, which implies that $T(a) = T(a)T(a)^*T(b)^*$, and hence $T(b)T(a) = T(b)T(a)T(a)^*T(b)^*$ is selfadjoint.

Moreover if $T : A \to B$ is a Jordan *-homomorphism between C*-algebras and u is a regular element in B such that $u = u^{\dagger}$, and u commutes with the range if T, it is clear that uT also strongly preserves Moore-Penrose invertibility.

As we have mentioned in the Introduction, in [21, Theorem 3.2] Mbekhta shows that a *surjective unital* continuous linear mapping from a real rank zero unital C^* -algebra onto a prime unital C^* -algebra is either a *-homomorphism or a *-antihomomorphism if and only if it strongly preserves Moore-Penrose invertibility. In the following result, we characterize bounded linear maps (not necessarily surjective nor unital) strongly preserving Moore-Penrose invertibility on a real rank zero unital C^* -algebra.

COROLLARY 9. Let A and B be C^* -algebras, and let $T : A \to B$ be a bounded linear map. Suppose that A is unital of real rank zero. The following are equivalent:

- 1. T strongly preserves Moore-Penrose invertibility,
- 2. $T(\mathbf{1})^{\dagger} = T(\mathbf{1}), T = ST(\mathbf{1}) = T(\mathbf{1})S$ for a Jordan *-homomorphism S.

Proof. The implication $(1) \Rightarrow (2)$ is a direct consequence of Theorem 7, and the converse follows from Remark 8. \Box

4. C*-algebras of large socle

Let *A* be a C^{*}-algebra. An element *x* of *A* is *finite* (*compact*) in *A*, if the wedge operator $x \wedge x : A \to A$, given by $x \wedge x(a) = xax$, is a finite rank (compact) operator on *A*. It is known that the ideal $\mathscr{F}(A)$ of finite rank elements in *A* coincides with the *socle* of *A*, soc(A), that is, the sum of all minimal right (equivalently left) ideals of *A*, and that $\mathscr{K}(A) = \overline{soc}(A)$ is the ideal of compact elements in *A*. Every element in the socle of a C^{*}-algebra is a linear combination of minimal projections (a projection *p* in a C^{*}-algebra *A* is said to be *minimal* if $pAp = \mathbb{C}p$). We refer to [1, 2, 23], for the basic references on the socle.

It is known that every element in the socle of a C^* -algebra A is regular and that $A^{\dagger} + \operatorname{soc}(A) \subset A^{\dagger}$ (see for instance [16, Theorem 6.3]). This fact together with Proposition 1 allow us to employ the techniques on orthogonality preserving maps on C^* -algebras with large socle in order to determine the structure of strongly Moore-Penrose invertibility linear preservers. The following lemma is inspired in [9] (see also [8]). Recall that every C^* -algebra can be endowed with a Jordan product $a \circ b := \frac{1}{2}(ab + ba)$, and a Jordan triple product defined as $\{abc\} := \frac{1}{2}(ab^*c + cb^*a)$.

For the rest of the section A and B are C^* -algebras, and $T : A \to B$ is a linear map strongly preserving Moore-Penrose invertibility. We assume that A is unital with non zero socle.

LEMMA 10. For every $a \in A$ and $x \in soc(A)$, the following identities hold:

- (a) $2T(a \circ x)T(I)^* = T(a)T(x^*)^* + T(x)T(a^*)^*$ and $2T(I)^*T(a \circ x) = T(x^*)^*T(a) + T(a^*)^*T(x),$
- (b) $T(x)T(1)^*T(a) = T(x)T(a^*)^*T(1)$ and $T(a)T(1)^*T(x) = T(1)T(a^*)^*T(x),$
- (c) $T(x)T(I)T(a) = T(x)T(a^*)^*T(I)^*$ and $T(a)T(I)T(x) = T(I)^*T(a^*)^*T(x),$
- (d) $\{T(x)T(a)T(x)\} = T(\{xax\})T(1)^*T(1),$

Proof. As above denote T(1) by h. In view of Lemma 4, since every element of the socle is a linear combination of minimal projections, it follows directly that, $T(x)h^* = hT(x^*)^*$, $h^*T(x) = T(x^*)^*h$, $T(x)h = hT(x) = h^*T(x^*)^* = T(x^*)^*h^*$, and $T(x) = T(x)h^2$ for every $x \in \text{soc}(A)$.

Let p,q be minimal projections in A. Since qp and (1-q)(1-p) = 1-p-q+qp are mutually orthogonal regular elements, by Proposition 1, $T(qp) \perp T(1-q-p+qp)$. Therefore

$$T(qp)h^* - T(qp)T(q)^* - T(qp)T(p)^* + T(qp)T(qp)^* = 0.$$

As $q(\mathbf{1}-p) \perp (\mathbf{1}-q)p$, we also have $T(q-qp) \perp T(p-qp)$, that is

$$T(q)T(p)^{*} - T(q)T(qp)^{*} - T(qp)T(p)^{*} + T(qp)T(qp)^{*} = 0.$$

Taking into account these equations and soc(A) being linearly spanned by the minimal projections, we can prove

$$T(yx + xy)h^* = T(y)T(x^*)^* + T(x)T(y^*)^*,$$
(5)

for all $x, y \in \text{soc}(A)$ (compare with the proof of Theorem 14 in [8]). Besides, given a minimal projection p in A and an invertible element b in A, p and (1-p)b(1-p) = b - bp - pb + pbp are mutually orthogonal regular elements. Thus $T(p)^*T(b) = T(p)^*T(bp + pb - pbp)$ and $T(b)T(p)^* = T(bp + pb - pbp)T(p)^*$. Equation (5) yields

$$\begin{split} T(bp+pb)h^* &= T((bp+pb)p + p(bp+pb) - 2pbp)h^* \\ &= T(bp+pb)T(p)^* + T(p)T(b^*p+pb^*)^* \\ &- T(pbp)T(p)^* - T(p)T(pb^*p)^* \\ &= T(bp+pb-pbp)T(p)^* + T(p)T(b^*p+pb^*-pb^*p)^* \\ &= T(b)T(p)^* + T(p)T(b^*)^*. \end{split}$$

As $T(p)h^* = hT(p)^*$, given $a \in A$ and $\alpha \in \mathbb{C}$ such that $a - \alpha$ is invertible, the last equation gives $T(ap + pa)h^* = T(a)T(p)^* + T(p)T(a^*)^*$, and by the linearity of T

$$T(ax+xa)h^* = T(a)T(x^*)^* + T(x)T(a^*)^* \qquad (a \in A, x \in \text{soc}(A)).$$
(6)

The other equality of (a) can be proved analogously.

Again for a minimal projection p in A, and an invertible element $b \in A$, from $p \perp (1-p)b(1-p)$, we obtain

$$T(p)h^{*}T(b) = T(p)T(p)^{*}T(b) = T(p)T(p)^{*}T(bp+pb-pbp)$$

= $T(p)h^{*}T(bp+pb-pbp) = T(p)T((bp+pb-pbp)^{*})^{*}h$
= $T(p)T(b^{*})^{*}h$,

and

$$T(p)hT(b) = h^*T(p)^*T(b) = h^*T(p)^*T(bp+pb-pbp)$$

= T(p)hT(bp+pb-pbp) = T(p)T((bp+pb-pbp)^*)^*h^*
= T(p)T(b^*)^*h^*.

This proves that

$$T(x)h^*T(a) = T(x)T(a^*)^*h,$$
(7)

and

$$T(x)hT(a) = T(x)T(a^*)^*h^*,$$
 (8)

for all $x \in \text{soc}(A)$ and $a \in A$. The other relations of (b) and (c) can be deduced in an obvious way.

In order to prove equality (d), let $x \in soc(A)$ and $a \in A$. By the definition of the triple product in a C^* -algebra and the statements just proved we get

$$T(\{xax\})h^*h = 2T((x \circ a^*) \circ x)h^*h - T(x^2 \circ a^*)h^*h$$

$$= (T(x \circ a^*)T(x^*)^* + T(x)T(x^* \circ a)^*)h$$

$$-\frac{1}{2}(T(x^2)T(a)^* + T(a^*)T((x^2)^*)^*)h$$

$$= T(x \circ a^*)h^*T(x) + T(x)h^*T(x \circ a^*)$$

$$-\frac{1}{2}(T(x^2)h^*T(a^*) + T(a^*)T((x^2)^*)^*h)$$

$$= \frac{1}{2}((T(x)T(a)^* + T(a^*)T(x^*)^*)T(x))$$

$$+\frac{1}{2}(T(x)(T(x^*)^*T(a^*) + T(a)^*T(x)))$$

$$-\frac{1}{2}((T(x)T(x^*)^*T(a^*) + T(a^*)T(x^*)^*T(x)))$$

$$= \{T(x)T(a)T(x)\}. \square$$

REMARK 11. From the preceding lemma, it is clear that

$$T(\mathbf{1})T(x) = (T(\mathbf{1})T(x^*))^*,$$

and

$$T(\mathbf{1})T(x^2) = T(\mathbf{1})T(x^2)(T(\mathbf{1})^*)^2 = T(\mathbf{1})T(x)T(x^*)^*T(\mathbf{1})^* = (T(\mathbf{1})T(x))^2$$

for every element x in the socle of A. This shows that the mapping $x \mapsto T(\mathbf{1})T(x)$ is a Jordan *-homomorphism from $\operatorname{soc}(A)$ to B.

It is well known that every element of the socle is a finite sum of rank-one elements. Recall that a non zero element $u \in A$ is said to be of *rank-one* if u belongs to some minimal left ideal of A, that is, if u = ue for some minimal idempotent e of A. A non zero element $u \in A$ has rank-one if and only if $uAu = \mathbb{C}u$, and this is equivalent to the condition $|\sigma(xu) \setminus \{0\}| \leq 1$, for all $x \in A$ (also equivalent to $|\sigma(ux) \setminus \{0\}| \leq 1$, for all $x \in A$ (also equivalent to set of rank-one elements in A by $\mathscr{F}_1(A)$.

Recall that an ideal *I* of a Banach algebra *A* is called *essential* if it has non zero intersection with every non zero ideal of *A*. If *A* is semisimple (in particular, if *A* is a C^* -algebra) this is equivalent to the condition aI = 0 implies a = 0.

THEOREM 12. Assume that T does not annihilate rank-one elements.

- 1. If $T(a)T(I) T(I)T(a) \in T(A)$ for every $a \in A$, then $T^{-1}(T(a)T(I) T(I)T(a))$ soc $(A) = \{0\}$, for every $a \in A$.
- 2. If $T(a)T(\mathbf{1}) (T(a)T(\mathbf{1}))^* \in T(A)$ for every selfadjoint element $a \in A$, then $T^{-1}(T(a)T(\mathbf{1}) T(\mathbf{1})^*T(a^*)^*)\operatorname{soc}(A) = \{0\}$, for every $a \in A$.

In particular, if soc(A) is essential, then $T(\mathbf{1})T$ is a Jordan *-homomorphism, and $T(\mathbf{1})$ commutes with the range of T.

Proof. Again write h = T(1). Let $x \in soc(A)$ and $a \in A$. From (d) of Lemma 10, by multiplying on the right by hh^*

$$T(\{xax\}) = T(x)T(a)^*T(x)hh^* = T(x)T(a)^*hT(x)h^*$$

= $T(x)T(a)^*h^2T(x^*)^* = T(x)T(a)^*T(x^*)^*.$

Moreover, since $T(\{xax\})h^*h = hh^*T(\{xax\})$, we also get (by multiplying on the left by h^*h)

$$T(\{xax\}) = h^*T(x)hT(a)^*T(x) = T(x^*)^*h^2T(a)^*T(x) = T(x^*)^*T(a)^*T(x).$$

Therefore,

$$\{T(x) (T(a)h) T(x)\} = T(x)h^*T(a)^*T(x) = hT(x^*)^*T(a)^*T(x)$$

= hT({xax}) = T({xax})h = T(x)T(a)^*T(x^*)^*h
= T(x)T(a)*h*T(x) = {T(x) (hT(a)) T(x)}.

If $T(a)h-hT(a) \in T(A)$, there exists $b \in A$ such that T(b) = T(a)h-hT(a). The last identities show that

$$0 = \{T(x) T(b) T(x)\} = T(\{x b x\})h^*h,$$

and hence $T(\{xbx\}) = 0$. In particular $T(\{ubu\}) = 0$ for every $u \in \mathscr{F}_1(A)$. As T does not annihilate rank-one elements, and for every $u \in \mathscr{F}_1(A)$, ubu = 0 or ubu has rank-one, it follows that ubu = 0 for all $u \in \mathscr{F}_1(A)$. This implies that bu = 0 for every $u \in \mathscr{F}_1(A)$ (see for instance the proof of Theorem 1.1 in [6]). Hence $bSoc(A) = \{0\}$, that is,

$$T^{-1}(T(a)h - hT(a))\operatorname{soc}(A) = \{0\}.$$
(9)

From Lemma 10 (c), it follows that

$$\{T(x)(T(a)h)T(x)\} = T(x)h^*T(a)^*T(x) = T(x)T(a^*)hT(x)$$

= $\{T(x)(h^*T(a^*)^*)T(x)\}.$

Whenever $T(z)h - (T(z)h)^* \in T(A)$, for every selfadjoint element $z \in A$, it is clear that $T(a)h - h^*T(a^*)^*$ lies in T(A), for every $a \in A$. Then, as above, we can prove

$$T^{-1}(T(a)h - h^*T(a^*)^*)\operatorname{soc}(A) = \{0\}.$$
(10)

If $\operatorname{soc}(A)$ is essential, by Equation (9), h commutes with T(A), and by Proposition 3, S = hT is a Jordan homomorphism. Besides, Equation (10) gives $T(a)h = h^*T(a^*)^* = (T(a^*)h)^*$ for all $a \in A$, which shows that S is selfadjoint. \Box

Notice that if $T : A \rightarrow B$ is a bijective linear map strongly preserving Moore-Penrose invertibility, and soc(A) is essential, since

$$\{T(x)(T(a)T(\mathbf{1}_A)^2)T(x)\} = \{T(x)T(a)T(x)\} = \{T(x)(T(\mathbf{1}_A)^2T(a))T(x)\},\$$

we can obtain that $T(a)T(\mathbf{1}_A)^2 = T(a) = T(\mathbf{1}_A)^2T(a)$, for every $a \in A$, and hence *B* is unital with identity element $\mathbf{1}_B = T(\mathbf{1}_A)^2$. The following corollary can be derived now as an easy consequence.

COROLLARY 13. Let A and B be C^* -algebras. Suppose that A is unital with essential socle. Let $T : A \rightarrow B$ be a bijective linear map. The following are equivalent:

- 1. T strongly preserves Moore-Penrose invertibility,
- 2. $T(\mathbf{1}_A)^2 = \mathbf{1}_B$, $T = T(\mathbf{1}_A)S = ST(\mathbf{1}_A)$ for a Jordan *-isomorphism S.

We conclude this section by considering the case of linear mappings from prime C^{*}-algebras with non zero socle. Recall that every prime C^{*}-algebra *A* with non zero socle is primitive (see [20]) and hence its socle is a simple algebra which is contained in every non zero (Jordan) ideal of *A* (see [14, IV §9] and [12, Theorem 1.1]). As we have noted in Remark 11, if $T : A \rightarrow B$ is a linear map strongly preserving Moore-Penrose invertibility, then $T(1)T|_{soc(A)} : soc(A) \rightarrow B$ is a Jordan *-homomorphism and hence Ker(T) \cap soc(A) is a Jordan ideal of *A*. Therefore, if *A* is prime, either Ker(T) \cap soc(A) = {0}.

Having in mind these considerations and the proof of Theorem 12, we get the following result.

COROLLARY 14. Let A and B be C^* -algebras, and let $T : A \to B$ be a surjective linear map strongly preserving Moore-Penrose invertibility. Suppose that A is prime, unital, with non zero socle. If $T(\operatorname{soc}(A)) \neq \{0\}$, then T(I)T is a Jordan *-homomorphism, and T(I) commutes with the range of T.

REFERENCES

- [1] J. C. ALEXANDER, Compact Banach algebras, Proc. London Math. Soc. 18 (1968) 1–18.
- [2] B. A. BARNES, G. J. MURPHY, M. R. F. SMYTH, T. T. WEST, *Riesz and Fredholm theory in Banach algebras*, London Pitman, 1982.
- [3] A. BOURHIM, M. BURGOS, *Linear maps preserving regularity in C*-algebras*, Illinois J. Math. 53 (2009) 899–914.
- [4] A. BOURHIM, M. BURGOS, V. S. SHULMAN, Linear maps preserving the minimum and reduced minimum moduli, J. Funct. Anal. 258 (2010) 50–66.
- [5] N. BOUDI, M. MBEKHTA, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010) 117–130.
- [6] M. BREŠAR, A. FOŠNER, P. ŠEMRL, A note on invertibility preservers on Banach algebras, Proc. Amer. Math. Soc. 131 (2003) 3833–3837.

- [7] L. G. BROWN, G. K. PEDERSEN, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991) 131-149.
- [8] M. BURGOS, J. J. GARCÉS, A. M. PERALTA, Automatic continuity of biorthogonality preservers between compact C*-algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011) 221–230.
- [9] M. BURGOS, A note on orthogonality preserving maps on C*-algebras, preprint.
- [10] R. HARTE, M. MBEKHTA, On generalized inverses in C*-algebras, Studia Math. 103 (1992) 71–77.
- [11] R. HARTE, M. MBEKHTA, *Generalized inverses in C*-algebras II*, Studia Math. **106** (1993) 129–138.
 [12] I. N. HERSTEIN, *Topics in ring theory*, Univ. of Chicago Press, Chicago, 1969.
- [13] L. K. HUA, On the automorphisms of a sfield, Proc. Nat. Acad. Sci. U.S.A. 35 (1949) 386–389.
- [14] N. JACOBSON, Structure of rings, American Mathematical Society Colloquium Publications, 37. Revised edition American Mathematical Society, Providence, R.I., 1956.
- [15] Y.-F. LIN, M. MATHIEU, Jordan isomorphism of purely infinite C* -algebras, Quart. J. Math. 58 (2007) 249–253.
- [16] L. LINDEBOOM, H. RAUBENHEIMER, On regularities and Fredholm theory, Czechoslovak Math. J. 52 (2002) 565–574.
- [17] L. W. MARCOUX, On the linear span of the projections in certain simple C* -algebras, Indiana Univ. Math. J. 51 (2002) 753–771.
- [18] L. W. MARCOUX, G. J. MURPHY, Unitarily-invariant linear spaces in C*-algebras, Proc. Amer. Math. Soc. 126 (2002) 3597–3605.
- [19] L. W. MARCOUX, Sums of small number of commutators, J. Operator Theory 56 (2006) 111-142.
- [20] M. MATHIEU, Elementary operators on prime C* -algebras II, Glasgow Math. J. 30 (1988) 275-284.
- [21] M. MBEKHTA, A Hua type theorem and linear preserver problems, Math. Proc. Roy. Irish Acad. 109 (2009) 109–121.
- [22] C. PEARCY, D. TOPPING, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967) 453– 465.
- [23] K. YLINEN, Compact and finite-dimensional elements of normed algebras, Ann. Acad. Sci. Fenn. Ser. A I 428 (1968).
- [24] X. ZHANG, C. CAO, C. BU, Additive maps preserving M-P inverses of matrices over fields, Linear Multilinear Algebra 46 (1999) 199–211.

(Received July 5, 2011)

María Burgos Campus de Jerez Facultad de Ciencias Sociales y de la Comunicación Av. de la Universidad s/n 11405 Jerez, Cádiz Spain e-mail: maria.burgos@uca.es

> A. C. Márquez-García Departamento Álgebra y Análisis Matemático Universidad de Almería 04120 Almería Spain e-mail: acmarquezg@gmail.com

A. Morales-Campoy Departamento de Álgebra y Análisis Matemático Universidad de Almería 04120 Almería Spain e-mail: amorales@ual.es

Operators and Matrices www.ele-math.com oam@ele-math.com