LINEAR MAPS STRONGLY PRESERVING MOORE-PENROSE INVERTIBILITY

María Burgos, A. C. Márquez-García and A. Morales-Campoy

(Communicated by Peter Šemrl)

Abstract

Let A and B be C^{*}-algebras. We investigate linear maps from A to B strongly preserving Moore-Penrose invertibility, where A is unital, and either it is linearly spanned by its projections, or has large socle, or has real rank zero (in this last case the map T is assumed to be bounded).

1. Introduction

Let A be a (complex) Banach algebra. An element a in A is (von Neumann) regular if it has a generalized inverse, that is, if there exists b in A such that $a=a b a$ (b is an inner inverse of a) and $b=b a b$ (b is an outer inverse of a). Observe that the first equality $a=a b a$ is a necessary and sufficient condition for a to be regular, and that, if a has generalized inverse b, then $p=a b$ and $q=b a$ are idempotents in A with $a A=p A$ and $A a=A q$.

The generalized inverse of a regular element a is not unique. For an element a in A let us consider the left and right multiplication operators $L_{a}: x \mapsto a x$ and $R_{a}: x \mapsto x a$, respectively. If a is regular, then so are L_{a} and R_{a}, and thus their ranges $a A=L_{a}(A)$ and $A a=R_{a}(A)$ are both closed. The conorm (or the reduced minimum modulus) of an element a in a Banach algebra A, is defined as the reduced minimum modulus of the left multiplication operator by a,

$$
\gamma(a):=\gamma\left(L_{a}\right)= \begin{cases}\inf \left\{\|a x\|: \operatorname{dist}\left(x, \operatorname{ker}\left(L_{a}\right)\right) \geqslant 1\right\} & \text { if } a \neq 0 \\ \infty & \text { if } a=0\end{cases}
$$

If b is a generalized inverse of a, with $a \neq 0$, then

$$
\|b\|^{-1} \leqslant \gamma(a) \leqslant\|b a\|\|a b\|\|b\|^{-1}
$$

[^0](see [11, Theorem 2]).
Regular elements in unital C*-algebras have been studied by Harte and Mbekhta in [10] and [11]. The main results in those papers state that an element a in a C^{*}-algebra A is regular if and only if $a A$ is closed, equivalently $\gamma(a)>0$, and that
$$
\gamma(a)^{2}=\gamma\left(a^{*} a\right)=\inf \left\{\lambda: \lambda \in \sigma\left(a^{*} a\right) \backslash\{0\}\right\}=\gamma\left(a^{*}\right)^{2}
$$

Given a and b in A, b is said to be a Moore-Penrose inverse of a if b is a generalized inverse of a and the associated idempotents $a b$ and $b a$ are selfadjoint. It is known that every regular element a in A has a unique Moore-Penrose inverse that will be denoted by a^{\dagger}, and that

$$
\gamma(a)=\left\|a^{\dagger}\right\|^{-1}
$$

Denote by A^{\dagger} the set of regular elements in the C^{*}-algebra A.
Let A and B be C^{*}-algebras. We say that a map $T: A \rightarrow B$ strongly preserves Moore-Penrose invertibility if $T\left(a^{\dagger}\right)=T(a)^{\dagger}$, for all $a \in A^{\dagger}$. If A and B are both unital, with identity elements $\mathbf{1}_{A}$ and $\mathbf{1}_{B}$ respectively, the mapping T is called unital if $T\left(\mathbf{1}_{A}\right)=\mathbf{1}_{B}$.

In [21] Mbekhta started the study of the so called Hua type theorems and strongly preserver problems between Banach algebras. In the context of C^{*}-algebras, he proved that a surjective unital bounded linear map from a real rank zero C^{*}-algebra to a prime C*-algebra strongly preserves Moore-Penrose invertibility if and only if it is either a *-homomorphism or a ${ }^{*}$-antihomomorphism, and he conjectures that the same holds without any assumption on the C^{*}-algebras and when T is not assumed to be unital. (Linear maps strongly preserving Moore-Penrose invertibility for matrix algebras over some fields were previously considered by Zhang, Cao and Bu, [24].)

Recall that a linear (additive) map $T: A \rightarrow B$ between Banach algebras is a Jordan homomorphism if $T\left(a^{2}\right)=T(a)^{2}$, for all $a \in A$, or equivalently, $T(a b+b a)=$ $T(a) T(b)+T(b) T(a)$ for every a, b in A. A bijective Jordan homomorphism is called Jordan isomorphism. Clearly every homomorphism and every antihomomorphism is a Jordan homomorphism. It is well known that if $T: A \rightarrow B$ is a Jordan homomorphism then

$$
\begin{equation*}
T(a b c+c b a)=T(a) T(b) T(c)+T(c) T(b) T(a) \tag{1}
\end{equation*}
$$

for all $a, b, c \in A$.
If A and B are C^{*}-algebras, then T is called selfadjoint if $T\left(a^{*}\right)=T(a)^{*}$, for every $a \in A$. Selfadjoint Jordan homomorphism are named Jordan *-homomorphisms. Notice that every Jordan *-homomorphism strongly preserves Moore-Penrose invertibility (see Remark 8).

The study of linear maps strongly preserving Moore-Penrose invertibility is connected with regularity linear preserver problems in C^{*}-algebras. Recall that a linear map $T: A \rightarrow B$ between C^{*}-algebras preserves regularity if $T(a) \in B^{\dagger}$ whenever $a \in A^{\dagger}$, and that T preserves regularity in both directions when $T(a) \in B^{\dagger}$ if and only if $a \in A^{\dagger}$.

In [3] the authors showed that every surjective linear map $T: A \rightarrow B$ preserving regularity in both directions factorizes as a Jordan isomorphism through the generalized

Calkin algebras, in the case that A and B are prime C^{*}-algebras with non zero socle and A has real rank zero. Also if A has real rank zero and B has zero socle, it is proved that T preserves regularity if and only if it is a Jordan homomorphism.

Linear maps between C^{*}-algebras (strongly) preserving the conorm are considered in [4]. In that paper the authors proved that every unital (respectively, surjective) linear map $T: A \rightarrow B$, between unital C^{*}-algebras such that $\gamma(a)=\gamma(T(a))$, for every $a \in A$, is an isometric Jordan ${ }^{*}$-isomorphism (respectively, multiplied by a unitary element of B). Notice that every linear map strongly preserving the conorm preserves regularity in both directions, and that every bounded linear map $T: A \rightarrow B$ strongly preserving Moore-Penrose invertibility satisfies

$$
\gamma(a) \leqslant\|T\| \gamma(T(a)) \quad(a \in A)
$$

The present manuscript focusses on the study of strongly Moore-Penrose invertibility preservers in C^{*}-algebras with a rich structure of projections. Section 2 gathers some technical preliminary results. In Section 3 we consider C* ${ }^{*}$-algebras in which every element is a linear combination of projections. We prove that a linear map strongly preserving Moore-Penrose invertibility $T: A \rightarrow B$ between C^{*}-algebras, is a Jordan *-homomorphism multiplied by a regular element of B commuting with $T(A)$, whenever A is unital and linearly spanned by its projections, or when A is unital and has real rank zero and T is bounded.

Section 4 deals with C^{*}-algebras having large socle. We show that if $T: A \rightarrow B$ is a linear map strongly preserving Moore-Penrose invertibility between C^{*}-algebras, and A is unital with non zero socle, then T restricted to the socle of A is a Jordan *-homomorphism multiplied by a regular element commuting with the range of T. Also, we prove that every bijective linear map strongly preserving Moore-Penrose invertibility from a unital C^{*}-algebra with essential socle is a Jordan ${ }^{*}$-isomorphism multiplied by an involutory element.

Notice that our mappings are never assumed to be unital, and even the codomains do not necessarily have an identity element.

2. Preliminaries

In [21], Mbekhta showed that every unital linear continuous mapping $T: A \rightarrow B$ between unital C^{*}-algebras that strongly preserves Moore-Penrose invertibility is a Jordan homomorphism and preserves projections. In particular, T sends mutually orthogonal projections into mutually orthogonal projections. In the following proposition we generalize this result by showing that every linear mapping between C^{*}-algebras (not necessarily unital), strongly preserving Moore-Penrose invertibility, preserves orthogonality of regular elements. Recall that two elements a, b in a C^{*}-algebra A are said to be orthogonal, denoted by $a \perp b$, if $a b^{*}=b^{*} a=0$.

Proposition 1. Let A and B be C^{*}-algebras, and let $T: A \rightarrow B$ be a linear map strongly preserving Moore-Penrose invertibility. Then $a \perp b$ implies $T(a) \perp T(b)$ for all $a, b \in A^{\dagger}$.

Proof. Let $a, b \in A^{\dagger}$ with $a \perp b$. For every $\alpha \in \mathbb{Q} \backslash\{0\}$ it is easy to see that $(a+\alpha b)^{\dagger}=a^{\dagger}+\alpha^{-1} b^{\dagger}$. By assumption,

$$
(T(a)+\alpha T(b))\left(T(a)^{\dagger}+\alpha^{-1} T(b)^{\dagger}\right)(T(a)+\alpha T(b))=T(a)+\alpha T(b)
$$

which yields

$$
\begin{aligned}
\alpha^{-1} T(a) T(b)^{\dagger} T(a) & +\left(T(a) T(b)^{\dagger} T(b)+T(b) T(b)^{\dagger} T(a)\right) \\
& +\alpha\left(T(b) T(a)^{\dagger} T(a)+T(a) T(a)^{\dagger} T(b)\right) \\
& +\alpha^{2} T(b) T(a)^{\dagger} T(b)=0,
\end{aligned}
$$

for every $\alpha \in \mathbb{Q} \backslash\{0\}$. Hence

$$
T(a) T(b)^{\dagger} T(b)+T(b) T(b)^{\dagger} T(a)=0
$$

By multiplying the last equation on the right, and on the left, respectively, by $T(b)^{\dagger}$ it follows that

$$
\begin{equation*}
T(a) T(b)^{\dagger}=-T(b) T(b)^{\dagger} T(a) T(b)^{\dagger} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
T(b)^{\dagger} T(a)=-T(b)^{\dagger} T(a) T(b)^{\dagger} T(b) \tag{3}
\end{equation*}
$$

As

$$
\left(T(a)^{\dagger}+\alpha^{-1} T(b)^{\dagger}\right)(T(a)+\alpha T(b))\left(T(a)^{\dagger}+\alpha^{-1} T(b)^{\dagger}\right)=T(a)^{\dagger}+\alpha^{-1} T(b)^{\dagger}
$$

for every $\alpha \in \mathbb{Q} \backslash\{0\}$, we get analogously

$$
\begin{equation*}
T(b)^{\dagger} T(a) T(b)^{\dagger}=0 \tag{4}
\end{equation*}
$$

From Equations (2), (3) and (4) we deduce that $T(a) T(b)^{\dagger}=0$ and $T(b)^{\dagger} T(a)=0$. Equivalently, $T(a) T(b)^{*}=0$ and $T(b)^{*} T(a)=0$, that is, $T(a) \perp T(b)$.

Let A and B be C^{*}-algebras. In what follows, let us assume that A is unital with identity element 1. It is clear that the zero map strongly preserves Moore-Penrose invertibility. In the next proposition we show that this is the only map strongly preserving Moore-Penrose invertibility that annihilates the identity element.

Proposition 2. Let A and B be C^{*}-algebras, and let $T: A \rightarrow B$ be a linear map strongly preserving Moore-Penrose invertibility. Then either $T(\boldsymbol{1}) \neq 0$ or $T=0$.

Proof. If b and $\mathbf{1}+b$ are invertible elements in A, then as consequence of Hua's identity (see [13])

$$
\mathbf{1}=(\mathbf{1}+b)^{-1}+\left(\mathbf{1}+b^{-1}\right)^{-1}
$$

Since T strongly preserves Moore-Penrose invertibility,

$$
T(\mathbf{1})=T\left((\mathbf{1}+b)^{-1}\right)+T\left(\left(\mathbf{1}+b^{-1}\right)^{-1}\right)=(T(\mathbf{1})+T(b))^{\dagger}+\left(T(\mathbf{1})+T(b)^{\dagger}\right)^{\dagger}
$$

If we assume that $T(\mathbf{1})=0$, then we get

$$
T(b)^{\dagger}+T(b)=0
$$

for every invertible element $b \in A$ with $\mathbf{1}+b$ invertible. Thus, let a be an invertible element in A, and $\alpha \in \mathbb{Q} \backslash\{0\}$ be such that $|\alpha|<\|a\|^{-1}$. It is clear that αa and $\mathbf{1}+\alpha a$ are invertible, and therefore $T(a)^{\dagger}=-\alpha^{2} T(a)$. By the uniqueness of the MoorePenrose inverse, it follows that $T(a)=0$. Thus T is the zero map.

Notice that if $T: A \rightarrow B$ is a non zero linear map strongly preserving MoorePenrose invertibility, and $T(\mathbf{1})$ commutes with $T(A)$, then $B^{\prime}=T(\mathbf{1})^{2} B T(\mathbf{1})^{2}$ is a C^{*}-algebra with identity $T(\mathbf{1})^{2}\left(T(\mathbf{1})^{2} \neq 0\right.$ in view of the preceding proposition), the map $S=T(\mathbf{1})^{2} T$ from A to B^{\prime} strongly preserves Moore-Penrose invertibility, and $S(\mathbf{1})$ is invertible. A closer look at the arguments employed in Theorem 3.5, Lemma 3.7 and Proposition 3.10 in [5], where the authors only required the Hua's identity and the inner relation of the generalized inverse on invertible elements, reveals that the same reasoning works with Moore-Penrose invertibility. Obviously B^{\prime} has an identity element even if B is not unital.

Proposition 3. Let A and B be C^{*}-algebras, and T be a linear map such that $T(\mathbf{1})$ commutes with the range of T. If T strongly preserves Moore-Penrose invertibility, then $T(\mathbf{1}) T$ is a Jordan homomorphism.

We finish this section with a technical lemma which together with Proposition 3 will be the key tool for the next sections. It describes the behaviour of a linear map strongly preserving Moore-Penrose invertibility with respect to the projections.

Lemma 4. Let A and B be C^{*}-algebras. Let $T: A \rightarrow B$ be a linear map strongly preserving Moore-Penrose invertibility. For every projection $p \in A$:
(a) $T(p) T(\mathbf{1})^{*}=T(\mathbf{1}) T(p)^{*}$ and $T(\boldsymbol{1})^{*} T(p)=T(p)^{*} T(\mathbf{1})$,
(b) $T(p)=T(p) T(\boldsymbol{1})^{2}=T(\boldsymbol{1})^{2} T(p)$,
(c) $T(p) T(\boldsymbol{1})=T(\boldsymbol{1}) T(p)=(T(p) T(\boldsymbol{1}))^{*}$.

Proof. For the sake of simplicity, write $h=T(\mathbf{1})$. Let p be a non zero projection in A. As $p \perp(\mathbf{1}-p)$, and by Proposition $1, T$ preserves orthogonality of regular elements, then $T(p) \perp(h-T(p))$, that is, $T(p) h^{*}=T(p) T(p)^{*}$ and $h^{*} T(p)=$ $T(p)^{*} T(p)$. In particular, $T(p) h^{*}=h T(p)^{*}$ and $h^{*} T(p)=T(p)^{*} h$. Since $h=h^{\dagger}$, it is clear that $h^{3}=h$, and $h^{2}=\left(h^{2}\right)^{*}$. Hence

$$
\begin{aligned}
T(p)^{*} T(p) h^{2} & =h^{*} T(p) h^{2}=T(p)^{*} h h^{2}=T(p)^{*} h \\
& =h^{*} T(p)=T(p)^{*} T(p)
\end{aligned}
$$

Again, $T(p)=T(p)^{\dagger}$ gives $T(p)^{3}=T(p)$ and thus $T(p)^{*} T(p)\left(h^{2}-T(p)^{2}\right)=0$. By the cancellation law, $T(p) h^{2}=T(p)^{3}=T(p)$. In the same way, $T(p)=h^{2} T(p)$,

$$
\begin{aligned}
& T(p)^{*}=h^{2} T(p)^{*} \text { and } T(p)^{*} h^{2}=T(p)^{*} \text {. Also, } \\
& \qquad \begin{aligned}
T(p) h & =h^{2} T(p) h=h^{*} h^{*} T(p) h=h^{*} T(p)^{*} h^{2}=h^{*} T(p)^{*} \\
& =(T(p) h)^{*}
\end{aligned}
\end{aligned}
$$

Analogously, $(h T(p))^{*}=h T(p)$.
It only remains to prove that $h T(p)=T(p) h$. Since $T(p)=h^{2} T(p)=T(p) h^{2}$, it suffices to show that $T(p)=h T(p) h$. Having in mind the uniqueness of the MoorePenrose inverse, and that $T(p)^{\dagger}=T\left(p^{\dagger}\right)=T(p)$ we proceed by checking that $h T(p) h$ is the Moore-Penrose inverse of $T(p)$. As $T(p) h=h^{*} T(p)^{*}, h T(p)=T(p)^{*} h^{*}$, $T(p)^{*} T(p)=h^{*} T(p), h^{2}=\left(h^{2}\right)^{*}$ and $h^{3}=h$, we get

$$
\begin{aligned}
T(p)(h T(p) h) T(p) & =T(p) h h^{*} T(p)^{*} T(p)=T(p) h h^{*} h^{*} T(p) \\
& =T(p) h T(p)=T(p) T(p)^{*} h^{*}=T(p)\left(h^{*}\right)^{2}=T(p)
\end{aligned}
$$

From this it is clear that, $(h T(p) h) T(p)(h T(p) h)=h T(p) h$, and since

$$
T(p)(h T(p) h)=(T(p) h) T(p) h=h^{*} T(p)^{*} T(p) h=h^{*} h^{*} T(p) h=T(p) h
$$

and similarly $(h T(p) h) T(p)=h T(p)$, are selfadjoint, this shows that $h T(p) h=T(p)^{\dagger}$, as desired.

REMARK 5. Note that, as every additive map $T: A \rightarrow B$ between Banach algebras is \mathbb{Q}-linear, the results in this section also hold if we change the linearity with additivity.

3. C^{*}-algebras linearly spanned by their projections and real rank zero C^{*}-algebras

In many C^{*}-algebras every element can be expressed as a finite linear combination of projections: properly infinite C^{*}-algebras, von Neumann algebras of type $I I_{1}$, unital simple C^{*}-algebras of real rank zero with no tracial states, unital simple AF C^{*}-algebras with finitely many extremal states, UHF C* -algebras, Bunce-Deddens algebras, irrotational rotation algebras...(See for instance [17], [18], [19], [22], [15] and the references therein.) The following theorem describes linear maps strongly preserving Moore-Penrose invertibility from C* -algebras linearly spanned by their projections. In particular, by [22, Corollary 2.3], it applies to the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space (compare with Theorem 3.3 $(i) \Rightarrow(i i)$ in [21], where T is assumed to be bounded, unital, and bijective).

THEOREM 6. Let $T: A \rightarrow B$ be a linear map strongly preserving Moore-Penrose invertibility between C^{*}-algebras, where A is unital. Assume that every element of A is a finite linear combination of projections. Then $T(\mathbf{1}) T$ is a Jordan *-homomorphism and $T(\boldsymbol{1})$ commutes with the range of T.

Proof. From A being linearly spanned by its projections, by Lemma 4 it is clear that $T(x) T(\mathbf{1})=\left(T\left(x^{*}\right) T(\mathbf{1})\right)^{*}=T(\mathbf{1}) T(x)$, for every $x \in A$. The conclusions can be obtained directly by applying Proposition 3.

Recall that a C^{*}-algebra A is of real rank zero if the set of all real linear combinations of orthogonal projections is dense in the set of all hermitian elements of A (see [7]). Notice that every von Neumann algebra, and, in particular, the algebra of all bounded linear operators on a complex Hilbert space H is of real rank zero.

Theorem 7. Let A and B be C^{*}-algebras, and $T: A \rightarrow B$ be a bounded linear map strongly preserving Moore-Penrose invertibility. Suppose that A is unital of real rank zero. Then:

1. $T(\boldsymbol{1})$ commutes with the range of T,
2. $T(\boldsymbol{1}) T$ is a Jordan ${ }^{*}$-homomorphism.

Proof. As T is continuous and A has real rank zero, the theorem can be proved as the previous one by applying Lemma 4 and Proposition 3.

REMARK 8. Every Jordan *-homomorphism between C*-algebras strongly preserves Moore-Penrose invertibility. Indeed if $a \in A^{\dagger}$, and $b=a^{\dagger}$, from Equation (1) it is clear that $T(a)=T(a) T(b) T(a)$ and $T(b)=T(b) T(a) T(b)$. Thus it remains to show that $T(b) T(a)$ and $T(a) T(b)$ are selfadjoint. As $a=b^{*} a^{*} a=a a^{*} b^{*}$, in particular $2 a=b^{*} a^{*} a+a a^{*} b^{*}$, and since T is a Jordan *-homomorphism, it is clear that

$$
2 T(a)=T(b)^{*} T(a)^{*} T(a)+T(a) T(a)^{*} T(b)^{*}
$$

By multiplying on the left by $T(a)^{*}$, we get that

$$
T(a)^{*} T(a)=T(a)^{*} T(a) T(a)^{*} T(b)^{*}
$$

or equivalently $T(a)^{*} T(a)\left(T(b) T(a)-T(a)^{*} T(b)^{*}\right)=0$, which implies that $T(a)=$ $T(a) T(a)^{*} T(b)^{*}$, and hence $T(b) T(a)=T(b) T(a) T(a)^{*} T(b)^{*}$ is selfadjoint.

Moreover if $T: A \rightarrow B$ is a Jordan *-homomorphism between C^{*}-algebras and u is a regular element in B such that $u=u^{\dagger}$, and u commutes with the range if T, it is clear that $u T$ also strongly preserves Moore-Penrose invertibility.

As we have mentioned in the Introduction, in [21, Theorem 3.2] Mbekhta shows that a surjective unital continuous linear mapping from a real rank zero unital C^{*} algebra onto a prime unital C^{*}-algebra is either a^{*}-homomorphism or a ${ }^{*}$-antihomomorphism if and only if it strongly preserves Moore-Penrose invertibility. In the following result, we characterize bounded linear maps (not necessarily surjective nor unital) strongly preserving Moore-Penrose invertibility on a real rank zero unital C* algebra.

Corollary 9. Let A and B be C^{*}-algebras, and let $T: A \rightarrow B$ be a bounded linear map. Suppose that A is unital of real rank zero. The following are equivalent:

1. T strongly preserves Moore-Penrose invertibility,

2. $T(\mathbf{1})^{\dagger}=T(\mathbf{1}), T=S T(\mathbf{1})=T(\mathbf{1}) S$ for a Jordan ${ }^{*}$-homomorphism S.

Proof. The implication (1) $\Rightarrow(2)$ is a direct consequence of Theorem 7, and the converse follows from Remark 8.

4. $C *$-algebras of large socle

Let A be a C^{*}-algebra. An element x of A is finite (compact) in A, if the wedge operator $x \wedge x: A \rightarrow A$, given by $x \wedge x(a)=x a x$, is a finite rank (compact) operator on A. It is known that the ideal $\mathscr{F}(A)$ of finite rank elements in A coincides with the socle of $A, \operatorname{soc}(A)$, that is, the sum of all minimal right (equivalently left) ideals of A, and that $\mathscr{K}(A)=\overline{\operatorname{soc}(A)}$ is the ideal of compact elements in A. Every element in the socle of a C^{*}-algebra is a linear combination of minimal projections (a projection p in a C*-algebra A is said to be minimal if $p A p=\mathbb{C} p$). We refer to [1,2,23], for the basic references on the socle.

It is known that every element in the socle of a C^{*}-algebra A is regular and that $A^{\dagger}+\operatorname{soc}(A) \subset A^{\dagger}$ (see for instance [16, Theorem 6.3]). This fact together with Proposition 1 allow us to employ the techniques on orthogonality preserving maps on C^{*} algebras with large socle in order to determine the structure of strongly Moore-Penrose invertibility linear preservers. The following lemma is inspired in [9] (see also [8]). Recall that every C^{*}-algebra can be endowed with a Jordan product $a \circ b:=\frac{1}{2}(a b+b a)$, and a Jordan triple product defined as $\{a b c\}:=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$.

For the rest of the section A and B are C^{*}-algebras, and $T: A \rightarrow B$ is a linear map strongly preserving Moore-Penrose invertibility. We assume that A is unital with non zero socle.

LEMMA 10. For every $a \in A$ and $x \in \operatorname{soc}(A)$, the following identities hold:
(a) $2 T(a \circ x) T(\mathbf{1})^{*}=T(a) T\left(x^{*}\right)^{*}+T(x) T\left(a^{*}\right)^{*}$ and $2 T(\mathbf{1})^{*} T(a \circ x)=T\left(x^{*}\right)^{*} T(a)+T\left(a^{*}\right)^{*} T(x)$,
(b) $T(x) T(\boldsymbol{1})^{*} T(a)=T(x) T\left(a^{*}\right)^{*} T(\boldsymbol{1})$ and $T(a) T(\boldsymbol{1})^{*} T(x)=T(\boldsymbol{1}) T\left(a^{*}\right)^{*} T(x)$,
(c) $T(x) T(\boldsymbol{1}) T(a)=T(x) T\left(a^{*}\right)^{*} T(\mathbf{1})^{*}$ and $T(a) T(\boldsymbol{1}) T(x)=T(\boldsymbol{1})^{*} T\left(a^{*}\right)^{*} T(x)$,
(d) $\{T(x) T(a) T(x)\}=T(\{x a x\}) T(\mathbf{1})^{*} T(\mathbf{1})$,

Proof. As above denote $T(\mathbf{1})$ by h. In view of Lemma 4, since every element of the socle is a linear combination of minimal projections, it follows directly that, $T(x) h^{*}=h T\left(x^{*}\right)^{*}, h^{*} T(x)=T\left(x^{*}\right)^{*} h, T(x) h=h T(x)=h^{*} T\left(x^{*}\right)^{*}=T\left(x^{*}\right)^{*} h^{*}$, and $T(x)=T(x) h^{2}$ for every $x \in \operatorname{soc}(A)$.

Let p, q be minimal projections in A. Since $q p$ and $(\mathbf{1}-q)(\mathbf{1}-p)=\mathbf{1}-p-q+$ $q p$ are mutually orthogonal regular elements, by Proposition 1, $T(q p) \perp T(\mathbf{1}-q-p+$ $q p)$. Therefore

$$
T(q p) h^{*}-T(q p) T(q)^{*}-T(q p) T(p)^{*}+T(q p) T(q p)^{*}=0
$$

As $q(\mathbf{1}-p) \perp(\mathbf{1}-q) p$, we also have $T(q-q p) \perp T(p-q p)$, that is

$$
T(q) T(p)^{*}-T(q) T(q p)^{*}-T(q p) T(p)^{*}+T(q p) T(q p)^{*}=0
$$

Taking into account these equations and $\operatorname{soc}(A)$ being linearly spanned by the minimal projections, we can prove

$$
\begin{equation*}
T(y x+x y) h^{*}=T(y) T\left(x^{*}\right)^{*}+T(x) T\left(y^{*}\right)^{*} \tag{5}
\end{equation*}
$$

for all $x, y \in \operatorname{soc}(A)$ (compare with the proof of Theorem 14 in [8]). Besides, given a minimal projection p in A and an invertible element b in A, p and $(\mathbf{1}-p) b(\mathbf{1}-p)=$ $b-b p-p b+p b p$ are mutually orthogonal regular elements. Thus $T(p)^{*} T(b)=$ $T(p)^{*} T(b p+p b-p b p)$ and $T(b) T(p)^{*}=T(b p+p b-p b p) T(p)^{*}$. Equation (5) yields

$$
\begin{aligned}
T(b p+p b) h^{*}= & T((b p+p b) p+p(b p+p b)-2 p b p) h^{*} \\
= & T(b p+p b) T(p)^{*}+T(p) T\left(b^{*} p+p b^{*}\right)^{*} \\
& -T(p b p) T(p)^{*}-T(p) T\left(p b^{*} p\right)^{*} \\
= & T(b p+p b-p b p) T(p)^{*}+T(p) T\left(b^{*} p+p b^{*}-p b^{*} p\right)^{*} \\
= & T(b) T(p)^{*}+T(p) T\left(b^{*}\right)^{*} .
\end{aligned}
$$

As $T(p) h^{*}=h T(p)^{*}$, given $a \in A$ and $\alpha \in \mathbb{C}$ such that $a-\alpha$ is invertible, the last equation gives $T(a p+p a) h^{*}=T(a) T(p)^{*}+T(p) T\left(a^{*}\right)^{*}$, and by the linearity of T

$$
\begin{equation*}
T(a x+x a) h^{*}=T(a) T\left(x^{*}\right)^{*}+T(x) T\left(a^{*}\right)^{*} \quad(a \in A, x \in \operatorname{soc}(A)) \tag{6}
\end{equation*}
$$

The other equality of (a) can be proved analogously.
Again for a minimal projection p in A, and an invertible element $b \in A$, from $p \perp(\mathbf{1}-p) b(\mathbf{1}-p)$, we obtain

$$
\begin{aligned}
T(p) h^{*} T(b) & =T(p) T(p)^{*} T(b)=T(p) T(p)^{*} T(b p+p b-p b p) \\
& =T(p) h^{*} T(b p+p b-p b p)=T(p) T\left((b p+p b-p b p)^{*}\right)^{*} h \\
& =T(p) T\left(b^{*}\right)^{*} h
\end{aligned}
$$

and

$$
\begin{aligned}
T(p) h T(b) & =h^{*} T(p)^{*} T(b)=h^{*} T(p)^{*} T(b p+p b-p b p) \\
& =T(p) h T(b p+p b-p b p)=T(p) T\left((b p+p b-p b p)^{*}\right)^{*} h^{*} \\
& =T(p) T\left(b^{*}\right)^{*} h^{*}
\end{aligned}
$$

This proves that

$$
\begin{equation*}
T(x) h^{*} T(a)=T(x) T\left(a^{*}\right)^{*} h, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
T(x) h T(a)=T(x) T\left(a^{*}\right)^{*} h^{*}, \tag{8}
\end{equation*}
$$

for all $x \in \operatorname{soc}(A)$ and $a \in A$. The other relations of (b) and (c) can be deduced in an obvious way.

In order to prove equality (d), let $x \in \operatorname{soc}(A)$ and $a \in A$. By the definition of the triple product in a C^{*}-algebra and the statements just proved we get

$$
\begin{aligned}
T(\{x a x\}) h^{*} h= & 2 T\left(\left(x \circ a^{*}\right) \circ x\right) h^{*} h-T\left(x^{2} \circ a^{*}\right) h^{*} h \\
= & \left(T\left(x \circ a^{*}\right) T\left(x^{*}\right)^{*}+T(x) T\left(x^{*} \circ a\right)^{*}\right) h \\
& -\frac{1}{2}\left(T\left(x^{2}\right) T(a)^{*}+T\left(a^{*}\right) T\left(\left(x^{2}\right)^{*}\right)^{*}\right) h \\
= & T\left(x \circ a^{*}\right) h^{*} T(x)+T(x) h^{*} T\left(x \circ a^{*}\right) \\
& -\frac{1}{2}\left(T\left(x^{2}\right) h^{*} T\left(a^{*}\right)+T\left(a^{*}\right) T\left(\left(x^{2}\right)^{*}\right)^{*} h\right) \\
= & \frac{1}{2}\left(\left(T(x) T(a)^{*}+T\left(a^{*}\right) T\left(x^{*}\right)^{*}\right) T(x)\right) \\
& +\frac{1}{2}\left(T(x)\left(T\left(x^{*}\right)^{*} T\left(a^{*}\right)+T(a)^{*} T(x)\right)\right) \\
& -\frac{1}{2}\left(\left(T(x) T\left(x^{*}\right)^{*} T\left(a^{*}\right)+T\left(a^{*}\right) T\left(x^{*}\right)^{*} T(x)\right)\right. \\
= & \{T(x) T(a) T(x)\} . \quad \square
\end{aligned}
$$

REMARK 11. From the preceding lemma, it is clear that

$$
T(\mathbf{1}) T(x)=\left(T(\mathbf{1}) T\left(x^{*}\right)\right)^{*}
$$

and

$$
T(\mathbf{1}) T\left(x^{2}\right)=T(\mathbf{1}) T\left(x^{2}\right)\left(T(\mathbf{1})^{*}\right)^{2}=T(\mathbf{1}) T(x) T\left(x^{*}\right)^{*} T(\mathbf{1})^{*}=(T(\mathbf{1}) T(x))^{2}
$$

for every element x in the socle of A. This shows that the mapping $x \mapsto T(\mathbf{1}) T(x)$ is a Jordan ${ }^{*}$-homomorphism from $\operatorname{soc}(A)$ to B.

It is well known that every element of the socle is a finite sum of rank-one elements. Recall that a non zero element $u \in A$ is said to be of rank-one if u belongs to some minimal left ideal of A, that is, if $u=u e$ for some minimal idempotent e of A. A non zero element $u \in A$ has rank-one if and only if $u A u=\mathbb{C} u$, and this is equivalent to the condition $|\sigma(x u) \backslash\{0\}| \leqslant 1$, for all $x \in A$ (also equivalent to $|\sigma(u x) \backslash\{0\}| \leqslant 1$, for all $x \in A$), where $\sigma(x)$ denotes the spectrum of x. Let us denote the set of rank-one elements in A by $\mathscr{F}_{1}(A)$.

Recall that an ideal I of a Banach algebra A is called essential if it has non zero intersection with every non zero ideal of A. If A is semisimple (in particular, if A is a C^{*}-algebra) this is equivalent to the condition $a I=0$ implies $a=0$.

Theorem 12. Assume that T does not annihilate rank-one elements.

1. If $T(a) T(\mathbf{1})-T(\mathbf{1}) T(a) \in T(A)$ for every $a \in A$, then $T^{-1}(T(a) T(\boldsymbol{1})-T(\boldsymbol{1}) T(a))$ $\operatorname{soc}(A)=\{0\}$, for every $a \in A$.
2. If $T(a) T(\mathbf{1})-(T(a) T(\mathbf{1}))^{*} \in T(A)$ for every selfadjoint element $a \in A$, then $T^{-1}\left(T(a) T(\mathbf{1})-T(\mathbf{1})^{*} T\left(a^{*}\right)^{*}\right) \operatorname{soc}(A)=\{0\}$, for every $a \in A$.

In particular, if $\operatorname{soc}(A)$ is essential, then $T(\mathbf{1}) T$ is a Jordan *-homomorphism, and $T(\boldsymbol{1})$ commutes with the range of T.

Proof. Again write $h=T(\mathbf{1})$. Let $x \in \operatorname{soc}(A)$ and $a \in A$. From (d) of Lemma 10 , by multiplying on the right by $h h^{*}$

$$
\begin{aligned}
T(\{x a x\}) & =T(x) T(a)^{*} T(x) h h^{*}=T(x) T(a)^{*} h T(x) h^{*} \\
& =T(x) T(a)^{*} h^{2} T\left(x^{*}\right)^{*}=T(x) T(a)^{*} T\left(x^{*}\right)^{*}
\end{aligned}
$$

Moreover, since $T(\{x a x\}) h^{*} h=h h^{*} T(\{x a x\})$, we also get (by multiplying on the left by $h^{*} h$)

$$
T(\{x a x\})=h^{*} T(x) h T(a)^{*} T(x)=T\left(x^{*}\right)^{*} h^{2} T(a)^{*} T(x)=T\left(x^{*}\right)^{*} T(a)^{*} T(x)
$$

Therefore,

$$
\begin{aligned}
\{T(x)(T(a) h) T(x)\} & =T(x) h^{*} T(a)^{*} T(x)=h T\left(x^{*}\right)^{*} T(a)^{*} T(x) \\
& =h T(\{x a x\})=T(\{x a x\}) h=T(x) T(a)^{*} T\left(x^{*}\right)^{*} h \\
& =T(x) T(a)^{*} h^{*} T(x)=\{T(x)(h T(a)) T(x)\}
\end{aligned}
$$

If $T(a) h-h T(a) \in T(A)$, there exists $b \in A$ such that $T(b)=T(a) h-h T(a)$. The last identities show that

$$
0=\{T(x) T(b) T(x)\}=T(\{x b x\}) h^{*} h
$$

and hence $T(\{x b x\})=0$. In particular $T(\{u b u\})=0$ for every $u \in \mathscr{F}_{1}(A)$. As T does not annihilate rank-one elements, and for every $u \in \mathscr{F}_{1}(A), u b u=0$ or $u b u$ has rank-one, it follows that $u b u=0$ for all $u \in \mathscr{F}_{1}(A)$. This implies that $b u=0$ for every $u \in \mathscr{F}_{1}(A)$ (see for instance the proof of Theorem 1.1 in [6]). Hence $b \operatorname{Soc}(A)=\{0\}$, that is,

$$
\begin{equation*}
T^{-1}(T(a) h-h T(a)) \operatorname{soc}(A)=\{0\} \tag{9}
\end{equation*}
$$

From Lemma $10(c)$, it follows that

$$
\begin{aligned}
\{T(x)(T(a) h) T(x)\} & =T(x) h^{*} T(a)^{*} T(x)=T(x) T\left(a^{*}\right) h T(x) \\
& =\left\{T(x)\left(h^{*} T\left(a^{*}\right)^{*}\right) T(x)\right\}
\end{aligned}
$$

Whenever $T(z) h-(T(z) h)^{*} \in T(A)$, for every selfadjoint element $z \in A$, it is clear that $T(a) h-h^{*} T\left(a^{*}\right)^{*}$ lies in $T(A)$, for every $a \in A$. Then, as above, we can prove

$$
\begin{equation*}
T^{-1}\left(T(a) h-h^{*} T\left(a^{*}\right)^{*}\right) \operatorname{soc}(A)=\{0\} \tag{10}
\end{equation*}
$$

If $\operatorname{soc}(A)$ is essential, by Equation (9), h commutes with $T(A)$, and by Proposition 3, $S=h T$ is a Jordan homomorphism. Besides, Equation (10) gives $T(a) h=$ $h^{*} T\left(a^{*}\right)^{*}=\left(T\left(a^{*}\right) h\right)^{*}$ for all $a \in A$, which shows that S is selfadjoint.

Notice that if $T: A \rightarrow B$ is a bijective linear map strongly preserving MoorePenrose invertibility, and $\operatorname{soc}(A)$ is essential, since

$$
\left\{T(x)\left(T(a) T\left(\mathbf{1}_{A}\right)^{2}\right) T(x)\right\}=\{T(x) T(a) T(x)\}=\left\{T(x)\left(T\left(\mathbf{1}_{A}\right)^{2} T(a)\right) T(x)\right\}
$$

we can obtain that $T(a) T\left(\mathbf{1}_{A}\right)^{2}=T(a)=T\left(\mathbf{1}_{A}\right)^{2} T(a)$, for every $a \in A$, and hence B is unital with identity element $\mathbf{1}_{B}=T\left(\mathbf{1}_{A}\right)^{2}$. The following corollary can be derived now as an easy consequence.

Corollary 13. Let A and B be C^{*}-algebras. Suppose that A is unital with essential socle. Let $T: A \rightarrow B$ be a bijective linear map. The following are equivalent:

1. T strongly preserves Moore-Penrose invertibility,

2. $T\left(\boldsymbol{1}_{A}\right)^{2}=\boldsymbol{1}_{B}, T=T\left(\boldsymbol{1}_{A}\right) S=S T\left(\boldsymbol{1}_{A}\right)$ for a Jordan ${ }^{*}$-isomorphism S.

We conclude this section by considering the case of linear mappings from prime C^{*}-algebras with non zero socle. Recall that every prime C^{*}-algebra A with non zero socle is primitive (see [20]) and hence its socle is a simple algebra which is contained in every non zero (Jordan) ideal of A (see [14, IV §9] and [12, Theorem 1.1]). As we have noted in Remark 11, if $T: A \rightarrow B$ is a linear map strongly preserving MoorePenrose invertibility, then $\left.T(\mathbf{1}) T\right|_{\operatorname{soc}(A)}: \operatorname{soc}(A) \rightarrow B$ is a Jordan *-homomorphism and hence $\operatorname{Ker}(T) \cap \operatorname{soc}(A)$ is a Jordan ideal of A. Therefore, if A is prime, either $\operatorname{Ker}(T) \cap$ $\operatorname{soc}(\mathrm{A})=\{0\}$ or $T(\operatorname{soc}(A))=\{0\}$.

Having in mind these considerations and the proof of Theorem 12, we get the following result.

Corollary 14. Let A and B be C^{*}-algebras, and let $T: A \rightarrow B$ be a surjective linear map strongly preserving Moore-Penrose invertibility. Suppose that A is prime, unital, with non zero socle. If $T(\operatorname{soc}(A)) \neq\{0\}$, then $T(\mathbf{1}) T$ is a Jordan *homomorphism, and $T(\mathbf{1})$ commutes with the range of T.

REFERENCES

[1] J. C. Alexander, Compact Banach algebras, Proc. London Math. Soc. 18 (1968) 1-18.
[2] B. A. Barnes, G. J. Murphy, M. R. F. Smyth, T. T. West, Riesz and Fredholm theory in Banach algebras, London Pitman, 1982.
[3] A. Bourhim, M. Burgos, Linear maps preserving regularity in C^{*}-algebras, Illinois J. Math. 53 (2009) 899-914.
[4] A. Bourhim, M. Burgos, V. S. Shulman, Linear maps preserving the minimum and reduced minimum moduli, J. Funct. Anal. 258 (2010) 50-66.
[5] N. Boudi, M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010) 117-130.
[6] M. Brešar, A. Fošner, P. Šemrl, A note on invertibility preservers on Banach algebras, Proc. Amer. Math. Soc. 131 (2003) 3833-3837.
[7] L. G. Brown, G. K. Pedersen, C* -algebras of real rank zero, J. Funct. Anal. 99 (1991) 131-149.
[8] M. Burgos, J. J. Garcés, A. M. Peralta, Automatic continuity of biorthogonality preservers between compact C^{*}-algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011) 221-230.
[9] M. Burgos, A note on orthogonality preserving maps on C^{*}-algebras, preprint.
[10] R. Harte, M. Mbekhta, On generalized inverses in C^{*}-algebras, Studia Math. 103 (1992) 71-77.
[11] R. Harte, M. Mbekhta, Generalized inverses in C*-algebras II, Studia Math. 106 (1993) 129-138.
[12] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
[13] L. K. HuA, On the automorphisms of a sfield, Proc. Nat. Acad. Sci. U.S.A. 35 (1949) 386-389.
[14] N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, 37. Revised edition American Mathematical Society, Providence, R.I., 1956.
[15] Y.-F. Lin, M. Mathieu, Jordan isomorphism of purely infinite C^{*}-algebras, Quart. J. Math. 58 (2007) 249-253.
[16] L. Lindeboom, H. Raubenheimer, On regularities and Fredholm theory, Czechoslovak Math. J. 52 (2002) 565-574.
[17] L. W. Marcoux, On the linear span of the projections in certain simple C^{*}-algebras, Indiana Univ. Math. J. 51 (2002) 753-771.
[18] L. W. Marcoux, G. J. Murphy, Unitarily-invariant linear spaces in C^{*}-algebras, Proc. Amer. Math. Soc. 126 (2002) 3597-3605.
[19] L. W. Marcoux, Sums of small number of commutators, J. Operator Theory 56 (2006) 111-142.
[20] M. Mathieu, Elementary operators on prime C^{*}-algebras II, Glasgow Math. J. 30 (1988) 275-284.
[21] M. Mbekhta, A Hua type theorem and linear preserver problems, Math. Proc. Roy. Irish Acad. 109 (2009) 109-121.
[22] C. Pearcy, D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967) 453465.
[23] K. Ylinen, Compact and finite-dimensional elements of normed algebras, Ann. Acad. Sci. Fenn. Ser. A I 428 (1968).
[24] X. Zhang, C. CaO, C. Bu, Additive maps preserving M-P inverses of matrices over fields, Linear Multilinear Algebra 46 (1999) 199-211.
(Received July 5, 2011)

> María Burgos
> Campus de Jerez Facultad de Ciencias Sociales y de la Comunicación Av. de la Universidad s/n 11405 Jerez, Cádiz
> Spain
> e-mail: maria.burgos@uca.es
> A. C. Márquez-García Departamento Álgebra y Análisis Matemático Universidad de Almería 04120 Almería Spain
> e-mail: acmarquezg@gmail.com
> A. Morales-Campoy Departamento de Álgebra y Análisis Matemático
> Universidad de Almería 04120 Almería Spain
> e-mail: amorales@ual. es

[^0]: Mathematics subject classification (2010): 47B49, 46L05, 47B48.
 Keywords and phrases: Linear preservers, C^{*}-algebras, Moore-Penrose invertibility, Jordan *homomorphism.

 The authors are partially supported by I+D MEC projects no. MTM 2011-23843, MTM 2010-17687 and Junta de Andalucía grants FQM 0199 , FQM 0194 and FQM 3737. The second author is supported by a Plan Propio contract from the Universidad de Almería. They wish to thank A. Peralta, A. Kaidi and P. García-Sánchez for their kindly hospitality and help during the preparation of this manuscript, and the referee for their comments and suggestions.

