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LINEAR MAPS STRONGLY PRESERVING

MOORE–PENROSE INVERTIBILITY

MARÍA BURGOS, A. C. MÁRQUEZ-GARCÍA AND A. MORALES-CAMPOY

(Communicated by Peter Šemrl)

Abstract. Let A and B be C ∗ -algebras. We investigate linear maps from A to B strongly
preserving Moore-Penrose invertibility, where A is unital, and either it is linearly spanned by its
projections, or has large socle, or has real rank zero (in this last case the map T is assumed to
be bounded).

1. Introduction

Let A be a (complex) Banach algebra. An element a in A is (von Neumann)
regular if it has a generalized inverse, that is, if there exists b in A such that a = aba
(b is an inner inverse of a ) and b = bab (b is an outer inverse of a ). Observe that the
first equality a = aba is a necessary and sufficient condition for a to be regular, and
that, if a has generalized inverse b , then p = ab and q = ba are idempotents in A with
aA = pA and Aa = Aq .

The generalized inverse of a regular element a is not unique. For an element a in
A let us consider the left and right multiplication operators La : x �→ ax and Ra : x �→ xa ,
respectively. If a is regular, then so are La and Ra , and thus their ranges aA = La(A)
and Aa = Ra(A) are both closed. The conorm (or the reduced minimum modulus) of an
element a in a Banach algebra A , is defined as the reduced minimum modulus of the
left multiplication operator by a ,

γ(a) := γ(La) =
{

inf{‖ax‖ : dist(x,ker(La)) � 1} if a �= 0
∞ if a = 0.

If b is a generalized inverse of a , with a �= 0, then

‖b‖−1 � γ(a) � ‖ba‖‖ab‖‖b‖−1
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(see [11, Theorem 2]).

Regular elements in unital C∗ -algebras have been studied by Harte and Mbekhta in
[10] and [11]. The main results in those papers state that an element a in a C∗ -algebra
A is regular if and only if aA is closed, equivalently γ(a) > 0, and that

γ(a)2 = γ(a∗a) = inf{λ : λ ∈ σ(a∗a)\ {0}}= γ(a∗)2.

Given a and b in A , b is said to be a Moore-Penrose inverse of a if b is a
generalized inverse of a and the associated idempotents ab and ba are selfadjoint. It is
known that every regular element a in A has a unique Moore-Penrose inverse that will
be denoted by a† , and that

γ(a) = ‖a†‖−1.

Denote by A† the set of regular elements in the C∗ -algebra A .

Let A and B be C∗ -algebras. We say that a map T : A → B strongly preserves
Moore-Penrose invertibility if T (a†) = T (a)† , for all a ∈ A† . If A and B are both
unital, with identity elements 1A and 1B respectively, the mapping T is called unital if
T (1A) = 1B .

In [21] Mbekhta started the study of the so called Hua type theorems and strongly
preserver problems between Banach algebras. In the context of C∗ -algebras, he proved
that a surjective unital bounded linear map from a real rank zero C∗ -algebra to a prime
C∗ -algebra strongly preserves Moore-Penrose invertibility if and only if it is either a
∗ -homomorphism or a ∗ -antihomomorphism, and he conjectures that the same holds
without any assumption on the C∗ -algebras and when T is not assumed to be unital.
(Linear maps strongly preserving Moore-Penrose invertibility for matrix algebras over
some fields were previously considered by Zhang, Cao and Bu, [24].)

Recall that a linear (additive) map T : A → B between Banach algebras is a Jor-
dan homomorphism if T (a2) = T (a)2 , for all a ∈ A , or equivalently, T (ab+ ba) =
T (a)T (b)+T (b)T (a) for every a,b in A . A bijective Jordan homomorphism is called
Jordan isomorphism. Clearly every homomorphism and every antihomomorphism is a
Jordan homomorphism. It is well known that if T : A → B is a Jordan homomorphism
then

T (abc+ cba) = T (a)T (b)T (c)+T (c)T (b)T (a), (1)

for all a,b,c ∈ A .
If A and B are C∗ -algebras, then T is called selfadjoint if T (a∗) = T (a)∗ , for

every a ∈ A . Selfadjoint Jordan homomorphism are named Jordan ∗ -homomorphisms.
Notice that every Jordan ∗ -homomorphism strongly preserves Moore-Penrose invert-
ibility (see Remark 8).

The study of linear maps strongly preserving Moore-Penrose invertibility is con-
nected with regularity linear preserver problems in C∗ -algebras. Recall that a linear
map T : A → B between C∗ -algebras preserves regularity if T (a) ∈ B† whenever
a ∈ A† , and that T preserves regularity in both directions when T (a) ∈ B† if and
only if a ∈ A† .

In [3] the authors showed that every surjective linear map T : A → B preserving
regularity in both directions factorizes as a Jordan isomorphism through the generalized
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Calkin algebras, in the case that A and B are prime C∗ -algebras with non zero socle
and A has real rank zero. Also if A has real rank zero and B has zero socle, it is proved
that T preserves regularity if and only if it is a Jordan homomorphism.

Linear maps between C∗ -algebras (strongly) preserving the conorm are consid-
ered in [4]. In that paper the authors proved that every unital (respectively, surjective)
linear map T : A → B , between unital C∗ -algebras such that γ(a) = γ(T (a)) , for ev-
ery a ∈ A , is an isometric Jordan ∗ -isomorphism (respectively, multiplied by a unitary
element of B). Notice that every linear map strongly preserving the conorm preserves
regularity in both directions, and that every bounded linear map T : A → B strongly
preserving Moore-Penrose invertibility satisfies

γ(a) � ||T ||γ(T (a)) (a ∈ A).

The present manuscript focusses on the study of strongly Moore-Penrose invert-
ibility preservers in C∗ -algebras with a rich structure of projections. Section 2 gathers
some technical preliminary results. In Section 3 we consider C∗ -algebras in which ev-
ery element is a linear combination of projections. We prove that a linear map strongly
preserving Moore-Penrose invertibility T : A → B between C∗ -algebras, is a Jordan
∗ -homomorphism multiplied by a regular element of B commuting with T (A) , when-
ever A is unital and linearly spanned by its projections, or when A is unital and has real
rank zero and T is bounded.

Section 4 deals with C∗ -algebras having large socle. We show that if T : A → B
is a linear map strongly preserving Moore-Penrose invertibility between C∗ -algebras,
and A is unital with non zero socle, then T restricted to the socle of A is a Jordan
∗ -homomorphism multiplied by a regular element commuting with the range of T .
Also, we prove that every bijective linear map strongly preserving Moore-Penrose in-
vertibility from a unital C∗ -algebra with essential socle is a Jordan ∗ -isomorphism
multiplied by an involutory element.

Notice that our mappings are never assumed to be unital, and even the codomains
do not necessarily have an identity element.

2. Preliminaries

In [21], Mbekhta showed that every unital linear continuous mapping T : A → B
between unital C∗ -algebras that strongly preserves Moore-Penrose invertibility is a Jor-
dan homomorphism and preserves projections. In particular, T sends mutually orthog-
onal projections into mutually orthogonal projections. In the following proposition we
generalize this result by showing that every linear mapping between C∗ -algebras (not
necessarily unital), strongly preserving Moore-Penrose invertibility, preserves orthogo-
nality of regular elements. Recall that two elements a,b in a C∗ -algebra A are said to
be orthogonal, denoted by a ⊥ b , if ab∗ = b∗a = 0.

PROPOSITION 1. Let A and B be C∗ -algebras, and let T : A → B be a linear
map strongly preserving Moore-Penrose invertibility. Then a ⊥ b implies T (a) ⊥ T (b)
for all a,b ∈ A† .
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Proof. Let a,b ∈ A† with a ⊥ b . For every α ∈ Q \ {0} it is easy to see that
(a+ αb)† = a† + α−1b† . By assumption,

(T (a)+ αT(b))(T (a)† + α−1T (b)†)(T (a)+ αT(b)) = T (a)+ αT(b),

which yields

α−1T (a)T (b)†T (a) + (T (a)T (b)†T (b)+T(b)T (b)†T (a))
+ α(T (b)T (a)†T (a)+T (a)T (a)†T (b))
+ α2T (b)T (a)†T (b) = 0,

for every α ∈ Q\ {0} . Hence

T (a)T (b)†T (b)+T(b)T (b)†T (a) = 0.

By multiplying the last equation on the right, and on the left, respectively, by T (b)† it
follows that

T (a)T (b)† = −T (b)T (b)†T (a)T (b)†, (2)

and
T (b)†T (a) = −T (b)†T (a)T (b)†T (b). (3)

As

(T (a)† + α−1T (b)†)(T (a)+ αT(b))(T (a)† + α−1T (b)†) = T (a)† + α−1T (b)†

for every α ∈ Q\ {0} , we get analogously

T (b)†T (a)T (b)† = 0. (4)

From Equations (2), (3) and (4) we deduce that T (a)T (b)† = 0 and T (b)†T (a) = 0.
Equivalently, T (a)T (b)∗ = 0 and T (b)∗T (a) = 0, that is, T (a) ⊥ T (b) . �

Let A and B be C∗ -algebras. In what follows, let us assume that A is unital with
identity element 1 . It is clear that the zero map strongly preserves Moore-Penrose in-
vertibility. In the next proposition we show that this is the only map strongly preserving
Moore-Penrose invertibility that annihilates the identity element.

PROPOSITION 2. Let A and B be C∗ -algebras, and let T : A → B be a linear
map strongly preserving Moore-Penrose invertibility. Then either T (1) �= 0 or T = 0 .

Proof. If b and 1+b are invertible elements in A , then as consequence of Hua’s
identity (see [13])

1 = (1+b)−1 +(1+b−1)−1.

Since T strongly preserves Moore-Penrose invertibility,

T (1) = T ((1+b)−1)+T ((1+b−1)−1) = (T (1)+T (b))† +(T (1)+T(b)†)†.
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If we assume that T (1) = 0, then we get

T (b)† +T (b) = 0,

for every invertible element b ∈ A with 1+ b invertible. Thus, let a be an invertible
element in A , and α ∈Q\{0} be such that |α|< ||a||−1 . It is clear that αa and 1+αa
are invertible, and therefore T (a)† = −α2T (a) . By the uniqueness of the Moore-
Penrose inverse, it follows that T (a) = 0. Thus T is the zero map. �

Notice that if T : A → B is a non zero linear map strongly preserving Moore-
Penrose invertibility, and T (1) commutes with T (A) , then B′ = T (1)2BT (1)2 is a
C∗ -algebra with identity T (1)2 (T (1)2 �= 0 in view of the preceding proposition), the
map S = T (1)2T from A to B′ strongly preserves Moore-Penrose invertibility, and
S(1) is invertible. A closer look at the arguments employed in Theorem 3.5, Lemma
3.7 and Proposition 3.10 in [5], where the authors only required the Hua’s identity
and the inner relation of the generalized inverse on invertible elements, reveals that the
same reasoning works with Moore-Penrose invertibility. Obviously B′ has an identity
element even if B is not unital.

PROPOSITION 3. Let A and B be C∗ -algebras, and T be a linear map such
that T (1) commutes with the range of T . If T strongly preserves Moore-Penrose
invertibility, then T (1)T is a Jordan homomorphism.

We finish this section with a technical lemma which together with Proposition 3
will be the key tool for the next sections. It describes the behaviour of a linear map
strongly preserving Moore-Penrose invertibility with respect to the projections.

LEMMA 4. Let A and B be C∗ -algebras. Let T : A→ B be a linear map strongly
preserving Moore-Penrose invertibility. For every projection p ∈ A:

(a) T (p)T (1)∗ = T (1)T (p)∗ and T (1)∗T (p) = T (p)∗T (1) ,

(b) T (p) = T (p)T (1)2 = T (1)2T (p) ,

(c) T (p)T (1) = T (1)T (p) = (T (p)T (1))∗ .

Proof. For the sake of simplicity, write h = T (1) . Let p be a non zero projec-
tion in A . As p ⊥ (1− p) , and by Proposition 1, T preserves orthogonality of reg-
ular elements, then T (p) ⊥ (h−T (p)) , that is, T (p)h∗ = T (p)T (p)∗ and h∗T (p) =
T (p)∗T (p) . In particular, T (p)h∗ = hT (p)∗ and h∗T (p) = T (p)∗h . Since h = h† , it
is clear that h3 = h , and h2 = (h2)∗ . Hence

T (p)∗T (p)h2 = h∗T (p)h2 = T (p)∗hh2 = T (p)∗h
= h∗T (p) = T (p)∗T (p).

Again, T (p) = T (p)† gives T (p)3 = T (p) and thus T (p)∗T (p)(h2 −T (p)2) = 0. By
the cancellation law, T (p)h2 = T (p)3 = T (p) . In the same way, T (p) = h2T (p) ,
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T (p)∗ = h2T (p)∗ and T (p)∗h2 = T (p)∗ . Also,

T (p)h = h2T (p)h = h∗h∗T (p)h = h∗T (p)∗h2 = h∗T (p)∗

= (T (p)h)∗.

Analogously, (hT (p))∗ = hT (p) .
It only remains to prove that hT (p) = T (p)h . Since T (p) = h2T (p) = T (p)h2 ,

it suffices to show that T (p) = hT (p)h . Having in mind the uniqueness of the Moore-
Penrose inverse, and that T (p)† = T (p†) = T (p) we proceed by checking that hT (p)h
is the Moore-Penrose inverse of T (p) . As T (p)h = h∗T (p)∗ , hT (p) = T (p)∗h∗ ,
T (p)∗T (p) = h∗T (p) , h2 = (h2)∗ and h3 = h , we get

T (p)(hT (p)h)T (p) = T (p)hh∗T (p)∗T (p) = T (p)hh∗h∗T (p)
= T (p)hT (p) = T (p)T (p)∗h∗ = T (p)(h∗)2 = T (p).

From this it is clear that, (hT (p)h)T (p)(hT (p)h) = hT (p)h , and since

T (p)(hT (p)h) = (T (p)h)T (p)h = h∗T (p)∗T (p)h = h∗h∗T (p)h = T (p)h,

and similarly (hT (p)h)T (p)= hT (p) , are selfadjoint, this shows that hT (p)h =T (p)† ,
as desired. �

REMARK 5. Note that, as every additive map T : A→B between Banach algebras
is Q -linear, the results in this section also hold if we change the linearity with additivity.

3. C*-algebras linearly spanned by their projections
and real rank zero C*-algebras

In many C∗ -algebras every element can be expressed as a finite linear combina-
tion of projections: properly infinite C∗ -algebras, von Neumann algebras of type II1 ,
unital simple C∗ -algebras of real rank zero with no tracial states, unital simple AF
C∗ -algebras with finitely many extremal states, UHF C∗ -algebras, Bunce-Deddens al-
gebras, irrotational rotation algebras...(See for instance [17], [18], [19], [22], [15] and
the references therein.) The following theorem describes linear maps strongly preserv-
ing Moore-Penrose invertibility from C∗ -algebras linearly spanned by their projections.
In particular, by [22, Corollary 2.3], it applies to the algebra of all bounded linear op-
erators on a complex infinite dimensional Hilbert space (compare with Theorem 3.3
(i) ⇒ (ii) in [21], where T is assumed to be bounded, unital, and bijective).

THEOREM 6. Let T : A → B be a linear map strongly preserving Moore-Penrose
invertibility between C∗ -algebras, where A is unital. Assume that every element of A
is a finite linear combination of projections. Then T (1)T is a Jordan ∗ -homomorphism
and T (1) commutes with the range of T .
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Proof. From A being linearly spanned by its projections, by Lemma 4 it is clear
that T (x)T (1) = (T (x∗)T (1))∗ = T (1)T (x) , for every x ∈ A . The conclusions can be
obtained directly by applying Proposition 3. �

Recall that a C∗ -algebra A is of real rank zero if the set of all real linear com-
binations of orthogonal projections is dense in the set of all hermitian elements of A
(see [7]). Notice that every von Neumann algebra, and, in particular, the algebra of all
bounded linear operators on a complex Hilbert space H is of real rank zero.

THEOREM 7. Let A and B be C∗ -algebras, and T : A → B be a bounded linear
map strongly preserving Moore-Penrose invertibility. Suppose that A is unital of real
rank zero. Then:

1. T (1) commutes with the range of T ,

2. T (1)T is a Jordan ∗ -homomorphism.

Proof. As T is continuous and A has real rank zero, the theorem can be proved
as the previous one by applying Lemma 4 and Proposition 3. �

REMARK 8. Every Jordan ∗ -homomorphism between C∗ -algebras strongly pre-
serves Moore-Penrose invertibility. Indeed if a ∈ A† , and b = a† , from Equation (1)
it is clear that T (a) = T (a)T (b)T (a) and T (b) = T (b)T (a)T (b) . Thus it remains to
show that T (b)T (a) and T (a)T (b) are selfadjoint. As a = b∗a∗a = aa∗b∗ , in particular
2a = b∗a∗a+aa∗b∗ , and since T is a Jordan ∗ -homomorphism, it is clear that

2T (a) = T (b)∗T (a)∗T (a)+T (a)T (a)∗T (b)∗.

By multiplying on the left by T (a)∗ , we get that

T (a)∗T (a) = T (a)∗T (a)T (a)∗T (b)∗,

or equivalently T (a)∗T (a)(T (b)T (a)−T (a)∗T (b)∗) = 0, which implies that T (a) =
T (a)T (a)∗T (b)∗ , and hence T (b)T (a) = T (b)T (a)T (a)∗T (b)∗ is selfadjoint.

Moreover if T : A → B is a Jordan ∗ -homomorphism between C∗ -algebras and u
is a regular element in B such that u = u† , and u commutes with the range if T , it is
clear that uT also strongly preserves Moore-Penrose invertibility.

As we have mentioned in the Introduction, in [21, Theorem 3.2] Mbekhta shows
that a surjective unital continuous linear mapping from a real rank zero unital C∗ -
algebra onto a prime unital C∗ -algebra is either a ∗ -homomorphism or a ∗ -antiho-
momorphism if and only if it strongly preserves Moore-Penrose invertibility. In the
following result, we characterize bounded linear maps (not necessarily surjective nor
unital) strongly preserving Moore-Penrose invertibility on a real rank zero unital C∗ -
algebra.

COROLLARY 9. Let A and B be C∗ -algebras, and let T : A → B be a bounded
linear map. Suppose that A is unital of real rank zero. The following are equivalent:
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1. T strongly preserves Moore-Penrose invertibility,

2. T (1)† = T (1) , T = ST (1) = T (1)S for a Jordan ∗ -homomorphism S.

Proof. The implication (1) ⇒ (2) is a direct consequence of Theorem 7, and the
converse follows from Remark 8. �

4. C*-algebras of large socle

Let A be a C∗ -algebra. An element x of A is finite (compact) in A , if the wedge
operator x∧ x : A → A , given by x∧ x(a) = xax , is a finite rank (compact) operator
on A . It is known that the ideal F (A) of finite rank elements in A coincides with the
socle of A , soc(A) , that is, the sum of all minimal right (equivalently left) ideals of A ,
and that K (A) = soc(A) is the ideal of compact elements in A . Every element in the
socle of a C∗ -algebra is a linear combination of minimal projections (a projection p in
a C∗ -algebra A is said to be minimal if pAp = Cp ). We refer to [1, 2, 23], for the basic
references on the socle.

It is known that every element in the socle of a C∗ -algebra A is regular and that
A† + soc(A) ⊂ A† (see for instance [16, Theorem 6.3]). This fact together with Propo-
sition 1 allow us to employ the techniques on orthogonality preserving maps on C∗ -
algebras with large socle in order to determine the structure of strongly Moore-Penrose
invertibility linear preservers. The following lemma is inspired in [9] (see also [8]). Re-
call that every C∗ -algebra can be endowed with a Jordan product a ◦ b := 1

2 (ab+ba) ,
and a Jordan triple product defined as {abc} := 1

2(ab∗c+ cb∗a) .
For the rest of the section A and B are C∗ -algebras, and T : A→ B is a linear map

strongly preserving Moore-Penrose invertibility. We assume that A is unital with non
zero socle.

LEMMA 10. For every a ∈ A and x ∈ soc(A) , the following identities hold:

(a) 2T (a ◦ x)T(1)∗ = T (a)T (x∗)∗ +T(x)T (a∗)∗ and

2T (1)∗T (a ◦ x) = T (x∗)∗T (a)+T(a∗)∗T (x) ,

(b) T (x)T (1)∗T (a) = T (x)T (a∗)∗T (1) and

T (a)T (1)∗T (x) = T (1)T (a∗)∗T (x),

(c) T (x)T (1)T (a) = T (x)T (a∗)∗T (1)∗ and

T (a)T (1)T (x) = T (1)∗T (a∗)∗T (x),

(d) {T (x)T (a)T (x)} = T ({xax})T (1)∗T (1) ,

Proof. As above denote T (1) by h . In view of Lemma 4, since every element
of the socle is a linear combination of minimal projections, it follows directly that,
T (x)h∗ = hT (x∗)∗ , h∗T (x) = T (x∗)∗h , T (x)h = hT (x) = h∗T (x∗)∗ = T (x∗)∗h∗ , and
T (x) = T (x)h2 for every x ∈ soc(A) .
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Let p,q be minimal projections in A . Since qp and (1−q)(1− p) = 1− p−q+
qp are mutually orthogonal regular elements, by Proposition 1, T (qp)⊥ T (1−q− p+
qp) . Therefore

T (qp)h∗ −T(qp)T (q)∗ −T (qp)T (p)∗ +T (qp)T (qp)∗ = 0.

As q(1− p)⊥ (1−q)p , we also have T (q−qp)⊥ T (p−qp) , that is

T (q)T (p)∗ −T (q)T (qp)∗ −T (qp)T (p)∗ +T(qp)T (qp)∗ = 0.

Taking into account these equations and soc(A) being linearly spanned by the minimal
projections, we can prove

T (yx+ xy)h∗ = T (y)T (x∗)∗ +T (x)T (y∗)∗, (5)

for all x,y ∈ soc(A) (compare with the proof of Theorem 14 in [8]). Besides, given a
minimal projection p in A and an invertible element b in A , p and (1− p)b(1− p) =
b− bp− pb + pbp are mutually orthogonal regular elements. Thus T (p)∗T (b) =
T (p)∗T (bp + pb− pbp) and T (b)T (p)∗ = T (bp + pb− pbp)T(p)∗ . Equation (5)
yields

T (bp+ pb)h∗ = T ((bp+ pb)p+ p(bp+ pb)−2pbp)h∗

= T (bp+ pb)T(p)∗ +T(p)T (b∗p+ pb∗)∗

−T (pbp)T (p)∗ −T (p)T (pb∗p)∗

= T (bp+ pb− pbp)T(p)∗ +T (p)T (b∗p+ pb∗− pb∗p)∗

= T (b)T (p)∗ +T (p)T (b∗)∗.

As T (p)h∗ = hT (p)∗ , given a ∈ A and α ∈ C such that a−α is invertible, the last
equation gives T (ap+ pa)h∗ = T (a)T (p)∗ +T (p)T (a∗)∗ , and by the linearity of T

T (ax+ xa)h∗ = T (a)T (x∗)∗ +T (x)T (a∗)∗ (a ∈ A,x ∈ soc(A)). (6)

The other equality of (a) can be proved analogously.
Again for a minimal projection p in A , and an invertible element b ∈ A , from

p ⊥ (1− p)b(1− p) , we obtain

T (p)h∗T (b) = T (p)T (p)∗T (b) = T (p)T (p)∗T (bp+ pb− pbp)
= T (p)h∗T (bp+ pb− pbp)= T (p)T ((bp+ pb− pbp)∗)∗h
= T (p)T (b∗)∗h,

and

T (p)hT (b) = h∗T (p)∗T (b) = h∗T (p)∗T (bp+ pb− pbp)
= T (p)hT (bp+ pb− pbp)= T (p)T ((bp+ pb− pbp)∗)∗h∗

= T (p)T (b∗)∗h∗.
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This proves that
T (x)h∗T (a) = T (x)T (a∗)∗h, (7)

and
T (x)hT (a) = T (x)T (a∗)∗h∗, (8)

for all x ∈ soc(A) and a ∈ A . The other relations of (b) and (c) can be deduced in an
obvious way.

In order to prove equality (d) , let x ∈ soc(A) and a ∈ A . By the definition of the
triple product in a C∗ -algebra and the statements just proved we get

T ({xax})h∗h = 2T ((x◦ a∗)◦ x)h∗h−T(x2 ◦ a∗)h∗h
= (T (x◦ a∗)T (x∗)∗ +T (x)T (x∗ ◦ a)∗)h

−1
2

(
T (x2)T (a)∗ +T (a∗)T ((x2)∗)∗

)
h

= T (x◦ a∗)h∗T (x)+T (x)h∗T (x◦ a∗)

−1
2

(
T (x2)h∗T (a∗)+T (a∗)T ((x2)∗)∗h

)

=
1
2

((T (x)T (a)∗ +T(a∗)T (x∗)∗)T (x))

+
1
2

(T (x)(T (x∗)∗T (a∗)+T (a)∗T (x)))

−1
2

((T (x)T (x∗)∗T (a∗)+T (a∗)T (x∗)∗T (x))

= {T (x)T (a)T (x)}. �

REMARK 11. From the preceding lemma, it is clear that

T (1)T (x) = (T (1)T (x∗))∗,

and

T (1)T (x2) = T (1)T (x2)(T (1)∗)2 = T (1)T (x)T (x∗)∗T (1)∗ = (T (1)T (x))2,

for every element x in the socle of A . This shows that the mapping x �→ T (1)T (x) is a
Jordan ∗ -homomorphism from soc(A) to B .

It is well known that every element of the socle is a finite sum of rank-one ele-
ments. Recall that a non zero element u ∈ A is said to be of rank-one if u belongs to
some minimal left ideal of A , that is, if u = ue for some minimal idempotent e of A .
A non zero element u ∈ A has rank-one if and only if uAu = Cu , and this is equivalent
to the condition |σ(xu)\ {0}|� 1, for all x ∈ A (also equivalent to |σ(ux)\ {0}|� 1,
for all x ∈ A), where σ(x) denotes the spectrum of x . Let us denote the set of rank-one
elements in A by F1(A) .

Recall that an ideal I of a Banach algebra A is called essential if it has non zero
intersection with every non zero ideal of A . If A is semisimple (in particular, if A is a
C∗ -algebra) this is equivalent to the condition aI = 0 implies a = 0.
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THEOREM 12. Assume that T does not annihilate rank-one elements.

1. If T (a)T (1)−T (1)T (a)∈T (A) for every a∈A, then T−1(T (a)T (1)−T (1)T (a))
soc(A) = {0} , for every a ∈ A.

2. If T (a)T (1)− (T (a)T (1))∗ ∈ T (A) for every selfadjoint element a ∈ A, then
T−1(T (a)T (1)−T(1)∗T (a∗)∗)soc(A) = {0} , for every a ∈ A.

In particular, if soc(A) is essential, then T (1)T is a Jordan ∗ -homomorphism,
and T (1) commutes with the range of T .

Proof. Again write h = T (1) . Let x ∈ soc(A) and a ∈ A . From (d) of Lemma
10, by multiplying on the right by hh∗

T ({xax}) = T (x)T (a)∗T (x)hh∗ = T (x)T (a)∗hT (x)h∗

= T (x)T (a)∗h2T (x∗)∗ = T (x)T (a)∗T (x∗)∗.

Moreover, since T ({xax})h∗h = hh∗T ({xax}) , we also get (by multiplying on the left
by h∗h )

T ({xax}) = h∗T (x)hT (a)∗T (x) = T (x∗)∗h2T (a)∗T (x) = T (x∗)∗T (a)∗T (x).

Therefore,

{T (x)(T (a)h)T (x)} = T (x)h∗T (a)∗T (x) = hT (x∗)∗T (a)∗T (x)
= hT ({xax}) = T ({xax})h = T (x)T (a)∗T (x∗)∗h
= T (x)T (a)∗h∗T (x) = {T (x)(hT (a))T (x)}.

If T (a)h−hT (a)∈ T (A) , there exists b∈ A such that T (b) = T (a)h−hT (a) . The last
identities show that

0 = {T (x)T (b)T (x)} = T ({xbx})h∗h,

and hence T ({xbx}) = 0. In particular T ({ubu}) = 0 for every u ∈ F1(A) . As T
does not annihilate rank-one elements, and for every u ∈ F1(A) , ubu = 0 or ubu has
rank-one, it follows that ubu = 0 for all u ∈F1(A) . This implies that bu = 0 for every
u ∈ F1(A) (see for instance the proof of Theorem 1.1 in [6]). Hence bSoc(A) = {0} ,
that is,

T−1(T (a)h−hT(a))soc(A) = {0}. (9)

From Lemma 10 (c) , it follows that

{T (x)(T (a)h)T (x)} = T (x)h∗T (a)∗T (x) = T (x)T (a∗)hT (x)
= {T (x)(h∗T (a∗)∗)T (x)}.

Whenever T (z)h−(T (z)h)∗ ∈ T (A) , for every selfadjoint element z∈A , it is clear
that T (a)h−h∗T (a∗)∗ lies in T (A) , for every a ∈ A . Then, as above, we can prove

T−1(T (a)h−h∗T (a∗)∗)soc(A) = {0}. (10)
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If soc(A) is essential, by Equation (9), h commutes with T (A) , and by Propo-
sition 3, S = hT is a Jordan homomorphism. Besides, Equation (10) gives T (a)h =
h∗T (a∗)∗ = (T (a∗)h)∗ for all a ∈ A , which shows that S is selfadjoint. �

Notice that if T : A → B is a bijective linear map strongly preserving Moore-
Penrose invertibility, and soc(A) is essential, since

{T (x)(T (a)T (1A)2)T (x)} = {T (x)T (a)T (x)} = {T (x)(T (1A)2T (a))T (x)},

we can obtain that T (a)T (1A)2 = T (a) = T (1A)2T (a) , for every a∈ A , and hence B is
unital with identity element 1B = T (1A)2 . The following corollary can be derived now
as an easy consequence.

COROLLARY 13. Let A and B be C∗ -algebras. Suppose that A is unital with
essential socle. Let T : A → B be a bijective linear map. The following are equivalent:

1. T strongly preserves Moore-Penrose invertibility,

2. T (1A)2 = 1B , T = T (1A)S = ST(1A) for a Jordan ∗ -isomorphism S.

We conclude this section by considering the case of linear mappings from prime
C∗ -algebras with non zero socle. Recall that every prime C∗ -algebra A with non zero
socle is primitive (see [20]) and hence its socle is a simple algebra which is contained
in every non zero (Jordan) ideal of A (see [14, IV §9] and [12, Theorem 1.1]). As we
have noted in Remark 11, if T : A → B is a linear map strongly preserving Moore-
Penrose invertibility, then T (1)T |soc(A) : soc(A)→ B is a Jordan ∗ -homomorphism and
hence Ker(T)∩soc(A) is a Jordan ideal of A . Therefore, if A is prime, either Ker(T)∩
soc(A) = {0} or T (soc(A)) = {0} .

Having in mind these considerations and the proof of Theorem 12, we get the
following result.

COROLLARY 14. Let A and B be C∗ -algebras, and let T : A → B be a sur-
jective linear map strongly preserving Moore-Penrose invertibility. Suppose that A is
prime, unital, with non zero socle. If T (soc(A)) �= {0} , then T (1)T is a Jordan ∗ -
homomorphism, and T (1) commutes with the range of T .
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