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RIGHT INVERTIBLE MULTIPLICATION OPERATORS AND

STABLE RATIONAL MATRIX SOLUTIONS TO AN ASSOCIATE

BEZOUT EQUATION, II: DESCRIPTION OF ALL SOLUTIONS

A. E. FRAZHO, M. A. KAASHOEK AND A. C. M. RAN

(Communicated by A. Böttcher)

Abstract. This paper presents a state space description of the set of all solutions to a rational
corona type Bezout equation, starting from a stable state space representation of the given coef-
ficient matrix. In other words, we describe the null space of an analytic Toeplitz operator with a
rational symbol, in terms of the matrices occuring in a realization of that symbol, assuming the
operator involved is right invertible. A state space version of the related Tolokonnikov lemma is
also included.

1. Introduction

This paper is a continuation of [3]. Throughout G is a stable rational m× p matrix
function, that is, G has all its poles in |z| > 1, infinity included. In general, p will be
larger than m . As in [3], we deal with the corona type Bezout equation

G(z)X(z) = Im, z ∈ D, (1.1)

and with the operator MG of multiplication by G mapping the Hardy space H2(Cp)
into the Hardy space H2(Cm) . Assuming MG to be right invertible we shall describe the
null space of MG . Together with the main result from [3] this yields a full description of
the set of all stable rational matrix solutions to (1.1). In addition we discuss the relation
to Tolokonnikov’s lemma [10], see also the appendix of [8].

Our starting point is a stable state space representation of G . The latter means
that G is represented in the following form:

G(z) = D+ zC(In− zA)−1B. (1.2)

Here A,B,C,D are matrices of appropriate sizes, In is an identity matrix of order n ,
and the n×n matrix A is stable, that is, A has all its eigenvalues in the open unit disc
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D . The smallest n for which G has a stable state space representation of the form (1.2)
is called the McMillan degree of G ; this quantity is denoted by δ (G) .

In order to state the main results in more detail we first briefly recall the main
theorem from [3]. There the least squares solution to (1.1) was constructed. Consider
the discrete algebraic Riccati equation

Q = A∗QA+(C−Γ∗QA)∗(R0−Γ∗QΓ)−1(C−Γ∗QA). (1.3)

Here R0 and Γ are the matrices of sizes m×m and n×m , respectively, given by

R0 = DD∗ +CPC∗, Γ = BD∗ +APC∗. (1.4)

Furthermore, the n×n matrix P appearing in the definitions of R0 and Γ is the unique
solution of the symmetric Stein equation

P−APA∗ = BB∗. (1.5)

An n×n matrix Q will be called a stabilizing solution of (1.3) if the following holds:

(a) R0−Γ∗QΓ is positive definite,

(b) Q satisfies the Riccati equation (1.3),

(c) the matrix A−Γ(R0−Γ∗QΓ)−1(C−Γ∗QA) is stable.

The stabilizing solution, assuming it exists, is unique. The main theorem of [3] tells us
that equation (1.1) has a stable rational matrix solution if and only if

(i) the discrete algebraic Riccati equation (1.3) has a (unique) stabilizing solution Q ,

(ii) the matrix In−PQ is non-singular.

Moreover, (i) and (ii) are equivalent to MG being right invertible. Furthermore, if (i)
and (ii) hold, then a particular stable rational matrix solution X of (1.1) is given by

X(z) =
(
Ip− zC1(In− zA0)−1(In−PQ)−1B

)
D1, (1.6)

where

A0 = A−Γ(R0−Γ∗QΓ)−1(C−Γ∗QA), (1.7)

C1 = D∗C0 +B∗QA0, (1.8)

with C0 = (R0−Γ∗QΓ)−1(C−Γ∗QA), (1.9)

D1 = (D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1 +C1(In−PQ)−1PC∗
0 .

This solution X is the least squares solution of (1.1), that is, for any other stable rational
matrix solution V of G(z)V (z) = Im we have

1
2π

∫ 2π

0
X(eit)∗X(eit)dt � 1

2π

∫ 2π

0
V (eit)∗V (eit)dt, (1.10)

and equality holds in (1.10) if and only if V = X .
In the present paper we shall be dealing with the set of all solutions of (1.1). The

first main theorem of the present paper is the following result.
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THEOREM 1.1. Let G be given by (1.2) with A stable, and let P be the unique
solution of the Stein equation (1.5). Assume that MG is right invertible, or equivalently,
assume that the Riccati equation (1.3) has a stabilizing solution Q such that the matrix
In −PQ is non-singular. Then the set of all stable p×m rational matrix solutions V
of equation (1.1) is equal to the set of all functions V (z) = X(z)+ Θ̂(z)N(z) , where
X is the least square solution given by (1.6), the parameter N is an arbitrary stable
(p−m)×m rational matrix function, and Θ̂ is given by

Θ̂(z) =
(
Ip− zC1(In− zA0)−1(In−PQ)−1B

)
D̂. (1.11)

Here A0 and C1 are given by (1.7) and (1.8), respectively, and D̂ is any one-to-one
p× (p−m) matrix such that

D̂D̂∗ = Ip− (D∗−B∗QΓ)(R0 −Γ∗QΓ)−1(D−Γ∗QB)+

−B∗QB−C1(In−PQ)−1PC∗
1 . (1.12)

The matrix D̂ is uniquely determined up to a constant unitary matrix of order p−m on
the right. Furthermore, Θ̂ is inner, the McMillan degree of Θ̂ is less than or equal to
the McMillan degree of G, and

KerMG = MΘ̂H2(Cp−m). (1.13)

A priori it is not clear that the right hand side of (1.12) is positive semidefinite but
we shall prove that this is always the case under the conditions of the theorem.

We shall also derive the analogue of the main result in [3] for the equation

G(z)Y (z) = F(z), z ∈ D, (1.14)

where the right hand side F is a given stable rational matrix function of size m× k for
some k . Let Y be the function given by

Y (·)u = M∗
G(MGM∗

G)−1Fu, u ∈ C
k. (1.15)

It will be proved that Y is a stable rational p× k matrix function satisfying (1.14).
Furthermore, in terms of the given stable state space representation of G and a stable
state space representation of F , we shall derive a stable state space representation for
Y ; see Theorem 3.1. A special case of the latter result, with F = G , will serve as
an intermediate step in proving Theorem 1.1. The function Y defined by (1.15) has a
minimality property analogous to (1.10) for X .

As a by-product our formulas will show that the McMillan degree of the solution
Y in (1.15) is less than or equal to the sum of the McMillan degrees of G and F .
This result will also be proved directly without using state space formulas (see the two
paragraphs directly after the proof of Theorem 3.1).

The paper consists of five sections, the first being the present introduction. In
Section 2 we derive the operator theory results on which Theorem 1.1 is based. The
main theorem for equation (1.14) is presented and proved in Section 3. These results



836 A. E. FRAZHO, M. A. KAASHOEK AND A. C. M. RAN

are then used in Section 4 to prove Theorem 1.1. In Section 5 we discuss the connection
with the related Tolokonnikov lemma [10]; see also [8, Appendix 3].

We conclude this introduction with a few words about notation. Let Φ be any
m× p matrix-valued function of which the entries are essentially bounded on the unit
circle T , and let . . . ,Φ−1,Φ0,Φ1, . . . be the m× p matrix Fourier coefficients of Φ .
Recall (see, e.g., Section XXIII.2 in [5]) that the block Laurent operator defined by Φ
is the operator LΦ given by

LΦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
Φ0 Φ−1 Φ−2

Φ1 Φ0 Φ−1

Φ2 Φ1 Φ0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

: �2(Cp) → �2(Cm). (1.16)

Here Φ0 denotes the entry in the (0,0) position. In what follows we identify �2(Cp)
and �2(Cm) in the canonical way with Hilbert space direct sums �2

+(Cp)⊕ �2
+(Cp)

and �2
+(Cm)⊕ �2

+(Cm) , respectively. This allows us to rewrite LΦ as a 2×2 operator
matrix, namely

LΦ =

[
TΦ# HΦ#

HΦ TΦ

]
:

[
�2
+(Cp)

�2
+(Cp)

]
→

[
�2
+(Cm)

�2
+(Cm)

]
.

Here TΦ and HΦ are, respectively, the block Toeplitz operator and block Hankel oper-
ator defined by Φ , that is,

TΦ =

⎡
⎢⎢⎢⎣

Φ0 Φ−1 Φ−2 · · ·
Φ1 Φ0 Φ−1 · · ·
Φ2 Φ1 Φ0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ , HΦ =

⎡
⎢⎢⎢⎣

Φ1 Φ2 Φ3 · · ·
Φ2 Φ3 Φ4 · · ·
Φ3 Φ4 Φ5 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

which both act from �2
+(Cp) into �2

+(Cm) . The operators TΦ# and HΦ# are, respec-
tively, the block Toeplitz operator and block Hankel operator defined by Φ# , where
Φ#(eit) = Φ(e−it ) . When Φ is a stable rational matrix function, then HΦ# is a zero
operator, and HΦ is a finite rank operator of which the rank is equal to the McMillan
degree of Φ .

In the sequel we shall often work with the Toeplitz operator TG in place of the
operator MG . Note that FCmTG = MGFCp . Here for any positive integer k the operator
F

Ck is the Fourier transform mapping �2
+(Ck) onto the Hardy space H2(Ck) which is

a unitary operator.

2. The null space of MG

Let G be a stable m× p rational matrix function. Since MG is an operator of
multiplication, its null space is invariant under the operator of multiplication by the
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independent variable on H2(Cp) . According to the Beurling-Lax theorem (see, e.g.,
Theorem A in Section 5.5 of [9] or Theorem 3.1 in Section XXVI.3 of [5]) this implies
that there exists an inner p× k matrix-valued H∞ function Θ , unique up to a constant
unitary k× k matrix on the right, such that

KerMG = MΘH2(Ck). (2.1)

Recall that a p×k matrix-valued H∞ function Θ is called inner whenever Θ(eit)∗Θ(eit)
= Ik for almost all 0 � t � 2π . In that case MΘ is an isometry, that is, M∗

ΘMΘ is the
identity operator on H2(Ck) .

The following theorem provides a method to construct Θ for the case when MG

is right invertible.

THEOREM 2.1. Let G be a stable m× p rational matrix function, and assume
that MG is right invertible. Then Θ in (2.1) is a stable p× k rational matrix function,
the McMillan degree of Θ is less than or equal to the McMillan degree of G, the integer
k in (2.1) is equal to p−m, and Θ(0) is one-to-one. Furthermore, Θ is given by

Θ(·)Θ(0)∗u = u−M∗
G(MGM∗

G)−1G(·)u, u ∈ C
p. (2.2)

Note that our conditions on G imply that equation (1.1) has a stable rational ma-
trix solution. It then follows from the general H∞ theory (see, e.g., the proof of the
Sublemma on page 53 of [8]) that the integer k in (2.1) is equal to p−m and that Θ(0)
is one-to-one. We will return to this remark in the final section. In what follows we will
give an alternative proof.

We begin with the definition of co-outer. Let F be any p× k matrix-valued H∞

function, and let F◦ be the function defined by F◦(z) = F(z)∗ for |z| < 1. Note that
F◦ is again an H∞ function, ‖F‖∞ = ‖F◦‖∞ , and

TF◦ =

⎡
⎢⎢⎢⎣

F∗
0

F∗
1 F∗

0
F∗

2 F∗
1 F∗

0
...

. . .

⎤
⎥⎥⎥⎦ : �2

+(Cp) → �2
+(Ck).

Here F0,F1,F2, . . . are the Taylor coefficients of F at zero. The function F is called
co-outer whenever F◦ is outer, that is, whenever the range of TF◦ is dense in �2

+(Ck) .

LEMMA 2.2. Let G be a stable rational m× p matrix function, and let Θ be
an m× k matrix-valued inner function such that (2.1) holds. Then Θ is co-outer, and
hence Θ(0) is one-to-one. If, in addition, G(0) is surjective, then k = p−m.

Proof. Let Θ◦ = ΦinΦout be an inner-outer factorization of Θ◦ , and let k× �
and �× p be the sizes Φin and Φout , respectively. Since Φin is inner, Φin(eit) is an
isometry for almost all 0 � t � 2π . In particular, � � k . We shall see that � = k . The
fact that TΦin is an isometry implies that TΦout is a contraction. Indeed,

‖TΦout‖ = ‖T ∗
Φin

TΘ◦‖ � ‖TΘ◦‖ = ‖TΘ‖ = 1.



838 A. E. FRAZHO, M. A. KAASHOEK AND A. C. M. RAN

Next, take h ∈ �2
+(Ck) . Using that TΘ is an isometry, we have

‖h‖ = ‖TΘh‖ = ‖TΦ◦
out

TΦ◦
in
h‖ � ‖TΦ◦

out
‖‖TΦ◦

in
h‖ � ‖TΦ◦

in
h‖ � ‖h‖.

Thus ‖TΦ◦
in
h‖ = ‖h‖ for each h ∈ �2

+(Ck) . Hence Φ◦
in is inner. Recall that Φ◦

in(e
it) =

Φin(e−it)∗ for almost all 0 � t � 2π . It follows that Φin(eit) is unitary for almost all
0 � t � 2π . Since Φin(eit) has size k× � , this can only happen when � � k . Thus
� = k .

Notice that Θ = Φ◦
outΦ◦

in . Since the matrix Φin(eit) is unitary for almost all 0 �
t � 2π and Θ is an inner function, it follows that Φ◦

out = ΘΦ◦∗
in is an inner function.

Using G(z)Θ(z) = 0 with ΘΦ◦∗
in = Φ◦

out , we see that GΦ◦
out = GΘΦ◦∗

in = 0. Hence
Φ◦

outH
2(Ck) ⊆ KerMG . This implies that

KerMG = ΘH2(Ck) = Φ◦
outΦ

◦
inH

2(Ck) ⊆ Φ◦
outH

2(Ck) ⊆ KerMG.

Therefore ΘH2(Ck) = Φ◦
outH

2(Ck) . According to the Beurling-Lax-Halmos theorem,
Θ equals Φ◦

out up to a unitary constant on the right. Since Θ = Φ◦
outΦ◦

in , we see that
Φin is a unitary constant matrix. It follows that Θ◦ is outer, and hence Θ is co-outer.
The latter also implies that Θ(0)∗ is surjective.

Next, assume additionally that G(0) is surjective. The identity (2.1) tells us that
G(z)Θ(z) = 0, and hence G(0)Θ(0) = 0. But we already know that the matrix Θ(0) is
one-to-one. This yields

k = rankΘ(0) � dimKerG(0) = p−m.

Thus k � p−m .
It remains to show that k � p−m . To do this let us partition G(z) as

G(z) =
[
G1(z) G2(z)

]
:

[
Cm

Cp−m

]
→ C

m.

By reordering the columns of G(z) it is clear that without loss of generality we may as-
sume that G1(0) is non-singular. Put g(z)= detG1(z) . Then both g(z) and g(z)G1(z)−1

are stable rational functions. Now consider

V (z) =

[
g(z)G1(z)−1G2(z)

−g(z)Ip−m

]
: C

p−m → C
p.

Then V is a stable rational p× (p−m) matrix function. Note that g(0) = detG1(0) 	=
0. It follows that rankV (0) = p−m . From the definition of V we see that G(z)V (z) is
identically zero, that is, MGV (·)y = 0 for each y in Cp−m . Using (2.1) it follows that
V (z) = Θ(z)U(z) , where U(z)u belongs to H2(Ck) for each u in C

p−m . In particular,
V (0) = Θ(0)U(0) . Since Θ(0) is one-to-one, we get

k = rankΘ(0) � rankV (0) = p−m.

Thus k � p−m , as desired. �
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Proof of Theorem 2.1. Note that our conditions imply that (1.1) has a stable ratio-
nal matrix solution. Thus rankG(z) = m for |z| � 1. In particular, G(0) is surjective.
Hence, k = p−m and Θ(0) is one to one by Lemma 2.2.

Let us derive formula (2.2). Put PΘ = MΘM∗
Θ . Since MΘ is an isometry, we see

from (2.1) that the operator PΘ is the orthogonal projection of H2(Cp) onto KerMG .
On the other hand, as MG is right invertible, this orthogonal projection is also given by
IH2(Cp) −M∗

G(MGM∗
G)−1MG , and thus

MΘM∗
Θ = IH2(Cp)−M∗

G(MGM∗
G)−1MG. (2.3)

Let τ be the canonical embedding from Cp into H2(Cp) , that is, (τu)(z) = u for each
z ∈ D and each u ∈ Cp . Note that M∗

Θτ = τΘ(0)∗ , and for each u ∈ Cp the functions
MΘτu and MGτu are equal to Θ(·)u and G(·)u , respectively. Thus

MΘM∗
Θτu = Θ(·)Θ(0)∗u,

M∗
G(MGM∗

G)−1MGτu = M∗
G(MGM∗

G)−1G(·)u.

Using these two identities in (2.3) we see that (2.2) holds.
Next we show that Θ is a stable rational matrix function. To do this we note that

the final part of the proof of Proposition 2.1 in [3] shows that (MGM∗
G)−1 maps rational

H2 functions into rational H2 . Thus for each u ∈ C
p−m the function (MGM∗

G)−1G(·)u
is a rational H2 function. But M∗

G also maps rational H2 functions into rational H2 .
Since a rational H2 function is stable, we conclude that (MGM∗

G)−1G(·) is a stable
rational matrix function, and then (2.2) shows that the same holds true for Θ(·)Θ(0)∗ .
Finally, as

Θ(0)∗
(

Θ(0)
(
Θ(0)∗Θ(0)

)−1
)

= Ik, (2.4)

we see that Θ(·) = Θ(·)Θ(0)∗
(

Θ(0)
(
Θ(0)∗Θ(0)

)−1
)

, and hence Θ(·) is also a stable

rational matrix function. It remains to prove the statement about the McMillan degrees.
Put Z = M∗

G(MGM∗
G)−1G . From the result of the previous part we know that Z is a

stable rational matrix function. Since

Θ(z) =
(

Θ(0)
(
Θ(0)∗Θ(0)

)−1
)
−Z(z)

(
Θ(0)

(
Θ(0)∗Θ(0)

)−1
)
,

it suffices to show that δ (Z) � δ (G) . From the definition of Z we see that G(z)Z(z) =
G(z) . Thus the Laurent operator LG is equal to the product of the Laurent operators of
G and Z . It follows (see the last paragraph of Section 1) that[

TG# 0

HG TG

][
TZ# 0

HZ TZ

]
= LGLZ = LG =

[
TG# 0

HG TG

]
.

By comparing the terms in the lower left hand corner, we arrive at

TGHZ = HG(I−TZ#). (2.5)
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From the definition of Z , we know that for each u ∈ Cp the function Z(·)u is in the
orthogonal complement of KerMG in H2(Cp) . Hence TZẼy is contained in (KerTG)⊥ .
Here Ẽ is the canonical embedding of Cp onto the first coordinate space of �2

+(Cp) .
Since the null space KerTG is invariant under the block forward shift SCp on �2

+(Cp) ,
it follows that (KerTG)⊥ is invariant under S∗

Cp . Thus for each positive integer k the
vector (S∗)kTZẼy is in (KerTG)⊥ . But this implies the range of HZ is contained in
(KerTG)⊥ . We know that T ∗

G(TGT ∗
G)−1TG is the orthogonal projection onto (KerTG)⊥ .

As the range of HZ is contained in (KerTG)⊥ , multiplying by T ∗
G(TGT ∗

G)−1 on the left
in (2.5) yields

HZ = T ∗
G(TGT ∗

G)−1TGHZ = T ∗
G(TGT ∗

G)−1HG (I−TZ#) .

Therefore rankHZ � rankHG , and thus δ (Z) � δ (G) . �

3. Main theorem for equation (1.14)

In this section we deal with equation (1.14). We assume that MG is right invertible.
As before G is given by the stable state space representation (1.2), and we assume that
the right hand side F(z) of (1.14) is an m× k rational matrix function, also given by a
stable state space representation, namely

F(z) = D∇ + zC∇(Ir − zA∇)−1B∇. (3.1)

In particular, A∇ is a stable r× r matrix. Our aim is to show that the function Y deter-
mined by (1.15) is a stable rational matrix solution of (1.14) and to derive a state space
representation for this solution, using the matrices appearing in state space representa-
tions (1.2) and (3.1).

THEOREM 3.1. Let G be given by (1.2) with A stable, and let P be the unique
solution of the Stein equation (1.5). Assume that MG is right invertible, or equivalently,
assume that the Riccati equation (1.3) has a stabilizing solution Q such that the matrix
In −PQ is non-singular. Then the unique p× k matrix-valued function Y determined
by (1.15) is a stable rational matrix solution of (1.14), and Y admits a state space
representation,

Y (z) = D2 + zC2(In+r −A2)−1B2, (3.2)

of which the matrices A2 , B2 , C2 , and D2 are obtained in the following way. First,
define Ω to be the unique solution of the Stein equation

Ω = A∗
0ΩA∇ +C∗

0C∇. (3.3)

Here A0 and C0 are given by (1.7) and (1.9), respectively. Then, given Ω , the matrices
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A2 , B2 , C2 , and D2 are defined by

A2 =

[
A0 −ΓC0,∇

0 A∇

]
, where C0,∇ = (R0 −Γ∗QΓ)−1(C∇ −Γ∗ΩA∇), (3.4)

B2 =

[
B21

B∇

]
, where B21 = Γ(R0−Γ∗QΓ)−1 (Γ∗ΩB∇ −D∇)+

+A0P(In−QP)−1 (C∗
0D∇ +A∗

0ΩB∇) ,

C2 =
[
D∗C0 +B∗QA0 (D∗ −B∗QΓ)C0,∇ +B∗ΩA∇

]
,

D2 = (D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1 (D∇ −Γ∗ΩB∇)+B∗ΩB∇ +

+(D∗C0 +B∗QA0) (I−PQ)−1 P(C∗
0D∇ +A∗

0ΩB∇) .

Furthermore, the McMillan degree of Y is less than or equal to the sum of the McMillan
degrees of G and F .

Proof. We have to compute FCpT ∗
G(TGT ∗

G)−1F̃ . Here F̃ is the column operator
corresponding to the stable state space representation (3.1), that is, F̃ is the operator
given by

F̃ = TFẼ =

⎡
⎢⎢⎢⎢⎢⎣

D∇
C∇B∇

C∇A∇B∇
C∇A2

∇B∇
...

⎤
⎥⎥⎥⎥⎥⎦ : C

k → �2
+(Cm). (3.5)

From Theorem 4.1 in [3] we know that

(TGT ∗
G)−1 = TΨT ∗

Ψ +K(In−PQ)−1PK∗. (3.6)

Here TΨ is the block lower triangular Toeplitz operator on �2
+(Cm) defined by the stable

rational matrix function

Ψ(z) =
(
Im − zC0(In − zA0)−1Γ

)
Δ−1, where Δ = (R0 −Γ∗QΓ)1/2, (3.7)

and K is the observability operator defined by

K = W0,obs =

⎡
⎢⎢⎢⎣

C0

C0A0

C0A2
0

...

⎤
⎥⎥⎥⎦ : C

n → �2
+(Cm). (3.8)

It follows that FCpT ∗
G(TGT ∗

G)−1F̃ can be written as the sum of two functions, namely
FCpT ∗

G(TGT ∗
G)−1F̃ = FCp α̃ +FCp β̃ , where

α̃ = T ∗
GTΨT ∗

ΨF̃ , β̃ = T ∗
GK(In−PQ)−1PK∗F̃ . (3.9)
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We split the proof into five parts. The first three parts deal with computation of the
term α . In the fourth part we compute β . The final part proves the statement about the
McMillan degrees.

Part 1. In this part we compute T ∗
ΨF̃ . Since T ∗

ΨF̃ = TΨ∗FẼ , we first compute Ψ∗F .
From (3.3) we see that

C∗
0C∇ = (zIn−A∗

0)ΩA∇ + Ω(In− zA∇).

It follows that

(zIn−A∗
0)

−1C∗
0C∇(In− zA∇)−1 =

= ΩA∇(In− zA∇)−1 +(zIn−A∗
0)

−1Ω.

Using the latter identity and the definitions of Ψ and Δ in (3.7), we compute that

ΔΨ∗(z)F(z) = D∇ + zC∇(In − zA∇)−1B∇ −Γ∗(zIn−A∗
0)

−1C∗
0D∇+

− zΓ∗(zIn −A∗
0)

−1C∗
0C∇(In− zA∇)−1B∇

= D∇ + zC∇(In − zA∇)−1B∇ −Γ∗(zIn−A∗
0)

−1C∗
0D∇+

− zΓ∗ΩA∇(In− zA∇)−1B∇ − zΓ∗(zIn −A∗
0)

−1ΩB∇

= (D∇ −Γ∗ΩB∇)+ z(C∇ −Γ∗ΩA∇)(In− zA∇)−1B∇+

−Γ∗(zIn−A∗
0)

−1(C∗
0D∇ +A∗

0ΩB∇).

It follows that

T ∗
ΨF̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ−1(D∇ −Γ∗ΩB∇)

Δ−1(C∇ −Γ∗ΩA∇)B∇

Δ−1(C∇ −Γ∗ΩA∇)A∇B∇

Δ−1(C∇ −Γ∗ΩA∇)A2
∇B∇

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δ−1(D∇ −Γ∗ΩB∇)

ΔC0,∇B∇

ΔC0,∇A∇B∇

ΔC0,∇A2
∇B∇

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

Here we used the definition of C0,∇ in (3.4) and Δ = (R0−Γ∗QΓ)1/2 .

In the next two parts we compute T ∗
GTΨ(T ∗

ΨF̃) . Recall that Ψ is analytic on the
closed unit disc. It follows that T ∗

GTΨ = TG∗Ψ . From (3.17) in [3] we know that

G∗(z)C0(In− zA0)−1 = C1(In− zA0)−1 +B∗(zIn−A∗)−1Q. (3.11)

Using this identity we see that G∗(z)Ψ(z) can be written as

G∗(z)Ψ(z) = G∗(z)Δ−1 − zG∗(z)C0(In− zA0)−1ΓΔ−1

= D∗Δ−1 +B∗(zIn −A∗)−1C∗Δ−1+

− zC1(In− zA0)−1ΓΔ−1− zB∗(zIn −A∗)−1QΓΔ−1.
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From the definition of C0 in (1.9) we see that (C∗ −A∗QΓ)Δ−1 = C∗
0Δ , and hence we

obtain

G∗(z)Ψ(z) = ρ+(z)+ ρ−(z), where

ρ+(z) = (D∗ −B∗QΓ)Δ−1 − zC1(In− zA0)−1ΓΔ−1, (3.12)

ρ−(z) = B∗(zIn−A∗)−1C∗
0Δ. (3.13)

It follows that
T ∗
GTΨ = Tρ+ +Tρ− . (3.14)

We compute Tρ+(T ∗
ΨF̃) in the next part and Tρ−(T ∗

ΨF̃) in the third part.

Part 2. Since Tρ+ is a block lower triangular Toeplitz operator defined by ρ+ in (3.13)
and T ∗

ΨF̃ is given by (3.10), the expression FCpTρ+(T ∗
ΨF̃) is equal to the rational

matrix function Y1 given by the product

Y1(z) = ρ+(z)
(
FCmT ∗

ΨF̃
)
(z) (3.15)

=
(
(D∗ −B∗QΓ)Δ−1− zC1(In− zA0)−1ΓΔ−1

)
×

×
(

Δ−1(D∇ −Γ∗ΩB∇)+ zΔC0,∇(Ir − zA∇)−1B∇

)
. (3.16)

Computing the product and using Δ = (R0−Γ∗QΓ)1/2 we get

Y1(z) = (D∗ −B∗QΓ)(R0−Γ∗QΓ)−1(D∇ −Γ∗ΩB∇)+

− zC1(In− zA0)−1Γ(R0−Γ∗QΓ)−1(D∇ −Γ∗ΩB∇)+

+ z(D∗ −B∗QΓ)C0,∇(I− zA∇)−1B∇+

− zC1(In− zA0)−1(zΓC0,∇)(I− zA∇)−1B∇. (3.17)

Now we use the matrix A2 in (3.4). Note that

(In+r − zA2)−1 =

[
(In− zA0)−1 −(In− zA0)−1(zΓC0,∇)(Ir − zA∇)−1

0 (Ir − zA∇)−1

]
.

It follows that

Y1(z) = (D∗ −B∗QΓ)(R0−Γ∗QΓ)−1(D∇ −Γ∗ΩB∇)+

+z
[
C1 (D∗ −B∗QΓ)C0,∇

]
(In+r − zA2)−1 ×

×
[
−Γ(R0−Γ∗QΓ)−1(D∇ −Γ∗ΩB∇)

B∇

]
. (3.18)

Part 3. In this part we compute the rational matrix function Y2 given by FCpTρ−(T ∗
ΨF̃) .

To compute Y2 we first show that

Ω = A∗ΩA∇ +C∗
0(R0−Γ∗QΓ)C0,∇. (3.19)
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This formula follows from (3.3) and (3.4). Indeed,

Ω = A∗
0ΩA∇ +C∗

0C∇ = (A∗ −C∗
0Γ∗)ΩA∇ +C∗

0C∇

= A∗ΩA∇ +C∗
0(C∇ −Γ∗ΩA∇)

= A∗ΩA∇ +C∗
0(R0 −Γ∗QΓ)(R0 −Γ∗QΓ)−1(C∇ −Γ∗ΩA∇)

= A∗ΩA∇ +C∗
0(R0 −Γ∗QΓ)C0,∇.

Note that the first row of Tρ− is given by

[
0 B∗C0Δ B∗A∗C0Δ B∗(A∗)2C0Δ · · ·] .

Since Tρ− is block upper triangular, we see that

Tρ−(T ∗
ΨF̃) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D#

Tρ−

⎡
⎢⎢⎢⎢⎢⎣

ΔC0,∇B∇

ΔC0,∇A∇B∇

ΔC0,∇A2
∇B∇

...

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here D# is given by

D# =
∞

∑
ν=0

B∗(A∗)νC0ΔΔC0,∇Aν
∇B∇

= B∗
( ∞

∑
ν=0

(A∗)νC0(R0 −Γ∗QΓ)C0,∇Aν
∇

)
B∇ = B∗ΩB∇.

Note that the last equality results from (3.19). Next, again using that Tρ− is block upper
triangular, we obtain

Tρ−

⎡
⎢⎢⎢⎢⎢⎣

ΔC0,∇B∇

ΔC0,∇A∇B∇

ΔC0,∇A2
∇B∇

...

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

C#B∇

C#A∇B∇

C#A2
∇B∇

...

⎤
⎥⎥⎥⎥⎥⎦ ,

where

C# =
∞

∑
ν=0

B∗(A∗)νC0ΔΔC0,∇Aν+1
∇ = B∗ΩA∇.

Here we used that Δ2 = R0−Γ∗QΓ and the Stein equation (3.19). We conclude that

Y2(z) =
(
FCpTρ−(T ∗

ΨF̃)
)
(z) = B∗ΩB∇ + zB∗ΩA∇(Ir − zA∇)−1B∇.
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For later purposes it will be convenient to rewrite Y2(z) using the matrix A2 in
(3.4). This yields

Y2(z) = B∗ΩB∇ + z
[
0 B∗ΩA∇

](
In+r − zA2

)−1
[
♦
B∇

]
(3.20)

Here the matrix ♦ is free to choose. In the next part we shall take ♦ equal to −Γ(R0−
Γ∗QΓ)−1(D∇ −Γ∗ΩB∇) .
Part 4. In this part we compute the term β̃ in (3.9). Using that Ω is the unique solution
of the Stein equation (3.3), we see that

K∗F̃ =
[
C∗

0 A∗
0C

∗
0 (A∗

0)
2C∗

0 (A∗
0)

3C∗
0 · · ·]

⎡
⎢⎢⎢⎢⎢⎣

D∇
C∇B∇

C∇A∇B∇
C∇A2

∇B∇
...

⎤
⎥⎥⎥⎥⎥⎦

= C∗
0D∇ +

∞

∑
ν=0

(A∗
0)

ν+1C∗
0C∇Aν

∇B∇

= C∗
0D∇ +A∗

0

( ∞

∑
ν=0

(A∗
0)

νC∗
0C∇Aν

∇

)
B∇

= C∗
0D∇ +A∗

0ΩB∇.

From (3.11) we see that (FCpT ∗
GK)(z) = C1(In − zA0)−1 . It follows that

β̃ =

⎡
⎢⎢⎢⎣

C1

C1A0

C1A2
0

...

⎤
⎥⎥⎥⎦(In−PQ)−1P(C∗

0D∇ +A∗
0ΩB∇).

Here C1 = D∗C0 +B∗QA0 . Now put Y3(z) =
(
FCp β̃

)
(z) . Then

Y3(z) = (D∗C0 +B∗QA0)(In−PQ)−1P(C∗
0D∇ +A∗

0ΩB∇)+

+z(D∗C0 +B∗QA0)(In − zA0)−1×
×A0(In−PQ)−1P(C∗

0D∇ +A∗
0ΩB∇).

To derive our final result we rewrite Y3(z) using the matrix A2 in (3.4). This yields

Y3(z) = (D∗C0 +B∗QA0)(In−PQ)−1P(C∗
0D∇ +A∗

0ΩB∇)+

+z
[
(D∗C0 +B∗QA0) 0

](
In+r − zA2

)−1×

×
[
A0(In−PQ)−1P(C∗

0D∇ +A∗
0ΩB∇)

0

]
. (3.21)
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Finally, to complete the proof of the main part of the theorem, note that the solution
Y determined by (1.15) is given by

Y (z) = Y1(z)+Y2(z)+Y3(z).

So we can add the state space representations (3.18), (3.20) and (3.21) for Y1(z) , Y2(z) ,
and Y3(z) , respectively, to obtain the desired representation for Y (z) .

Part 5. It remains to prove the final statement about the McMillan degrees. We assume
that the number n and the number r in the state space representations (1.2) and (3.1)
are chosen as small as possible. In that case δ (G) = n and δ (F) = r . Since the matrix
A2 in the state space representation of Y has order n+ r , the McMillan degree of Y is
at most n+ r . Thus δ (Z) � δ (G)+ δ (Y ) . �

The final statement in Theorem 3.1 about the McMillan degrees can also be proven
directly, without using state space representations. The argument is a variation of the
argument used in the final part of the proof of Theorem 2.1. The details are as follows.

Let G , Y , and F be the stable rational matrix functions appearing in Theorem 3.1
above. Since G(z)Y (z) = F(z) , the Laurent operator LF is equal to the product of the
Laurent operators of G and Y . It follows (see the last paragraph of Section 1) that[

TG# 0

HG TG

][
TY# 0

HY TY

]
= LGLY = LF =

[
TF# 0

HF TF

]
.

By comparing the terms in the lower left hand corner, we arrive at

TGHY = HF −HGTY# (3.22)

From the definition of Y , we know that for each u ∈ Cp the function Y (·)u is
in the orthogonal complement of KerMG in H2(Cp) . Hence TY Ẽu is contained in
(KerTG)⊥ . Here Ẽ is the canonical embedding of C

p onto the first coordinate space of
�2
+(Cp) . Since the null space KerTG is invariant under the block forward shift SCp on

�2
+(Cp) , it follows (see the final paragraph of the proof of Theorem 2.1) that the range

of HY is contained in (KerTG)⊥ . We know that T ∗
G(TGT ∗

G)−1TG is the orthogonal
projection onto (KerTG)⊥ . As the range of HY is contained in (KerTG)⊥ , multiplying
by T ∗

G(TGT ∗
G)−1 on the left in (3.22) yields

HY = T ∗
G(TGT ∗

G)−1TGHY = T ∗
G(TGT ∗

G)−1 (HF −HGTY #) .

Therefore rankHY � rankHF + rankHG , and thus δ (Y ) � δ (F)+ δ (G) .

It is interesting to specify Theorem 3.1 for the case when the function F in (3.1)
is equal to the function G given by (1.2). This leads to the following corollary which
we shall need in the next section.

COROLLARY 3.2. Let G be given by (1.2) with A stable, and let P be the unique
solution of the Stein equation (1.5). Assume that MG is right invertible, or equivalently,
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assume that the Riccati equation (1.3) has a stabilizing solution Q such that the matrix
In−PQ is non-singular. Then the p× p matrix function Z defined by

Z(·)y = M∗
G(MGM∗

G)−1Gy, y ∈ C
p. (3.23)

is a stable rational matrix function and

Z(z) = D3 + zC1(In− zA0)−1B3, (3.24)

where A0 = A−ΓC0 and C1 = D∗C0 +B∗QA0 , and B3 and D3 are given by

B3 = B−Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)+A0P(In−QP)−1C∗
1 , (3.25)

D3 = (D∗ −B∗QΓ)(R0−Γ∗QΓ)−1(D−Γ∗QB)+B∗QB+

+C1P(In−QP)−1C∗
1 . (3.26)

Furthermore, G(z)Z(z) = G(z) for each z ∈ D .

Proof. To determine Z we follow the proof of Theorem 3.1 with

A∇ = A, B∇ = B, C∇ = C, D∇ = D.

Using the definitions of A0 and C0 in (1.7) and (1.9), together with the fact that Q is a
hermitian matrix satisfying (1.3), we see that

Q = A∗QA0 +C∗C0. (3.27)

Thus in this case (3.3) reduces to the dual of (3.27), and hence Ω = Q . Furthermore,
we have

C0,∇ = (R0−Γ∗QΓ)−1(C−Γ∗QA) = C0.

It follows that Z in (3.23) is given by Z(z) = Z1(z)+Z2(z)+Z3(z) , where the functions
Z1 , Z2 , Z3 are the analogs of the functions Y1 , Y2 , Y3 in the proof of Theorem 3.1. Thus

Z1(z) = (D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1(D−Γ∗QB)+

− zC1(In− zA0)−1Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)+

+ z(D∗ −B∗QΓ)C0(In − zA)−1B+

− zC1(In− zA0)−1(zΓC0)(I− zA)−1B, (3.28)

Z2(z) = B∗QB+ zB∗QA0(In− zA)−1B,

Z3(z) = (D∗C0 +B∗QA0)(In−PQ)−1P(C∗
0D+A∗

0QB)+

+ z(D∗C0 +B∗QA0)(In− zA0)−1× (3.29)

×A0(In−PQ)−1P(C∗
0D+A∗

0QB).
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Recall that A0 = A−ΓC0 . Hence zΓC0 can be rewritten as

zΓC0 = (In− zA0)− (In− zA).

Using this in (3.28) we see that

− zC1(In− zA0)−1(zΓC0)(I− zA)−1B =

= zC1(In− zA0)−1B− zC1(In− zA)−1B.

This implies that

Z1(z) = (D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1(D−Γ∗QB)+

− zC1(In− zA0)−1
(

Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)−B
)
+

+ z
(
(D∗ −B∗QΓ)C0 −C1

)
(In − zA)−1B.

Recall (see (1.8)) that C1 = D∗C0 +B∗QA0 . Thus

(D∗ −B∗QΓ)C0 −C1 = D∗C0−B∗QΓC0 −D∗C0 −B∗QA0

= −B∗Q(ΓC0 +A0) = −B∗QA.

We conclude that

Z1(z)+Z2(z) = (D∗ −B∗QΓ)(R0−Γ∗QΓ)−1(D−Γ∗QB)+B∗QB+

− zC1(In− zA0)−1
(

Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)−B
)
.

Using the identity C1 = D∗C0 +B∗QA0 in (3.29) we see that

Z3(z) = C1(In −PQ)−1PC∗
1 + zC1(In− zA0)−1A0(In−PQ)−1PC∗

1 .

It follows that

Z(z) = Z1(z)+Z2(z)+Z3(z) = D3 + zC1(In− zA0)−1B3,

where B3 and D3 are given by (3.25) and (3.26), respectively. �

4. Proof of Theorem 1.1

Let G be a stable m× p rational matrix function, and assume that MG is right
invertible. From the beginning of Section 2 and Theorem 2.1 we know that there exists
a stable rational p× (p−m) matrix function Θ , which is inner and unique up to a
constant unitary (p−m)× (p−m) matrix on the right, such that

KerMG = MΘH2(Cp−m). (4.1)
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Moreover, Θ(0) is one-to-one and Θ is given by

Θ(·)Θ(0)∗u = u−M∗
G(MGM∗

G)−1G(·)u, u ∈ C
p. (4.2)

Since Θ(0) is one-to-one, Θ(0)∗ is onto. Hence the right hand side of (4.2) determines
Θ uniquely up to a constant unitary (p−m)× (p−m) matrix on the right.

LEMMA 4.1. The rational matrix function Θ in (4.2) admits the following stable
state space representation

Θ(z) =
(
Ip− zC1(In− zA0)−1(In−PQ)−1B

)
D4. (4.3)

Here C1 = D∗C0 +B∗QA0 , and the matrices A0 and C0 are given by (1.7) and (1.9),
respectively. Furthermore, D4 is a one-to-one p× (p−m) matrix such that

D4D
∗
4 = Ip− (D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1(D−Γ∗QB)+

−B∗QB−C1(In−PQ)−1PC∗
1 . (4.4)

Proof. By comparing the right hand side of the above identity with the right hand
side of (3.23) we see that Θ(z)Θ(0)∗ = Ip −Z(z) for each z ∈ D . From Corollary 3.2
we know that Z is given by the stable state space representation (3.24). Hence

Θ(z)Θ(0)∗ = Ip−D3− zC1(In−A0)−1B3, (4.5)

where B3 and D3 are given by (3.25) and (3.26), respectively. Put D4 = Θ(0) . Then
D4 is a one-to-one p× (p−m) matrix and D4D∗

4 = Θ(0)Θ(0)∗ = Ip −D3 , and thus
(4.4) holds. Furthermore, using (2.4) we see that Θ admits the representation

Θ(z) = D4 + zC1(In− zA0)−1B4, (4.6)

where B4 = −B3Θ(0)
(
Θ(0)∗Θ(0)

)−1
, that is, B4 is given by

B4 = −
(
B−Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)+

+A0(In−PQ)−1PC∗
1

)
D4(D∗

4D4)−1. (4.7)

To see that (4.6) yields (4.3) we have to prove B4 = −(In −PQ)−1BD4 . Recall
that D4 is one-to-one, and hence D∗

4D4 is invertible. Therefore, it suffices to show that

BD4D
∗
4D4 = −(In−PQ)B4D

∗
4D4. (4.8)

From (4.1) we know that that G(z)Θ(z) is identically zero. In particular, we have

DD4 = 0. (4.9)

It follows from (4.4) and C1 = D∗C0 +B∗QA0 that

D4D
∗
4D4 = D4 +(D∗ −B∗QΓ)(R0−Γ∗QΓ)−1Γ∗QBD4+

−B∗QBD4−C1(In −PQ)−1PC∗
1D4,

C∗
1D4 = A∗

0QBD4.
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Thus BD4D∗
4D4 = αBD4 −βBD4 , where

α = In +B(D∗ −B∗QΓ)(R0 −Γ∗QΓ)−1Γ∗Q−BB∗Q,

β = BC1(In−PQ)−1PA∗
0Q.

Put Λ = (R0−Γ∗QΓ)−1 . Using (1.5) and the second identity in (1.4) we have

α = In + ΓΛΓ∗Q−APC∗ΛΓ∗Q−PQΓΛΓ∗Q+APA∗QΓΛΓ∗Q−PQ+APA∗Q
= (In−PQ)(In + ΓΛΓ∗Q)−APC∗ΛΓ∗Q+APA∗QΓΛΓ∗Q+APA∗Q.

Next, we use the identity BC1 = A(In −PQ)− (In−PQ)A0 ; see [3], formula (3.21). It
follows that

α −β = (In −PQ)(In + ΓΛΓ∗Q)−APC∗ΛΓ∗Q+APA∗QΓΛΓ∗Q+

+APA∗Q−
(
A(In−PQ)− (In−PQ)A0

)
(In−PQ)−1PA∗

0Q

= (In −PQ)
(
In + ΓΛΓ∗Q+A0(In−PQ)−1PA∗

0Q
)
−APC∗ΛΓ∗Q+

+APA∗QΓΛΓ∗Q+APA∗Q−APA∗
0Q

= (In −PQ)
(
In + ΓΛΓ∗Q+A0(In−PQ)−1PA∗

0Q
)
+

+AP
(
−C∗ΛΓ∗ +A∗QΓΛΓ∗ +A∗−A∗

0

)
Q

From the definitions of A0 and C0 in (1.7) and (1.9) we see that

−C∗ΛΓ∗ +A∗QΓΛΓ∗ +A∗−A∗
0 = 0.

We conclude that

BD4D
∗
4D4 = (In−PQ)

(
In + ΓΛΓ∗Q+A0(In−PQ)−1PA∗

0Q
)
BD4.

On the other hand, again using DD4 = 0, we have

B4D4D
∗
4 = −

(
B−Γ(R0−Γ∗QΓ)−1(D−Γ∗QB)+A0(In−PQ)−1PC∗

1

)
D4

= −
(
In + ΓΛΓ∗Q+A0(In−PQ)−1PA∗

0

)
BD4.

Hence (4.8) holds, and (4.3) is proved. �
Proof of Theorem 1.1. Let Θ be as in Lemma 4.1, and put D4 = Θ(0) . Then (4.4)

holds true. It follows that the right hand side of (4.4) is positive semi-definite. Hence
the same holds true for the right hand side of (1.12).

Now let D̂ be any one-to-one p× (p−m) matrix such that (1.12) holds. Then
D̂D̂∗ = D4D∗

4 . Since both D4 and D̂ are one-to-one, there exists a unitary matrix U of
order p−m such that D̂ = D4U . It follows that Θ̂(·) = Θ(·)U . Hence Θ̂ has the same
properties as Θ . Thus Θ̂ is inner and (1.13) holds. The latter implies that the set of
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all stable p×m rational matrix solutions V of equation (1.1) is equal to the set of all
functions V (z) = X(z)+ Θ̂(z)N(z) , where X is the least square solution given by (1.6),
the parameter N is an arbitrary stable (p−m)×m rational matrix function, and Θ̂ is
given by (1.11).

It remains to prove the statement about the McMillan degrees. To do this assume
that the number n in the state space representation (1.2) is chosen as small as possible.
In that case, δ (G) = n . Since the matrix A0 in the state space representation of Θ̂ has
the same size as A , we conclude that δ (Θ̂) � n . Thus δ (Θ̂) � δ (G) , as desired. �

A REMARK ABOUT Θ̂ BEING INNER. The above proof of the fact that the stable
rational matrix function Θ̂ defined by (1.11) is inner follows a rather indirect line of
arguments. Indeed, the proof uses that Θ̂(z) = Θ(z)U , where U is a constant unitary
matrix and Θ is the function given by (4.3). But the function Θ given by (4.3) is the
inner function appearing (4.1). Thus Θ̂ is also inner. It is possible to show more directly
that Θ̂ is inner. Indeed, the fact that Θ̂ is inner follows from the following identity:[

A∗
0 C∗

1
B̂∗ D̂∗

][
Q−QPQ 0

0 Ip

][
A0 B̂
C1 D̂

]
=

[
Q−QPQ 0

0 Im

]
. (4.10)

Note that the above identity is equivalent to the following three identies:

A∗
0(Q−QPQ)A0 +C∗

1C1 = Q−QPQ, (4.11)

B̂∗(Q−QPQ)A0 + D̂∗C1 = 0, (4.12)

B̂∗(Q−QPQ)B̂+ D̂∗D̂ = Im. (4.13)

The identity (4.11) has been established in [3, formula (3.24)]. Since A0 is stable, (4.11)
tells us that the matrix Q−QPQ is the observability Gramian for the pair {C0,A0} .
Given (4.11) it is well-known (see, e.g., the proof of Theorem 4.5.1 in [2]) that (4.12)
implies that the block columns of TΘ are mutually orthogonal and that (4.13) implies
that each block column of TΘ is an isometry. Thus given (4.11), together the equalities
(4.12) and (4.13) show that TΘ is an isometry and hence Θ is inner. Thus (4.10) yields
Θ is inner.

To obtain the identity (4.10) it remains to derive the equalities (4.12) and (4.13).
This can be done by direct computations; we omit the details.

EXAMPLE. Let us specify Theorem 1.1 for the stable rational matrix function
G appearing in Example 1 in [3, Section 5]; see also [11], page 425. Thus we take
G(z) =

[
1+z −z

]
. A stable state space representation for this G is obtained by taking

A = 0, B =
[
1 −1

]
, C = 1, D =

[
1 0

]
. (4.14)

We already know ([3, Section 7]) that P = 2 is the solution of the corresponding
Stein equation (1.5), and that the Riccati equation (1.3) reduces to

Q =
1

3−Q
.



852 A. E. FRAZHO, M. A. KAASHOEK AND A. C. M. RAN

This equation has q = 1
2 (3−√

5) as a stabilizing solution. Furthermore, A0 = −q and
C0 = q , and thus

C1 =
[
q
0

]
−

[
1
−1

]
q2 = q

[
1−q

q

]
.

A straightforward computation shows that in this case the right hand side of (1.12) is
given by [

0 0
0 q

]
, and hence for D̂ we can take D̂ =

[
0√
q

]
.

Now using (1.11) we see that Θ is given by

Θ̂(z) =
√

q

1+qz

[
z

1+ z

]
, where as before q = 1

2 (3−√
5) .

Clearly, G(z)Θ̂(z) is identically zero and using q2−3q+1= 0 one checks directly that
Θ̂ is inner.

5. The rational version of Tolokonnikov’s lemma

Tolokonnikov’s lemma (see [10] and Appendix 3 in [8]) tells us that the problem
of solving a corona type Bezout equation is equivalent to solving a certain extension
problem. In this section we specify this result for rational matrix functions and derive
a state space representation for a special extension.

Throughout G is a stable m× p rational matrix function. We say that G admits an
invertible outer extension if there exists an invertible outer p× p stable rational matrix
function Ĝ such that

Ĝ(z) =
[
G(z)

�

]
. (5.1)

Recall that a square stable rational matrix function F is called invertible outer whenever
F−1 exists and is again a stable rational matrix function. If Ĝ is an invertible outer
extension of G , then the matrix function X defined by

X(z) = Ĝ(z)−1
[
Im
0

]
(5.2)

is a stable rational matrix solution of (1.1).
The converse is also true, that is, if (1.1) has a stable rational matrix solution,

then G admits an invertible outer extension. To see this we use the Smith form for
matrix polynomials (see Chapter S1 of [6] and Section 6.5.2 in [7]). Let d(z) be the
least common multiple of the denominators of the entries of G(z) . Then d(z)G(z) is a
matrix polynomial, and using the Smith form for this polynomial we see that G factors
as

G(z) = U(z)

⎡
⎢⎣

ρ1(z) 0 · · · 0
. . .

...
...

ρm(z) 0 · · · 0

⎤
⎥⎦V (z). (5.3)
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Here U(z) and V (z) are unimodular matrix polynomials of sizes m×m and p× p , re-
spectively, and ρ1, . . . ,ρm are scalar rational functions. Since G is stable, the functions
ρ1, . . . ,ρm have no poles in |z| � 1. Now, assume that (1.1) has a stable rational matrix
solution. Then G(z) has full row rank for each |z|� 1, and hence the rational functions
ρ1, . . . ,ρm in (5.3) have no zeros in |z| � 1. Put

Ũ(z) = U(z)

⎡
⎢⎣

ρ1(z)
. . .

ρm(z)

⎤
⎥⎦ ,

where U(z) and ρ1(z), . . . ,ρm(z) are as in (5.3). Next using Ũ(z) above and V (z) in
(5.3), set

Ĝ(z) =

[
Ũ(z) 0

0 Ip−m

]
V (z).

Then the function Ĝ is an invertible outer extension of G .
Thus (1.1) has a stable rational matrix solution if and only if G has an invertible

outer extension. This is Tolokonnikov’s lemma for rational matrix functions. In additon
to this result, the following proposition presents in state space form a special invertible
outer extension.

PROPOSITION 5.1. Let G be a stable m× p rational matrix function, and as-
sume that (1.1) has a stable rational matrix solution. Then G has an invertible outer
extension Ĝ such that the McMillan degree of Ĝ is equal to the McMillan degree of
G. Moreover, such an invertible outer extension Ĝ can be obtained in the following
way. Let X be the least squares solution given by (1.6), and let Θ be the inner rational
matrix function given by (4.3). Then

Ĝ(z) =

[
G(z)

Θ∗(z)(Ip −X(z)G(z))

]
(5.4)

is an invertible outer extension of G, and Ĝ(z)−1 =
[
X(z) Θ(z)

]
. Furthermore, the

McMillan degrees of G and Ĝ coincide, and Ĝ in (5.4) admits the stable state space
representation

Ĝ(z) =

[
D

D∗
4 +D∗

4B
∗Q(In−PQ)−1B

]
+ z

[
C

D∗
4B

∗Q(In−PQ)−1A

]
(I− zA)−1B. (5.5)

Here D4 is as in (4.4).

Proof. Our hypotheses imply that MG is right invertible, and hence the stable
rational matrix functions X in (1.6) and Θ in (4.3) are well defined. We first prove that
the function K given by

K(z) = Θ∗(z)
(
Ip−X(z)G(z)

)
(5.6)
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is a stable rational matrix function. [The argument does not require X to be the least
squares solution; it works for any stable rational matrix solution.] Clearly, K is ra-
tional and has no poles on T . To show that K is stable, take h in H2(Cp) . Then
G(z)X(z) = Im implies MGMX = I , and thus MG(I−MXMG)h = 0. But then, by (2.1),
there exists f in H2(Ck) such that MΘ f = (I −MXMG)h . In other words, in terms
of the corresponding Laurent operators, we have LΘ f = (I − LXLG)h . Since Θ is
inner, L∗

ΘLΘ = I . But L∗
Θ = LΘ∗ . This leads to the identity LΘ∗(I −LXLG)h = f . Re-

call that h is an arbitrary element in H2(Cp) . We conclude that the Laurent operator
LΘ∗(I−LXLG) maps H2(Cp) into H2(Ck) . This implies that the rational matrix func-
tion K in (5.6) is a rational matrix-valued H∞ function, which is equivalent to K being
stable.

Let Ĝ be the matrix function defined by (5.4). The result of the previous paragraph
implies that Ĝ is a stable rational matrix function. Note that the function

[
X(z) Θ(z)

]
also is a stable rational matrix function. Thus in order to prove that Ĝ is an invertible
outer extension of G , it suffices to show that

Ĝ(z)
[
X(z) Θ(z)

]
= Ip and

[
X(z) Θ(z)

]
Ĝ(z) = Ip. (5.7)

In fact, since Ĝ(z) is a square matrix function, it is sufficient to prove the first identity
in (5.7). To do this note that

Ĝ(z)
[
X(z) Θ(z)

]
=

⎡
⎣ G(z)X(z) G(z)Θ(z)

Θ∗(z)
(
Ip−X(z)G(z)

)
X(z) Θ∗(z)

(
Ip−X(z)G(z)

)
Θ(z)

⎤
⎦ .

According to (a) , we have G(z)X(z) = Im . This implies that the (1,1) and (2,1) entries
in the above 2×2 block matrix are equal to Im and 0, respectively. On the other hand,
G(z)Θ(z) = 0 by (2.1). Thus the (1,2) entry in the above 2× 2 block matrix is equal
to 0 and the (2,2) entry is equal Θ∗(z)Θ(z) . Since Θ is inner, Θ∗(z)Θ(z) = Ik . We
conclude that the first identity in (5.7) holds. Hence Ĝ is an invertible outer extension
of G . [Again note that the given argument works for any stable rational matrix solution
and does not require X to be the least squares solution.]

Next we derive the representation (5.5). This requires that X is the least squares
solution and uses (1.6). We first show that Θ∗(z)X(z) admits the following state space
representation

Θ∗(z)X(z) = −D∗
4B

∗(In −QP)−1(zIn −A∗
0)

−1C∗
0 . (5.8)

To obtain this identity, we use that X is given by (1.6) and Θ by (4.3). Thus

Θ∗(z)X(z) = (D∗
4 −D∗

4B
∗(In−QP)−1(zIn−A∗

0)
−1C∗

1)×
× (D1− zC1(In− zA0)−1(In−PQ)−1D1)

= D∗
4D1−D∗

4B
∗(In−QP)−1(zIn −A∗

0)
−1C∗

1D1+

− zD∗
4C1(In− zA0)−1(In−PQ)−1BD1+

+D∗
4B

∗α(z)BD1.
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Here
α(z) = z(In −QP)−1(zIn −A∗

0)
−1C∗

1C1(In− zA0)−1(In−PQ)−1.

From (4.11) (see also [3, formula (3.23)]) we know that Q−QPQ satisfies the Stein
equation

(Q−QPQ)−A∗
0(Q−QPQ)A0 = C∗

1C1.

Using this identity we have

zC∗
1C1 = (zIn−A∗

0)(Q−QPQ)+A∗
0(Q−QPQ)(In− zA0),

α(z) = Q(In− zA0)−1(In−PQ)−1 +(In−QP)−1(zIn−A∗
0)

−1A∗
0Q

= Q(In−PQ)−1 + zQA0(In− zA0)−1(In−PQ)−1+

+(In−QP)−1(zIn −A∗
0)

−1A∗
0Q.

Inserting the latter expressing for α(z) into the formula above for Θ∗(z)X(z) we obtain

Θ∗(z)X(z) = D∗
4D1 +D∗

4B
∗Q(In−PQ)−1BD1+

+ zD∗
4(B

∗QA0−C1)(In− zA0)−1(In−PQ)−1BD1

+D∗
4B

∗(In−QP)−1(zIn−A∗
0)

−1(A∗
0QB−C∗

1)D1.

Let u be an arbitrary vector in Cp . Since X(·)u is perpendicular to KerMG , we see
from (2.1) that the function Θ∗(·)X(·)u is analytic outside the open unit disc and has
the value zero at infinity. This holds for each u in Cp . It follows that in the above
expression for Θ∗(z)X(z) the sum of first three terms in the right hand side must be
identically zero, that is,

Θ∗(z)X(z) = D∗
4B

∗(In−QP)−1(zIn −A∗
0)

−1(A∗
0QB−C∗

1)D1.

Using that C1 is given by (1.8) and DD1 = Im , we arrive at (5.8).
Next we compute Θ∗(z)X(z)G(z) . From (3.11) (see also formula (3.17) in [3]) we

know that

G∗(z)C0(In− zA0)−1 = C1(In− zA0)−1 +B∗(zIn−A∗)−1Q.

Taking adjoints in this identity we see that

(zIn−A∗
0)

−1C∗
0G(z) = Q(In− zA)−1B+(zIn−A∗

0)
−1C∗

1

= QB+ zQA(In− zA)−1B+(zIn−A∗
0)

−1C∗
1 .

Using the representation (5.8) we obtain

Θ∗(z)X(z)G(z) =−D∗
4B

∗(In−QP)−1QB+

−D∗
4B

∗(In−QP)−1QA(In− zA)−1B+

−D∗
4B

∗(In−QP)−1(zIn−A∗
0)

−1C∗
1 .
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But then, using the definition of Θ in (4.3) we arrive at

Θ∗(z)−Θ∗(z)X(z)G(z) = D∗
4 +D∗

4B
∗(In−QP)−1QB+

+D∗
4B

∗(In−QP)−1QA(In− zA)−1B.

Inserting this expression for Θ∗(z)−Θ∗(z)X(z)G(z) into (5.4) yields the desired for-
mula (5.5).

It remains to show that δ (Ĝ) = δ (G) . Since Ĝ is an extension of G , we have
δ (Ĝ) � δ (G) . Now assume that the integer n in the state space representation (1.2) is
chosen as small as possible. Then δ (G) = n , and the right hand side of (5.5) shows that
δ (Ĝ) � n . Thus δ (Ĝ) = n = δ (G) , as desired. �

We conclude by specifying formula (5.4) for the stable rational matrix function G
appearing in the example at the end of the previous section. Thus G(z) =

[
1+z −z

]
.

From Section 5 in [3] and the final paragraph of the previous section we know that for
this choice of G the rational matrix functions X and Θ in (5.4) are given by

X(z) =
q

(1−2q)(1+qz)

[
1−q

q

]
, Θ(z) =

√
q

q+ z

[
z

1+ z

]
.

Here q = 1
2 (3−√

5) and q2 − 3q + 1 = 0. From the latter identity it follows that√
q = 1−q , and one computes that

Θ∗(z)−Θ∗(z)X(z)G(z) =
√

q

1−q

[−1 2−q
]
=

[−1 1
2 (1+

√
5)

]
.

Thus for G(z) =
[
1+z −z

]
the function Ĝ in (5.4) is given by

Ĝ(z) =

[
1+ z −z

−1 1
2(1+

√
5)

]
.
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