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ON YUAN–GAO’S “COMPLETE FORM” OF FURUTA INEQUALITY
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(Communicated by F. Hansen)

Abstract. Recently Yuan and Gao gave a “complete form” of Furuta inequality. We present
its extension by an expression of operator mean: If A � B � 0 with A > 0 , p � p0 � 0 and
r,r0 > 0 , then

A−r0 � δ+r0
p0+r0

Bp0 � Bδ � A−r � δ+r
p+r

Bp

for p0 � δ � min{p,2p0 + min{1,r0}}. Furthermore we also obtain a grand Furuta type in-
equality related to our extension.

1. Introduction

Throughout this note a capital letter means a bounded linear operator acting on a
Hilbert space.

In 1987, Furuta [5] established the so-called Furuta inequality, see [2, 3, 6, 7, 13,
16].

Furuta inequality. If A � B � 0 ,
then for each r � 0 ,
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hold for p and q such that p � 0
and q � 1 with

(1+ r)q � p+ r.
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The most important fact on Furuta inequality is that it is an extension of Löwner-
Heinz inequality (LH), i.e.,

A � B � 0 =⇒ Aα � Bα (α ∈ [0,1]).

Related to (LH), Kubo-Ando theory says that α -geometric mean �α just corresponds
to (LH; α ). That is, it is defined by

A�α B = A1/2(A−1/2BA−1/2)αA1/2

for positive operators A and B . As stated in [13], when A > 0 and B � 0, Furuta
inequality can be arranged in terms of α -geometric mean as follows: If A � B � 0
with A > 0, then

A � B � A−r � 1+r
p+r

Bp for p � 1 and r � 0. (FI)

Furthermore Furuta [9] obtained the following as an interpolation between Furuta
inequality and Ando-Hiai one [1].

The grand Furuta inequality. If A � B � 0 with A > 0 , then for each t ∈ [0,1] ,

A1−t+r � {A r
2 (A− t

2 BpA− t
2 )sA

r
2 } 1−t+r

(p−t)s+r (GFI)

holds for all s � 1 , p � 1 and r � t .
For the grand Furuta inequality see [4, 10, 14, 15, 17].
Now in order to provide an elementary and alternative proof of Furuta inequality,

Furuta proved the following inequality.

THEOREM 1.A. ([8]) Let A � B � 0 , 1 � r � 0 and p > p0 > 0 . If 2p0 + r � p,
then

(Ar/2Bp0Ar/2)
p+r
p0+r � Ar/2BpAr/2.

Yuan and Gao [18] provided a “complete form” of Theorem 1.A.

THEOREM 1.B. ([18]) Let A � B � 0, r > 0, p > p0 > 0 and δ = min{p,2p0 +
min{1,r}}. Then

(Ar/2Bp0Ar/2)
δ+r
p0+r � (Ar/2BpAr/2)

δ+r
p+r . (1.1)

In this note, we shall give an extension of Theorem 1.B and related results by an
expression of operator mean. As a matter of fact, (1.1) is expressed as

A−r � δ+r
p0+r

Bp0 � A−r � δ+r
p+r

Bp,

where A�α B = A1/2(A−1/2BA−1/2)αA1/2 (α �∈ [0,1]) .
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For this, we present a generalization as follows: Let A � B � 0 with A > 0,
p � p0 > 0 and r,r0 > 0. Then

A−r0 � δ+r0
p0+r0

Bp0 � Bδ � A−r � δ+r
p+r

Bp

for p0 � δ � min{p,2p0 +min{1,r0}}. If we put r0 = r , then we have Theorem 1.B
obviously. Furthermore we also obtain a grand Furuta type inequality related to our
extension.

2. The main theorem

In this section, we shall give an extension of Theorem 1.B. First of all, we cite
useful formulae on A�α B for convenience. They are easily checked by the direct com-
putations and frequently used in the below.

LEMMA 2.A. The following formulae hold for all real numbers s and t :

1. A�s B = B�1−s A,

2. A�s B = B(B−1 �s−1 A−1)B, and

3. A�st B = A�s (A�t B).

Under this preparation, we extend Theorem 1.A as follows:

THEOREM 2.1. Let A � B � 0 with A > 0 , p0 � 0 and r0 > 0 . Then

A−r0 � δ+r0
p0+r0

Bp0 � Bδ

for p0 � δ � 2p0 +min{1,r0} .

Proof. We may assume that B is invertible. By Furuta inequality, A � B > 0
ensures

B−p0 � δ−p0
p0+r0

Ar0 = B−p0 � δ−2p0+p0
r0+p0

Ar0 � Bδ−2p0

for −p0 � δ −2p0 � min{1,r0} . Then we have

A−r0 � δ+r0
p0+r0

Bp0 = Bp0(B−p0 � δ−p0
p0+r0

Ar0)Bp0 � Bp0Bδ−2p0Bp0 = Bδ .

Hence the proof is complete. �
Recently, the following result was shown in [11, Theorem 2.1].

THEOREM 2.B. ([11]) For A,B > 0 , p > 0 and r > 0 , if A−r � r
p+r

Bp � 1 , then

A−r � δ+r
p+r

Bp � A−t � δ+t
s+t

Bs

for 0 � s � p, 0 � t � r and −t � δ � s.
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By Theorem 2.1 and Theorem 2.B, we obtain an extension of Theorem 1.B.

THEOREM 2.2. Let A � B � 0 with A > 0 , p � p0 � 0 and r,r0 > 0 . Then

A−r0 � δ+r0
p0+r0

Bp0 � Bδ � A−r � δ+r
p+r

Bp

for p0 � δ � min{p,2p0 +min{1,r0}} .

Proof. The former inequality is just Theorem 2.1, so that we have only to prove
the latter one. We may assume that B is invertible. By Furuta inequality, A � B > 0
ensures Ar � (A

r
2 BpA

r
2 )

r
p+r , that is, A−r � r

p+r
Bp � 1 for p > 0 and r > 0. Then we

have
Bδ = 1� δ+0

p+0
Bp � A−r � δ+r

p+r
Bp (2.1)

for 0 � δ � p and r > 0 by applying Theorem 2.B. �

3. A grand Furuta type inequality

Next we shall show a grand Furuta type inequality related to Theorem 2.2. By
putting β = (p− t)s+ t and γ = r− t , we can arrange (GFI) in terms of α -geometric
mean as follows [4]: If A � B � 0 with A > 0, then for each t ∈ [0,1] and p � 1 with
p �= t ,

A � B � A−γ � 1+γ
β+γ

(At � β−t
p−t

Bp) for β � p and γ � 0. (3.1)

The following Theorem 3.1 is a grand Furuta type extension of Theorem 2.2.

THEOREM 3.1. Let A � B � 0 with A > 0 , p � 1 , t ∈ [0,1] , p �= t , γ,γ0 � 0 and
β � β0 � p. Then for β0 � δ � min{β ,2β0− t} ,

A−γ0 � δ+γ0
β0+γ0

(At � β0−t
p−t

Bp) � (At � β0−t
p−t

Bp)
δ

β0 � At � δ−t
p−t

Bp

� (At � β−t
p−t

Bp)
δ
β � A−γ � δ+γ

β+γ
(At � β−t

p−t
Bp).

To prove Theorem 3.1, we use the following lemma shown in [4] (cf. [12]).

LEMMA 3.A. ([4]) Let A � B � 0 with A > 0 . Then

A � B � (At � β−t
p−t

Bp)
1
β

holds for t ∈ [0,1] , β � p � 1 and p �= t .

Proof of Theorem 3.1. By Lemma 3.A, for t ∈ [0,1] and β ,β0 � p � 1, we have

A � (At � β0−t
p−t

Bp)
1

β0 (3.2)
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and

A � (At � β−t
p−t

Bp)
1
β . (3.3)

Applying Theorem 2.1 to (3.2), we obtain

A−γ0 � δ+γ0
β0+γ0

(At � β0−t
p−t

Bp) � (At � β0−t
p−t

Bp)
δ
β0 (3.4)

for β0 � δ � 2β0 +min{1,γ0} , γ0 � 0. Applying (2.1) in the proof of Theorem 2.2 to
(3.3), we obtain

(At � β−t
p−t

Bp)
δ
β � A−γ � δ+γ

β+γ
(At � β−t

p−t
Bp) (3.5)

for 0 � δ � β , γ � 0.

Put C = (At � β0−t
p−t

Bp)
1

β0 and D = (At � β−t
p−t

Bp)
1
β . Then by (3.2),

At � δ−t
p−t

Bp = At � δ−t
β0−t

(At � β0−t
p−t

Bp) = At � δ−t
β0−t

Cβ0

= Cβ0(C−β0 � δ−β0
β0−t

A−t)Cβ0

� Cβ0(C−β0 � δ−β0
β0−t

C−t)Cβ0 =Cδ = (At � β0−t
p−t

Bp)
δ

β0

for t ∈ [0,1] , 1 � p � β0 � δ � 2β0− t , and also by (3.3),

At � δ−t
p−t

Bp = At � δ−t
β−t

(At � β−t
p−t

Bp) = At � δ−t
β−t

Dβ

� Dt � δ−t
β−t

Dβ = Dδ = (At � β−t
p−t

Bp)
δ
β

for t ∈ [0,1] , 1 � p � δ � β . Therefore we have

(At � β0−t
p−t

Bp)
δ

β0 � At � δ−t
p−t

Bp � (At � β−t
p−t

Bp)
δ
β (3.6)

for t ∈ [0,1] , 1 � p � β0 � δ � β and δ � 2β0− t .
Hence the desired inequalities are obtained by (3.4), (3.5) and (3.6). �

By putting β0 = (p− t)s0 + t , γ0 = r0 − t , β = (p− t)s+ t and γ = r− t , we get
the following corollary.

COROLLARY 3.2. Let A � B � 0 with A > 0 , p � 1 , t ∈ [0,1] , p �= t , r,r0 � t
and s � s0 � 1 . Then for (p− t)s0 + t � δ � min{(p− t)s+ t,2(p− t)s0+ t} ,

A−r0 � δ−t+r0
(p−t)s0+r0

(A−t/2BpA−t/2)s0 � (A−t/2BpA−t/2)
δ−t
p−t � A−r � δ−t+r

(p−t)s+r
(A−t/2BpA−t/2)s.
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REMARK. We may expect that Corollary 3.2 holds for δ �min{(p−t)s+t,2(p−
t)s0 + t +min{1,r0}}. Unfortunately it does not hold in general.

Let A =
(

3 0
0 2

)
,B =

(
2 1
1 1

)
,t = 1, p = 2,r0 = 1,r = 2,s0 = 1 and s = 3. Then

A � B , and δ = 2(p− t)s0 + t +min{1,r0} = (p− t)s+ t = 4. Moreover we have

C = A−r0 � δ−t+r0
(p−t)s0+r0

(A−t/2BpA−t/2)s0 = A−1/2B4A−1/2 =

⎛
⎝ 34

3 7
√

3
2

7
√

3
2

13
2

⎞
⎠ ,

and

D = A−r � δ−t+r
(p−t)s+r

(A−t/2BpA−t/2)s = (A−1/2B2A−1/2)3 =

(
601
54

125
6
√

6
125
6
√

6
13
2

)
.

Hence det(C−D) < 0, that is,

A−r0 � δ−t+r0
(p−t)s0+r0

(A−t/2BpA−t/2)s0 −A−r � δ−t+r
(p−t)s+r

(A−t/2BpA−t/2)s �� 0.
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