ON YUAN-GAO’S "COMPLETE FORM" OF FURUTA INEQUALITY

Masatoshi Fujii, Masatoshi Ito, Eizaburo Kamei and Ritsuo Nakamoto

(Communicated by F. Hansen)

Abstract. Recently Yuan and Gao gave a "complete form" of Furuta inequality. We present its extension by an expression of operator mean: If $A \geqslant B \geqslant 0$ with $A>0, p \geqslant p_{0} \geqslant 0$ and $r, r_{0}>0$, then
for $p_{0} \leqslant \delta \leqslant \min \left\{p, 2 p_{0}+\min \left\{1, r_{0}\right\}\right\}$. Furthermore we also obtain a grand Furuta type inequality related to our extension.

1. Introduction

Throughout this note a capital letter means a bounded linear operator acting on a Hilbert space.

In 1987, Furuta [5] established the so-called Furuta inequality, see [2, 3, 6, 7, 13, 16].

Furuta inequality. If $A \geqslant B \geqslant 0$, then for each $r \geqslant 0$,

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

and

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

hold for p and q such that $p \geqslant 0$ and $q \geqslant 1$ with

$$
(1+r) q \geqslant p+r .
$$

Mathematics subject classification (2010): Primary 47A63, 47A64.
Keywords and phrases: Positive operators, operator mean, Furuta inequality and grand Furuta inequality.

The most important fact on Furuta inequality is that it is an extension of LöwnerHeinz inequality (LH), i.e.,

$$
A \geqslant B \geqslant 0 \quad \Longrightarrow \quad A^{\alpha} \geqslant B^{\alpha} \quad(\alpha \in[0,1]) .
$$

Related to (LH), Kubo-Ando theory says that α-geometric mean $\sharp \alpha$ just corresponds to (LH; α). That is, it is defined by

$$
A \not \sharp_{\alpha} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2}
$$

for positive operators A and B. As stated in [13], when $A>0$ and $B \geqslant 0$, Furuta inequality can be arranged in terms of α-geometric mean as follows: If $A \geqslant B \geqslant 0$ with $A>0$, then

$$
\begin{equation*}
A \geqslant B \geqslant A^{-r}{\underset{\frac{1++}{p+r}}{p+r}} B^{p} \quad \text { for } p \geqslant 1 \text { and } r \geqslant 0 . \tag{FI}
\end{equation*}
$$

Furthermore Furuta [9] obtained the following as an interpolation between Furuta inequality and Ando-Hiai one [1].

The grand Furuta inequality. If $A \geqslant B \geqslant 0$ with $A>0$, then for each $t \in[0,1]$,

$$
\begin{equation*}
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{1}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} \tag{GFI}
\end{equation*}
$$

holds for all $s \geqslant 1, p \geqslant 1$ and $r \geqslant t$.
For the grand Furuta inequality see $[4,10,14,15,17]$.
Now in order to provide an elementary and alternative proof of Furuta inequality, Furuta proved the following inequality.

Theorem 1.A. ([8]) Let $A \geqslant B \geqslant 0,1 \geqslant r \geqslant 0$ and $p>p_{0}>0$. If $2 p_{0}+r \geqslant p$, then

$$
\left(A^{r / 2} B^{p_{0}} A^{r / 2}\right)^{\frac{p+r}{p_{0}+r}} \geqslant A^{r / 2} B^{p} A^{r / 2} .
$$

Yuan and Gao [18] provided a "complete form" of Theorem 1.A.
Theorem 1.B. ([18]) Let $A \geqslant B \geqslant 0, r>0, p>p_{0}>0$ and $\delta=\min \left\{p, 2 p_{0}+\right.$ $\min \{1, r\}\}$. Then

$$
\begin{equation*}
\left(A^{r / 2} B^{p_{0}} A^{r / 2}\right)^{\frac{\delta+r}{p_{0}+r}} \geqslant\left(A^{r / 2} B^{p} A^{r / 2}\right)^{\frac{\delta+r}{p+r}} . \tag{1.1}
\end{equation*}
$$

In this note, we shall give an extension of Theorem 1.B and related results by an expression of operator mean. As a matter of fact, (1.1) is expressed as
where $A \natural_{\alpha} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2}(\alpha \notin[0,1])$.

For this, we present a generalization as follows: Let $A \geqslant B \geqslant 0$ with $A>0$, $p \geqslant p_{0}>0$ and $r, r_{0}>0$. Then

$$
A^{-r_{0}} \mathfrak{t}_{\frac{\delta+r_{0}}{p_{0}+r_{0}}} B^{p_{0}} \geqslant B^{\delta} \geqslant A^{-r_{\frac{\delta+r}{}}^{p+r}} B^{p}
$$

for $p_{0} \leqslant \delta \leqslant \min \left\{p, 2 p_{0}+\min \left\{1, r_{0}\right\}\right\}$. If we put $r_{0}=r$, then we have Theorem 1.B obviously. Furthermore we also obtain a grand Furuta type inequality related to our extension.

2. The main theorem

In this section, we shall give an extension of Theorem 1.B. First of all, we cite useful formulae on $A \natural_{\alpha} B$ for convenience. They are easily checked by the direct computations and frequently used in the below.

LEMMA 2.A. The following formulae hold for all real numbers s and t :

1. $A \natural_{s} B=B \bigsqcup_{1-s} A$,
2. $A \natural_{s} B=B\left(B^{-1} \natural_{s-1} A^{-1}\right) B$, and
3. $A \natural_{s t} B=A \natural_{s}\left(A \natural_{t} B\right)$.

Under this preparation, we extend Theorem 1.A as follows:
Theorem 2.1. Let $A \geqslant B \geqslant 0$ with $A>0, p_{0} \geqslant 0$ and $r_{0}>0$. Then

$$
A^{-r_{0}} \bigsqcup_{\frac{\delta+r_{0}}{p_{0}+r_{0}}} B^{p_{0}} \geqslant B^{\delta}
$$

for $p_{0} \leqslant \delta \leqslant 2 p_{0}+\min \left\{1, r_{0}\right\}$.
Proof. We may assume that B is invertible. By Furuta inequality, $A \geqslant B>0$ ensures

$$
B^{-p_{0}} \underset{\frac{\delta-p_{0}}{p_{0}+r_{0}}}{ } A^{r_{0}}=B^{-p_{0}} \sharp_{\frac{\delta-2 p_{0}+p_{0}}{r_{0}+p_{0}}} A^{r_{0}} \geqslant B^{\delta-2 p_{0}}
$$

for $-p_{0} \leqslant \delta-2 p_{0} \leqslant \min \left\{1, r_{0}\right\}$. Then we have

$$
A^{-r_{0}} \bigsqcup_{\frac{\delta+r_{0}}{p_{0}+r_{0}}} B^{p_{0}}=B^{p_{0}}\left(B^{-p_{0}} \underset{\frac{\delta-p_{0}}{p_{0}+r_{0}}}{ } A^{r_{0}}\right) B^{p_{0}} \geqslant B^{p_{0}} B^{\delta-2 p_{0}} B^{p_{0}}=B^{\delta} .
$$

Hence the proof is complete.
Recently, the following result was shown in [11, Theorem 2.1].
Theorem 2.B. ([11]) For $A, B>0, p>0$ and $r>0$, if $A^{-r} \sharp \frac{r}{p+r} B^{p} \leqslant 1$, then

$$
A^{-r} \sharp_{\frac{\delta+r}{P+r}} B^{p} \leqslant A^{-t} \sharp_{\frac{\delta+t}{s+t}} B^{s}
$$

for $0 \leqslant s \leqslant p, 0 \leqslant t \leqslant r$ and $-t \leqslant \delta \leqslant s$.

By Theorem 2.1 and Theorem 2.B, we obtain an extension of Theorem 1.B.
THEOREM 2.2. Let $A \geqslant B \geqslant 0$ with $A>0, p \geqslant p_{0} \geqslant 0$ and $r, r_{0}>0$. Then
for $p_{0} \leqslant \delta \leqslant \min \left\{p, 2 p_{0}+\min \left\{1, r_{0}\right\}\right\}$.
Proof. The former inequality is just Theorem 2.1, so that we have only to prove the latter one. We may assume that B is invertible. By Furuta inequality, $A \geqslant B>0$ ensures $A^{r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}$, that is, $A^{-r} \sharp \frac{r}{p+r} B^{p} \leqslant 1$ for $p>0$ and $r>0$. Then we have

$$
\begin{equation*}
B^{\delta}=1 \sharp \frac{\delta+0}{p+0} B^{p} \geqslant A^{-r} \sharp_{\frac{\delta+r}{p+r}} B^{p} \tag{2.1}
\end{equation*}
$$

for $0 \leqslant \delta \leqslant p$ and $r>0$ by applying Theorem 2.B.

3. A grand Furuta type inequality

Next we shall show a grand Furuta type inequality related to Theorem 2.2. By putting $\beta=(p-t) s+t$ and $\gamma=r-t$, we can arrange (GFI) in terms of α-geometric mean as follows [4]: If $A \geqslant B \geqslant 0$ with $A>0$, then for each $t \in[0,1]$ and $p \geqslant 1$ with $p \neq t$,

$$
\begin{equation*}
A \geqslant B \geqslant A^{-\gamma_{\sharp}} \frac{1+\gamma}{\beta+\gamma}\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right) \quad \text { for } \beta \geqslant p \text { and } \gamma \geqslant 0 . \tag{3.1}
\end{equation*}
$$

The following Theorem 3.1 is a grand Furuta type extension of Theorem 2.2.
Theorem 3.1. Let $A \geqslant B \geqslant 0$ with $A>0, p \geqslant 1, t \in[0,1], p \neq t, \gamma, \gamma_{0} \geqslant 0$ and $\beta \geqslant \beta_{0} \geqslant p$. Then for $\beta_{0} \leqslant \delta \leqslant \min \left\{\beta, 2 \beta_{0}-t\right\}$,

$$
\begin{aligned}
& A^{-\gamma_{0}} \dot{\natural}_{\frac{\delta+\gamma_{0}}{\beta_{0}+\gamma_{0}}}\left(A^{t} \bigsqcup_{\frac{\beta_{0}-t}{p-t}} B^{p}\right) \geqslant\left(A^{t} \bigsqcup_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta_{0}}} \geqslant A^{t} \bigsqcup_{\frac{\delta-t}{p-t}} B^{p} \\
& \geqslant\left(A^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta}} \geqslant A^{-\gamma_{\sharp} \frac{\delta+\gamma}{\beta+\gamma}}\left(A^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} B^{p}\right) .
\end{aligned}
$$

To prove Theorem 3.1, we use the following lemma shown in [4] (cf. [12]).
Lemma 3.A. ([4]) Let $A \geqslant B \geqslant 0$ with $A>0$. Then

$$
A \geqslant B \geqslant\left(A^{t} দ_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{1}{\beta}}
$$

holds for $t \in[0,1], \beta \geqslant p \geqslant 1$ and $p \neq t$.
Proof of Theorem 3.1. By Lemma 3.A, for $t \in[0,1]$ and $\beta, \beta_{0} \geqslant p \geqslant 1$, we have

$$
\begin{equation*}
A \geqslant\left(A^{t} \mathfrak{Ł}_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{1}{\beta_{0}}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A \geqslant\left(A^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{1}{\beta}} \tag{3.3}
\end{equation*}
$$

Applying Theorem 2.1 to (3.2), we obtain

$$
\begin{equation*}
A^{-\gamma_{0}} \bigsqcup_{\frac{\delta+\gamma_{0}}{\beta_{0}+\gamma_{0}}}\left(A^{t} \natural_{\frac{\beta_{0}-t}{p-t}} B^{p}\right) \geqslant\left(A^{t} \natural_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta_{0}}} \tag{3.4}
\end{equation*}
$$

for $\beta_{0} \leqslant \delta \leqslant 2 \beta_{0}+\min \left\{1, \gamma_{0}\right\}, \gamma_{0} \geqslant 0$. Applying (2.1) in the proof of Theorem 2.2 to (3.3), we obtain

$$
\begin{equation*}
\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta}} \geqslant A^{-\gamma_{\sharp}} \underset{\frac{\delta+\gamma}{\beta+\gamma}}{ }\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right) \tag{3.5}
\end{equation*}
$$

for $0 \leqslant \delta \leqslant \beta, \gamma \geqslant 0$.
Put $C=\left(A^{t} \natural_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{1}{\beta_{0}}}$ and $D=\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{1}{\beta}}$. Then by (3.2),

$$
\begin{aligned}
A^{t} \mathfrak{\natural}_{\frac{\delta-t}{p-t}} B^{p} & =A^{t} দ_{\frac{\delta-t}{\beta_{0}-t}}\left(A^{t} \mathfrak{\natural}_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)=A^{t} \natural_{\frac{\delta-t}{\beta_{0}-t}} C^{\beta_{0}} \\
& =C^{\beta_{0}}\left(C^{-\beta_{0}} \sharp_{\frac{\delta-\beta_{0}}{\beta_{0}-t}} A^{-t}\right) C^{\beta_{0}} \\
& \leqslant C^{\beta_{0}}\left(C^{-\beta_{0}} \sharp_{\frac{\delta-\beta_{0}}{\beta_{0}-t}} C^{-t}\right) C^{\beta_{0}}=C^{\delta}=\left(A_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta_{0}}}
\end{aligned}
$$

for $t \in[0,1], 1 \leqslant p \leqslant \beta_{0} \leqslant \delta \leqslant 2 \beta_{0}-t$, and also by (3.3),

$$
\begin{aligned}
A^{t} \mathfrak{\bigsqcup}_{\frac{\delta-t}{p-t}} B^{p} & =A^{t} \sharp_{\frac{\delta-t}{\beta-t}}\left(A^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} B^{p}\right)=A^{t} \sharp_{\frac{\delta-t}{\beta-t}} D^{\beta} \\
& \geqslant D^{t} \sharp_{\frac{\delta-t}{\beta-t}} D^{\beta}=D^{\delta}=\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta}}
\end{aligned}
$$

for $t \in[0,1], 1 \leqslant p \leqslant \delta \leqslant \beta$. Therefore we have

$$
\begin{equation*}
\left(A^{t} \mathfrak{\natural}_{\frac{\beta_{0}-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta_{0}}} \geqslant A^{t} \bigsqcup_{\frac{\delta-t}{p-t}} B^{p} \geqslant\left(A^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{\delta}{\beta}} \tag{3.6}
\end{equation*}
$$

for $t \in[0,1], 1 \leqslant p \leqslant \beta_{0} \leqslant \delta \leqslant \beta$ and $\delta \leqslant 2 \beta_{0}-t$.
Hence the desired inequalities are obtained by (3.4), (3.5) and (3.6).
By putting $\beta_{0}=(p-t) s_{0}+t, \gamma_{0}=r_{0}-t, \beta=(p-t) s+t$ and $\gamma=r-t$, we get the following corollary.

Corollary 3.2. Let $A \geqslant B \geqslant 0$ with $A>0, p \geqslant 1, t \in[0,1], p \neq t, r, r_{0} \geqslant t$ and $s \geqslant s_{0} \geqslant 1$. Then for $(p-t) s_{0}+t \leqslant \delta \leqslant \min \left\{(p-t) s+t, 2(p-t) s_{0}+t\right\}$, $A^{-r_{0}} দ_{\frac{\delta-t+r_{0}}{(p-t) s_{0}+r_{0}}}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s_{0}} \geqslant\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{\frac{\delta-t}{p-t}} \geqslant A^{-r} \sharp_{\left(\frac{\delta-t+r}{(p-t) s+r}\right.}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s}$.

REMARK. We may expect that Corollary 3.2 holds for $\delta \leqslant \min \{(p-t) s+t, 2(p-$ $\left.t) s_{0}+t+\min \left\{1, r_{0}\right\}\right\}$. Unfortunately it does not hold in general.

Let $A=\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right), B=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), t=1, p=2, r_{0}=1, r=2, s_{0}=1$ and $s=3$. Then $A \geqslant B$, and $\delta=2(p-t) s_{0}+t+\min \left\{1, r_{0}\right\}=(p-t) s+t=4$. Moreover we have

$$
C=A^{-r_{0}} \eta_{\frac{\delta-t+r_{0}}{(p-t) s_{0}+r_{0}}}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s_{0}}=A^{-1 / 2} B^{4} A^{-1 / 2}=\left(\begin{array}{cc}
\frac{34}{3} & 7 \sqrt{\frac{3}{2}} \\
7 \sqrt{\frac{3}{2}} & \frac{13}{2}
\end{array}\right),
$$

and

$$
D=A^{-r} \sharp \frac{\delta-t+r}{(p-t) s+r}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s}=\left(A^{-1 / 2} B^{2} A^{-1 / 2}\right)^{3}=\left(\begin{array}{cc}
\frac{601}{54} & \frac{125}{6 \sqrt{6}} \\
\frac{125}{6 \sqrt{6}} & \frac{13}{2}
\end{array}\right) .
$$

Hence $\operatorname{det}(C-D)<0$, that is,

$$
A^{-r_{0}} দ_{\frac{\delta-t+r_{0}}{(p-t) s_{0}+r_{0}}}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s_{0}}-A^{-r} \sharp_{\frac{\delta-t+r}{(p-t) s+r}}\left(A^{-t / 2} B^{p} A^{-t / 2}\right)^{s} \nsupseteq 0 .
$$

Acknowledgement

The authors would like to express their thanks to the referee for valuable suggestions.

REFERENCES

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113-131.
[2] M. Fujil, Furuta's inequality and its mean theoretic approach, J. Operator theory 23 (1990), 67-72.
[3] M. Fujii, T. Furuta and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179 (1993), 161-169.
[4] M. Fujir and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 2751-2756.
[5] T. Furuta, $A \geqslant B \geqslant 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geqslant B^{(p+2 r) / q}$ for $r \geqslant 0, p \geqslant 0, q \geqslant 1$ with $(1+2 r) q \geqslant$ $p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[6] T. FURUTA, An elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.
[7] T. Furuta, Applications of order preserving operator inequalities, Operator Theorey: Advances and Applications 59 (1992), 180-190.
[8] T. Furuta, $A \geqslant B \geqslant 0$ ensures $B^{r} A^{p} B^{r} \geqslant\left(B^{r} A^{p-s} B^{r}\right)^{\frac{p+2 r}{p-s+2 r}}$ for $1 \geqslant 2 r \geqslant 0, p \geqslant s \geqslant 0$ with $p+2 r \geqslant$ $2 s$, J. Operator Theory 21 (1989), 107-115.
[9] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 219 (1995), 139-155.
[10] T. Furuta, Simplified proof of an order preserving operator inequality, Proc. Japan Acad. 74, Ser. A (1998), 114.
[11] M. Ito and E. KAmei, Ando-Hiai inequality and a generalized Furuta-type operator function, Sci. Math. Jpn. 70 (2009), 43-52. (online: e-2009, 215-224.)
[12] M. Ito and E. KAMEI, Mean theoretic approach to a further extension of grand Furuta inequality, J. Math. Inequal. 4 (2010), 325-333.
[13] E. KAMEI, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883-886.
[14] E. Kamei, Order among Furuta type inequalities, Math. Japon. 51 (2000), 403-409.
[15] E. Kamei and M. Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Jpn. 53 (2001), 535-539.
[16] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141146.
[17] K. Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc. 128 (2000), 511-519.
[18] J. Yuan and Z. Gao, Complete form of Furuta inequality, Proc. Amer. Math. Soc. 136 (2008), 2859-2867.

Masatoshi Ito
Maebashi Institute of Technology
460-1 Kamisadorimachi, Maebashi
Gunma 371-0816, JAPAN
e-mail: m-ito@maebashi-it.ac.jp
Eizaburo Kamei
Maebashi Institute of Technology 460-1 Kamisadorimachi, Maebashi

Gunma 371-0816, JAPAN
e-mail: kamei@maebashi-it.ac.jp
Ritsuo Nakamoto
Daihara-cho, Hitachi
Ibaraki 316-0021, JAPAN
e-mail: r-naka@net1.jway.ne.jp

