DIFFERENTIATING MATRIX FUNCTIONS

Kelly Bickel
(Communicated by K. Veselić)

Abstract

Real-valued functions on \mathbb{R}^{d} induce matrix-valued functions defined on the space of d-tuples of $n \times n$ pairwise-commuting self-adjoint matrices. We examine the geometry of this space of matrices and conclude that a suitable notation of differentiation of these matrix functions is differentiation along curves. We prove that continuously differentiable real-valued functions induce continuously differentiable matrix functions and give a formula for the derivative. We also show that real-valued m-times continuously differentiable functions defined on open rectangles in \mathbb{R}^{2} induce matrix functions that can be m-times continuously differentiated along m-times continuously differentiable curves.

1. Introduction

Every real-valued function defined on \mathbb{R} induces a matrix-valued function on the space of $n \times n$ self-adjoint matrices by acting on the spectrum of each matrix. Likewise, each real-valued function f defined on an open set $\Omega \subseteq \mathbb{R}^{d}$ induces a matrix-valued function F on the space of d-tuples of $n \times n$ pairwise-commuting self-adjoint matrices with joint spectrum in Ω. Let $S=\left(S^{1}, \ldots, S^{d}\right)$ be such a d-tuple and let U be a unitary matrix diagonalizing S as follows:

$$
S^{r}=U\left(\begin{array}{ccc}
x_{1}^{r} & & \\
& & \\
& \ddots & \\
& & x_{n}^{r}
\end{array}\right) U^{*}
$$

for $1 \leqslant r \leqslant d$. Denote the joint spectrum of S by $\sigma(S):=\left\{x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{d}\right): 1 \leqslant i \leqslant n\right\}$ and define

$$
F(S):=U\left(\begin{array}{ccc}
f\left(x_{1}\right) & & \tag{1}\\
& \ddots & \\
& & f\left(x_{n}\right)
\end{array}\right) U^{*}
$$

where $F(S)$ is independent of the choice of U.
This paper will show that certain differentiability properties of the original function pass to the matrix function. Even for a one-variable function, this is nontrivial. Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$ and consider the simple case of differentiating the associated matrix

Mathematics subject classification (2010): 26B05; 15A60.
Keywords and phrases: Matrix functions; Differentiability; Derivative formulas.
This research was partially supported by National Science Foundation grant DMS-0966845.
function F along a C^{1} curve $S(t)$ of $n \times n$ self-adjoint matrices. At first glance, it seems reasonable to write $S(t)=U(t) D(t) U^{*}(t)$, for $U(t)$ unitary and $D(t)$ diagonal. Then $F(S(t))=U(t) F(D(t)) U^{*}(t)$ and we can differentiate using the product rule.

However, there is no guarantee that we can decompose $S(t)$ into its eigenvector and eigenvalue matrices so that the eigenvectors are even continuous. As demonstrated by the following example from [9], eigenvector behavior at points where distinct eigenvalues coalesce can be unpredictable. Specifically, let

$$
S(t)=e^{-\frac{1}{t^{2}}}\left(\begin{array}{cc}
\cos \left(\frac{2}{t}\right) & \sin \left(\frac{2}{t}\right) \\
\sin \left(\frac{2}{t}\right) & -\cos \left(\frac{2}{t}\right)
\end{array}\right) \text { for } \mathrm{t} \neq 0, \text { and } S(0)=0
$$

For $t \neq 0$, the eigenvalues of $S(t)$ are $\pm e^{-\frac{1}{t^{2}}}$ and their associated eigenvectors are

$$
\pm\binom{\cos \left(\frac{1}{t}\right)}{\sin \left(\frac{1}{t}\right)} \text { and } \pm\binom{\sin \left(\frac{1}{t}\right)}{-\cos \left(\frac{1}{t}\right)}
$$

Thus, even an infinitely differentiable curve can have singularities in its eigenvectors.
The differentiability of matrix functions defined from one-variable functions is discussed frequently in the literature (see [2], [4], [6]). The most comprehensive result is by Brown and Vasudeva in [3], who prove that an m-times continuously differentiable real-valued function induces an m-times continuously Fréchet differentiable matrixvalued function.

If a matrix-valued function is defined using a real-valued function on \mathbb{R}^{d} as in (1), its domain is the space of d-tuples of pairwise-commuting $n \times n$ self-adjoint matrices, denoted $C S_{n}^{d}$. For $d>1$, the space of d-tuples of $n \times n$ self-adjoint matrices is denoted S_{n}^{d} and for $d=1$, is denoted S_{n}.

It should be noted that there is an alternate approach for inducing a matrix function from a multivariate function; the d matrices S^{1}, \ldots, S^{d} are viewed as operators on Hilbert spaces H^{1}, \ldots, H^{d} and $F(S)$ is viewed as an operator on $H^{1} \otimes \ldots \otimes H^{d}$. Brown and Vasudeva generalize their one-variable result to these matrix functions in [3].

In this paper, we focus on matrix functions defined as in (1). Specifically, in Section 2, we analyze the geometry of $C S_{n}^{d}$ and conclude that a suitable notion of differentiability for functions on this space is differentiation along curves. If we fix S in $C S_{n}^{d}$, Theorem 1 characterizes the directions Δ in S_{n}^{d} such that there is a C^{1} curve $S(t)$ in $C S_{n}^{d}$ with $S(0)=S$ and $S^{\prime}(0)=\Delta$. In Theorem 2, we show that the joint eigenvalues of locally Lipschitz curves in $C S_{n}^{d}$ can be represented by locally Lipschitz functions.

In Section 3, we examine the differentiability properties of induced matrix functions. Specifically, in Theorem 3, we show that a C^{1} function induces a matrix function that can be continuously differentiated along C^{1} curves. We then calculate a formula for the derivative along curves and in Theorem 4, prove that it is continuous.

In Section 4, we consider higher-order differentiation. With additional domain restrictions, in Theorem 6, we show that C^{m} functions induce matrix functions that can be m-times continuously differentiated along C^{m} curves. We also calculate a formula
for the derivatives and in Theorem 7, show they are continuous. In Section 5, we discuss several applications of the differentiability results.

Before proceeding, I would like to thank John McCarthy for his guidance during this research and the referees for their many useful suggestions.

2. The Geometry of $C S_{n}^{d}$

Let $S=\left(S^{1}, \ldots, S^{d}\right)$ be in $C S_{n}^{d}$ (or $\left.S_{n}^{d}\right)$ and let $x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{d}\right)$ be in $\sigma(S)$. Define

$$
\begin{equation*}
\|S\|:=\max _{1 \leqslant r \leqslant d}\left\|S^{r}\right\| \text { and }\left\|x_{i}\right\|:=\max _{1 \leqslant r \leqslant d}\left|x_{i}^{r}\right| \tag{2}
\end{equation*}
$$

where $\left\|S^{r}\right\|$ is the usual operator norm. As each $S \in S_{n}$ is determined by its upper triangular part, which has n^{2} degrees of freedom, S_{n} can be equated with $\mathbb{R}^{n^{2}}$. Then, $C S_{n}^{d}$ can be viewed as a subset of \mathbb{R}^{m}, where $m=d n^{2}$. It follows from basic facts about self-adjoint matrices that the norm on $C S_{n}^{d}$ inherited from Euclidean space and the one defined in (2) are equivalent norms. Now, observe that $C S_{n}^{d}$ is not a linear space; if A and B are pairwise-commuting d-tuples, the sum $A+B$ need not pairwise commute. Thus, neither the Fréchet nor Gâteaux derivatives can be defined for functions on $C S_{n}^{d}$ because both require the function to be defined on linear sets around each point.

Recall that $C S_{n}^{d}$ is the set of elements $S \in S_{n}^{d}$ with $\left[S^{r}, S^{s}\right]=0$ for all $1 \leqslant r, s \leqslant d$, where $[\cdot, \cdot]$ denotes Lie bracket. Thus, $C S_{n}^{d}$ is the zero set of the polynomials associated with $d(d-1) / 2$ commutator operations and so is a real algebraic variety. A result by Whitney in [11] and discussed by Kaloshin in [7] says every algebraic variety defined by polynomials on m real variables can be decomposed into smooth submanifolds of \mathbb{R}^{m} that fit together 'regularly' and whose tangent spaces fit together 'regularly.' For a manifold N, let $T N$ denote the tangent space of N and let $T_{S} N$ denote the tangent space based at a point S in N. For a closed subset X of \mathbb{R}^{m}, we can define

DEFINITION 1. A stratification of X is a locally finite partition Z of X into locally closed pieces $\left\{M_{\alpha}\right\}$ such that
(i) Each piece $M_{\alpha} \in Z$ is a smooth submanifold of \mathbb{R}^{m}.
(ii) (Condition of frontier) If $M_{\alpha} \cap \bar{M}_{\beta} \neq \emptyset$ for pieces M_{α}, M_{β}, then $M_{\alpha} \subset \bar{M}_{\beta}$.

Example 1. Consider $C S_{2}^{2}$, the space of pairs of self-adjoint, commuting 2×2 matrices. In the following definitions, $a, b, c, d \in \mathbb{R}$. Define

$$
\begin{aligned}
M_{1} & :=\left\{\left(U\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) U^{*}, U\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right) U^{*}\right): U \text { is } 2 \times 2 \text { unitary, } a \neq b, c \neq d\right\}, \\
M_{2} & :=\left\{\left(\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right), U\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right) U^{*}\right): U \text { is } 2 \times 2 \text { unitary, } c \neq d\right\}, \\
M_{3} & :=\left\{\left(U\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) U^{*},\left(\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right)\right): U \text { is } 2 \times 2 \text { unitary, } a \neq b\right\}, \\
M_{4} & :=\left\{\left(\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right),\left(\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right)\right)\right\} .
\end{aligned}
$$

It is easy to see that $C S_{2}^{2}=\cup M_{i}$ and each M_{i} is locally closed. With a little work, one can show each M_{i} is a smooth submanifold of \mathbb{R}^{8}. As this example clearly satisfies the condition of frontier, this partition $\left\{M_{i}\right\}$ is a stratification of $C S_{2}^{2}$.

In general, one should expect a stratification of $C S_{n}^{d}$ into pieces to be related to the number and multiplicity of the repeated eigenvalues of the elements of $C S_{n}^{d}$.

Whitney's result says $C S_{n}^{d}$ has a specific decomposition Z into smooth submanifolds of \mathbb{R}^{m} where $m=d n^{2}$, called a Whitney stratification. This stratification has further regularity involving the tangent spaces of the pieces of Z, but as we do not need those details here, see [7] for the specifics. We let $\left\{M_{\alpha}\right\}$ denote the pieces of Z and define $T C S_{n}^{d}:=\cup T M_{\alpha}$. Given a function $F: C S_{n}^{d} \rightarrow S_{n}$, one type of derivative is a map $D F: T C S_{n}^{d} \rightarrow T S_{n}$ such that

$$
\left.D F\right|_{T M_{\alpha}}: T M_{\alpha} \rightarrow T S_{n}
$$

is the usual differential map for each M_{α}. In Theorem 5, we analyze such maps. However, these differential maps cannot be easily generalized to analyze higher-order differentiation. Furthermore, for each $S \in C S_{n}^{d}$ and piece M_{α} containing S, the tangent space $T_{S} M_{\alpha}$ might only contain a subset of the vectors tangent to $C S_{n}^{d}$ at S. Example 2 will show that strict containment often occurs.

To retain information about all tangent vectors, we will mostly study differentiation along differentiable curves. We first determine which $\Delta \in S_{n}^{d}$ are vectors tangent to $C S_{n}^{d}$ at a given point S. For any $\Delta \in S_{n}^{d}$ and $S \in C S_{n}^{d}$, we ask

$$
\text { Is there a } C^{1} \text { curve } S(t) \text { in } C S_{n}^{d} \text { with } S(0)=S \text { and } S^{\prime}(0)=\Delta \text { ? }
$$

For an element $S \in C S_{n}^{d}$ with distinct joint eigenvalues, Agler, McCarthy, and Young in [1] gave necessary and sufficient conditions on S and Δ for such a C^{1} curve to exist. We extend their result to an arbitrary element S. Fix $S \in C S_{n}^{d}$ and $\Delta \in S_{n}^{d}$. Let U be a unitary matrix diagonalizing each component of S such that the repeated joint eigenvalues of S appear consecutively. Numbering the x_{i} 's appropriately, define

$$
D^{r}:=U^{*} S^{r} U=\left(\begin{array}{ccc}
x_{1}^{r} & & \tag{3}\\
& \ddots & \\
& & \\
& & x_{n}^{r}
\end{array}\right)
$$

for each $1 \leqslant r \leqslant d$. Then, for each r, define the two matrices

$$
\begin{align*}
\Gamma^{r} & :=U^{*} \Delta^{r} U \\
\tilde{\Gamma}_{i j}^{r} & := \begin{cases}\Gamma_{i j}^{r} & \text { if } x_{i}=x_{j} \\
0 & \text { otherwise. }\end{cases} \tag{4}
\end{align*}
$$

Then $\tilde{\Gamma}^{r}$ is a block diagonal matrix. Each block corresponds to a distinct joint eigenvalue of S and has dimension equal to the multiplicity of that eigenvalue.

Theorem 1. Let $S \in C S_{n}^{d}$ and $\Delta \in S_{n}^{d}$. Then there exists a C^{1} curve $S(t)$ in $C S_{n}^{d}$ with $S(0)=S$ and $S^{\prime}(0)=\Delta$ if and only if for all $1 \leqslant s, r \leqslant d$,

$$
\left[D^{r}, \Gamma^{s}\right]=\left[D^{s}, \Gamma^{r}\right] \text { and }\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]=0
$$

Proof. (\Rightarrow) Assume $S(t)$ is a C^{1} curve in $C S_{n}^{d}$ with $S(0)=S$ and $S^{\prime}(0)=\Delta$. Define

$$
R(t):=U^{*} S(t) U
$$

where U diagonalizes S as in (3). Then $R(t)$ is a C^{1} curve in $C S_{n}^{d}$ with $R(0)=D$ and $R^{\prime}(0)=\Gamma$. We will first prove that

$$
\left[D^{r}, \Gamma^{s}\right]=\left[D^{s}, \Gamma^{r}\right] \text { and }\left[\Gamma^{r}, \Gamma^{s}\right]_{i j}=0
$$

for all pairs $1 \leqslant r, s \leqslant d$ and (i, j) such that $x_{i}=x_{j}$. We will use those commutativity results to conclude

$$
\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]=0
$$

for each pair $1 \leqslant r, s \leqslant d$. Since $R(t)$ is C^{1} in a neighborhood of $t=0$, we can write

$$
R^{r}(t)=D^{r}+\Gamma^{r} t+h^{r}(t)
$$

for each $1 \leqslant r \leqslant d$, where $\left|h^{r}(t)_{i j}\right|=o(|t|)$ for $1 \leqslant i, j \leqslant n$. For each pair r and s, the pairwise-commutativity of $R(t)$ implies

$$
\begin{align*}
0 & =\left[R^{r}(t), R^{s}(t)\right] \\
& =\left[D^{r}+\Gamma^{r} t+h^{r}(t), D^{s}+\Gamma^{s} t+h^{s}(t)\right] \\
& =\left(\left[D^{r}, h^{s}(t)\right]+\left[h^{r}(t), D^{s}\right]+\left[h^{r}(t), h^{s}(t)\right]\right) \\
& +\left(\left[D^{r}, \Gamma^{s}\right]+\left[\Gamma^{r}, D^{s}\right]+\left[\Gamma^{r}, h^{s}(t)\right]+\left[h^{r}(t), \Gamma^{s}\right]\right) t \\
& +\left[\Gamma^{r}, \Gamma^{s}\right] t^{2} \tag{5}
\end{align*}
$$

where the term $\left[D^{r}, D^{s}\right]$ was omitted because it vanishes. Fix $t \neq 0$ and divide each term in (5) by t. Letting t tend towards zero yields

$$
\begin{equation*}
0=\left[D^{r}, \Gamma^{s}\right]-\left[D^{s}, \Gamma^{r}\right] . \tag{6}
\end{equation*}
$$

Choose i and j such that $x_{i}=x_{j}$. Then, the $i j^{\text {th }}$ entry of (5) reduces to

$$
0=\left[h^{r}(t), h^{s}(t)\right]_{i j}+\left(\left[\Gamma^{r}, h^{s}(t)\right]_{i j}-\left[\Gamma^{s}, h^{r}(t)\right]_{i j}\right) t+\left[\Gamma^{r}, \Gamma^{s}\right]_{i j} t^{2} .
$$

Fix $t \neq 0$ and divide both sides by t^{2}. Letting t tend towards zero yields

$$
\begin{equation*}
0=\left[\Gamma^{r}, \Gamma^{S}\right]_{i j} \tag{7}
\end{equation*}
$$

Fix r and s with $1 \leqslant r, s \leqslant d$. Since $\tilde{\Gamma}^{r}$ and $\tilde{\Gamma}^{s}$ are block diagonal matrices with blocks corresponding to the distinct joint eigenvalues of S, it follows that $\tilde{\Gamma}^{r} \tilde{\Gamma}^{s}$ and $\tilde{\Gamma}^{s} \tilde{\Gamma}^{r}$ are also such block diagonal matrices. Thus, if i and j are such that $x_{i} \neq x_{j}$,

$$
\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]_{i j}=\left(\tilde{\Gamma}^{r} \tilde{\Gamma}^{s}-\tilde{\Gamma}^{s} \tilde{\Gamma}^{r}\right)_{i j}=0
$$

Now, fix i and j such that $x_{i}=x_{j}$. By the definition of $\tilde{\Gamma}$,

$$
\begin{aligned}
{\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]_{i j} } & =\sum_{k=1}^{n} \tilde{\Gamma}_{i k}^{r} \tilde{\Gamma}_{k j}^{s}-\tilde{\Gamma}_{i k}^{s} \tilde{\Gamma}_{k j}^{r} \\
& =\sum_{\left\{k: x_{k}=x_{i}\right\}} \Gamma_{i k}^{r} \Gamma_{k j}^{s}-\Gamma_{i k}^{s} \Gamma_{k j}^{r} \\
& =-\sum_{\left\{k: x_{k} \neq x_{i}\right\}} \Gamma_{i k}^{r} \Gamma_{k j}^{s}-\Gamma_{i k}^{s} \Gamma_{k j}^{r}
\end{aligned}
$$

where the last equality uses (7). Thus, it suffices to show that if $x_{k} \neq x_{i}$,

$$
\Gamma_{i k}^{r} \Gamma_{k j}^{s}-\Gamma_{i k}^{s} \Gamma_{k j}^{r}=0
$$

Assume $x_{k} \neq x_{i}$, and fix q with $x_{k}^{q} \neq x_{i}^{q}$. Apply (6) to pairs r, q and s, q to get

$$
\left[D^{q}, \Gamma^{r}\right]=\left[D^{r}, \Gamma^{q}\right] \text { and }\left[D^{q}, \Gamma^{s}\right]=\left[D^{s}, \Gamma^{q}\right]
$$

Restricting to the $i k^{\text {th }}$ and $k j^{\text {th }}$ entries of the previous two equations yields

$$
\begin{aligned}
\Gamma_{i k}^{r}\left(x_{i}^{q}-x_{k}^{q}\right) & =\Gamma_{i k}^{q}\left(x_{i}^{r}-x_{k}^{r}\right), \\
\Gamma_{k j}^{r}\left(x_{k}^{q}-x_{j}^{q}\right) & =\Gamma_{k j}^{q}\left(x_{k}^{r}-x_{j}^{r}\right), \\
\Gamma_{i k}^{s}\left(x_{i}^{q}-x_{k}^{q}\right) & =\Gamma_{i k}^{q}\left(x_{i}^{s}-x_{k}^{s}\right), \\
\Gamma_{k j}^{s}\left(x_{k}^{q}-x_{j}^{q}\right) & =\Gamma_{k j}^{q}\left(x_{k}^{s}-x_{j}^{s}\right) .
\end{aligned}
$$

Since $x_{i}=x_{j}$ and $x_{k}^{q} \neq x_{i}^{q}$, we can replace all the x_{j} 's with x_{i} 's in the above set of equations and solve for the Γ^{r} and Γ^{s} entries. Using these relations gives

$$
\Gamma_{i k}^{r} \Gamma_{k j}^{s}-\Gamma_{i k}^{s} \Gamma_{k j}^{r}=\frac{\Gamma_{i k}^{q}\left(x_{i}^{r}-x_{k}^{r}\right) \Gamma_{k j}^{q}\left(x_{i}^{s}-x_{k}^{s}\right)}{\left(x_{i}^{q}-x_{k}^{q}\right)^{2}}-\frac{\Gamma_{i k}^{q}\left(x_{i}^{s}-x_{k}^{s}\right) \Gamma_{k j}^{q}\left(x_{i}^{r}-x_{k}^{r}\right)}{\left(x_{i}^{q}-x_{k}^{q}\right)^{2}}=0
$$

as desired. Thus, $\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]=0$.
(\Leftarrow) Fix S in $C S_{n}^{d}$ and Δ in S_{n}^{d} and let U, D, Γ, and $\tilde{\Gamma}$ be as in the discussion preceding Theorem 1. Assume

$$
\begin{equation*}
\left[D^{r}, \Gamma^{s}\right]=\left[D^{s}, \Gamma^{r}\right] \text { and }\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]=0 \tag{8}
\end{equation*}
$$

for $1 \leqslant r, s \leqslant d$. Define a skew-Hermitian matrix Y as follows:

$$
Y_{i j}:= \begin{cases}\frac{\Gamma_{i j}^{q}}{x_{j}^{q}-x_{i}^{q}} & \text { if } x_{i} \neq x_{j} \\ 0 & \text { otherwise }\end{cases}
$$

where q is chosen so that $x_{i}^{q}-x_{j}^{q} \neq 0$. Observe that Y is independent of q because the $i j^{t h}$ entry of the first equation in (8) is

$$
\Gamma_{i j}^{s}\left(x_{i}^{r}-x_{j}^{r}\right)=\Gamma_{i j}^{r}\left(x_{i}^{s}-x_{j}^{S}\right)
$$

Now, define the curve $S(t)$ by

$$
S^{r}(t):=U e^{Y t}\left[D^{r}+t \tilde{\Gamma}^{r}\right] e^{-Y t} U^{*}
$$

for each $1 \leqslant r \leqslant d$. Then, $S(t)$ is continuously differentiable. Because Y is skewHermitian, $e^{Y t}$ is unitary. Since D^{r} and $\tilde{\Gamma}^{r}$ are self-adjoint, $S(t)$ is in S_{n}^{d}. By a simple calculation using (8),

$$
\left[S^{r}(t), S^{S}(t)\right]=0
$$

for each pair $1 \leqslant r, s \leqslant d$. Thus, $S(t)$ is in $C S_{n}^{d}$. By definition, $S(0)=S$. For each r,

$$
\left(S^{r}\right)^{\prime}(t)=U\left(Y e^{Y t}\left[D^{r}+t \tilde{\Gamma}^{r}\right] e^{-Y t}+e^{Y t}\left[\tilde{\Gamma}^{r}\right] e^{-Y t}-e^{Y t}\left[D^{r}+t \tilde{\Gamma}^{r}\right] Y e^{-Y t}\right) U^{*}
$$

so that

$$
\left(S^{r}\right)^{\prime}(0)=U\left(\left[Y, D^{r}\right]+\tilde{\Gamma}^{r}\right) U^{*}=\Delta^{r}
$$

Thus, $S^{\prime}(0)=\Delta$, and $S(t)$ is the desired curve.
Observe that by the construction in Theorem 1, if there is a C^{1} curve $S(t)$ in $C S_{n}^{d}$ with $S(0)=S$ and $S^{\prime}(0)=\Delta$, there is actually a smooth curve $R(t)$ in $C S_{n}^{d}$ with $R(0)=S$ and $R^{\prime}(0)=\Delta$.

Example 2. Let $I \in C S_{n}^{d}$ be the identity element. By Theorem 1 , there is a smooth curve $S(t)$ in $C S_{n}^{d}$ with

$$
S(0)=I \text { and } S^{\prime}(0)=\Delta \text { if and only if } \Delta \in C S_{n}^{d}
$$

Thus, the set of vectors tangent to $C S_{n}^{d}$ at I is $C S_{n}^{d}$. For a Whitney stratification of $C S_{n}^{d}$ and piece M_{α} containing I, the tangent space $T_{I} M_{\alpha}$ is linear. Since $C S_{n}^{d}$ is not linear, $T_{I} M_{\alpha}$ is a strict subset of the set of tangent vectors at I.

The conditions of Theorem 1 actually imply that if $S \in C S_{n}^{d}$ has any repeated joint eigenvalues, the set of vectors tangent to $C S_{n}^{d}$ at S is not a linear set. Then, for any Whitney stratification of $C S_{n}^{d}$ and piece M_{α} containing S, the tangent space $T_{S} M_{\alpha}$ is a strict subset of the vectors tangent to $C S_{n}^{d}$ at S. We will thus focus on differentiation along curves rather than differential maps.

To evaluate an induced matrix function along a curve in $C S_{n}^{d}$, we apply the original function to the curve's joint eigenvalues. We are therefore interested in the behavior of the joint eigenvalues of curves in $C S_{n}^{d}$.

If $S(t)$ is a continuous curve in S_{n}, a result by Rellich in [9] and [10] states that the eigenvalues of $S(t)$ can be represented by n continuous functions. A succinct proof is given by Kato in [8, pg 107-10]. With slight modification, the arguments show that the eigenvalues of a locally Lipschitz curve in S_{n} can be represented by locally Lipschitz functions. These results generalize as follows:

THEOREM 2. Given a locally Lipschitz curve $S(t)$ in $C S_{n}^{d}$ defined on an interval I, there exist locally Lipschitz functions $x_{1}(t), \ldots, x_{n}(t): I \rightarrow \mathbb{R}^{d}$ with $\sigma(S(t))=$ $\left\{x_{i}(t): 1 \leqslant i \leqslant n\right\}$.

Proof. As the proof is a technical but straightforward modification of the onevariable case, it is left as an exercise.

Theorem 2 provides a specific ordering of the joint eigenvalues of $S(t)$ at each t. This ordering may differ from the one in (3), where joint eigenvalues appear consecutively. However, Theorem 2 implies that the joint eigenvalues of a continuously differentiable, and hence locally Lipschitz, curve $S(t)$ are locally Lipschitz as an unordered n-tuple. Specifically, fix t^{*} and denote the eigenvalues of $S\left(t^{*}\right)$ by $\left\{x_{i}: 1 \leqslant i \leqslant n\right\}$. Then, for t near t^{*}, there is a constant c such that

$$
\min \left(\max _{1 \leqslant i \leqslant n}\left\|x_{i}-x_{i}(t)\right\|\right) \leqslant c\left|t^{*}-t\right|
$$

where the minimum is taken over all reorderings of the $\left\{x_{i}\right\}$. If we require that eigenvalues are ordered as in (3), we will use Theorem 2 to conclude that the eigenvalues are locally Lipschitz as an unordered n-tuple.

3. Differentiating Matrix Functions

Recall that every real-valued function defined on an open set $\Omega \subseteq \mathbb{R}^{d}$ induces a matrix function as in (1). We denote its domain, the space of d-tuples of pairwisecommuting $n \times n$ self-adjoint matrices with spectrum in Ω, by $C S_{n}^{d}(\Omega)$.

If the original function is continuous, the matrix function is as well. Specifically, Horn and Johnson proved in [6, pg 387-9] that a one-variable polynomial induces a continuous matrix polynomial. The arguments generalize easily to multivariate polynomials, and approximation arguments imply that the matrix function induced by a continuous function is continuous. We now consider differentiability and prove:

THEOREM 3. Let $S(t)$ be a C^{1} curve in $C S_{n}^{d}$ defined on an interval I, and let Ω be an open set in \mathbb{R}^{d} with $\sigma(S(t)) \subset \Omega$. If $f \in C^{1}(\Omega, \mathbb{R})$, then
(i) $\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}$ exists for all $t^{*} \in I$.
(ii) If $T(t)$ is another C^{1} curve in $C S_{n}^{d}$ with $T(0)=S\left(t^{*}\right)$ and $T^{\prime}(0)=S^{\prime}\left(t^{*}\right)$, then

$$
\left.\frac{d}{d t} F(T(t))\right|_{t=0}=\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}
$$

Before proving Theorem 3, we assume f is real-analytic and prove Proposition 1. See [6] for the one-variable case. We first need some notation. We say an open set $\Omega \subseteq \mathbb{R}^{d}$ is a rectangle if $\Omega=I^{1} \times \ldots \times I^{d}$ or more specifically,

$$
\Omega=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{r} \in I^{r} \forall 1 \leqslant r \leqslant d\right\}
$$

where each I^{r} is an open interval in \mathbb{R}, and an open set $\tilde{\Omega} \subseteq \mathbb{C}^{d}$ is a complex rectangle if $\tilde{\Omega}=\left(I^{1}+i J^{1}\right) \times \ldots \times\left(I^{d}+i J^{d}\right)$ or specifically,

$$
\tilde{\Omega}=\left\{\left(x_{1}+i y_{1}, \ldots, x_{d}+i y_{d}\right): x_{r} \in I_{r}, y_{r} \in J_{r} \forall 1 \leqslant r \leqslant d\right\}
$$

where for each r, I^{r} and J^{r} are open intervals in \mathbb{R}.

Proposition 1. Let $S(t)$ be a C^{1} curve in $C S_{n}^{d}$ defined on an interval I. Let Ω be a rectangle in \mathbb{R}^{d} with $\sigma(S(t)) \subset \Omega$. If f is a real-analytic function on Ω, then

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \text { exists and is continuous as a function of } t^{*} \text { on } I .
$$

The proof of Proposition 1 requires the following two lemmas.
LEmmA 1. Let Ω be a rectangle in \mathbb{R}^{d} and let S be in $C S_{n}^{d}$ with $\sigma(S) \subset \Omega$. Each real-analytic function on Ω can be extended to an analytic function defined on a complex rectangle $\tilde{\Omega}$ such that $\sigma(S)$ is in $\tilde{\Omega}$.

Proof. The result follows from basic properties of complex functions. It should be noted that $\tilde{\Omega}$ need not contain Ω.

Lemma 2. Let $\tilde{\Omega}$ be a complex rectangle in \mathbb{C}^{d} and let S be in $C S_{n}^{d}$ with $\sigma(S) \subset$ $\tilde{\Omega}$. If f is an analytic function on $\tilde{\Omega}$, then

$$
F(S)=\frac{1}{(2 \pi i)^{d}} \int_{C^{d}} \ldots \int_{C^{1}} f\left(\zeta^{1}, \ldots, \zeta^{d}\right)\left(\zeta^{1} I-S^{1}\right)^{-1} \ldots\left(\zeta^{d} I-S^{d}\right)^{-1} d \zeta^{1} \ldots d \zeta^{d}
$$

where each C^{r} is a simple closed rectifiable curve strictly containing $\sigma\left(S^{r}\right)$, and $C^{1} \times$ $\ldots \times C^{d} \subset \tilde{\Omega}$.

Proof. Horn and Johnson prove the formula for a one-variable function in [6, pg 427]. Their derivation generalizes easily to multivariate functions.

Proof. Proposition 1:
For ease of notation, assume $d=2$ and for $r=1,2$, define

$$
R^{r}(t):=\left(\zeta^{r} I-S^{r}(t)\right)^{-1}
$$

where ζ^{r} is in the resolvent set of $S^{r}(t)$. Fix $t_{0} \in I$ and extend f to an analytic function on a complex rectangle $\tilde{\Omega}$ containing $\sigma\left(S\left(t_{0}\right)\right)$. Choose simple closed rectifiable curves C^{1} and C^{2} such that $C^{1} \times C^{2} \subset \tilde{\Omega}$ and C^{r} strictly encloses the eigenvalues of $S^{r}\left(t_{0}\right)$. As the joint eigenvalues of $S(t)$ are continuous, we can use Lemma 2 to write

$$
F(S(t))=\frac{1}{(2 \pi i)^{2}} \int_{C^{2}} \int_{C^{1}} f\left(\zeta^{1}, \zeta^{2}\right) R^{1}(t) R^{2}(t) d \zeta^{1} d \zeta^{2}
$$

for t sufficiently close to t_{0}. For t_{1}, t_{2} near t_{0}, we have

$$
R^{r}\left(t_{1}\right)-R^{r}\left(t_{2}\right)=R^{r}\left(t_{1}\right)\left(S^{r}\left(t_{1}\right)-S^{r}\left(t_{2}\right)\right) R^{r}\left(t_{2}\right)
$$

which implies $R^{r}(t)$ is differentiable near t_{0} and direct calculation gives

$$
\left.\frac{d}{d t} R^{r}(t)\right|_{t=t^{*}}=R^{r}\left(t^{*}\right)\left(S^{r}\right)^{\prime}\left(t^{*}\right) R^{r}\left(t^{*}\right),
$$

for $r=1,2$ and t^{*} near t_{0}. It can be easily shown that, for t^{*} sufficiently close to t_{0}, we can interchange integration and differentiation to yield

$$
\begin{align*}
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} & =\left.\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} f\left(\zeta^{1}, \zeta^{2}\right) \frac{d}{d t}\left(R^{1}(t) R^{2}(t)\right)\right|_{t=t^{*}} d \zeta^{1} d \zeta^{2} \\
& =\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} f\left(\zeta^{1}, \zeta^{2}\right)\left(R^{1}\left(t^{*}\right)\left(S^{1}\right)^{\prime}\left(t^{*}\right) R^{1}\left(t^{*}\right) R^{2}\left(t^{*}\right)\right. \\
& \left.+R^{1}\left(t^{*}\right) R^{2}\left(t^{*}\right)\left(S^{2}\right)^{\prime}\left(t^{*}\right) R^{2}\left(t^{*}\right)\right) d \zeta^{1} d \zeta^{2} \tag{9}
\end{align*}
$$

As each $\left(S^{r}\right)^{\prime}(t)$ is continuous in t and each $R^{r}(t)$ is continuous in t near t_{0} (uniformly in ζ for ζ in $C^{1} \times C^{2}$), and $f\left(\zeta^{1}, \zeta^{2}\right)$ is uniformly bounded, $\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}$ is continuous at $t^{*}=t_{0}$.

Proof. Theorem 3:
Observe that the theorem holds for polynomials: (i) follows from Proposition 1, and (ii) follows from the formula in (9). Fix $t^{*} \in I$. Let f be an arbitrary C^{1} function, and let p be a polynomial that agrees with f to first order on $\sigma\left(S\left(t^{*}\right)\right)$.

By Theorem 2, there are locally Lipschitz maps $x_{i}(t):=\left(x_{i}^{1}(t), \ldots, x_{i}^{d}(t)\right)$, for $1 \leqslant$ $i \leqslant n$, representing $\sigma(S(t))$ on I. From the multivariate mean value theorem, we have

$$
\begin{align*}
\|(F-P)(S(t))\| & =\max _{i}\left|(f-p)\left(x_{i}(t)\right)\right| \\
& =\max _{i}\left|(f-p)\left(x_{i}(t)\right)-(f-p)\left(x_{i}\left(t^{*}\right)\right)\right| \\
& =\max _{i}\left|\nabla(f-p)\left(x_{i}^{*}(t)\right) \cdot\left(x_{i}(t)-x_{i}\left(t^{*}\right)\right)\right| \\
& \leqslant \max _{i} \sum_{r=1}^{d}\left|\left(\frac{\partial f}{\partial x^{r}}-\frac{\partial p}{\partial x^{r}}\right)\left(x_{i}^{*}(t)\right)\right|\left|x_{i}^{r}(t)-x_{i}^{r}\left(t^{*}\right)\right| \tag{10}
\end{align*}
$$

where $x_{i}^{*}(t)$ is on the line connecting $x_{i}(t)$ and $x_{i}\left(t^{*}\right)$ in \mathbb{R}^{d}. This makes sense because continuity implies that there is a convex set $U \subseteq \Omega$ such that $x_{i}\left(t^{*}\right), x_{i}(t) \in U$, for t sufficiently close to t^{*}. As f and p agree to first order on $\sigma\left(S\left(t^{*}\right)\right)$ and the $x_{i}(t)$ are locally Lipschitz, (10) implies

$$
\|(F-P)(S(t))\|=o\left(\left|t-t^{*}\right|\right)
$$

Hence

$$
\left\|\frac{F(S(t))-F\left(S\left(t^{*}\right)\right)}{t-t^{*}}-\frac{P(S(t))-P\left(S\left(t^{*}\right)\right)}{t-t^{*}}\right\| \rightarrow 0 \quad \text { as } t \rightarrow t^{*}
$$

Therefore,

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \text { exists and equals }\left.\frac{d}{d t} P(S(t))\right|_{t=t^{*}}
$$

Applying the same argument to $F(T(t))$ at $t=0$ gives

$$
\left.\frac{d}{d t} F(T(t))\right|_{t=0} \text { exists and equals }\left.\frac{d}{d t} P(T(t))\right|_{t=0}
$$

As (ii) holds for $P(t)$, we must have $\left.\frac{d}{d t} F(T(t))\right|_{t=0}=\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}$.
In the following proposition, we calculate an explicit formula for the derivative.
Proposition 2. Let $S(t)$ be a C^{1} curve in $C S_{n}^{d}$ defined on an interval I, and let $t^{*} \in I$. Let Ω be an open set in \mathbb{R}^{d} with $\sigma(S(t)) \subset \Omega$ and let $f \in C^{1}(\Omega, \mathbb{R})$. Then,

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t *}=U\left(\sum_{r=1}^{d} \tilde{\Gamma}^{r} \frac{\partial F}{\partial x^{r}}(D)+[Y, F(D)]\right) U^{*}
$$

where U diagonalizes $S\left(t^{*}\right)$ as in (3), $\frac{\partial F}{\partial x^{r}}(D)$ is defined in (12), and the other matrices are as follows:

$$
\begin{array}{ll}
D^{r} & :=U^{*} S^{r}\left(t^{*}\right) U
\end{array} \quad \Gamma^{r}:=U^{*}\left(S^{r}\right)^{\prime}\left(t^{*}\right) U, 1 \begin{array}{ll}
\Gamma_{i j}^{q} & \text { if } x_{i} \neq x_{j} \\
\tilde{\Gamma}_{i j}^{r}:=\left\{\begin{array}{ll}
\Gamma_{i j}^{r} & \text { if } x_{i}=x_{j} \\
0 & \text { otherwise }
\end{array} \quad Y_{i j}:= \begin{cases}x_{j}^{q} x_{i}^{q} & \text { otherwise }, \\
0 & \text { other }\end{cases} \right.
\end{array}
$$

where the joint eigenvalues of $S\left(t^{*}\right)$ are given by $\left\{x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{d}\right): 1 \leqslant i \leqslant n\right\}$ and each q is chosen so $x_{j}^{q}-x_{i}^{q} \neq 0$.

Proof. Let $t^{*} \in I$ and define the C^{1} curve $T(t)$ by

$$
T^{r}(t):=U e^{Y t}\left[D^{r}+t \tilde{\Gamma}^{r}\right] e^{-Y t} U^{*}
$$

for $1 \leqslant r \leqslant d$. Then, $T(t)$ is the curve defined in the proof of Theorem 1 for $S:=S\left(t^{*}\right)$ and $\Delta:=S^{\prime}\left(t^{*}\right)$. It is immediate that $T(t) \in C S_{n}^{d}, T(0)=S\left(t^{*}\right)$, and $T^{\prime}(0)=S^{\prime}\left(t^{*}\right)$. By Theorem 3, it now suffices to calculate $\left.\frac{d}{d t} F(T(t))\right|_{t=0}$. First, we diagonalize each $D^{r}+t \tilde{\Gamma}^{r}$. Let p be the number of distinct joint eigenvalues of $S\left(t^{*}\right)$. By definition,

$$
\tilde{\Gamma}^{r}=\left(\begin{array}{ccc}
\Gamma_{1}^{r} & & \\
& & \\
& \ddots & \\
& & \Gamma_{p}^{r}
\end{array}\right)
$$

for $1 \leqslant r \leqslant d$, where each Γ_{l}^{r} is a $k_{l} \times k_{l}$ self-adjoint matrix corresponding to a distinct joint eigenvalue of S with multiplicity k_{l}. It follows from Theorem 1 that

$$
\left[\tilde{\Gamma}^{r}, \tilde{\Gamma}^{s}\right]=0, \text { which implies: }\left[\Gamma_{l}^{r}, \Gamma_{l}^{s}\right]=0
$$

for $1 \leqslant r, s \leqslant d$ and $1 \leqslant l \leqslant p$. Thus, for each l, there is a $k_{l} \times k_{l}$ unitary matrix V_{l} such that V_{l} diagonalizes each Γ_{l}^{r}. Let V be the $n \times n$ block diagonal matrix with
blocks given by V_{1}, \ldots, V_{p}. Then, V is a unitary matrix that diagonalizes each $\tilde{\Gamma}^{r}$. By the diagonalization in (3), the joint eigenvalues of D are positioned so that

$$
D^{r}=\left(\begin{array}{ccc}
c_{1}^{r} I_{k_{1}} & & \tag{11}\\
& \ddots & \\
& & c_{p}^{r} I_{k_{p}}
\end{array}\right)
$$

for $1 \leqslant r \leqslant d$, where $I_{k_{l}}$ is the $k_{l} \times k_{l}$ identity matrix and each c_{l}^{r} is a constant. Equation (11) shows that V and V^{*} will commute with D^{r}. Define the diagonal matrix

$$
\Lambda^{r}:=V^{*} \tilde{\Gamma}^{r} V
$$

for $1 \leqslant r \leqslant d$ and rewrite $T(t)$ as follows:

$$
T^{r}(t)=U e^{Y t} V\left(D^{r}+t \Lambda^{r}\right) V^{*} e^{-Y t} U^{*}
$$

for $1 \leqslant r \leqslant d$. Now we directly calculate $F(T(t))$ and $\left.\frac{d}{d t} F(T(t))\right|_{t=0}$ as follows:

$$
\begin{aligned}
F(T(t)) & =U e^{Y t} V F\left(D^{1}+t \Lambda^{1}, \ldots, D^{d}+t \Lambda^{d}\right) V^{*} e^{-Y t} U^{*} \\
& =U e^{Y t} V\left(F(D)+t \sum_{r=1}^{d} \Lambda^{r} \frac{\partial F}{\partial x^{r}}(D)+o(|t|)\right) V^{*} e^{-Y t} U^{*}
\end{aligned}
$$

where $\frac{\partial F}{\partial x^{r}}(D)$ is defined by

$$
\frac{\partial F}{\partial x^{r}}(D):=\left(\begin{array}{ccc}
\frac{\partial f}{\partial x^{r}}\left(x_{1}\right) & & \tag{12}\\
& \ddots & \\
& & \frac{\partial f}{\partial x^{r}}\left(x_{n}\right)
\end{array}\right)
$$

for $1 \leqslant r \leqslant d$ and the first-order approximation of F follows from the approximation of f. Differentiating $F(T(t))$ and setting $t=0$ gives

$$
\begin{aligned}
\left.\frac{d}{d t} F(T(t))\right|_{t=0} & =U\left(\sum_{r=1}^{d} V \Lambda^{r} \frac{\partial F}{\partial x^{r}}(D) V^{*}+\left[Y, V F(D) V^{*}\right]\right) U^{*} \\
& =U\left(\sum_{r=1}^{d} \tilde{\Gamma}^{r} \frac{\partial F}{\partial x^{r}}(D)+[Y, F(D)]\right) U^{*}
\end{aligned}
$$

where V and V^{*} commute with $F(D)$ and each $\frac{\partial F}{\partial x^{r}}(D)$ because those matrices have decompositions akin to that of D^{r} in (11).

We now prove that the derivative calculated in Proposition 2 is continuous in t^{*}.
THEOREM 4. Let $S(t)$ be a C^{1} curve in $C S_{n}^{d}$ defined on an interval I. Let Ω be an open set in \mathbb{R}^{d} with $\sigma(S(t)) \subset \Omega$. If $f \in C^{1}(\Omega, \mathbb{R})$, then

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \text { is continuous as a function of } t^{*} \text { on } I .
$$

For the proof, we will require the following lemma:
Lemma 3. Let $S(t)$ be a C^{1} curve in $C S_{n}^{d}$ defined on an interval I. Let Ω be an open, convex set in \mathbb{R}^{d} with $\sigma(S(t)) \subset \Omega$. If $f \in C^{1}(\Omega, \mathbb{R})$ and $t_{0} \in I$, then there is a neighborhood I_{0} around t_{0} such that

$$
\left\|\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| \leqslant C \max _{1 \leqslant s \leqslant d ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right|
$$

for all $t^{*} \in I_{0}$, where C is a constant and E a convex, bounded open set with $\bar{E} \subset \Omega$.

Proof. Let $t_{0} \in I$ and fix a bounded interval I_{0} around t_{0} with $\bar{I}_{0} \subset I$. By Theorem 2, the joint eigenvalues of $S(t)$ are continuous on I_{0}. Thus, there exists an open, bounded, convex set $E \subset \mathbb{R}^{d}$ such that $\bar{E} \subset \Omega$ and $\sigma\left(S\left(t^{*}\right)\right) \subset E$ for each $t^{*} \in I_{0}$. Fix $t^{*} \in I_{0}$. By Proposition 2,

$$
\begin{equation*}
\left.\frac{d}{d t} F(S(t))\right|_{t=t *}=U\left(\sum_{r=1}^{d} \tilde{\Gamma}^{r} \frac{\partial F}{\partial x^{r}}(D)+[Y, F(D)]\right) U^{*} \tag{13}
\end{equation*}
$$

where $U, D^{r}, \tilde{\Gamma}^{r}$, and Y are functions of t^{*} defined in Proposition 2, and the joint eigenvalues of $S\left(t^{*}\right)$ are denoted by x_{i}, for $1 \leqslant i \leqslant n$. Observe that the matrix in (13) can be rewritten as

$$
\left[\sum_{r=1}^{d} \tilde{\Gamma}^{r} \frac{\partial F}{\partial x^{r}}(D)+[Y, F(D)]\right]_{i j}= \begin{cases}\sum_{r=1}^{d} \Gamma_{i j}^{r} \frac{\partial f}{\partial x^{r}}\left(x_{i}\right) & \text { if } x_{i}=x_{j} \tag{14}\\ \Gamma_{i j}^{q} \frac{f\left(x_{i}\right)-f\left(x_{j}\right)}{x_{i}^{q}-x_{j}^{q}} & \text { if } x_{i} \neq x_{j}\end{cases}
$$

where q is such that $x_{i}^{q} \neq x_{j}^{q}$, and $\Gamma_{i j}^{q} /\left(x_{i}^{q}-x_{j}^{q}\right)$ is the same for any q with $x_{i}^{q} \neq x_{j}^{q}$. Recall that for a given $n \times n$ self-adjoint matrix A and an $n \times n$ unitary matrix U,

$$
\begin{equation*}
\max _{i j}\left|\left(U A U^{*}\right)_{i j}\right| \leqslant n\left\|U A U^{*}\right\|=n\|A\| \leqslant n^{2} \max _{i j}\left|A_{i j}\right| \tag{15}
\end{equation*}
$$

It is immediate from (13), (14), and (15) that

$$
\begin{equation*}
\left.\left|\left|\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right||\leqslant n \max | \sum_{r=1}^{d} \Gamma_{i j}^{r} \frac{\partial f}{\partial x^{r}}\left(x_{i}\right)|+n \max | \Gamma_{i j}^{q} \frac{f\left(x_{i}\right)-f\left(x_{j}\right)}{x_{i}^{q}-x_{j}^{q}} \right\rvert\, \tag{16}
\end{equation*}
$$

where the first maximum is taken over (i, j) with $x_{i}=x_{j}$, the second maximum is taken over (i, j) with $x_{i} \neq x_{j}$, and q is such that $x_{i}^{q} \neq x_{j}^{q}$. Fix (i, j) with $x_{i} \neq x_{j}$. Since $f \in C^{1}(E)$, we can apply the multivariate mean value theorem as follows:

$$
\begin{align*}
\left|f\left(x_{i}\right)-f\left(x_{j}\right)\right| & =\left|\nabla f\left(x^{*}\right) \cdot\left(x_{i}-x_{j}\right)\right| \\
& \leqslant \max _{s ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right| \sum_{r=1}^{d}\left|x_{i}^{r}-x_{j}^{r}\right|, \tag{17}
\end{align*}
$$

where x^{*} is on the line in E connecting x_{i} and x_{j}. If $x_{i}^{q} \neq x_{j}^{q}$, for each r with $x_{i}^{r} \neq x_{j}^{r}$,

$$
\Gamma_{i j}^{q} \frac{x_{i}^{r}-x_{j}^{r}}{x_{i}^{q}-x_{j}^{q}}=\Gamma_{i j}^{r}
$$

It follows from (17) that, for each (i, j, q) with $x_{i}^{q} \neq x_{j}^{q}$,

$$
\begin{align*}
\left|\Gamma_{i j}^{q} \frac{f\left(x_{i}\right)-f\left(x_{j}\right)}{x_{i}^{q}-x_{j}^{q}}\right| & \leqslant\left|\frac{\Gamma_{i j}^{q}}{x_{i}^{q}-x_{j}^{q}}\right| \max _{s ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right| \sum_{r=1}^{d}\left|x_{i}^{r}-x_{j}^{r}\right| \\
& \leqslant \max _{s ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right| \sum_{r=1}^{d}\left|\Gamma_{i j}^{r}\right| \\
& \leqslant d n^{2} \max _{s ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right| \max _{i, j, r}\left|\left(S^{r}\right)^{\prime}\left(t^{*}\right)_{i j}\right|, \tag{18}
\end{align*}
$$

where we used (15). Likewise,

$$
\begin{equation*}
\left|\sum_{r=1}^{d} \Gamma_{i j}^{r} \frac{\partial f}{\partial x^{r}}\left(x_{i}\right)\right| \leqslant d n^{2} \max _{s ; x \in \bar{E}}\left|\frac{\partial f}{\partial x^{s}}(x)\right| \max _{i, j, r}\left|\left(S^{r}\right)^{\prime}\left(t^{*}\right)_{i j}\right| \tag{19}
\end{equation*}
$$

Let M be a constant bounding each $\left|\left(S^{r}\right)^{\prime}\left(t^{*}\right)_{i j}\right|$ on \bar{I}_{0} and let $C=2 d n^{3} M$. Substituting (18) and (19) into (16) gives

$$
\left.\left|\left|\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right|\left|\leqslant 2 d n^{3} \max _{s ; x \in \bar{E}}\right| \frac{\partial f}{\partial x^{s}}(x)\left|\max _{i, j, r}\right|\left(S^{r}\right)^{\prime}\left(t^{*}\right)_{i j}\left|\leqslant C \max _{s ; x \in \bar{E}}\right| \frac{\partial f}{\partial x^{s}}(x) \right\rvert\,
$$

for all t^{*} in I_{0}.

Proof. Theorem 4:
First assume Ω is convex. Let $t_{0} \in I$. Let I_{0} be the interval around t_{0} and E be the convex, bounded open set given in Lemma 3. Since f is a C^{1} function and \bar{E} is compact, a generalization of the Stone-Weierstrass theorem in [5, pg 55] guarantees a sequence $\left\{\phi_{k}\right\}$ of functions analytic on \mathbb{R}^{d} such that

$$
\left|\phi_{k}(x)-f(x)\right|<\frac{1}{k} \text { and }\left|\frac{\partial \phi_{k}}{\partial x^{r}}(x)-\frac{\partial f}{\partial x^{r}}(x)\right|<\frac{1}{k}
$$

for all $k \in \mathbb{N}, x \in \bar{E}$, and $1 \leqslant r \leqslant d$. Lemma 3 guarantees that, for each $t^{*} \in I_{0}$,

$$
\begin{aligned}
\left\|\left.\frac{d}{d t} \Phi_{k}(S(t))\right|_{t=t^{*}}-\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| & =\left|\frac{d}{d t}\left(F-\Phi_{k}\right)(S(t))\right|_{t=t^{*}} \| \\
& \leqslant C \max _{s ; x \in \bar{E}}\left|\frac{\partial\left(f-\phi_{k}\right)}{\partial x^{s}}(x)\right| \\
& \leqslant \frac{C}{k}
\end{aligned}
$$

where C is a fixed constant. This implies

$$
\left\{\left.\frac{d}{d t} \Phi_{k}(S(t))\right|_{t=t^{*}}\right\} \text { converges uniformly to }\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \text { on } I_{0} \text {. }
$$

By Proposition 1, each $\left.\frac{d}{d t} \Phi_{k}(S(t))\right|_{t=t^{*}}$ is continuous on I. Since the uniform limit of continuous functions is continuous, $\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}$ is continuous on I_{0}.

Now, let $\Omega \subseteq \mathbb{R}^{d}$ be an arbitrary open set. Fix $t_{0} \in I$ and let I_{0} be a bounded open interval of t_{0} with $\bar{I}_{0} \subset I$. Let $E \subset \mathbb{R}^{d}$ be a bounded open set such that $\bar{E} \subset \Omega$ and $\sigma\left(S\left(t^{*}\right)\right) \subset E$ for all $t^{*} \in I_{0}$. Let O be an open set and K be a compact set such that $\bar{E} \subset O \subset K \subset \Omega$ and define a C^{∞} bump function $b(x)$ such that

$$
b(x):= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { if } x \in O^{c}\end{cases}
$$

Now we can define a function g in $C^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ by

$$
g(x):= \begin{cases}b(x) f(x) & \text { if } x \in \Omega \\ 0 & \text { if } x \in \Omega^{c}\end{cases}
$$

As \mathbb{R}^{d} is convex, it follows from the previous result that $\left.\frac{d}{d t} G(S(t))\right|_{t=t^{*}}$ is continuous on I_{0}. Since $f(x)=g(x)$ in E, it follows from the formula in Proposition 2 that

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}=\left.\frac{d}{d t} G(S(t))\right|_{t=t^{*}}
$$

for all $t^{*} \in I_{0}$, and thus, is continuous in I_{0}.
Recall that $C S_{n}^{d}$ possesses a Whitney stratification with pieces $\left\{M_{\alpha}\right\}$ that are smooth submanifolds of \mathbb{R}^{m}, where $m=d n^{2}$. Let Ω be an open set in \mathbb{R}^{d} and let $f \in C^{1}(\Omega, \mathbb{R})$. Let V be an open set in $C S_{n}^{d}$ such that for all $S \in V, \sigma(S) \subset \Omega$. Define $T V:=\cup T\left(M_{\alpha} \cap V\right)$. Then, $F(S)$ exists for all $S \in V$, and we can use the derivative results to define a map $D F: T V \rightarrow T S_{n}$.

Specifically, fix an element in $T V$, which will consist of an $S \in V$ and $\Delta \in T_{S} M_{\alpha}$, where M_{α} is the piece containing S. Let $S(t)$ be a smooth curve in M_{α} such that $S(0)=S$ and $S^{\prime}(0)=\Delta$. Define

$$
D F(S, \Delta):=\left(F(S),\left.\frac{d}{d t} F(S(t))\right|_{t=0}\right)=\left(F(S), U\left(\sum_{r=1}^{d} \tilde{\Gamma}^{r} \frac{\partial F}{\partial x^{r}}(D)+[Y, F(D)]\right) U^{*}\right)
$$

where $U, D, \tilde{\Gamma}^{r}$, and Y are defined using S and Δ as in Proposition 2, and we can set

$$
\|D F(S, \Delta)\|=\max \left(\|F(S)\|,\left\|\left.\frac{d}{d t} F(S(t))\right|_{t=0}\right\|\right)
$$

It is easy to see that the map is well-defined and that $D F(S, \cdot)$ is linear in Δ, for $\Delta \in$ $T_{S}\left(V \cap M_{\alpha}\right)$. In the following theorem, let S be in a piece M_{α} and let R be in a piece M_{β} of a Whitney stratification of $C S_{n}^{d}$.

THEOREM 5. Let Ω be an open set in \mathbb{R}^{d} and V be an open set in $C S_{n}^{d}$ with $\sigma(S) \subset \Omega$ for all $S \in V$. If $f \in C^{1}(\Omega, \mathbb{R})$, then

$$
D F: T V \rightarrow T S_{n} \text { is continuous. }
$$

Specifically, if $S \in V$ with $\Delta \in T_{S} M_{\alpha}$, then given $\varepsilon>0$, there exist $\delta_{1}, \delta_{2}>0$ such that if $R \in V$ with $\Lambda \in T_{R} M_{\beta},\|S-R\|<\delta_{1}$, and $\|\Delta-\Lambda\|<\delta_{2}$, then

$$
\|D F(S, \Delta)-D F(R, \Lambda)\|<\varepsilon
$$

Proof. The result for analytic functions follows from (9). For an arbitrary C^{1} function f defined on a convex set, and for R and Λ sufficiently close to S and Δ, bound $\|D F(R, \Lambda)\|$ in a manner similar to Lemma 3. The remainder of the proof is almost identical to that of Theorem 4 and is left as an exercise.

4. Higher Order Derivatives

We now consider higher-order differentiation and for ease of notation, discuss only two-variable functions. We first clarify some notation. In earlier sections, $\left(\zeta^{1}, \ldots, \zeta^{d}\right)$ referred to a point in \mathbb{C}^{d}. In this section, $\left(\zeta_{1}, \zeta_{2}\right)$ denotes a point in \mathbb{C}^{2}. Previously, $S(t)$ and $T(t)$ denoted two separate curves in $C S_{n}^{d}$. Now, $S(t)$ and $T(t)$ denote the two components of a single curve in $C S_{n}^{2}$.

Let $(S(t), T(t))$ be a C^{m} curve in $C S_{n}^{2}$ defined on an interval I. If $m \geqslant 1$, the curve is locally Lipschitz. By Theorem 2, for $1 \leqslant s \leqslant n$, there are locally Lipschitz curves

$$
\begin{equation*}
\left(x_{s}(t), y_{s}(t)\right) \tag{20}
\end{equation*}
$$

defined on I representing the joint eigenvalues of $(S(t), T(t))$. Let $U(t)$ be a unitary matrix diagonalizing $(S(t), T(t))$ so that the joint eigenvalues are ordered as in (20). To simplify notation, we write $(S(t), T(t))$ as (S, T). For $l \in \mathbb{N}$ with $1 \leqslant l \leqslant m$, define

$$
\begin{equation*}
S^{l}:=S^{(l)}(t) \text { and } T^{l}:=T^{(l)}(t) \tag{21}
\end{equation*}
$$

and the set of pairs of index tuples

$$
I_{l}:=\left\{\left(i_{1}, \ldots, i_{k}\right) \cup\left(i_{k+1}, \ldots, i_{j}\right): i_{1}+\ldots+i_{j}=l, i_{q} \in \mathbb{N}, i_{q} \neq 0, \text { for } 1 \leqslant q \leqslant j\right\}
$$

For example, $I_{2}=\{(2) \cup \emptyset,(1,1) \cup \emptyset,(1) \cup(1), \emptyset \cup(1,1), \emptyset \cup(2)\}$. For notational ease, for $1 \leqslant s \leqslant n$, define

$$
\begin{aligned}
U & :=U(t) \\
x_{s} & :=x_{s}(t) \\
y_{s} & :=y_{s}(t)
\end{aligned}
$$

For some formulas, we will conjugate the derivatives in (21) by U^{*} and so define

$$
\Gamma^{l}:=U^{*} S^{l} U \text { and } \Delta^{l}:=U^{*} T^{l} U
$$

for $1 \leqslant l \leqslant m$. We will use the integral formula given in Lemma 2 and simplify it by defining

$$
R_{1}:=\left(\zeta_{1} I-S\right)^{-1} \text { and } R_{2}:=\left(\zeta_{2} I-T\right)^{-1}
$$

where ζ_{1} and ζ_{2} are in the resolvent sets of S and T respectively. Now, let J_{1} and J_{2} be open intervals in \mathbb{R} and let f be an element of $C^{m}\left(J_{1} \times J_{2}, \mathbb{R}\right)$. Fix j and k in \mathbb{N} such that $k \leqslant j \leqslant m$. Fix $k+1$ points x_{1}, \ldots, x_{k+1} in J_{1} and $j-k+1$ points y_{1}, \ldots, y_{j-k+1} in J_{2}. Then

$$
f^{[k, j-k]}\left(x_{1}, \ldots, x_{k+1} ; y_{1}, \ldots, y_{j-k+1}\right)
$$

denotes the divided difference of f taken in the first variable k times and the second variable $j-k$ times, evaluated at the given points. Finally, let \odot denote the Schur (also called Hadamard) product of two matrices. We will prove the following differentiability result:

THEOREM 6. Let J_{1} and J_{2} be open intervals in \mathbb{R}, and let $f \in C^{m}\left(J_{1} \times J_{2}, \mathbb{R}\right)$. Let (S, T) be a C^{m} curve in $C S_{n}^{2}$ defined on an interval I with joint eigenvalues in $J_{1} \times J_{2}$. For $1 \leqslant l \leqslant m$ and $t^{*} \in I,\left.\frac{d^{l}}{d t} F(S, T)\right|_{t=t^{*}}$ exists and

$$
\begin{aligned}
& \left.\frac{d^{l}}{d t^{l}} F(S, T)\right|_{t=t^{*}}=U\left(\sum_{I_{l}} \sum_{s_{2}, . ., s_{j}=1}^{n} \frac{l!}{i_{1}!\cdot i_{j}!}\left[f^{[k, j-k]}\left(x_{s_{1}}, . ., x_{s_{k+1}} ; y_{s_{k+1}}, . ., y_{s_{j+1}}\right)\right]_{s_{1}, s_{j+1}=1}^{n}\right. \\
& \left.\odot\left[\Gamma_{s_{1} s_{2}}^{i_{1}} \ldots \Gamma_{s_{k} s_{k+1}}^{i_{k}} \Delta_{s_{k+1}}^{i_{k+1}} s_{k+2} \ldots \Delta_{s_{j} s_{j+1}}^{i_{j}}\right]_{s_{1}, s_{j+1}=1}^{n}\right) U^{*},
\end{aligned}
$$

where the $U, U^{*}, \Gamma^{i}, \Delta^{j}, x_{q}$ and y_{r} are evaluated at t^{*}.
Notice that the derivative formula in Theorem 6 requires f to be defined on pairs $\left(x_{q}, y_{r}\right)$ for $1 \leqslant r, q \leqslant n$, rather than just at the joint eigenvalues $\left(x_{q}, y_{q}\right)$ of (S, T). This condition was not needed in Theorem 3. Before proving Theorem 6, we consider the case where f is real-analytic and show:

Proposition 3. Let J_{1} and J_{2} be open intervals in \mathbb{R}, and let f be real-analytic on $J_{1} \times J_{2}$. Fix $m \in \mathbb{N}$ and let (S, T) be a C^{m} curve in $C S_{n}^{2}$ defined on an interval I with joint eigenvalues in $J_{1} \times J_{2}$. Then $\frac{d^{m}}{d t^{m}} F(S, T)$ exists, has the form in Theorem 6 , and $\left.\frac{d^{m}}{d t^{m}} F(S, T)\right|_{t=t^{*}}$ is continuous as a function of t^{*} on I.

The proof of Proposition 3 requires the following two technical lemmas:
Lemma 4. Let (S, T) be a C^{m} curve in $C S_{n}^{2}$ defined on an interval I. Let $t^{*} \in I$, and let ζ_{1} and ζ_{2} be in the resolvent sets of $S\left(t^{*}\right)$ and $T\left(t^{*}\right)$ respectively. Then

$$
\left.\frac{d^{l}}{d t^{t}}\left(R_{1} R_{2}\right)\right|_{t=t^{*}}=\sum_{I_{l}} \frac{l!}{i_{1}!\cdots i_{j}!} R_{1} S^{i_{1}} R_{1} \ldots S^{i_{k}} R_{1} R_{2} T^{i_{k+1}} R_{2} \ldots T^{i_{j}} R_{2}
$$

for $1 \leqslant l \leqslant m$, where each R_{1}, R_{2}, S^{r}, and T^{q} is evaluated at t^{*}.
Proof. The proof is a technical calculation using induction on l and the formulas $\frac{d}{d t} R_{1}=R_{1} S^{1} R_{1}$ and $\frac{d}{d t} R_{2}=R_{2} T^{1} R_{2}$.

LEMMA 5. Let J_{1} and J_{2} be open intervals in \mathbb{R}, and let f be real-analytic on $J_{1} \times J_{2}$. Let $j \geqslant k \in \mathbb{N}$. Choose $k+1$ points $x_{1}, \ldots, x_{k+1} \in J_{1}$ and $j-k+1$ points $y_{1}, \ldots, y_{j-k+1} \in J_{2}$. Extend f to be analytic on a complex rectangle $\tilde{\Omega} \subset \mathbb{C}^{2}$ such that each $\left(x_{q}, y_{r}\right) \in \tilde{\Omega}$. Then $f^{[k, j-k]}\left(x_{1}, \ldots, x_{k+1} ; y_{1}, \ldots, y_{j-k+1}\right)$ exists and

$$
f^{[k, j-k]}\left(x_{1}, . ., x_{k+1} ; y_{1}, . ., y_{j-k+1}\right)=\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} \frac{f\left(\zeta_{1}, \zeta_{2}\right)}{\prod_{q=1}^{k+1}\left(\zeta_{1}-x_{q}\right) \prod_{r=1}^{j-k+1}\left(\zeta_{2}-y_{r}\right)} d \zeta
$$

where C_{1} and C_{2} are simple closed rectifiable curves strictly enclosing x_{1}, \ldots, x_{k+1} and y_{1}, \ldots, y_{j-k+1} respectively, such that $C_{1} \times C_{2} \subset \tilde{\Omega}$.

Proof. For a one-variable function, the formula is proven in [4, pg 2] and the twovariable analogue follows easily from the one variable case.

Proof. Proposition 3:
Use the integral formula in Lemma 2 to establish an integral formula for $\frac{d^{m}}{d t^{m}} F(S, T)$ similar to the first line of (9). Simplify the formula using Lemma 4. This formula implies that the derivative is continuous. Then, let E_{s} denote the matrix that is 1 in the ss $^{\text {th }}$ entry and zero elsewhere. Rewrite each R_{1} as

$$
R_{1}=U\left(\sum_{s=1}^{n} \frac{E_{S}}{\zeta_{1}-x_{s}}\right) U^{*}
$$

and R_{2} similarly. Then, use Lemma 5 to convert the derivative into a formula involving the divided differences of f. The details are left as an exercise.

Proof. Theorem 6:

The result follows via induction on l, and the base case is covered by Theorem 3. For the inductive step, fix $t^{*} \in I$. Let p be a polynomial such that p and its derivatives to $l^{t h}$ order agree with f at the points $\left(x_{q}\left(t^{*}\right), y_{r}\left(t^{*}\right)\right)$ for $1 \leqslant q, r \leqslant n$. Using the inductive hypothesis, find a constant C such that for t near t^{*},

$$
\left\|\frac{d^{l-1}}{d t^{l-1}} F(S, T)-\frac{d^{l-1}}{d t^{l-1}} P(S, T)\right\| \leqslant C \max \left|(f-p)^{[k, j-k]}\left(x_{s_{1}}, . ., x_{s_{k+1}} ; y_{s_{k+1}}, . ., y_{s_{j+1}}\right)\right|
$$

where the joint eigenvalues of (S, T) are given by $\left(x_{q}, y_{q}\right)$ and the maximum is over (k, j) with $k \leqslant j<l \in \mathbb{N}$ and sets $\left\{\left(s_{1}, . ., s_{k+1}\right) \cup\left(s_{k+1}, . ., s_{j+1}\right): 1 \leqslant s_{1}, . ., s_{j+1} \leqslant n\right\}$. The proof now mirrors that of Theorem 3. Specifically, apply the multivariate mean value theorem to each $(f-p)^{[k, j-k]}$ and observe that, by our original assumptions, $(f-$ $p)^{[k, j-k]}$ vanishes to first order at the points $\left(x_{s_{1}}\left(t^{*}\right), . ., x_{s_{k+1}}\left(t^{*}\right) ; y_{s_{k+1}}\left(t^{*}\right), . ., y_{s_{j+1}}\left(t^{*}\right)\right)$. Then, use the locally Lipschitz property of the eigenvalues to conclude

$$
\left.\frac{d^{l}}{d t^{\prime}} F(S, T)\right|_{t=t^{*}} \text { exists and equals }\left.\frac{d^{l}}{d t^{l}} P(S, T)\right|_{t=t^{*}}
$$

The details are left as an exercise.
We now show that the formula in Theorem 6 is continuous.
THEOREM 7. Let J_{1} and J_{2} be open intervals in \mathbb{R} and $f \in C^{m}\left(J_{1} \times J_{2}, \mathbb{R}\right)$. Let (S, T) be a C^{m} curve in $C S_{n}^{2}$ defined on an interval I with joint eigenvalues in $J_{1} \times J_{2}$. Then for all $l \in \mathbb{N}$ with $1 \leqslant l \leqslant m$,

$$
\left.\frac{d^{l}}{d t^{l}} F(S, T)\right|_{t=t^{*}} \text { is continuous as a function of } t^{*} \text { on } I .
$$

For the proof, we require the following lemma. The result is well-known for onevariable functions, and Brown and Vasudeva prove this two-variable analogue in [3]:

Lemma 6. Let J_{1} and J_{2} be open intervals in \mathbb{R}, and let $f \in C^{m}\left(J_{1} \times J_{2}, \mathbb{R}\right)$. Choose $j, k \in \mathbb{N}$ with $k \leqslant j \leqslant m$. Let $x_{1}, \ldots, x_{k+1} \in J_{1}$ and $y_{1}, \ldots, y_{j-k+1} \in J_{2}$, and choose closed subintervals \tilde{J}_{1} and \tilde{J}_{2} containing the x and y points respectively. Then, there exists $\left(x^{*}, y^{*}\right) \in \tilde{J}_{1} \times \tilde{J}_{2}$ with

$$
f^{[k, j-k]}\left(x_{1}, \ldots, x_{k+1} ; y_{1}, \ldots, y_{j-k+1}\right)=\frac{f^{(k, j-k)}\left(x^{*}, y^{*}\right)}{k!(j-k)!}
$$

Proof. Theorem 7:

For $l<m$, the result follows from Theorem 6, which implies that $\frac{d^{l}}{d t} F(S, T)$ is differentiable and hence, continuous.

For $l=m$, fix $t_{0} \in I$. Similarly to Lemma 3, find a constant C and closed, bounded intervals \tilde{J}_{1} and \tilde{J}_{2} such that if $\tilde{J}:=\tilde{J}_{1} \times \tilde{J}_{2}$, then $\tilde{J} \subset J_{1} \times J_{2}$ and for all $g \in C^{m}\left(J_{1} \times\right.$ $\left.J_{2}, \mathbb{R}\right)$ and t^{*} near t_{0},

$$
\begin{equation*}
\left\|\left.\frac{d^{m}}{d t^{m}} G(S, T)\right|_{t=t^{*}}\right\| \leqslant C \max _{\{j, k ;(x, y) \in \tilde{J}\}}\left|g^{(k, j-k)}(x, y)\right| \tag{22}
\end{equation*}
$$

where $0 \leqslant k \leqslant j \leqslant m$. The estimates for this bound require Lemma 6 . Now, approximate f to $m^{t h}$ order uniformly on \tilde{J} by analytic functions $\left\{\phi_{r}\right\}$ and use (22) to show

$$
\left\{\left.\frac{d^{m}}{d t^{m}} \Phi_{r}(S, T)\right|_{t=t^{*}}\right\} \text { converges uniformly to }\left.\frac{d^{m}}{d t^{m}} F(S, T)\right|_{t=t^{*}}
$$

for t^{*} in a neighborhood of t_{0}. The result then follows from Proposition 3.

5. Applications

The formulas in Proposition 2 and Theorem 6 can be used to analyze monotonicity and convexity of matrix functions. A function $F: S_{n} \rightarrow S_{n}$ is matrix monotone if

$$
F(A) \geqslant F(B) \text { whenever } A \geqslant B, \forall A, B \in S_{n}
$$

For F continuously differentiable, an equivalent condition is

$$
\begin{equation*}
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \geqslant 0 \text { whenever } S^{\prime}\left(t^{*}\right) \geqslant 0, \forall C^{1} S(t) \subset S_{n} \tag{23}
\end{equation*}
$$

The local monotonicity condition in (23) extends to multivariate matrix functions: the only adjustment is that $S(t)$ is in $C S_{n}^{d}$. In [1], Agler, McCarthy, and Young characterized such locally matrix monotone functions on $C S_{n}^{d}$ using a special case of Theorem 3 and Proposition 2. Specifically, they had to assume that $S(t)$ had distinct joint eigenvalues at each t. Our results in Section 3 extend the derivative formula to general C^{1} curves in $C S_{n}^{d}$ and show that the formula is continuous.

A matrix function $F: S_{n} \rightarrow S_{n}$ is matrix convex if

$$
\begin{equation*}
F(\lambda A+(1-\lambda) B) \leqslant \lambda F(A)+(1-\lambda) F(B) \forall A, B \in S_{n} \text { and } \lambda \in[0,1] . \tag{24}
\end{equation*}
$$

This condition extends to multivariate matrix functions with an additional restriction on the pairs A, B in $C S_{n}^{d}$; we also require $\lambda A+(1-\lambda) B \in C S_{n}^{d}$ for $\lambda \in(0,1)$. Given such
A, B, define the curve $S(t)$ on $[0,1]$ by

$$
\begin{equation*}
S^{r}(t):=t A^{r}+(1-t) B^{r} \tag{25}
\end{equation*}
$$

for $1 \leqslant r \leqslant d$. If F is twice continuously differentiable along C^{2} curves, it can be shown that (24) is equivalent to

$$
\left.\frac{d^{2}}{d t^{2}} F(S(t))\right|_{t=t^{*}} \geqslant 0
$$

for all $S(t)$ as in (25) and $t^{*} \in(0,1)$. For $d=2$, Theorem 6 tells us that, up to conjugation by a unitary matrix U diagonalizing $S\left(t^{*}\right)$,

$$
\begin{align*}
{\left[\left.\frac{d^{2}}{d t^{2}} F(S(t))\right|_{t=t^{*}}\right]_{i j} } & =2 \sum_{k=1}^{n} f^{[2,0]}\left(x_{i}, x_{k}, x_{j} ; y_{j}\right) \Gamma_{i k} \Gamma_{k j}+f^{[1,1]}\left(x_{i}, x_{k} ; y_{k}, y_{j}\right) \Gamma_{i k} \Delta_{k j} \\
& +f^{[0,2]}\left(x_{i} ; y_{i}, y_{k}, y_{j}\right) \Delta_{i k} \Delta_{k j} \tag{26}
\end{align*}
$$

where $\left\{\left(x_{i}, y_{i}\right): 1 \leqslant i \leqslant n\right\}$ are the joint eigenvalues of $t^{*} A+\left(1-t^{*}\right) B$ ordered as in the diagonalization given by U, and

$$
\Gamma:=U^{*}\left(A^{1}-B^{1}\right) U \text { and } \Delta:=U^{*}\left(A^{2}-B^{2}\right) U
$$

Although U might not diagonalize $S\left(t^{*}\right)$ so as to order the joint eigenvalues as in (3), the first relationship stated in Theorem 1 still applies to Γ and Δ. Specifically,

$$
\left(x_{i}-x_{j}\right) \Delta_{i j}=\left(y_{i}-y_{j}\right) \Gamma_{i j}
$$

for $1 \leqslant i, j \leqslant n$ and we can use this to simplify (26). Thus, this formula gives a characterization of convex matrix functions on $C S_{n}^{2}$.

REFERENCES

[1] J. Agler and J. McCarthy and N. J. Young, Operator Monotone Functions and Loewner Functions of Several Variables, Ann. of Math., to appear.
[2] R. Bhatia, Matrix Analysis, Springer, New York/Berlin, 1997.
[3] A.L. Brown and H.L. Vasudeva, The calculus of operator functions and operator convexity, Dissertationes Mathematicae, Polska Akademia Nauk, Instytut Matematyczny 390, 1 (2000).
[4] W.F. Donoghue, Monotone Matrix Functions and Analytic Continuations, Springer, Berlin, 1974.
[5] M.P. Heble, Approximation Problems in Analysis and Probability, Elsevier Science Publishers B.V., New York, 1989.
[6] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[7] V. Kaloshin, A geometric proof of the existence of Whitney stratifications , Mosc. Math. J. 5, 1 (2005), 125-133.
[8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlang, Berlin, 1966.
[9] F. Rellich, Störungstheorie der spektralzerlegung, I, Ann. of Math. 113, 1 (1937), 600-619.
[10] F. Rellich, Störungstheorie der spektralzerlegung, II, Ann. of Math. 113, 1 (1937), 677-685.
[11] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81, 2 (1965), 496-549.

