
Operators
and

Matrices

Volume 7, Number 1 (2013), 71–90 doi:10.7153/oam-07-03

DIFFERENTIATING MATRIX FUNCTIONS

KELLY BICKEL

(Communicated by K. Veselić)

Abstract. Real-valued functions on Rd induce matrix-valued functions defined on the space of
d -tuples of n× n pairwise-commuting self-adjoint matrices. We examine the geometry of this
space of matrices and conclude that a suitable notation of differentiation of these matrix functions
is differentiation along curves. We prove that continuously differentiable real-valued functions
induce continuously differentiable matrix functions and give a formula for the derivative. We also
show that real-valued m -times continuously differentiable functions defined on open rectangles
in R2 induce matrix functions that can be m -times continuously differentiated along m -times
continuously differentiable curves.

1. Introduction

Every real-valued function defined on R induces a matrix-valued function on the
space of n×n self-adjoint matrices by acting on the spectrum of each matrix. Likewise,
each real-valued function f defined on an open set Ω ⊆ Rd induces a matrix-valued
function F on the space of d -tuples of n×n pairwise-commuting self-adjoint matrices
with joint spectrum in Ω . Let S = (S1, ...,Sd) be such a d -tuple and let U be a unitary
matrix diagonalizing S as follows:

Sr = U

⎛
⎜⎝

xr
1

. . .
xr
n

⎞
⎟⎠U∗,

for 1 � r � d . Denote the joint spectrum of S by σ(S) :=
{
xi = (x1

i , ...,x
d
i ) : 1 � i � n

}
and define

F(S) := U

⎛
⎜⎝

f (x1)
. . .

f (xn)

⎞
⎟⎠ U∗, (1)

where F(S) is independent of the choice of U.
This paper will show that certain differentiability properties of the original func-

tion pass to the matrix function. Even for a one-variable function, this is nontrivial.
Let f ∈C1(R,R) and consider the simple case of differentiating the associated matrix
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function F along a C1 curve S(t) of n× n self-adjoint matrices. At first glance, it
seems reasonable to write S(t) = U(t)D(t)U∗(t) , for U(t) unitary and D(t) diagonal.
Then F(S(t)) = U(t)F(D(t))U∗(t) and we can differentiate using the product rule.

However, there is no guarantee that we can decompose S(t) into its eigenvector
and eigenvalue matrices so that the eigenvectors are even continuous. As demonstrated
by the following example from [9], eigenvector behavior at points where distinct eigen-
values coalesce can be unpredictable. Specifically, let

S(t) = e−
1
t2

⎛
⎝ cos

( 2
t

)
sin
( 2

t

)
sin
(

2
t

) −cos
(

2
t

)
⎞
⎠ for t �= 0, and S(0) = 0.

For t �= 0, the eigenvalues of S(t) are ± e−
1
t2 and their associated eigenvectors are

±
⎛
⎝ cos

( 1
t

)
sin( 1

t )

⎞
⎠ and ±

⎛
⎝ sin( 1

t )

−cos( 1
t )

⎞
⎠ .

Thus, even an infinitely differentiable curve can have singularities in its eigenvectors.
The differentiability of matrix functions defined from one-variable functions is

discussed frequently in the literature (see [2], [4], [6]). The most comprehensive result
is by Brown and Vasudeva in [3], who prove that an m-times continuously differentiable
real-valued function induces an m-times continuously Fréchet differentiable matrix-
valued function.

If a matrix-valued function is defined using a real-valued function on R
d as in (1),

its domain is the space of d -tuples of pairwise-commuting n×n self-adjoint matrices,
denoted CSd

n . For d > 1, the space of d -tuples of n×n self-adjoint matrices is denoted
Sd

n and for d = 1, is denoted Sn.
It should be noted that there is an alternate approach for inducing a matrix func-

tion from a multivariate function; the d matrices S1, ...,Sd are viewed as operators on
Hilbert spaces H1, ...,Hd and F(S) is viewed as an operator on H1⊗ ...⊗Hd . Brown
and Vasudeva generalize their one-variable result to these matrix functions in [3].

In this paper, we focus on matrix functions defined as in (1). Specifically, in
Section 2, we analyze the geometry of CSd

n and conclude that a suitable notion of
differentiability for functions on this space is differentiation along curves. If we fix S in
CSd

n , Theorem 1 characterizes the directions Δ in Sd
n such that there is a C1 curve S(t)

in CSd
n with S(0) = S and S′(0) = Δ. In Theorem 2, we show that the joint eigenvalues

of locally Lipschitz curves in CSd
n can be represented by locally Lipschitz functions.

In Section 3, we examine the differentiability properties of induced matrix func-
tions. Specifically, in Theorem 3, we show that a C1 function induces a matrix function
that can be continuously differentiated along C1 curves. We then calculate a formula
for the derivative along curves and in Theorem 4, prove that it is continuous.

In Section 4, we consider higher-order differentiation. With additional domain
restrictions, in Theorem 6, we show that Cm functions induce matrix functions that can
be m-times continuously differentiated along Cm curves. We also calculate a formula
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for the derivatives and in Theorem 7, show they are continuous. In Section 5, we discuss
several applications of the differentiability results.

Before proceeding, I would like to thank John McCarthy for his guidance during
this research and the referees for their many useful suggestions.

2. The Geometry of CSd
n

Let S = (S1, ...,Sd) be in CSd
n (or Sd

n ) and let xi = (x1
i , ...,x

d
i ) be in σ(S). Define

‖S‖ := max
1�r�d

‖Sr‖ and ‖xi‖ := max
1�r�d

|xr
i |, (2)

where ‖Sr‖ is the usual operator norm. As each S ∈ Sn is determined by its upper
triangular part, which has n2 degrees of freedom, Sn can be equated with Rn2

. Then,
CSd

n can be viewed as a subset of R
m , where m = dn2. It follows from basic facts about

self-adjoint matrices that the norm on CSd
n inherited from Euclidean space and the one

defined in (2) are equivalent norms. Now, observe that CSd
n is not a linear space; if A

and B are pairwise-commuting d -tuples, the sum A+B need not pairwise commute.
Thus, neither the Fréchet nor Gâteaux derivatives can be defined for functions on CSd

n
because both require the function to be defined on linear sets around each point.

Recall that CSd
n is the set of elements S ∈ Sd

n with [Sr,Ss] = 0 for all 1 � r,s � d,
where [·, ·] denotes Lie bracket. Thus, CSd

n is the zero set of the polynomials associated
with d(d−1)/2 commutator operations and so is a real algebraic variety. A result by
Whitney in [11] and discussed by Kaloshin in [7] says every algebraic variety defined
by polynomials on m real variables can be decomposed into smooth submanifolds of
R

m that fit together ‘regularly’ and whose tangent spaces fit together ‘regularly.’ For
a manifold N , let TN denote the tangent space of N and let TSN denote the tangent
space based at a point S in N . For a closed subset X of Rm, we can define

DEFINITION 1. A stratification of X is a locally finite partition Z of X into lo-
cally closed pieces {Mα} such that

(i) Each piece Mα ∈ Z is a smooth submanifold of R
m.

(ii) (Condition of frontier) If Mα ∩Mβ �= /0 for pieces Mα , Mβ , then Mα ⊂ Mβ .

EXAMPLE 1. Consider CS2
2 , the space of pairs of self-adjoint, commuting 2× 2

matrices. In the following definitions, a,b,c,d ∈ R . Define

M1 :=
{(

U

(
a 0
0 b

)
U∗,U

(
c 0
0 d

)
U∗
)

: U is 2×2 unitary, a �= b,c �= d
}
,

M2 :=
{((a 0

0 a

)
,U

(
c 0
0 d

)
U∗
)

: U is 2×2 unitary, c �= d
}
,

M3 :=
{(

U

(
a 0
0 b

)
U∗,

(
c 0
0 c

))
: U is 2×2 unitary, a �= b

}
,

M4 :=
{((a 0

0 a

)
,

(
c 0
0 c

))}
.
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It is easy to see that CS2
2 = ∪Mi and each Mi is locally closed. With a little work, one

can show each Mi is a smooth submanifold of R8. As this example clearly satisfies the
condition of frontier, this partition {Mi} is a stratification of CS2

2.

In general, one should expect a stratification of CSd
n into pieces to be related to the

number and multiplicity of the repeated eigenvalues of the elements of CSd
n .

Whitney’s result says CSd
n has a specific decomposition Z into smooth subman-

ifolds of R
m where m = dn2, called a Whitney stratification. This stratification has

further regularity involving the tangent spaces of the pieces of Z , but as we do not need
those details here, see [7] for the specifics. We let {Mα} denote the pieces of Z and
define TCSd

n :=∪TMα . Given a function F :CSd
n → Sn , one type of derivative is a map

DF : TCSd
n → TSn such that

DF |TMα : TMα → TSn

is the usual differential map for each Mα . In Theorem 5, we analyze such maps. How-
ever, these differential maps cannot be easily generalized to analyze higher-order dif-
ferentiation. Furthermore, for each S ∈ CSd

n and piece Mα containing S , the tangent
space TSMα might only contain a subset of the vectors tangent to CSd

n at S . Example
2 will show that strict containment often occurs.

To retain information about all tangent vectors, we will mostly study differentia-
tion along differentiable curves. We first determine which Δ ∈ Sd

n are vectors tangent
to CSd

n at a given point S. For any Δ ∈ Sd
n and S ∈CSd

n , we ask

Is there a C1 curve S(t) in CSd
n with S(0) = S and S′(0) = Δ?

For an element S ∈ CSd
n with distinct joint eigenvalues, Agler, McCarthy, and

Young in [1] gave necessary and sufficient conditions on S and Δ for such a C1 curve
to exist. We extend their result to an arbitrary element S . Fix S ∈CSd

n and Δ ∈ Sd
n . Let

U be a unitary matrix diagonalizing each component of S such that the repeated joint
eigenvalues of S appear consecutively. Numbering the xi ’s appropriately, define

Dr := U∗SrU =

⎛
⎜⎝

xr
1

. . .
xr
n

⎞
⎟⎠ , (3)

for each 1 � r � d. Then, for each r , define the two matrices

Γr := U∗ΔrU

Γ̃r
i j :=

{
Γr

i j if xi = x j

0 otherwise.
(4)

Then Γ̃r is a block diagonal matrix. Each block corresponds to a distinct joint eigen-
value of S and has dimension equal to the multiplicity of that eigenvalue.

THEOREM 1. Let S ∈CSd
n and Δ ∈ Sd

n . Then there exists a C1 curve S(t) in CSd
n

with S(0) = S and S′(0) = Δ if and only if for all 1 � s,r � d,

[Dr,Γs] = [Ds,Γr] and
[
Γ̃r, Γ̃s]= 0.
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Proof. (⇒) Assume S(t) is a C1 curve in CSd
n with S(0) = S and S′(0) = Δ.

Define

R(t) := U∗S(t)U,

where U diagonalizes S as in (3). Then R(t) is a C1 curve in CSd
n with R(0) = D and

R′(0) = Γ . We will first prove that

[Dr,Γs] = [Ds,Γr] and [Γr,Γs]i j = 0,

for all pairs 1 � r,s � d and (i, j) such that xi = x j. We will use those commutativity
results to conclude [

Γ̃r, Γ̃s]= 0,

for each pair 1 � r,s � d. Since R(t) is C1 in a neighborhood of t = 0, we can write

Rr(t) = Dr + Γrt +hr(t),

for each 1 � r � d , where |hr(t)i j| = o(|t|) for 1 � i, j � n. For each pair r and s , the
pairwise-commutativity of R(t) implies

0 = [Rr(t),Rs(t)]
= [Dr + Γrt +hr(t),Ds + Γst +hs(t)]

=
(
[Dr,hs(t)]+ [hr(t),Ds]+ [hr(t),hs(t)]

)
+
(
[Dr,Γs]+ [Γr,Ds]+ [Γr,hs(t)]+ [hr(t),Γs]

)
t

+[Γr,Γs]t2, (5)

where the term [Dr,Ds] was omitted because it vanishes. Fix t �= 0 and divide each
term in (5) by t . Letting t tend towards zero yields

0 = [Dr,Γs]− [Ds,Γr]. (6)

Choose i and j such that xi = x j . Then, the i jth entry of (5) reduces to

0 = [hr(t),hs(t)]i j +( [Γr,hs(t)]i j − [Γs,hr(t)]i j )t +[Γr,Γs]i jt2.

Fix t �= 0 and divide both sides by t2. Letting t tend towards zero yields

0 = [Γr,Γs]i j. (7)

Fix r and s with 1 � r,s � d. Since Γ̃r and Γ̃s are block diagonal matrices with blocks
corresponding to the distinct joint eigenvalues of S, it follows that Γ̃rΓ̃s and Γ̃sΓ̃r are
also such block diagonal matrices. Thus, if i and j are such that xi �= x j,[

Γ̃r, Γ̃s]
i j =

(
Γ̃rΓ̃s − Γ̃sΓ̃r )

i j = 0.
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Now, fix i and j such that xi = x j . By the definition of Γ̃ ,

[
Γ̃r, Γ̃s]

i j =
n

∑
k=1

Γ̃r
ikΓ̃s

k j − Γ̃s
ikΓ̃r

k j

= ∑
{k:xk=xi}

Γr
ikΓs

k j −Γs
ikΓr

k j

= − ∑
{k:xk �=xi}

Γr
ikΓs

k j −Γs
ikΓr

k j,

where the last equality uses (7). Thus, it suffices to show that if xk �= xi ,

Γr
ikΓs

k j −Γs
ikΓr

k j = 0.

Assume xk �= xi, and fix q with xq
k �= xq

i . Apply (6) to pairs r,q and s,q to get

[Dq,Γr] = [Dr,Γq] and [Dq,Γs] = [Ds,Γq].

Restricting to the ikth and k jth entries of the previous two equations yields

Γr
ik(x

q
i − xq

k) = Γq
ik(x

r
i − xr

k),
Γr

k j(x
q
k − xq

j) = Γq
k j(x

r
k − xr

j),

Γs
ik(x

q
i − xq

k) = Γq
ik(x

s
i − xs

k),
Γs

k j(x
q
k − xq

j) = Γq
k j(x

s
k − xs

j).

Since xi = x j and xq
k �= xq

i , we can replace all the x j ’s with xi ’s in the above set of
equations and solve for the Γr and Γs entries. Using these relations gives

Γr
ikΓs

k j −Γs
ikΓr

k j =
Γq

ik(x
r
i − xr

k)Γ
q
k j(x

s
i − xs

k)

(xq
i − xq

k)
2

−
Γq

ik(x
s
i − xs

k)Γ
q
k j(x

r
i − xr

k)

(xq
i − xq

k)
2

= 0,

as desired. Thus, [Γ̃r, Γ̃s] = 0.
(⇐) Fix S in CSd

n and Δ in Sd
n and let U, D, Γ , and Γ̃ be as in the discussion

preceding Theorem 1. Assume

[Dr,Γs] = [Ds,Γr] and
[
Γ̃r, Γ̃s]= 0, (8)

for 1 � r,s � d. Define a skew-Hermitian matrix Y as follows:

Yi j :=

⎧⎨
⎩

Γq
i j

xq
j−xq

i
if xi �= x j

0 otherwise,

where q is chosen so that xq
i − xq

j �= 0. Observe that Y is independent of q because the

i jth entry of the first equation in (8) is

Γs
i j(x

r
i − xr

j) = Γr
i j(x

s
i − xs

j).
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Now, define the curve S(t) by

Sr(t) := UeYt[Dr + tΓ̃r]e−YtU∗,

for each 1 � r � d. Then, S(t) is continuously differentiable. Because Y is skew-
Hermitian, eYt is unitary. Since Dr and Γ̃r are self-adjoint, S(t) is in Sd

n . By a simple
calculation using (8),

[Sr(t),Ss(t)] = 0,

for each pair 1 � r,s � d. Thus, S(t) is in CSd
n . By definition, S(0) = S. For each r ,

(Sr)′(t) = U
(
YeYt[Dr + tΓ̃r]e−Yt + eYt[Γ̃r]e−Yt − eYt[Dr + tΓ̃r]Ye−Yt)U∗,

so that
(Sr)′(0) = U

(
[Y,Dr]+ Γ̃r)U∗ = Δr.

Thus, S′(0) = Δ, and S(t) is the desired curve. �
Observe that by the construction in Theorem 1, if there is a C1 curve S(t) in

CSd
n with S(0) = S and S′(0) = Δ, there is actually a smooth curve R(t) in CSd

n with
R(0) = S and R′(0) = Δ.

EXAMPLE 2. Let I ∈ CSd
n be the identity element. By Theorem 1, there is a

smooth curve S(t) in CSd
n with

S(0) = I and S′(0) = Δ if and only if Δ ∈CSd
n .

Thus, the set of vectors tangent to CSd
n at I is CSd

n . For a Whitney stratification of CSd
n

and piece Mα containing I , the tangent space TIMα is linear. Since CSd
n is not linear,

TIMα is a strict subset of the set of tangent vectors at I .

The conditions of Theorem 1 actually imply that if S ∈CSd
n has any repeated joint

eigenvalues, the set of vectors tangent to CSd
n at S is not a linear set. Then, for any

Whitney stratification of CSd
n and piece Mα containing S , the tangent space TSMα is

a strict subset of the vectors tangent to CSd
n at S. We will thus focus on differentiation

along curves rather than differential maps.
To evaluate an induced matrix function along a curve in CSd

n , we apply the original
function to the curve’s joint eigenvalues. We are therefore interested in the behavior of
the joint eigenvalues of curves in CSd

n .
If S(t) is a continuous curve in Sn, a result by Rellich in [9] and [10] states that the

eigenvalues of S(t) can be represented by n continuous functions. A succinct proof is
given by Kato in [8, pg 107-10]. With slight modification, the arguments show that the
eigenvalues of a locally Lipschitz curve in Sn can be represented by locally Lipschitz
functions. These results generalize as follows:

THEOREM 2. Given a locally Lipschitz curve S(t) in CSd
n defined on an inter-

val I , there exist locally Lipschitz functions x1(t), ...,xn(t) : I → Rd with σ(S(t)) =
{xi(t) : 1 � i � n} .
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Proof. As the proof is a technical but straightforward modification of the one-
variable case, it is left as an exercise. �

Theorem 2 provides a specific ordering of the joint eigenvalues of S(t) at each t.
This ordering may differ from the one in (3), where joint eigenvalues appear consecu-
tively. However, Theorem 2 implies that the joint eigenvalues of a continuously differ-
entiable, and hence locally Lipschitz, curve S(t) are locally Lipschitz as an unordered
n -tuple. Specifically, fix t∗ and denote the eigenvalues of S(t∗) by {xi : 1 � i � n} .
Then, for t near t∗ , there is a constant c such that

min

(
max
1�i�n

‖xi− xi(t)‖
)

� c|t∗ − t|,

where the minimum is taken over all reorderings of the {xi}. If we require that eigen-
values are ordered as in (3), we will use Theorem 2 to conclude that the eigenvalues are
locally Lipschitz as an unordered n -tuple.

3. Differentiating Matrix Functions

Recall that every real-valued function defined on an open set Ω ⊆ R
d induces a

matrix function as in (1). We denote its domain, the space of d -tuples of pairwise-
commuting n×n self-adjoint matrices with spectrum in Ω , by CSd

n(Ω) .
If the original function is continuous, the matrix function is as well. Specifically,

Horn and Johnson proved in [6, pg 387-9] that a one-variable polynomial induces a
continuous matrix polynomial. The arguments generalize easily to multivariate poly-
nomials, and approximation arguments imply that the matrix function induced by a
continuous function is continuous. We now consider differentiability and prove:

THEOREM 3. Let S(t) be a C1 curve in CSd
n defined on an interval I , and let Ω

be an open set in Rd with σ(S(t)) ⊂ Ω. If f ∈C1(Ω,R) , then

(i) d
dt F(S(t))|t=t∗ exists for all t∗ ∈ I.

(ii) If T (t) is another C1 curve in CSd
n with T (0) = S(t∗) and T ′(0) = S′(t∗), then

d
dt F(T (t))|t=0 = d

dt F(S(t))|t=t∗ .

Before proving Theorem 3, we assume f is real-analytic and prove Proposition
1. See [6] for the one-variable case. We first need some notation. We say an open set
Ω ⊆ Rd is a rectangle if Ω = I1× ...× Id or more specifically,

Ω = {(x1, ...,xd) : xr ∈ Ir ∀ 1 � r � d},
where each Ir is an open interval in R, and an open set Ω̃ ⊆ Cd is a complex rectangle
if Ω̃ = (I1 + iJ1)× ...× (Id + iJd) or specifically,

Ω̃ = {(x1 + iy1, ...,xd + iyd) : xr ∈ Ir,yr ∈ Jr ∀ 1 � r � d},
where for each r , Ir and Jr are open intervals in R .
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PROPOSITION 1. Let S(t) be a C1 curve in CSd
n defined on an interval I . Let Ω

be a rectangle in Rd with σ(S(t)) ⊂ Ω. If f is a real-analytic function on Ω , then

d
dt F(S(t))|t=t∗ exists and is continuous as a function of t∗ on I.

The proof of Proposition 1 requires the following two lemmas.

LEMMA 1. Let Ω be a rectangle in Rd and let S be in CSd
n with σ(S) ⊂ Ω.

Each real-analytic function on Ω can be extended to an analytic function defined on a
complex rectangle Ω̃ such that σ(S) is in Ω̃.

Proof. The result follows from basic properties of complex functions. It should
be noted that Ω̃ need not contain Ω . �

LEMMA 2. Let Ω̃ be a complex rectangle in Cd and let S be in CSd
n with σ(S)⊂

Ω̃. If f is an analytic function on Ω̃, then

F(S) =
1

(2π i)d

∫
Cd

...

∫
C1

f (ζ 1, ...,ζ d)(ζ 1I−S1)−1...(ζ dI−Sd)−1 dζ 1...dζ d ,

where each Cr is a simple closed rectifiable curve strictly containing σ(Sr) , and C1 ×
...×Cd ⊂ Ω̃ .

Proof. Horn and Johnson prove the formula for a one-variable function in [6, pg
427]. Their derivation generalizes easily to multivariate functions. �

Proof. Proposition 1:
For ease of notation, assume d = 2 and for r = 1,2, define

Rr(t) := (ζ rI−Sr(t))−1,

where ζ r is in the resolvent set of Sr(t). Fix t0 ∈ I and extend f to an analytic function
on a complex rectangle Ω̃ containing σ(S(t0)). Choose simple closed rectifiable curves
C1 and C2 such that C1 ×C2 ⊂ Ω̃ and Cr strictly encloses the eigenvalues of Sr(t0) .
As the joint eigenvalues of S(t) are continuous, we can use Lemma 2 to write

F(S(t)) =
1

(2π i)2

∫
C2

∫
C1

f (ζ 1,ζ 2) R1(t) R2(t) dζ 1dζ 2,

for t sufficiently close to t0 . For t1,t2 near t0 , we have

Rr(t1)−Rr(t2) = Rr(t1)(Sr(t1)−Sr(t2))Rr(t2),

which implies Rr(t) is differentiable near t0 and direct calculation gives

d
dt R

r(t)|t=t∗ = Rr(t∗)(Sr)′(t∗)Rr(t∗),
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for r = 1,2 and t∗ near t0. It can be easily shown that, for t∗ sufficiently close to t0 ,
we can interchange integration and differentiation to yield

d
dt F(S(t))|t=t∗ =

1
(2π i)2

∫
C2

∫
C1

f (ζ 1,ζ 2) d
dt

(
R1(t)R2(t)

)|t=t∗ dζ 1dζ 2

=
1

(2π i)2

∫
C2

∫
C1

f (ζ 1,ζ 2)
(

R1(t∗)(S1)′(t∗)R1(t∗)R2(t∗)

+R1(t∗)R2(t∗)(S2)′(t∗)R2(t∗)
)

dζ 1dζ 2. (9)

As each (Sr)′(t) is continuous in t and each Rr(t) is continuous in t near t0 (uni-
formly in ζ for ζ in C1×C2 ), and f (ζ 1,ζ 2) is uniformly bounded, d

dt F(S(t))|t=t∗ is
continuous at t∗ = t0 . �

Proof. Theorem 3:
Observe that the theorem holds for polynomials: (i) follows from Proposition 1, and
(ii) follows from the formula in (9). Fix t∗ ∈ I . Let f be an arbitrary C1 function, and
let p be a polynomial that agrees with f to first order on σ(S(t∗)).

By Theorem 2, there are locally Lipschitz maps xi(t) := (x1
i (t), ...,x

d
i (t)), for 1 �

i � n, representing σ(S(t)) on I. From the multivariate mean value theorem, we have

‖(F −P)(S(t))‖= max
i

|( f − p)(xi(t))|
= max

i
|( f − p)(xi(t))− ( f − p)(xi(t∗))

∣∣
= max

i

∣∣∇( f − p)(x∗i (t)) · (xi(t)− xi(t∗))
∣∣

� max
i

d

∑
r=1

∣∣( ∂ f
∂xr − ∂ p

∂xr

)
(x∗i (t))

∣∣∣∣xr
i (t)− xr

i (t
∗)
∣∣, (10)

where x∗i (t) is on the line connecting xi(t) and xi(t∗) in Rd . This makes sense because
continuity implies that there is a convex set U ⊆ Ω such that xi(t∗), xi(t) ∈U, for t
sufficiently close to t∗. As f and p agree to first order on σ(S(t∗)) and the xi(t) are
locally Lipschitz, (10) implies

‖(F −P)(S(t))‖ = o(|t− t∗|).
Hence ∥∥∥F(S(t))−F(S(t∗))

t− t∗
− P(S(t))−P(S(t∗))

t− t∗
∥∥∥→ 0 as t → t∗.

Therefore,

d
dt F(S(t))|t=t∗ exists and equals d

dt P(S(t))|t=t∗ .
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Applying the same argument to F(T (t)) at t = 0 gives

d
dt F(T (t))|t=0 exists and equals d

dt P(T (t))|t=0.

As (ii) holds for P(t) , we must have d
dt F(T (t))|t=0 = d

dt F(S(t))|t=t∗ . �

In the following proposition, we calculate an explicit formula for the derivative.

PROPOSITION 2. Let S(t) be a C1 curve in CSd
n defined on an interval I, and let

t∗ ∈ I . Let Ω be an open set in Rd with σ(S(t)) ⊂ Ω and let f ∈C1(Ω,R) . Then,

d
dt F(S(t))|t=t∗ = U

( d

∑
r=1

Γ̃r ∂F
∂xr (D)+ [Y,F(D)]

)
U∗,

where U diagonalizes S(t∗) as in (3), ∂F
∂xr (D) is defined in (12), and the other matrices

are as follows:

Dr := U∗Sr(t∗)U Γr := U∗(Sr)′(t∗)U

Γ̃r
i j :=

{
Γr

i j if xi = x j

0 otherwise
Yi j :=

⎧⎨
⎩

Γq
i j

xq
j−xq

i
if xi �= x j

0 otherwise,

where the joint eigenvalues of S(t∗) are given by
{
xi = (x1

i , ...,x
d
i ) : 1 � i � n

}
and

each q is chosen so xq
j − xq

i �= 0.

Proof. Let t∗ ∈ I and define the C1 curve T (t) by

T r(t) := U eYt[Dr + tΓ̃r]e−Yt U∗,

for 1 � r � d. Then, T (t) is the curve defined in the proof of Theorem 1 for S := S(t∗)
and Δ := S′(t∗) . It is immediate that T (t) ∈ CSd

n , T (0) = S(t∗) , and T ′(0) = S′(t∗) .
By Theorem 3, it now suffices to calculate d

dt F(T (t))|t=0. First, we diagonalize each
Dr + tΓ̃r. Let p be the number of distinct joint eigenvalues of S(t∗) . By definition,

Γ̃r =

⎛
⎜⎝

Γr
1

. . .
Γr

p

⎞
⎟⎠ ,

for 1 � r � d , where each Γr
l is a kl ×kl self-adjoint matrix corresponding to a distinct

joint eigenvalue of S with multiplicity kl. It follows from Theorem 1 that[
Γ̃r, Γ̃s]= 0, which implies:

[
Γr

l ,Γ
s
l

]
= 0,

for 1 � r,s � d and 1 � l � p. Thus, for each l , there is a kl × kl unitary matrix Vl

such that Vl diagonalizes each Γr
l . Let V be the n× n block diagonal matrix with
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blocks given by V1, ...,Vp. Then, V is a unitary matrix that diagonalizes each Γ̃r. By
the diagonalization in (3), the joint eigenvalues of D are positioned so that

Dr =

⎛
⎜⎝

cr
1Ik1

. . .
cr

pIkp

⎞
⎟⎠ , (11)

for 1 � r � d , where Ikl is the kl×kl identity matrix and each cr
l is a constant. Equation

(11) shows that V and V ∗ will commute with Dr . Define the diagonal matrix

Λr := V ∗Γ̃rV,

for 1 � r � d and rewrite T (t) as follows:

T r(t) = UeYtV
(
Dr + tΛr)V ∗e−YtU∗,

for 1 � r � d. Now we directly calculate F(T (t)) and d
dt F(T (t))|t=0 as follows:

F(T (t)) =UeYtV F
(
D1 + tΛ1, ...,Dd + tΛd

)
V ∗e−YtU∗

=UeYtV

(
F(D)+ t

d

∑
r=1

Λr ∂F
∂xr (D)+o(|t|)

)
V ∗e−YtU∗,

where ∂F
∂xr (D) is defined by

∂F
∂xr (D) :=

⎛
⎜⎝

∂ f
∂xr (x1)

. . .
∂ f
∂xr (xn)

⎞
⎟⎠ , (12)

for 1 � r � d and the first-order approximation of F follows from the approximation
of f . Differentiating F(T (t)) and setting t = 0 gives

d
dt F(T (t))|t=0 =U

( d

∑
r=1

V Λr ∂F
∂xr (D)V ∗ +[Y,VF(D)V ∗]

)
U∗

=U
( d

∑
r=1

Γ̃r ∂F
∂xr (D)+ [Y,F(D)]

)
U∗,

where V and V ∗ commute with F(D) and each ∂F
∂xr (D) because those matrices have

decompositions akin to that of Dr in (11). �
We now prove that the derivative calculated in Proposition 2 is continuous in t∗ .

THEOREM 4. Let S(t) be a C1 curve in CSd
n defined on an interval I . Let Ω be

an open set in Rd with σ(S(t)) ⊂ Ω. If f ∈C1(Ω,R) , then

d
dt F(S(t))|t=t∗ is continuous as a function of t∗on I.
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For the proof, we will require the following lemma:

LEMMA 3. Let S(t) be a C1 curve in CSd
n defined on an interval I . Let Ω be an

open, convex set in Rd with σ(S(t)) ⊂ Ω. If f ∈C1(Ω,R) and t0 ∈ I , then there is a
neighborhood I0 around t0 such that

‖ d
dt F(S(t))|t=t∗‖ � C max

1�s�d;x∈E

∣∣ ∂ f
∂xs (x)

∣∣,
for all t∗ ∈ I0, where C is a constant and E a convex, bounded open set with E ⊂ Ω.

Proof. Let t0 ∈ I and fix a bounded interval I0 around t0 with I 0 ⊂ I. By Theo-
rem 2, the joint eigenvalues of S(t) are continuous on I0 . Thus, there exists an open,
bounded, convex set E ⊂ Rd such that E ⊂ Ω and σ(S(t∗)) ⊂ E for each t∗ ∈ I0 . Fix
t∗ ∈ I0. By Proposition 2,

d
dt F(S(t))|t=t∗ = U

( d

∑
r=1

Γ̃r ∂F
∂xr (D)+ [Y,F(D)]

)
U∗, (13)

where U, Dr, Γ̃r , and Y are functions of t∗ defined in Proposition 2, and the joint
eigenvalues of S(t∗) are denoted by xi , for 1 � i � n. Observe that the matrix in (13)
can be rewritten as

[ d

∑
r=1

Γ̃r ∂F
∂xr (D)+ [Y,F(D)]

]
i j

=

⎧⎪⎨
⎪⎩

∑d
r=1 Γr

i j
∂ f
∂xr (xi) if xi = x j

Γq
i j

f (xi)− f (x j)
xq
i −xq

j
if xi �= x j,

(14)

where q is such that xq
i �= xq

j , and Γq
i j/(xq

i − xq
j) is the same for any q with xq

i �= xq
j .

Recall that for a given n×n self-adjoint matrix A and an n×n unitary matrix U ,

max
i j

|(UAU∗)i j| � n‖UAU∗‖ = n‖A‖ � n2 max
i j

|Ai j|. (15)

It is immediate from (13), (14), and (15) that

∣∣∣∣ d
dt F(S(t))

∣∣
t=t∗
∣∣∣∣� nmax

∣∣∣∣ d

∑
r=1

Γr
i j

∂ f
∂xr (xi)

∣∣∣∣+nmax

∣∣∣∣Γq
i j

f (xi)− f (x j)
xq
i − xq

j

∣∣∣∣, (16)

where the first maximum is taken over (i, j) with xi = x j , the second maximum is
taken over (i, j) with xi �= x j, and q is such that xq

i �= xq
j . Fix (i, j) with xi �= x j. Since

f ∈C1(E), we can apply the multivariate mean value theorem as follows:∣∣ f (xi)− f (x j)
∣∣= ∣∣∇ f (x∗) · (xi− x j)

∣∣
� max

s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣ d

∑
r=1

∣∣xr
i − xr

j

∣∣, (17)
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where x∗ is on the line in E connecting xi and x j . If xq
i �= xq

j , for each r with xr
i �= xr

j ,

Γq
i j

xr
i − xr

j

xq
i − xq

j
= Γr

i j.

It follows from (17) that, for each (i, j,q) with xq
i �= xq

j ,∣∣∣∣Γq
i j

f (xi)− f (x j)
xq
i − xq

j

∣∣∣∣�
∣∣∣∣ Γq

i j

xq
i −xq

j

∣∣∣∣max
s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣ d

∑
r=1

∣∣xr
i − xr

j

∣∣
� max

s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣ d

∑
r=1

∣∣Γr
i j

∣∣
� dn2 max

s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣max
i, j,r

∣∣(Sr)′(t∗)i j
∣∣, (18)

where we used (15). Likewise,

∣∣ d

∑
r=1

Γr
i j

∂ f
∂xr (xi)

∣∣� dn2 max
s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣max
i, j,r

∣∣(Sr)′(t∗)i j
∣∣. (19)

Let M be a constant bounding each |(Sr)′(t∗)i j| on I 0 and let C = 2dn3M. Substituting
(18) and (19) into (16) gives∣∣∣∣ d

dt F(S(t))
∣∣
t=t∗
∣∣∣∣� 2dn3 max

s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣max
i, j,r

∣∣(Sr)′(t∗)i j
∣∣� C max

s;x∈E

∣∣ ∂ f
∂xs (x)

∣∣,
for all t∗ in I0. �

Proof. Theorem 4:
First assume Ω is convex. Let t0 ∈ I. Let I0 be the interval around t0 and E be the
convex, bounded open set given in Lemma 3. Since f is a C1 function and E is
compact, a generalization of the Stone-Weierstrass theorem in [5, pg 55] guarantees a
sequence {φk} of functions analytic on Rd such that

|φk(x)− f (x)| < 1
k and

∣∣ ∂φk
∂xr (x)− ∂ f

∂xr (x)
∣∣< 1

k ,

for all k ∈ N , x ∈ E, and 1 � r � d. Lemma 3 guarantees that, for each t∗ ∈ I0,∣∣∣∣ d
dt Φk(S(t))

∣∣
t=t∗ − d

dt F(S(t))
∣∣
t=t∗
∣∣∣∣= ∣∣∣∣ d

dt (F −Φk)(S(t))
∣∣
t=t∗
∣∣∣∣

� C max
s;x∈E

∣∣ ∂ ( f−φk)
∂xs (x)

∣∣
� C

k ,

where C is a fixed constant. This implies{
d
dt Φk(S(t))

∣∣
t=t∗
}

converges uniformly to d
dt F(S(t))

∣∣
t=t∗ on I0.
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By Proposition 1, each d
dt Φk(S(t))|t=t∗ is continuous on I . Since the uniform limit of

continuous functions is continuous, d
dt F(S(t))|t=t∗ is continuous on I0 .

Now, let Ω ⊆ Rd be an arbitrary open set. Fix t0 ∈ I and let I0 be a bounded open
interval of t0 with I 0 ⊂ I. Let E ⊂ Rd be a bounded open set such that E ⊂ Ω and
σ(S(t∗)) ⊂ E for all t∗ ∈ I0. Let O be an open set and K be a compact set such that
E ⊂ O ⊂ K ⊂ Ω and define a C∞ bump function b(x) such that

b(x) :=
{

1 if x ∈ E
0 if x ∈ Oc.

Now we can define a function g in C1(Rd ,R) by

g(x) :=
{

b(x) f (x) if x ∈ Ω
0 if x ∈ Ωc.

As Rd is convex, it follows from the previous result that d
dt G(S(t))|t=t∗ is continuous

on I0 . Since f (x) = g(x) in E , it follows from the formula in Proposition 2 that

d
dt F(S(t))|t=t∗ = d

dt G(S(t))|t=t∗

for all t∗ ∈ I0, and thus, is continuous in I0. �
Recall that CSd

n possesses a Whitney stratification with pieces {Mα} that are
smooth submanifolds of Rm, where m = dn2. Let Ω be an open set in Rd and let
f ∈C1(Ω,R) . Let V be an open set in CSd

n such that for all S ∈V, σ(S) ⊂ Ω. Define
TV := ∪T (Mα ∩V ). Then, F(S) exists for all S ∈ V, and we can use the derivative
results to define a map DF : TV → TSn.

Specifically, fix an element in TV, which will consist of an S ∈V and Δ ∈ TSMα ,
where Mα is the piece containing S . Let S(t) be a smooth curve in Mα such that
S(0) = S and S′(0) = Δ. Define

DF(S,Δ) :=
(

F(S), d
dt F(S(t))|t=0

)
=
(

F(S),U
( d

∑
r=1

Γ̃r ∂F
∂xr (D)+ [Y,F(D)]

)
U∗
)

,

where U, D, Γ̃r, and Y are defined using S and Δ as in Proposition 2, and we can set

‖DF(S,Δ)‖ = max
(‖F(S)‖,‖ d

dt F(S(t))|t=0‖
)
.

It is easy to see that the map is well-defined and that DF(S, ·) is linear in Δ, for Δ ∈
TS(V ∩Mα ). In the following theorem, let S be in a piece Mα and let R be in a piece
Mβ of a Whitney stratification of CSd

n .

THEOREM 5. Let Ω be an open set in R
d and V be an open set in CSd

n with
σ(S) ⊂ Ω for all S ∈V. If f ∈C1(Ω,R) , then

DF : TV → TSn is continuous.

Specifically, if S ∈ V with Δ ∈ TSMα , then given ε > 0 , there exist δ1, δ2 > 0 such
that if R ∈V with Λ ∈ TRMβ , ‖S−R‖< δ1, and ‖Δ−Λ‖< δ2, then

‖DF(S,Δ)−DF(R,Λ)‖ < ε.



86 KELLY BICKEL

Proof. The result for analytic functions follows from (9). For an arbitrary C1

function f defined on a convex set, and for R and Λ sufficiently close to S and Δ ,
bound ‖DF(R,Λ)‖ in a manner similar to Lemma 3. The remainder of the proof is
almost identical to that of Theorem 4 and is left as an exercise. �

4. Higher Order Derivatives

We now consider higher-order differentiation and for ease of notation, discuss only
two-variable functions. We first clarify some notation. In earlier sections, (ζ 1, ...,ζ d)
referred to a point in Cd . In this section, (ζ1,ζ2) denotes a point in C2. Previously,
S(t) and T (t) denoted two separate curves in CSd

n . Now, S(t) and T (t) denote the two
components of a single curve in CS2

n.
Let (S(t),T (t)) be a Cm curve in CS2

n defined on an interval I. If m � 1, the curve
is locally Lipschitz. By Theorem 2, for 1 � s � n , there are locally Lipschitz curves

(xs(t),ys(t)) (20)

defined on I representing the joint eigenvalues of (S(t),T (t)) . Let U(t) be a unitary
matrix diagonalizing (S(t),T (t)) so that the joint eigenvalues are ordered as in (20). To
simplify notation, we write (S(t),T (t)) as (S,T ). For l ∈ N with 1 � l � m , define

Sl := S(l)(t) and T l := T (l)(t) (21)

and the set of pairs of index tuples

Il :=
{
(i1, ..., ik)∪ (ik+1, ..., i j) : i1 + ...+ i j = l, iq ∈ N, iq �= 0, for 1 � q � j

}
.

For example, I2 = {(2)∪ /0,(1,1)∪ /0,(1)∪ (1), /0∪ (1,1), /0∪ (2)}. For notational ease,
for 1 � s � n , define

U := U(t),
xs := xs(t),
ys := ys(t).

For some formulas, we will conjugate the derivatives in (21) by U∗ and so define

Γl := U∗SlU and Δl := U∗T lU,

for 1 � l � m. We will use the integral formula given in Lemma 2 and simplify it by
defining

R1 := (ζ1I−S)−1 and R2 := (ζ2I−T )−1,

where ζ1 and ζ2 are in the resolvent sets of S and T respectively. Now, let J1 and
J2 be open intervals in R and let f be an element of Cm(J1 × J2,R). Fix j and k
in N such that k � j � m . Fix k + 1 points x1, ...,xk+1 in J1 and j− k + 1 points
y1, ...,y j−k+1 in J2 . Then

f [k, j−k](x1, ...,xk+1;y1, ...,y j−k+1)
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denotes the divided difference of f taken in the first variable k times and the second
variable j−k times, evaluated at the given points. Finally, let � denote the Schur (also
called Hadamard) product of two matrices. We will prove the following differentiability
result:

THEOREM 6. Let J1 and J2 be open intervals in R, and let f ∈Cm(J1 × J2,R).
Let (S,T ) be a Cm curve in CS2

n defined on an interval I with joint eigenvalues in

J1× J2. For 1 � l � m and t∗ ∈ I, dl

dtl
F(S,T )|t=t∗ exists and

dl

dtl
F(S,T )

∣∣
t=t∗ = U

(
∑
Il

n

∑
s2,..,s j=1

l!
i1! · ·i j!

[
f [k, j−k](xs1 , ..,xsk+1 ;ysk+1 , ..,ys j+1)

]n
s1,s j+1=1

�
[
Γi1

s1s2 ...Γ
ik
sksk+1

Δik+1
sk+1sk+2 ...Δ

i j
s js j+1

]n
s1,s j+1=1

)
U∗,

where the U , U∗ , Γi , Δ j , xq and yr are evaluated at t∗.

Notice that the derivative formula in Theorem 6 requires f to be defined on pairs
(xq,yr) for 1 � r,q � n , rather than just at the joint eigenvalues (xq,yq) of (S,T ). This
condition was not needed in Theorem 3. Before proving Theorem 6, we consider the
case where f is real-analytic and show:

PROPOSITION 3. Let J1 and J2 be open intervals in R, and let f be real-analytic
on J1 × J2 . Fix m ∈ N and let (S,T ) be a Cm curve in CS2

n defined on an interval I
with joint eigenvalues in J1 × J2. Then dm

dtm F(S,T ) exists, has the form in Theorem 6,

and dm

dtm F(S,T )|t=t∗ is continuous as a function of t∗ on I.

The proof of Proposition 3 requires the following two technical lemmas:

LEMMA 4. Let (S,T ) be a Cm curve in CS2
n defined on an interval I . Let t∗ ∈ I,

and let ζ1 and ζ2 be in the resolvent sets of S(t∗) and T (t∗) respectively. Then

dl

dtl

(
R1R2

)∣∣
t=t∗ = ∑

Il

l!
i1! · · · i j!

R1S
i1R1...S

ikR1R2T
ik+1R2...T

i jR2,

for 1 � l � m, where each R1, R2, Sr, and Tq is evaluated at t∗.

Proof. The proof is a technical calculation using induction on l and the formulas
d
dt R1 = R1S1R1 and d

dt R2 = R2T 1R2. �

LEMMA 5. Let J1 and J2 be open intervals in R, and let f be real-analytic on
J1 × J2 . Let j � k ∈ N . Choose k + 1 points x1, ...,xk+1 ∈ J1 and j− k + 1 points
y1, ...,y j−k+1 ∈ J2. Extend f to be analytic on a complex rectangle Ω̃ ⊂ C2 such that
each (xq,yr) ∈ Ω̃. Then f [k, j−k](x1, ...,xk+1;y1, ...,y j−k+1) exists and

f [k, j−k](x1, ..,xk+1;y1, ..,y j−k+1) =
1

(2π i)2

∫
C2

∫
C1

f (ζ1,ζ2)

∏k+1
q=1(ζ1 − xq)∏ j−k+1

r=1 (ζ2− yr)
dζ ,
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where C1 and C2 are simple closed rectifiable curves strictly enclosing x1, ...,xk+1 and
y1, ...,y j−k+1 respectively, such that C1×C2 ⊂ Ω̃.

Proof. For a one-variable function, the formula is proven in [4, pg 2] and the two-
variable analogue follows easily from the one variable case. �

Proof. Proposition 3:
Use the integral formula in Lemma 2 to establish an integral formula for dm

dtm F(S,T )
similar to the first line of (9). Simplify the formula using Lemma 4. This formula
implies that the derivative is continuous. Then, let Es denote the matrix that is 1 in the
ss th entry and zero elsewhere. Rewrite each R1 as

R1 = U

(
n

∑
s=1

Es

ζ1− xs

)
U∗

and R2 similarly. Then, use Lemma 5 to convert the derivative into a formula involving
the divided differences of f . The details are left as an exercise. �

Proof. Theorem 6:
The result follows via induction on l , and the base case is covered by Theorem 3. For
the inductive step, fix t∗ ∈ I . Let p be a polynomial such that p and its derivatives to
lth order agree with f at the points (xq(t∗),yr(t∗)) for 1 � q,r � n. Using the inductive
hypothesis, find a constant C such that for t near t∗ ,

‖ dl−1

dtl−1 F(S,T )− dl−1

dtl−1 P(S,T )‖ � Cmax
∣∣( f − p)[k, j−k](xs1 , ..,xsk+1 ;ysk+1 , ..,ys j+1)

∣∣,
where the joint eigenvalues of (S,T ) are given by (xq,yq) and the maximum is over
(k, j) with k � j < l ∈ N and sets

{
(s1, ..,sk+1)∪ (sk+1, ..,s j+1) : 1 � s1, ..,s j+1 � n

}
.

The proof now mirrors that of Theorem 3. Specifically, apply the multivariate mean
value theorem to each ( f − p)[k, j−k] and observe that, by our original assumptions, ( f −
p)[k, j−k] vanishes to first order at the points (xs1(t

∗), ..,xsk+1(t
∗);ysk+1(t

∗), ..,ys j+1(t
∗)).

Then, use the locally Lipschitz property of the eigenvalues to conclude

dl

dtl
F(S,T )|t=t∗ exists and equals dl

dtl
P(S,T )|t=t∗ .

The details are left as an exercise. �
We now show that the formula in Theorem 6 is continuous.

THEOREM 7. Let J1 and J2 be open intervals in R and f ∈Cm(J1 × J2,R) . Let
(S,T ) be a Cm curve in CS2

n defined on an interval I with joint eigenvalues in J1× J2.
Then for all l ∈ N with 1 � l � m,

dl

dtl
F(S,T )|t=t∗ is continuous as a function of t∗ on I.

For the proof, we require the following lemma. The result is well-known for one-
variable functions, and Brown and Vasudeva prove this two-variable analogue in [3]:



DIFFERENTIATING MATRIX FUNCTIONS 89

LEMMA 6. Let J1 and J2 be open intervals in R, and let f ∈ Cm(J1 × J2,R).
Choose j,k ∈ N with k � j � m. Let x1, ...,xk+1 ∈ J1 and y1, ...,y j−k+1 ∈ J2, and
choose closed subintervals J̃1 and J̃2 containing the x and y points respectively. Then,
there exists (x∗,y∗) ∈ J̃1 × J̃2 with

f [k, j−k](x1, ...,xk+1;y1, ...,y j−k+1) =
f (k, j−k)(x∗,y∗)

k!( j− k)!
.

Proof. Theorem 7:
For l < m , the result follows from Theorem 6, which implies that dl

dtl
F(S,T ) is differ-

entiable and hence, continuous.
For l = m , fix t0 ∈ I. Similarly to Lemma 3, find a constant C and closed, bounded

intervals J̃1 and J̃2 such that if J̃ := J̃1× J̃2 , then J̃ ⊂ J1 × J2 and for all g ∈Cm(J1 ×
J2,R) and t∗ near t0,∣∣∣∣ dm

dtm G(S,T )|t=t∗
∣∣∣∣� C max

{ j,k;(x,y)∈J̃}
|g(k, j−k)(x,y)|, (22)

where 0 � k � j � m. The estimates for this bound require Lemma 6. Now, approxi-
mate f to mth order uniformly on J̃ by analytic functions {φr} and use (22) to show

{ dm

dtm Φr(S,T )|t=t∗} converges uniformly to dm

dtm F(S,T )|t=t∗

for t∗ in a neighborhood of t0 . The result then follows from Proposition 3. �

5. Applications

The formulas in Proposition 2 and Theorem 6 can be used to analyze monotonicity
and convexity of matrix functions. A function F : Sn → Sn is matrix monotone if

F(A) � F(B) whenever A � B, ∀ A,B ∈ Sn.

For F continuously differentiable, an equivalent condition is

d
dt F(S(t))|t=t∗ � 0 whenever S′(t∗) � 0, ∀ C1 S(t)⊂ Sn. (23)

The local monotonicity condition in (23) extends to multivariate matrix functions: the
only adjustment is that S(t) is in CSd

n . In [1], Agler, McCarthy, and Young character-
ized such locally matrix monotone functions on CSd

n using a special case of Theorem
3 and Proposition 2. Specifically, they had to assume that S(t) had distinct joint eigen-
values at each t . Our results in Section 3 extend the derivative formula to general C1

curves in CSd
n and show that the formula is continuous.

A matrix function F : Sn → Sn is matrix convex if

F(λA+(1−λ )B) � λF(A)+ (1−λ )F(B) ∀ A,B ∈ Sn and λ ∈ [0,1]. (24)

This condition extends to multivariate matrix functions with an additional restriction on
the pairs A,B in CSd

n ; we also require λA+(1−λ )B∈CSd
n for λ ∈ (0,1). Given such
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A,B , define the curve S(t) on [0,1] by

Sr(t) := tAr +(1− t)Br, (25)

for 1 � r � d. If F is twice continuously differentiable along C2 curves, it can be
shown that (24) is equivalent to

d2

dt2
F(S(t))|t=t∗ � 0

for all S(t) as in (25) and t∗ ∈ (0,1). For d = 2, Theorem 6 tells us that, up to conju-
gation by a unitary matrix U diagonalizing S(t∗),[

d2

dt2
F(S(t))|t=t∗

]
i j

= 2
n

∑
k=1

f [2,0](xi,xk,x j;y j)ΓikΓk j + f [1,1](xi,xk;yk,y j)ΓikΔk j

+ f [0,2](xi;yi,yk,y j)ΔikΔk j, (26)

where {(xi,yi) : 1 � i � n} are the joint eigenvalues of t∗A+(1− t∗)B ordered as in
the diagonalization given by U, and

Γ := U∗(A1−B1)U and Δ := U∗(A2−B2)U.

Although U might not diagonalize S(t∗) so as to order the joint eigenvalues as in (3),
the first relationship stated in Theorem 1 still applies to Γ and Δ . Specifically,

(xi − x j)Δi j = (yi − y j)Γi j

for 1 � i, j � n and we can use this to simplify (26). Thus, this formula gives a charac-
terization of convex matrix functions on CS2

n .
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