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HILBERT–SCHAUDER FRAME OPERATORS

RUI LIU

(Communicated by D. R. Farenick)

Abstract. We introduce a new concept of frame operators for Banach spaces we call a Hilbert-
Schauder frame operator. This is a hybird between standard frame theory for Hilbert spaces and
Schauder frame theory for Banach spaces. Most of our results involve basic structure properties
of the Hilbert-Schauder frame operator. Examples of Hilbert-Schauder frames include standard
Hilbert frames and classical bases of �p and Lp -spaces with 1 < p � 2 . Finally, we give a new
isomorphic characterization of Hilbert spaces.

Introduction

In 1946, Gabor [14] introduced a fundamental approach to signal decomposition
in terms of elementary signals. In 1952, while addressing some difficult problems from
the theory of nonharmonic Fourier series, Duffin and Schaeffer [11] abstracted Gabors
method to define frames for a Hilbert space. For some reason the work of Duffin and
Schaeffer was not continued until 1986 when the fundamental work of Daubechies,
Grossman and Meyer [10] brought this all back to life, right at the dawn of the wavelet
era. Today, the theory of frames in Hilbert spaces presents a central tool in mathematics
and engineering, and has developed rather rapidly in the past decade. The motivation
has come from applications to signal analysis, as well as from applications to a wide
variety of areas of mathematics, such as operator theory [16] and Banach space theory
[8].

In 1991, Gröchenig [15] generalized Hilbert frames to Banach spaces and in-
troduced atomic decompositions and Banach frames. Han and Larson [16] defined a
Schauder frame for a Banach space to be a compression of a Schauder basis for a Ba-
nach space. In [8], Casazza, Han and Larson gave and studied various definitions of
frames for Banach spaces including the Schauder frame. In 2009, Casazza, Dilworth,
Odell, Schlumprecht and Zsák [7] studied the coefficient quantization for Schauder
frames in Banach spaces. In [4], Carando and Lassalle considered the duality theory
for atomic decompositions. Concentrating on Schauder frames independent of the asso-
ciated bases, the author [21] gave out the concepts of minimal and maximal associated
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bases with respect to Schauder frames, closely connected them with the duality the-
ory, and extended known James’ results [19] on unconditional bases to unconditional
frames. In [22], the author and Zheng gave an characterization of Schauder frames
which are near-Schauder bases, which generalized Holub’s results [18] from Hilbert
frames to Schauder frames. In [5], Carando, Lassalle and Schmidberg considered the
reconstruction formula for Banach frames, extended and improved some James’ type
duality results in [4, 21]. Recently, Larson, Han, Liu and the author [17] developed
elements of a general dilation theory for operator-valued measures and bounded lin-
ear maps between operator algebras that are not necessarily completely-bounded, and
proved main results by extending and generalizing some known results from the theory
of frames and framings. In [3], Beanland, Freeman and the author proved that the upper
and lower estimates theorems for finite dimensional decompositions of Banach spaces
can be extended and modified to Schauder frames, and gave a complete characteriza-
tion on duality for Schauder frames. Recently as well, a continuous version of classical
dilation theorem in [16] was given for vector bundles and Riemannian manifolds [13].

From [16, 8], one thing worthwhile to note is that the notion of Hilbert frame
transform makes perfect sense in more general Banach spaces, although the standard
frame operator is necessarily a Hilbert space concept. Proposition 1.10 in [16] forces a
similarity between a frame and its canonical dual, so there is an isomorphism between
the underlying space and its dual space, and most Banach spaces are not isomorphic to
their dual spaces. Actually, the essential reason here is that the standard frame operator
is invertible, which is not necessary for general Banach spaces.

In this paper, we introduce a new concept in frame theory for Banach spaces we
call a Hilbert-Schauder frame. This is a hybird between standard Hilbert space frame
theory and Schauder frames for Banach spaces. Most of our results involve properties
of the associated Hilbert-Schauder frame operator. Examples of unconditional Hilbert-
Schauder bases include classical bases of �p and Lp[0,1] with 1 < p � 2, while �q

with 2 < q < ∞ has no Hilbert-Schauder frame. Finally, following the idea in [16], we
give a new isomorphic characterization of Hilbert spaces.

Throughout this paper we only consider the real case for convenience. The com-
plex case is more complicated, because we will need the concept of antilinear dual
space, denoted by X∗ , to extend the notions of self-adjointness and positivity into
B(X ,X∗) . For more information, please see [23].

1. Preliminaries

DEFINITION 1.1. Let H be a Hilbert space. A sequence { f j} j∈J in H is called
a (standard) Hilbert frame of H if there are 0 < a � b < ∞ such that

a‖x‖2 � ∑
j∈J

|〈x, fn〉|2 � b‖x‖2 for all x ∈ H .

For a Hilbert frame { f j} j∈J of H , we consider the operator A : H → �2 with
x �→ {〈x, f j〉} j∈J, Its joint A∗ : �2(J)→H with {a j} j∈J �→∑ j∈J a j f j and their product

S = A∗A : H → H , x �→ ∑
j∈J

〈x, f j〉 f j.



HILBERT-SCHAUDER FRAME OPERATORS 93

Since
a‖x‖2 � ∑

j∈J

|〈x, f j〉|2 =
〈
∑
j∈J

〈x, f j〉 f j,x
〉

= 〈Sx,x〉 � b‖x‖2.

S is a positive and invertible operator with a IdH � S � b IdH and thus,

x = S−1Sx = ∑
j∈J

〈x, f j〉S−1 f j. (1.1)

The operator S is the standard Hilbert frame operator.
For the introduction to the theory of Hilbert frames we refer the reader to [6] and

[9]. We follow [8, 16, 7, 21, 22] for the theory of Schauder frames in Banach spaces.

DEFINITION 1.2. Let X be a Banach space. A sequence {x j, f j} j∈J in X ×X∗ is
called a Schauder frame of X if

x = ∑
j∈J

〈x, f j〉x j for all x ∈ X . (1.2)

2. Hilbert-Schauder frame operators

DEFINITION 2.1. Let X be a separable Banach space. A bounded linear operator
S : X → X∗ is called a Hilbert-Schauder frame operator, or HSf-operator for brevity, if
there is a Schauder frame {x j, f j} j∈J of X such that S(x j) = f j for all j ∈ J.

A Schauder frame {x j, f j} j∈J of X is called a Hilbert-Schauder frame, or HS-
frame for brevity, if there is a bounded linear operator S : X → X∗ such that S(x j) = f j

for all j ∈ J .

DEFINITION 2.2. Let X be a Banach space and T ∈ B(X ,X∗) . We say that

(i) T is self-adjoint if T ∗|X = T ;

(ii) T is positive if (Tx)(x) � 0 for all x ∈ X .

PROPOSITION 2.3. Every HSf-operator is self-adjoint, positive, and injective.

Proof. Let S be a HSf-operator of a Banach space X with the Schauder frame
{x j, f j} j∈J . To get that S is self-adjoint, it is sufficient to prove that (Sx)(y) = (Sy)(x)
for all x,y ∈ X as follows

(Sx)(y) =
(
S∑

j
f j(x)x j

)
(y) =

(
∑
j

f j(x) f j

)
(y) = ∑

j
f j(x) f j(y)

=
(
∑ f j(y) f j

)
(x) = (Sy)(x) = (S∗|Xx)(y).

S is positive, because for all x ∈ X we have

(Sx)(x) =
(
S∑

j
f j(x)x j

)
(x) =

(
∑
j

f j(x) f j

)
(x) = ∑

j
| f j(x)|2 � 0. (2.1)



94 RUI LIU

If S(x) = 0, then (Sx)(x) = 0. By (2.1), we have 0 = (Sx)(x) = ∑ j | f j(x)|2 , that is,
f j(x) = 0 for all j ∈ J . Thus, x = ∑ j f j(x)x j = 0. It follows that S is injective. �

LEMMA 2.4. Let X be a separable Banach space and {x j, f j} j∈J be a HS-frame
of X with the HSf-operator S . Then ∑ j∈J | f j(x)|2 � ‖S‖‖x‖2 for all x ∈ X .

Proof. By (2.1), we have (Sx)(x) = ∑ j | f j(x)|2. Thus, ∑ j | f j(x)|2 = (Sx)(x) �
‖S‖‖x‖2 for all x ∈ X . �

Thus, the linear operator

A : X → �2(J), x �→ ∑
j

f j(x)e j

is well-defined and bounded with ‖A‖ �
√‖S‖ . A is called the Hilbert-Schauder

analysis operator. Its adjoint operator A∗ is given by

A∗ : �2(J) → X∗, ∑
j

a je j �→ ∑
j

a j f j.

A∗ is called the Hilbert-Schauder pre-frame operator.

PROPOSITION 2.5. By composing A and A∗ , we obtain that the HSf-operator

S = A∗A.

Thus, the HSf-operator S factors through �2(J) .

Proof. For all x ∈ X , we have

A∗A(x) = A∗(∑
j

f j(x)e j
)

= ∑
j

f j(x) f j = S(x). �

Recall that for Schauder frames, one sequence does not uniquely determine the
other, because it is a redundant system not a stable basis [21, 22]. The following propo-
sitions will show that for HS-frames things are different: one sequence uniquely deter-
mines the other with respect to the HSf-operator.

PROPOSITION 2.6. Let X be a Banach space. Suppose {x j, f1, j} j∈J and {x j, f2, j} j∈J

are both HS-frames of X with the HSf-operators S1 and S2 , respectively. Then S1 = S2

and f1, j = f2, j for all j ∈ J .

Proof. It is sufficient to prove that S1 = S2 . For all x,y ∈ X we have

(S1x)(y) =
(
S1∑

j
f2, j(x)x j

)
(y) =

(
∑
j

f2, j(x) f1, j

)
(y)

= ∑
j

f2, j(x) f1, j(y) =
(
∑
j

f1, j(y) f2, j

)
(x) =

(
S2∑

j
f1, j(y)x j

)
(x)

= (S2y)(x) = (S∗2|Xx)(y).

Then, by Proposition 2.3, we obtain that S1 = S∗2|X = S2. �
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PROPOSITION 2.7. Let X be a Banach space. Suppose {x1, j, f j} j∈J and {x2, j, f j} j∈J

are both HS-frames of X with the HSf-operators S1 and S2 , respectively. Then S1 = S2

and x1, j = x2, j for all j ∈ J .

Proof. For all x ∈ X we have

S1(x) = S1

(
∑
j

f j(x)x1, j

)
= ∑ f j(x) f j = S2

(
∑ f j(x)x2, j

)
= S2(x).

Then, by Proposition 2.3, S1 = S2 and x1, j = x2, j for all j ∈ J . �
Actually, HS-frames have a better locally duality property to essentially establish

its advantage over Schauder frames.

PROPOSITION 2.8. Let {xn, fn} be a HS-frame of X with a HSf-operator S . Then
{ fn,xn} is a Schauder frame for the closure of span{ fn} .

Proof. For each fn , by Proposition 2.3, we have

fn = S(xn) = S(∑
j

f j(xn)x j) = ∑
j
(Sx j)(xn) ·S(x j)

= ∑
j

(S∗xn)(x j) f j = ∑
j

(Sxn)(x j) f j = ∑
j

fn(x j) f j. (2.2)

By proposition 2.8 in [21], the space

Y =
{

f ∈ X∗ : f = ‖ · ‖− lim
n→∞

n

∑
j=1

f (x j) f j

}
,

is a norm closed subspace of X∗ . Then, by (2.2), we get span( fn : n ∈ N) ⊂ Y . On the
other hand, it is clear from the definition of Y that Y ⊂ span( fn : n ∈ N) . Therefore,
Y = span( fn : n ∈ N). Thus, { fn,xn} is a Schauder frame of span( fn : n ∈ N). �

However, it is false for Schauder frames. The following example is an uncondi-
tional and semi-normalized Schauder frame {xn, fn} of �1 for which { fn,xn} is not a
Schauder frame of span( fn : n ∈ N) .

EXAMPLE 2.9. [21] Let (en) denote the usual unit vector basis of �1 and let (e∗n)
be the corresponding coordinate functionals, and set 1 = (1,1,1, . . .) ∈ �∞ . Then define
a sequence (xn, fn) ⊂ �1× �∞ by putting x2n−1 = x2n = en for all n ∈ N and

fn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, ifn =1;

e∗1−1, if n=2;

e∗k − e∗1/2k, if n=2k−1 for k ∈ N\ {1};
e∗1/2k, if n=2k for k ∈ N\ {1}.
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Actually, we have 1 
= ‖ · ‖− limn→∞ ∑n
j=1 1(x j) f j . We leave the detail to the reader.

Now we give some important examples of HS-frames.

EXAMPLE 2.10. Every standard Hilbert frame operator is an example of a HSf-
operator by formula (1.1)

x = ∑
j∈J

〈x, f j〉S−1 f j = ∑
j∈J

〈x,S(S−1 f j)〉S−1 f j.

DEFINITION 2.11. Let X be a separable Banach space. A bounded linear op-
erator S : X → X∗ is called a Hilbert-Schauder basis operator, or HSb-operator for
brevity, if there is a Schauder basis {z j,z∗j} j∈J of X such that S(z j) = z∗j for all j ∈ J.

A Schauder basis {z j,z∗j} j∈J of X is called a Hilbert-Schauder basis, or HS-basis
for brevity, if there is a bounded linear operator S : X → X∗ such that S(z j) = z∗j for all
j ∈ J .

PROPOSITION 2.12. The unit vector basis of �p with 1 � p � 2 is an uncondi-
tional HS-basis.

Proof. Let {en} be the unit vector basis of �p and {e∗n} be the biorthogonal func-
tionals in the dual space, that is, the unit vector basis of �q with 1/p+1/q = 1. Then
{en,e∗n} is an unconditional Schauder basis of �p . Moreover, since 1 < p � 2 � q < ∞ ,
we have (∑n |an|q)1/q � (∑n |an|p)1/p for all scalars {an}. Thus, the operator

S : �p → �q, ∑
n

anen �→ ∑
n

ane
∗
n for all {an} ∈ �p

is well-defined and bounded with norm ‖S‖ = 1. Clearly, S(en) = e∗n for all n ∈ N.
Thus, {en,e∗n} is a a HS-basis.

When p = 1, the argument is similar. �

PROPOSITION 2.13. The Haar basis of Lp[0,1] with 1 < p � 2 is an uncondi-
tional HS-basis.

Proof. Let {hn} be the Haar system [1], which is an unconditional basis in Lp[0,1]
for 1 < p < ∞ . Notice that the Haar system is not normalized in Lp[0,1] for 1 <
p < ∞ . To normalize them in Lp one should take hn/‖hn‖p = |In|−1/phn, where In
denotes the support of the Haar function hn. Then for 1 < p < ∞ , we have that the
dual functionals associated to the Haar system are given by h∗n = 1

|In|hn,n ∈ N. Thus,

{hn,h∗n} = {hn, |In|−1hn} is an unconditional basis system in Lp . By re-scaling, we
have that {|In|−1/phn, |In|−1/qhn} is a normalized unconditional basis system in Lp

with 1/p+ 1/q = 1. By [2], for 1 < p < ∞ there exist constants Ap,Bp such that, if
{xn} is a normalized λ -unconditional basic sequence in Lp , then

λ−1(∑
n
|an|p

)1/p �
∥∥∑

n
anxn

∥∥
p � λBp

(
∑
n
|an|2

)1/2
, if 2 � p < ∞,



HILBERT-SCHAUDER FRAME OPERATORS 97

(λAp)−1(∑
n
|an|2

)1/2 �
∥∥∑

n
anxn

∥∥
p � λ

(
∑
n
|an|p

)1/p
, if 1 < p � 2.

Thus, the operator S defined by

S : Lp → Lq with 1 < p � 2 � q < ∞ and 1/p+1/q = 1,

S
(
∑
n

an|In|−1/phn
)

= ∑
n

an|In|−1/qhn, for all ∑
n

an|In|−1/phn ∈ Lp

is well-defined and bounded. Clearly, we have S(|In|−1/phn) = |In|−1/qhn for all n∈ N.
Thus, {|In|−1/qhn} in Lq is an unconditional Hilbert-Schauder basis for Lp . �

By Proposition 2.12 and 2.13, �p (1 � p � 2) and Lp[0,1] (1 < p � 2) do have
perfect HS-frames, normalized unconditional HS-bases {en,e∗n} with ‖en‖ = ‖e∗n‖ = 1
for all n ∈ N , but the interesting thing is that �q with 2 < q < ∞ has no HS-frame
{xn, fn} with liminfn ‖ fn‖ > 0.

LEMMA 2.14. Let {xn, fn} be a HS-frame of X with the HSf-operator S . Then
there is some K > 0 such that

K ·BX∗ ⊂ BX∗
⋂

S(X)
w∗

.

Proof. It is direct by the proof of Proposition 2.4 in [21]. �

PROPOSITION 2.15. �q with 2 < q < ∞ has no Hilbert-Schauder frame {xn, fn}
with liminfn ‖ fn‖ > 0 .

Proof. Since �q is reflexive, by Lemma 2.14,

X∗ = S(X)
w∗

= S(X)
w

= S(X).

Then, by Proposition 2.8, we have f = ∑ j f (x j) f j for all f ∈ X∗ . By liminfn ‖ fn‖> 0,
there is a subsequence { fnk} with infk ‖ fnk‖ > 0. So it is easy to know that {xnk}
weakly converges to 0. By Pitt’s theorem [20, 1], the HSf-operator S : �q → �p with
1/q+1/p = 1 and p < q must be compact. Together with Proposition 7.6 in [12], we
have fnk = S(xnk) → 0, which leads to a contradiction. �

We give an isomorphic characterization of Hilbert spaces following the idea in
[16].

THEOREM 2.16. A Banach space X is isomorphic to a Hilbert space if and only
if it has a HS-frame {xn} with a HSf-operator S such that {Sxn} is also a HS-frame of
[Sxn] .
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Proof. The necessity is easy by standard Hilbert frame theory.
For sufficiency, assume that ({Sxn},T ) is a HSf-system of [Sxn] , then for all x∈X

and f ∈ [Sxn] ,

(TSx)( f ) = (TS∑
n

(Sxn)(x) · xn)( f ) = (∑
n

(Sxn)(x) ·TSxn)( f )

= ∑
n

(Sxn)(x) · (TSxn)( f ) = ∑
n

(TSxn)( f ) · (Sxn)(x)

= (∑
n

(TSxn)( f ) ·Sxn)(x) = f (x).

By Proposition 2.4 in [21], [Sxn] is a norming subspace of X∗ , it follows that

‖TSx‖[Sxn]
∗ = sup

f∈[Sxn],‖ f‖�1

|(TSx)( f )| = sup
f∈[Sxn],‖ f‖�1

| f (x)| ≈ ‖x‖X .

Thus, TS is an isomorphic embedding. By Proposition 2.5, we have S = A∗A . Then
‖Ax‖ � ‖TA∗‖−1‖TSx‖ � K‖x‖ for some K > 0, that is, A : X → �2 is an isomorphic
embedding, which implies that X is isomorphic to a Hilbert space. �
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