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WEIGHTED LAMBERT TYPE OPERATORS ON Lp SPACES

Y. ESTAREMI AND M. R. JABBARZADEH

(Communicated by I. M. Spitkovsky)

Abstract. In this paper, we investigate some classic properties of weighted Lambert type opera-
tors on Lp spaces.

1. Introduction and preliminaries

Let (X ,Σ,μ) be a complete σ -finite measure space. For any sub-σ -finite algebra
A ⊆ Σ with 1 � p � ∞ , the Lp -space Lp(X ,A ,μ|A ) is abbreviated by Lp(A ) , and
its norm is denoted by ‖.‖p . All comparisons between two functions or two sets are to
be interpreted as holding up to a μ -null set. The support of a measurable function f
is defined as σ( f ) = {x ∈ X ; f (x) �= 0} . We denote the vector space of all equivalence
classes of almost everywhere finite valued measurable functions on X by L0(Σ) .

For a sub-σ -finite algebra A ⊆ Σ , the conditional expectation operator associated
with A is the mapping f → EA f , defined for all non-negative f as well as for all
f ∈ Lp(Σ) , 1 � p � ∞ , where EA f , by the Radon-Nikodym theorem, is the unique
A -measurable function satisfying∫

A
f dμ =

∫
A
EA f dμ , ∀A ∈ A .

As an operator on Lp(Σ) , EA is idempotent and EA (Lp(Σ)) = Lp(A ) . If there is no
possibility of confusion, we write E( f ) in place of EA ( f ) . This operator will play a
major role in our work and we list here some of its useful properties:

• If g is A -measurable, then E( f g) = E( f )g .
• |E( f )|p � E(| f |p) .
• If f � 0, then E( f ) � 0; if f > 0, then E( f ) > 0.

• |E( f g)| � E(| f |p)| 1
p E(|g|p′)|

1
p′ , where 1

p + 1
p′ = 1 (Hölder inequality).

• For each f � 0, σ( f ) ⊆ σ(E( f )) .

A detailed discussion and verification of most of these properties may be found in
[10]. We recall that an A -atom of the measure μ is an element A ∈ A with μ(A) > 0
such that for each F ∈A , if F ⊆ A , then either μ(F) = 0 or μ(F) = μ(A) . A measure
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space (X ,Σ,μ) with no atoms is called non-atomic measure space. It is well-known
fact that every σ -finite measure space (X ,A ,μ|A ) can be partitioned uniquely as X =
(
⋃

n∈N An)∪B , where {An}n∈N is a countable collection of pairwise disjoint A -atoms
and B , being disjoint from each An , is non-atomic (see [12]).

Let u∈ L0(Σ) . Then u is said to be conditionablewith respect to E if u∈D(E) :=
{ f ∈ L0(Σ) : E(| f |) ∈ L0(A )} . Take u and w in D(E) . Then the pair (u,w) induces
a linear operator T from Lp(Σ) into L0(Σ) defined by T := MwEMu , where Mu and
Mw are multiplication operators. Note that for all f ∈ Lp(Σ) , u f ∈ D(E) (see [2]).
If T takes Lp(Σ) into Lq(Σ) (1 � p,q � ∞), then we call T a weighted Lambert type
operator from Lp(Σ) into Lq(Σ) . An easy consequence of the closed graph theorem and
the result guaranteing a pointwise convergent subsequence for each Lp(Σ) convergent
sequence assures us that every weighted Lambert type operator from Lp(Σ) into Lq(Σ)
is a bounded linear operator from Lp(Σ) into Lq(Σ) . Throughout this paper we assume
that u and w are in D(E) , E = EA and T = MwEMu .

Combination of conditional expectation operator E and multiplication operators
appears more often in the service of the study of other operators such as multiplica-
tion operators and weighted composition operators. Specifically, in [9], S.-T. C. Moy
has characterized all operators on Lp of the form f → E( f g) for g in Lq with E(|g|)
bounded. In [1], R. G. Douglas analyzed positive projections on L1 and many of his
characterizations are in terms of combinations of multiplications and conditional ex-
pectations.

Some results of this article are a generalization of the work done in [3, 4] and
[7]. In the next section, boundedness of T = MwEMu acting between two different
Lp(Σ) spaces are characterized by using some properties of conditional expectation
operator. Also a necessary and sufficient condition for compactness of these type oper-
ators will be investigated. In section 3, we discuss measure theoretic characterizations
for weighted Lambert type operators in some operator classes on L2(Σ) such as, p -
hyponormal, p -quasihyponormal. Next, we shall obtain the polar decomposition and
the Aluthge transformation of T .

2. Bounded and compact weighted Lambert type operators

THEOREM 2.1. (a) Let 1 < p < ∞ and p′ be the conjugate exponent to p. Then
the pair (w,u) induces a weighted Lambert type operator T = MwEMu from Lp(Σ)

into Lp(Σ) if and only if (E|w|p) 1
p (E|u|p′)

1
p′ ∈ L∞(A ) , and in this case its norm is

given by ‖T‖ = ‖(E(|w|p)) 1
p (E(|u|p′))

1
p′ ‖∞ .

(b) The pair (w,u) induces a weighted Lambert type operator T from L1(Σ) into
L1(Σ) if and only if uE(|w|) ∈ L∞(Σ) and ‖T‖ = ‖uE(|w|)‖∞ .

Proof. (a) Let f ∈ Lp(Σ) . As an application of the properties of the conditional
expectation operator we have
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‖T f‖p
p =

∫
X
|w|p|E(u f )|pdμ =

∫
X

E(|w|p)|E(u f )|pdμ

=
∫

X
|E(u(E(|w|p)) 1

p f )|pdμ = ‖EMv f‖p
p,

where v := u(E(|w|p)) 1
p . Hence T is bounded from Lp(Σ) into Lp(Σ) if and only if

Rv := EMv from Lp(Σ) into Lp(A ) is bounded. A straightforward calculation shows
that the adjoint operator R∗

v : Lp′(A ) → Lp′(Σ) is given by R∗
v f = u f . Note that we

can consider R∗
v : Lp′(Σ) → Lp′(Σ) as R∗

v = MvE . It is proved by Alan Lambert in
[7] and subsequentially proved by John David Herron in a different method in [3] that

R∗
v is a bounded operator if and only if E(|v|p′) ∈ L∞(A ) and ‖R∗

v‖ = ‖E(|v|p′)‖1/p′
∞ .

Thus, the pair (w,u) induces a weighted Lambert type operator T from Lp(Σ) into

Lp(Σ) if and only if (E|w|p) 1
p (E|u|p′)

1
p′ = p′√E(|v|p′) ∈ L∞(A ) , and in this case

‖T‖ = ‖(E(|w|p)) 1
p (E(|u|p′))

1
p′ ‖∞ .

(b) Let f ∈ L1(Σ) . Then we have

‖T f‖1 =
∫

X
|wE(u f )|dμ =

∫
X
|E(E(|w|)u f )|dμ = ‖EME(|w|)u‖1.

Hence T from L1(Σ) into L1(Σ) is bounded if and only if E(|w|)u ∈ L∞(Σ) and in
this case ‖T‖ = ‖EME(|w|)u‖ = ‖uE(|w|)‖∞ . To check this fact, one may refer to [3,
Theorem 2.1.1] or [6]. �

THEOREM 2.2. Let 1 < q < p < ∞ and let p′ and q′ be conjugate components to
p and q respectively. Then the pair (w,u) induces a weighted Lambert type operator T

from Lp(Σ) into Lq(Σ) if and only if (E|u|p′)
1
p′ (E|w|q) 1

q ∈ Lr(A ) , where 1
q′ +

1
r = 1

p′ .

In this case, its norm is given by ‖T‖ = ‖(E|u|p′)
1
p′ (E|w|q) 1

q ‖r .

Proof. Let f ∈ Lp(Σ) . Then

‖T f‖q
q =

∫
X
|w|q|E(u f )|qdμ =

∫
X

E(|w|q)|E(u f )|qdμ

=
∫

X
|E(u(E(|w|q)) 1

q f )|qdμ = ‖EMv f‖q
q,

where v := u(E(|w|q)) 1
q . It follows that the pair (w,u) induces a weighted Lambert

type operator T from Lp(Σ) into Lq(Σ) if and only if R∗
v = MvE = Mv : Lq′(A ) →

Lp′(Σ) is bounded. We claim that Mv : Lq′(A ) → Lp′(Σ) is bounded if and only if

(E(|v|p′))
1
p′ ∈ Lr(A ) . Suppose that Mv is bounded. Define Λ : L

q′
p′ (A ) → C given

by Λ( f ) =
∫
X E(|v|p′) f dμ . We show that the linear functional Λ is bounded. For each

f ∈ L
q′
p′ (A ) we have
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|Λ( f )| �
∫

X
E(|v|p′)| f |dμ =

∫
X
|v|p′ | f |dμ =

∫
X
(|v| f |

1
p′ |)p′dμ

= ‖Mv| f |
1
p′ ‖p′

q′ � ‖Mv‖p′‖ | f |
1
p′ ‖p′

q′ = ‖Mv‖p′‖ f‖ q′
p′

.

This implies that sup{∫X E(|u|p′)| f |dμ : f is a unit vector in L
q′
p′ (Σ)} � ‖Mu‖p′ . It

follows that ‖Λ‖ � ‖(E(|u|p′))
1
p′ ‖r � ‖Mv‖ . By the Riesz representation theorem,

there exists a unique function g ∈ L
r
p′ (A ) such that Λ( f ) =

∫
X g f dμ , for each f ∈

L
q′
p′ (A ) . Therefore, g = E(|v|p′) on X , and so (E(|v|p′))

1
p′ ∈ Lr(A ) .

Conversely, if (E(|v|p′))
1
p′ ∈ Lr(A ) , by Hölder’s inequality we have

‖Mv f‖p′
p′ =

∫
X
|v|p′ | f |p′dμ =

∫
X

E(|v|p′)| f |p′dμ

� ‖E(|v|p′)‖ r
p′
‖ f‖p′

q′ = ‖(E(|v|p′))
1
p′ ‖p′

r ‖ f‖p′
q′ .

Thus ‖Mv‖ � ‖(E(|u|p′))
1
p′ ‖r and hence Mv is bounded. Therefore, the proof of

theorem is completed. �

THEOREM 2.3. Let 1 < p < q < ∞ and let p′,q′ be conjugate components to p
and q respectively. Then the pair (w,u) induces a weighted Lambert type operator T
from Lp(Σ) into Lq(Σ) if and only if

(i) E(|u|p′)(E(|w|q)) p′
q = 0 on B;

(ii) M := supn∈N

E(|u|p′ )(An)(E(|w|q))
p′
q (An)

μ(An)
p′
r

< ∞ , where 1
p′ +

1
r = 1

q′ .

In this case, it’s norm is given by ‖T‖p′ = M.

Proof. Let f ∈ Lp(Σ) . Then ‖T f‖q = ‖EMv f‖q , where v := u(E(|w|q)) 1
q . Hence

T : Lp(Σ) → Lq(Σ) is bounded if and only if EMv : Lp(Σ) → Lq(A ) is bounded if and
only if (EMv)∗ = MvE = Mv : Lq′(A ) → Lp′(Σ) . So, in order to prove theorem, it
suffices to show that Mv : Lq′(A ) → Lp′(Σ) is bounded if and only if

(1) E(|v|p′) = 0 on B ;

(2) M′ := supn∈N

E(|v|p′ )(An)

μ(An)
p′
r

< ∞ .

Suppose that (1) and (2) hold. Since A -measurable functions are constant on each
A -atom, then for every f ∈ Lq′(A ) with ‖ f‖q′ � 1, we get that
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‖Mv f‖p′
p′ =

∫
X
|v|p′ | f |p′dμ =

∫
B∪(∪n∈NAn)

E(|v|p′)| f |p′dμ

= ∑
n∈N

∫
An

E(|v|p′)| f |p′dμ = ∑
n∈N

E(|v|p′)(An)| f (An)|p′μ(An)

= ∑
n∈N

E(|v|p′)(An)

μ(An)
p′
r

| f (An)|p′μ(An)
p′
q′ � M′‖ f‖p′

q′ , (since
p′

q′
− p′

r
= 1).

This implies that ‖Mv‖p′ � M′ , and so Mv is bounded.
Conversely, suppose that the multiplication operator Mv is bounded. First, we

show that E(|v|p′) = 0 on B . Suppose on the contrary. Thus we can find some δ > 0
such that μ({x ∈ B : E(|v|p′)(x) > δ}) > 0. Take F = {x∈ B : E(|v|p′)(x) > δ} . Since
F ⊆ B is a A -measurable set and A is σ -finite, then foe each n ∈ N , there exists
Fn ⊆ F with Fn ∈ A such that μ(Fn) = μ(F)

2n . Define fn = χFn

μ(Fn)1/q′ . It is clear that

fn ∈ Lq′(A ) and ‖ fn‖q′ = 1. Thus

∞ > ‖Mv‖p′ � ‖v fn‖p′
p′ =

1

μ(Fn)
p′
q′

∫
Fn

|v|p′dμ

=
1

μ(Fn)
p′
q′

∫
Fn

E(|v|p′)dμ � δ μ(Fn)

μ(Fn)
p′
q′

= δ μ(Fn)
1− p′

q′

= δ
(

2n

μ(F)

) p′
q′ −1

→ ∞

when n → ∞ , since p′
q′ > 1. But this is a contradiction. It remains to prove (2). Let

fn = χAn

μ(An)1/q′ . Thus fn ∈ Lq′(A ) and ‖ fn‖q′ = 1. Then we get that

E(|v|p′)(An)

μ(An)
p′
r

=
E(|v|p′)(An)μ(An)

μ(An)
p′
q′

=
∫

An

E(|v|p′)
μ(An)

p′
q′

dμ

=
∫

X

E(|v|p′)χAn

μ(An)
p′
q′

dμ =
∫

X

|v|p′χAn

μ(An)
p′
q′

dμ = ‖v fn‖p′
p′ � ‖Mv‖p′ .

This implies that M′ � ‖Mv‖p′ < ∞ . Hence the proof is completed. �

Suppose that X = (∪n∈NCn)∪C , where {Cn}n∈N is a countable collection of pair-
wise disjoint Σ-atoms and C ∈ Σ , being disjoint from each Cn , is non-atomic. Note
that (∪n∈NCn)∩A ⊆ ∪n∈NAn and B ⊆C .

THEOREM 2.4. (a) Let 1 < p < ∞ and let p′ be conjugate component to p. Then
the pair (w,u) induces a weighted Lambert type operator T from Lp(Σ) into L1(Σ) if
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and only if uE(|w|) ∈ Lp′(Σ) . In this case, its norm is given by ‖T‖ = ‖uE(|w|)‖p′ .

(b) Let 1 < q < ∞ and let q′ be conjugate component to q. If T from L1(Σ) into
Lq(Σ) is bounded, then E(|u|q′)(E(|w|q)q′/q = 0 on B and

M1 := sup
n∈N

E(|u|q′)(An)(E(|w|q))q′/q(An)
μ(An)

< ∞,

In this case, ‖T‖q′ � M1 .

(c) Let 1 < q < ∞ and let q′ be conjugate component to q. If u(E(|w|q)1/q = 0 on

C and M2 := supn∈N

|u(Cn)|q′ (E(|w|q))q′/q(Cn)
μ(Cn) < ∞ , then the pair (w,u) induces a weighted

Lambert type operator T from L1(Σ) into Lq(Σ) . In this case, ‖T‖q′ � M2 .

Proof. (a) Let f ∈ Lp(Σ) . Then ‖T f‖1 = ‖EMv f‖1 , where v := uE(|w|) . Thus
the boundedness of T : Lp(Σ) → L1(Σ) implies that Rv and so R∗

v = Mv : L∞(A ) →
Lp′(Σ) is bounded. It follows that

‖v‖p′
p′ = ‖v‖p′

p′ = ‖Mv(χX )‖p′
p′ � ‖Mv‖p′‖χX‖p′

∞ = ‖Mv‖p′ < ∞,

and so v ∈ Lp′(Σ) and ‖v‖p′ � ‖Mv‖ = ‖T‖ . Conversely, suppose that v ∈ Lp′(Σ) and
f ∈ L∞(A ) . Then by Hölder’s inequality, we have

‖T f‖1 =
∫

X
|E(v f )|dμ =

∫
X

E(|v f |)dμ =
∫

X
|v f |dμ � ‖v‖p′‖ f‖p.

Thus, ‖T‖ � ‖v‖p′ and hence T is bounded.

(b) Let f ∈ L1(Σ) . Then ‖T f‖q = ‖Rv f‖q , where v := u(E(|w|q)) 1
q . So bounded-

ness of T implies that Mv : Lq′(A )→ L∞(Σ) is also bounded. Then for all f ∈ Lq′(A )
we have

‖M q′√E(|v|q′ )( f )‖q′
L∞(A ) = sup

A∈A , 0<μ(A)<∞

1
μ(A)

∫
A
E(|v|q′)| f |q′dμ

= sup
A∈A , 0<μ(A)<∞

1
μ(A)

∫
A
|v f |q′dμ

� sup
A∈Σ, 0<μ(A)<∞

1
μ(A)

∫
A
|v f |q′dμ = ‖Mv f‖q′

L∞(Σ).

It follows that M q′√E(|v|q′ )(L
q′(A ))⊆ L∞(A )⊆ L∞(Σ) , and hence M q′√E(|v|q′ ) : Lq′(A )

→ L∞(Σ) is also bounded. Now, by the same argument in the proof of the Theorem 2.3,
if we put fn = χFn/

q′√μ(Fn) , we have then

∞ > ‖M q′√E(|v|q′ )‖
q′ � ‖M q′√E(|v|q′ )( fn)‖q′

L∞(Σ)

=
sup

A∈Σ, 0<μ(A)<∞
1

μ(A)
∫
A E(|v|q′)χFndμ

μ(Fn)
� δ

μ(Fn)
=

δ2n

μ(F)
−→ ∞, as n → ∞,
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which is a contradiction. Hence we conclude that E(|v|q′) = 0 on B . Also, for any
m ∈ N we have

∞ > ‖Mv‖q′ � ‖Mv
χAm

q′√μ(Am)
‖q′

L∞(Σ)

� ‖Mv
χAm

q′√μ(Am)
‖q′

L∞(A ) = sup
A∈A , 0<μ(A)<∞

1
μ(A)

∫
A

|v|q′χAm

μ(Am)
dμ

= sup
n∈N

1
μ(An)

∫
An

E(|v|q′)χAm

μ(Am)
dμ � E(|v|q′)(Am)

μ(Am)
.

It follows that supn∈N

E(|v|q′ )(An)
μ(An)

= M1 � ‖Mv‖q′ = ‖T‖q′ < ∞ .

(c) Suppose that v = 0 on C and supn∈N

|v(Cn)|q′
μ(Cn) < ∞ , where v := u(E(|w|q)) 1

q .

Then for each f ∈ Lq′(A ) we have

‖Mv( f )‖q′
L∞(Σ) = sup

A∈Σ, 0<μ(A)<∞

1
μ(A)

∫
A
|v f |q′dμ � sup

n∈N

1
μ(Cn)

∫
Cn

|v f |q′dμ

= sup
n∈N

(
|v(Cn)|q′

μ(Cn)

)
| f (Cn)|q′μ(Cn) � M2 ∑

n∈N

| f (Cn)|q′μ(Cn)

� M2‖ f‖q′
Lq′ (A )

,

where we have used the fact that a+b
c+d � max{ a

c ,
b
d } , for each a,b,c,d ∈ (0,∞) . Hence

the operator MvE : Lq′(Σ) → L∞(Σ) is bounded. It follows that T = (MvE)∗|L1(Σ) :

L1(Σ) → Lq(Σ) is also bounded. �

LEMMA 2.5. Let 1 � p < ∞ . The bounded operator Mv : Lp(A ) → Lp(Σ) is
compact if and only if for each ε > 0 the set {x ∈ X : (E(|v|p))1/p(x) � ε} consists of
finitely many A -atoms.

Proof. Suppose Mv is compact. We show that for each ε > 0 the set Kε := {x ∈
X : (E(|v|p))1/p(x) � ε} consists of finitely many A -atoms. Assume the contrary; then
for some ε > 0 the set Kε either contains a subset of non-atomic part B with positive
measure or has infinitely many A -atoms. Since A is σ -finite, in both cases we can
find a sequence of pairwise disjoint measurable subsets {An}n∈N with 0 < μ(An) < ∞ .
Define fn = χAn

μ(An)1/p . Then ‖ fn‖p = 1 and for n �= m we have

‖Mv fn −Mv fm‖p
p =

∫
X
|v fn− v fm|pdμ �

∫
An∪Am

|v fn − v fm|pdμ

=
∫

An

|v fn|pdμ +
∫
Am

|v fm|pdμ

=
∫

An

E(|v|p)| fn|pdμ +
∫

Am

E(|v|p)| fm|pdμ � 2ε p,
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which shows that the sequence {Mv fn} dose not contain any convergent subsequence,
and so T is not compact.

Conversely, suppose that for each ε > 0, Kε =∪n
k=1A

ε
k . Define Mvε ( f )= Mv( f χKε )

= Σn
k=1v f χAε

k
, for all f ∈ Lp(Σ) . It is clear that Mvε is a finite rank operator on Lp(Σ)

and ‖Mv−Mvε‖ < ε . Thus Mv is compact. �

In the following theorem, we give a necessary and sufficient condition for the
compactness of T on Lp(Σ) .

THEOREM 2.6. Let 1 < p < ∞ and let p′ be the conjugate component to p. Then
the weighted Lambert type operator T : Lp(Σ) → Lp(Σ) is compact if and only if for

each ε > 0 the set {x∈ X : (E(|u|p′))
1
p′ (x)(E(|w|p)) 1

p (x) � ε} consists of finitely many
A -atoms.

Proof. Let f ∈ Lp(Σ) . Then ‖T f‖p = ‖EMv f‖p , where v := u(E(|w|p)) 1
p . Thus

T : Lp(Σ) → Lp(Σ) is compact if and only if EMv : Lp(Σ) → Lp(A ) is compact. But
by Lemma 2.5, MvE = Mv : Lp′(A )→ Lp′(Σ) is compact if and only if for each ε > 0,
the set

{x ∈ X : (E(|v|p′))
1
p′ (x) � ε} = {x ∈ X : (E(|u|p′))

1
p′ (E(|w|p)) 1

p (x) � ε}

consists of finitely many A -atoms. �

THEOREM 2.7. The weighted Lambert type operator T : L1(Σ) → L1(Σ) is com-
pact if and only if for each ε > 0 the set Kε := {x ∈ X : u(x)E(|w|)(x) � ε} consists of
finitely many Σ-atoms.

Proof. Suppose that T is compact but for some ε > 0 the set Kε either contains
a subset of non-atomic part C with positive measure or has infinitely many Σ-atoms.
In both cases we can find a sequence of pairwise disjoint measurable subsets {Cn}n∈N

with 0 < μ(Cn) < ∞ . Define fn = uE(|w|)χCn
μ(Cn)‖T‖2 . Then ‖ fn‖1 � 1/‖T‖ and σ( fn)∩

σ( fm) = /0 , for n �= m . Then

‖T fn −T fm‖1 �
∫
Cn∪Cm

E(|w|)|E(u fn −u fm)|dμ∫
Cn

(E(|w|))2E

( |u|2χCn

μ(Cn)‖T‖2

)
dμ +

∫
Cm

(E(|w|))2E

( |u|2χCm

μ(Cm)‖T‖2

)
dμ � 2ε p

‖T‖2 ,

which shows that the sequence {T fn} dose not contain a convergent subsequence, and
so T is not compact.

Conversely, suppose that for each ε > 0, Kε =∪n
k=1C

ε
k . Define Tε( f )= T ( f χKε )=

Σn
k=1T ( f χCε

k
) , for all f ∈ L1(Σ) . It is clear that Tε is a finitely rank operator on L1(Σ)

and ‖T −Tε‖ < ε . Thus T is compact. �
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COROLLARY 2.8. Let 1 � p < ∞ . If the measure space (X ,A ,μ) is non-atomic,
then the weighted Lambert type operator T : Lp(Σ) → Lp(Σ) is compact if and only if
T = 0 .

Proof. Suppose that T is a nonzero compact weighted Lambert type operator.

Then 0 �= ‖T‖ = ‖(E(|w|p)) 1
p (E(|u|p′))

1
p′ ‖∞ , and so there exists δ > 0 such that the

set {x ∈ X : (E(|w|p)) 1
p (x)(E(|u|p′))

1
p′ (x) > δ} contains an A -measurable subset B

with positive measure. Hence, we obtain a sequence of pairwise disjoint subsets Bn ⊆ B
such that for every n ∈ N , Bn ∈ A and 0 < μ(Bn) < ∞ . Define

fn =
u|u|p′−2(E(|w|p)) p′−1

p

‖T‖ p′
p (μ(Bn))

1
p

χBn .

It is easy to see that ‖ fn‖p � 1 and

‖T fn −T fm‖p
p =

∫
X
|w|p|E(u fn−u fm)|pdμ

�
∫

Bn

(E(|w|p))p′(E(|u|p′))p

‖T‖p′μ(Bn)
dμ +

∫
Bm

(E(|w|p))p′(E(|u|p′))p

‖T‖p′μ(Bm)
dμ

� 2δ pp′

‖T‖p′ .

But this is a contradiction. �

3. Weighted Lambert type operators on L2(Σ)

Let H be the infinite dimensional complex Hilbert space and let L (H ) be the
algebra of all bounded operators on H . An operator A ∈ L (H ) is a partial isometry
if ‖Ah‖= ‖h‖ for h orthogonal to the kernel of A . It is known that an operator A on a
Hilbert space is partial isometry if and only if AA∗A = A . The operator A is said to be
positive operator and write A � 0, if 〈Ah,h〉 � 0, for all h ∈ H . Let p ∈ (0,∞) . An
operator A ∈ L (H ) is p -hyponormal if (A∗A)p � (AA∗)p , A is p -quasihyponormal
if A∗(A∗A)pA � A∗(AA∗)pA , and A is normaloid if ‖A‖n = ‖An‖ for all n ∈ N . The
hierarchical relationship between the classes is as follows:

p -hyponormal ⇒ p -quasihyponormal ⇒ normaloid.

The next collection of results addresses the question as to when a Lambert type operator
is of those various operator theoretic types. Also, the polar decomposition and the
Aluthge transformation for these type operators are calculated.

LEMMA 3.1. Let g ∈ L∞(A ) and let T : L2(Σ) → L2(Σ) be a weighted Lambert
type operator. If MgT = 0 , then g = 0 on σ(E(|w|2)E(|u|2)) .

Proof. Let f ∈ L2(Σ) . Then gwE(u f ) = MgT ( f ) = 0. Now, by Theorem 2.1,

0 = ‖MgT‖2 = ‖|g|2E(|w|2)E(|u|2)‖∞,



110 Y. ESTAREMI AND M. R. JABBARZADEH

which implies that |g|2E(|w|2)E(|u|2) = 0, and so g = 0 on σ(E(|w|2)E(|u|2)) . �

THEOREM 3.2. The weighted Lambert operator T is a partial isometry if and
only if E(|w|2)E(|u|2) = χA for some A ∈ A .

Proof. Suppose T is partial isometry. Then TT ∗T = T , that is

T f = E(|w|2)E(|u|2)T f ,

and hence (E(|w|2)E(|u|2)− 1)T f = 0 for all f ∈ L2(Σ) . Put S = σ(E(|u|2)) and
G = σ(E(|w|2)) . By Lemma 3.1 we get that E(|w|2)E(|u|2) = 1 on S∩G , which
implies that E(|w|2)E(|u|2) = χA , where A = S∩G .

Conversely, suppose that E(|w|2)E(|u|2) = χA for some A ∈ A . It follows that
A = S∩G , and we have

TT ∗T ( f ) = E(|w|2)E(|u|2)T f = χS∩GwE(u f ) = wE(u f ),

where we have used the fact that σ(T f ) = σ(|T f |2) ⊆ S∩G , which this is a conse-
quence of Hölder’s inequality for conditional expectation E . �

LEMMA 3.3. Let T be a weighted Lambert type operator on L2(Σ) and let p ∈
(0,∞) . Then

(T ∗T )p = Mu(E(|u|2))p−1χS(E(|w|2))pEMu

and
(TT ∗)p = Mw(E(|w|2))p−1χG(E(|u|2))pEMw,

where S = σ(E(|u|2)) and G = σ(E(|w|2)) .
Proof. Suppose that f ∈ L2(Σ) . Then by induction we obtain

(T ∗T )
1
n = M

u(E(|u|2)) 1−n
n χS(E(|w|2)) 1

n
EMu

and
(TT ∗)

1
n = M

w(E(|w|2)) 1−n
n χG(E(|u|2)) 1

n
EMw

for all n ∈ N . Now the reiteration of powers of operators (T ∗T )
1
n and (TT ∗)

1
n , yields

(T ∗T )
m
n = M

u(E(|u|2)) m−n
n χS(E(|w|2)) m

n
EMu

and
(TT ∗)

m
n = M

w(E(|w|2)) m−n
n χG(E(|u|2)) m

n
EMw

for all m,n ∈ N . Finally, by using of the functional calculus the desired formula is
proved. �
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THEOREM 3.4. Let T be a weighted Lambert type operator on L2(Σ) and let
p ∈ (0,∞) . Then the following assertions hold.

(a) T is hyponormal if and only if T is p-hyponormal.

(b) If |E(uw)|2 � E(|u|2)E(|w|2) , then T is p-quasihyponormal.

(c) If T is p-quasihyponormal, then |E(uw)|2 � E(|u|2)E(|w|2) on σ(E(u))∩G.

(d) If σ(w) = σ(u) = X , then T is p-quasihyponormal if and only if |E(uw)|2 �
E(|u|2)E(|w|2) .

Proof. (a) Applying Lemma 3.3 we obtain that (T ∗T )p � (TT ∗)p if and only if

MχS∩G(E(|u|2))p−1(E(|w|2))p−1(MuE(|w|2)EMu−MwE(|u|2)EMw) � 0.

This inequality holds if and only if

T ∗T −TT ∗ = MuE(|w|2)EMu −MwE(|u|2)EMw � 0,

where we have used the fact that T1T2 � 0 if T1 � 0, T2 � 0 and T1T2 = T2T1 for all
Ti ∈ B(H ) , the set of all bounded linear operators on Hilbert space H .

(b) By Lemma 3.3, it is easy to check that

T ∗(T ∗T )pT = Mu(E(|u|2))p−1χS(E(|w|2))p|E(uw)|2EMu;

T ∗(TT ∗)pT = Mu(E(|w|2))p+1(E(|u|2))pEMu.

It follows that T ∗(T ∗T )pT � T ∗(TT ∗)pT if

M(E(|u|2))p−1χS(E(|w|2))pM(|E(uw)|2−E(|w|2)E(|u|2))MuEMu � 0.

By the same argument in (a), this inequality holds if M(|E(uw)|2−E(|w|2)E(|u|2)) � 0;

i.e. |E(uw)|2 −E(|w|2)E(|u|2) � 0.
(c) Suppose that T is p -quasihyponormal. Then for all f ∈ L2(A ) , we have

〈T ∗(T ∗T )pT −T ∗(TT ∗)pT f , f 〉
=
∫

X
(E(|u|2))p−1χS(E(|w|2))p(|E(uw)|2−E(|w|2)E(|u|2))|E(u)|2| f |2dμ � 0.

Thus

(E(|u|2))p−1χS(E(|w|2))p(|E(uw)|2 −E(|w|2)E(|u|2))|E(u)|2 � 0,

and hence we obtain |E(uw)|2 � E(|w|2)E(|u|2) on σ(E(u))∩G .
(d) It follows from (c) and (d). �
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THEOREM 3.5. Let T be a weighted Lambert type operator on L2(Σ) . If |E(uw)|2
= E(|u|2)E(|w|2) , then T is normaloid.

Proof. By induction, we have

Tn f = (E(uw))n−1wE(u f ), f ∈ L2(Σ), n ∈ N.

Now, by Theorem 2.1(a) we obtain

‖Tn‖ = ‖ |E(uw)|n−1(E(|u|2)) 1
2 (E(|w|2)) 1

2 ‖∞, n ∈ N.

Since |E(uw)|2 = E(|u|2)E(|w|2) , we get that

‖Tn‖ = ‖(E(|u|2)) n
2 (E(|w|2)) n

2 ‖∞ = ‖T‖n,

for all n ∈ N . Thus the theorem is proved. �

It is well known that every operator A on a Hilbert space H can be decom-
posed into A =U |A| with a partial isometry U , where |A| = (A∗A)

1
2 . U is determined

uniquely by the kernel condition N (U) = N (|A|) . Then this decomposition is called
the polar decomposition.

By the operator matrices method, we shall obtain the polar decomposition of
weighted Lambert type operator T = MwEMu . Notice that L2(Σ) is the direct sum
of the R(E) = L2(A ) and N (E) = { f −E f : f ∈ L2(Σ)} . With respect to the direct
sum decomposition, L2(Σ) = L2(A )⊕N (E) , the matrix form of T is

T =
[

ME(u)E(w) ME(w)EMu

MwE(u)−ME(u)E(w) MwEMu−ME(w)EMu

]
.

THEOREM 3.6. The unique polar decomposition of T is U |T | , where

|T |( f ) =
(

E(|w|2)
E(|u|2)

) 1
2

χSuE(u f )

and

U( f ) =
(

χS∩G

E(|w|2)E(|u|2)
) 1

2

wE(u f ),

for all f ∈ L2(Σ) .

Proof. With respect to the direct sum decomposition, L2(Σ) = L2(A )⊕N (E) ,
the matrix form of T ∗T is

T ∗T =
[

A1 A2

A3 A4

]
,

where

A1 = ME(|w|2)|E(u)|2;

A2 = ME(|w|2)E(u)EMu;

A3 = ME(|w|2)uE(u)−ME(|w|2)|E(u)|2;

A4 = ME(|w|2)uEMu−ME(|w|2)E(u)EMu.
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Now, suppose that the matrix form of |T | with respect to L2(A )⊕N (E) is

|T | =
[

B1 B2

B3 B4

]
.

Since |T |2 = T ∗T , then ⎧⎪⎪⎨⎪⎪⎩
B2

1 +B2B3 = A1;
B1B2 +B2B4 = A2;
B3B1 +B4B3 = A3;
B3B2 +B2

4 = A4.

One of the solutions of this system is

B1 = Mα |E(u)|2 ;

B2 = MαE(u)EMu;

B3 = MαuE(u)−Mα |E(u)|2;

B4 = MαuEMu−MαE(u)EMu,

where

α =
(

E(|w|2)
E(|u|2)

) 1
2

χS, S = σ(E(|u|2).

Since the mapping f �→ [
E f f −E f

]
is an isometric isomorphism from L2(Σ) onto

L2(A )⊕N (E) , we get that

|T |( f ) = (B1 +B3)E f +(B2 +B4)( f −E f ) =
(

E(|w|2)
E(|u|2)

) 1
2

χS uE(u f ).

Define a linear operator U whose action is given by

U( f ) =
(

χS∩G

E(|w|2)E(|u|2)
) 1

2

wE(u f ), f ∈ L2(Σ).

Then T =U |T | and by Theorem 3.2, U is a partial isometry. Also, it is easy to see that
N (T ) = N (U) . Since for all f ∈ L2(Σ) , ‖T f‖ = ‖ |T | f‖ , hence N (|T |) = N (U)
and so this decomposition is unique. �

THEOREM 3.7. The Aluthge transformation of T is

T̂ ( f ) =
χSE(uw)
E(|u|2) uE(u f ), f ∈ L2(Σ).

Proof. Define operator V on L2(Σ) as

V f =
(

E(|w|2)
(E(|u|2))3

) 1
4

χSuE(u f ), f ∈ L2(Σ).
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Then we have V 2 = |T | and so by direct computation we obtain

T̂ ( f ) = |T | 1
2U |T | 1

2 ( f ) =
χSE(uw)
E(|u|2) uE(u f ). �

REMARK 3.8. By applying of the methods, which are used in the proofs of Theo-
rem 3.6 and Theorem 3.7, we can compute the polar decomposition and Aluthge trans-
formation of T ∗ = U∗|T ∗| as follows:

|T ∗|( f ) =
(

E(|u|2)
E(|w|2)

) 1
2

χGwE(w f );

U∗( f ) =
(

χS∩G

(E(|u|2)E(|w|2)
) 1

2

uE(w f );

T̂ ∗( f ) =
χGE(uw)
E(|w|2) wE(w f ),

for all f ∈ L2(Σ) .

EXAMPLE 3.9. (a) Let X = [0,1]× [0,1] , dμ = dxdy , Σ the Lebesgue subsets
of X and let A = {A× [0,1] : A is a Lebesgue set in [0,1]} . Then, for each f in
L2(Σ) , (E f )(x,y) =

∫ 1
0 f (x,t)dt , which is independent of the second coordinate. This

example is due to A. Lambert and B. Weinstock [8]. Now, if we take u(x,y) = y
−x
8

and w(x,y) =
√

(4− x)y , then
√

E(|u|2)(x,y) =
√

4
4−x and

√
E(|w|2)(x,y) =

√
4−x
2 .

Hence ‖T‖ = ‖(E(|w|2)) 1
2 (E(|u|2)) 1

2 ‖∞ =
√

2, and so T is not compact, where

(T f )(x,y) =
√

(4− x)y
∫ 1

0
t
−x
8 f (x,t)dt, f ∈ L2(Σ).

The direct computations show that

|T |(x,y) =
(4− x)y

−x
8

2
√

2

∫ 1

0
t
−x
8 f (x, t)dt,

U(x,y) =

√
(4− x)y√

2

∫ 1

0
t
−x
8 f (x,t)dt

and

T̂ ( f )(x,y) =
8(4− x)

3
4 y

−x
8√

2(12− x)

∫ 1

0
t
−x
8 f (x,t)dt.

Also, it is easy to see that ‖Ru‖L2(Σ)→L2(Σ) = ‖Mu‖L2(A )→L2(Σ) = 2√
3
. However, the

multiplication operator Mu : L2(Σ) → L2(Σ) is not bounded, because u /∈ L∞(Σ) (see
[11]).
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(b) Let X = N , Σ = 2N and let μ be the counting measure. Put

A = {{2},{4,6},{8,10,12},{14,16,18,20}, · · ·}∪{{1},{3},{5}, · · ·}.
If we let A1 = {2} , A2 = {4,6} , A3 = {8,10,12} , · · · , then we see that μ(An) = n and
for every n ∈ N , there exists kn ∈ N such that An = {2kn,2(kn +1), · · · ,2(kn +n−1)} .
Let A be the σ -algebra generated by the pattition A of N . Note that, A is a sub-
σ -finite algebra of Σ and each of element of A is an A -atom. It is known that the
conditional expectation of any f ∈ D(E) relative to A is

E( f ) =
∞

∑
n=1

(
1

μ(An)

∫
An

f dμ
)

χAn +
∞

∑
n=1

f (2n−1)χ{2n−1}.

Define u(n) = n2

n+1 and w(n) = 1
2nn4 , for all n∈N . For each even number m∈N , there

exists nm ∈ N such that m ∈ Anm . Thus we get that

E(|w|p)(m) =
1

22pknm (2knm)4p
+ · · ·+ 1

22pknm+2pnm−2p(2knm +2nm−2)4p

and

E(|u|p′)(m) =
4k2p′

nm

(2knm +1)p′ +
(2knm +2)2p′

(2knm +3)p′ + ...+
(2knm +2nm−2)2p′

(2knm +2nm−1)p′ .

It is easy to see that

E(|w|p)(m) � nm

22pknm (2knm)4p
and E(|u|p′)(m) � nm(2knm +2nm−2)2p′

(2knm +2nm−1)p′ ,

and so

(E(|w|p)) 1
p (m)(E(|u|p′))

1
p′ (m) � (nm)

1
p

22knm (2knm)4

(nm)
1
p (2knm +2nm−2)2

(2knm +2nm−1)
.

Since nm � knm , then

(E(|w|p)) 1
p (m)(E(|u|p′))

1
p′ (m) � nm(2knm +2nm−2)

22knm (2knm)4
� 1

22knm 4(knm)2
.

Also, for all n ∈ N , we have

(E(|w|p)) 1
p (2n−1)(E(|u|p′))

1
p′ (2n−1) =

1
2n−1n3 .

Thus ‖(E(|w|p)) 1
p (E(|u|p′))

1
p′ ‖∞ � 1, and so by Theorem 2.1(a) and Theorem

2.7, the operator T = MwEMu is a compact weighted Lambert type operator on Lp(Σ) .
However, the operator Ru is not compact, because (E(|u|p′))1/p′(m) → ∞ as m → ∞ .
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(c) Let dA(z) be the normalized Lebesgue measure on open unit disc D . Recall
that for 1 � p < ∞ the Bergman space Lp

a(D) is the collection of all functions f ∈
H(D) , holomorphic functions on D , for which

∫
D
| f (z)|pdA(z) < ∞ . Let A be the

σ -algebra generated by {(zn)−1(U) : U ⊆ C is open} . Then

E(u)(ξ ) =
1
n ∑

ζ n=ξ
u(ζ ), u ∈ H(D), ξ ∈ D\ {0},

(see [5]). Note that |u| � nE(|u|) and E(Lp
a(D)) ⊆ Lp

a(D) . Since E is contraction,
u ∈ H∞(D) if and only if E(|u|s) ∈ L∞(D) , for all s � 1. It follows that the operator
Ru( f )(ξ ) = 1

n ∑ζ n=ξ (u f )(ζ ) on Lp
a(D) is bounded if and only if the multiplication

operator Mu : Lp
a(D) → Lp

a(D) is bounded. It is known that Mu is bounded if and only
if u∈H∞(D) . This example shows that these operators are closely related to averaging
operators.
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