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DYNAMICS OF TUPLES OF MATRICES IN JORDAN FORM

GEORGE COSTAKIS AND IOANNIS PARISSIS

(Communicated by H. Radjavi)

Abstract. A tuple (T1, . . . ,Tk) of n×n matrices over R is called hypercyclic if for some x ∈Rn

the set {Tm1
1 Tm2

2 · · ·Tmk
k x : m1,m2, . . . ,mk ∈ N0} is dense in Rn . We prove that the minimum

number of n×n matrices in Jordan form over R which form a hypercyclic tuple is n+1 . This
answers a question of Costakis, Hadjiloucas and Manoussos.

1. Introduction

Let X be a separable Banach space either over R or C . Recall that a bounded
linear operator T : X → X is hypercyclic if there exists a vector x ∈ X whose orbit
Orb(T,x) = {x,Tx,T 2x, . . .} is dense in X . For a thorough study of hypercyclicity
we refer to the recent book [1]. Although hypercyclicity is a phenomenon which only
appears in infinite dimensions, see [10], Feldman recently established that this is not
the case if one considers more than one operator; see [5].

Following Feldman from [5], we give the following definition:

DEFINITION 1.1. Let T = (T1, . . . ,Tk) be a k -tuple of commuting continuous lin-
ear operators, acting on X . The k -tuple T will be called hypercyclic if there exists a
vector x ∈ X such that the set

{Tmx : m ∈ Nk
0} = {Tm1

1 Tm2
2 · · ·Tmk

k x : m1,m2, . . . ,mk ∈ N0},

is dense in X . Here we use the standard multi-index notation where m = (m1, . . . ,mk)∈
Nk

0 and Tm = Tm1
1 . . .Tmk

k .

Here and throughout the paper N denotes the set of positive integers while N0

denotes the set of non-negative integers, N0 = N∪{0} .
Specializing to the case X = Rn or X = Cn we have that T is a k -tuple of commut-

ing n×n matrices over R or C respectively. In [5], Feldman proved that in Cn there
exist (n+ 1)-tuples of simultaneously diagonalizable matrices which are hypercyclic.
Furthermore, Feldman proved that there is no hypercyclic n -tuple of simultaneously
diagonalizable matrices acting on Rn or Cn . On the other hand, in [2], the authors
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proved that on Rn , n � 2, there exist n -tuples of non-simultaneously diagonalizable
matrices over R which are hypercyclic. For further results on hypercyclic tuples of
operators in finite or infinite dimensions look at [6], [4], [9], [8] and [3].

In this note we restrict our attention to k -tuples of non-simultaneously diagonal-
izable matrices on Rn , n � 2, where every operator in the k -tuple T is in Jordan form.
In general we will write Jrdl,γ for the Jordan block of dimension l with eigenvalue γ ,
that is:

Jrdl,γ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ 1 0 . . . 0

0 γ 1
. . .

...

0 0 γ
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where γ ∈ R . A general n× n matrix in Jordan form over R , considered here, will
consist of p Jordan blocks and in general can be represented as

J = diag{Jrdn1,γ1 ,Jrdn2,γ2 , . . . ,Jrdnp,γp} = Jrdn1,γ1 ⊕ Jrdn2,γ2 ⊕·· ·⊕ Jrdnp,γp ,

where n1 + · · ·+np = n and γ1, . . . ,γp ∈ R .
A few remarks are in order:

REMARK 1.2. Throughout the exposition we consider k -tuples T = (T1, . . . ,Tk)
of n× n matrices in Jordan form over R . In general each Tν , 1 � ν � k , will have a
different number of Jordan blocks of different dimensions. However, since we consider
k -tuples of operators that commute, it is not hard to see that all the matrices in the k -
tuple must have the same form, that is, it is enough to consider the case that all the k
operators Tν have p Jordan blocks of dimensions n1, . . . ,np , where p and n1, . . . ,np

do not depend on which term ν in the k -tuple we are considering. Bearing this in mind,
each operator Tν can be written in the form

Tν = Jrd
n1,γ

(1)
ν

⊕·· ·⊕ Jrd
np,γ

(p)
ν

, (1.1)

where the number of blocks p and the corresponding dimensions n1, . . . ,np are fixed

throughout the k -tuple. Thus, the real number γ(b)
ν is the eigenvalue of the b -th Jordan

block in the ν -th operator of the k -tuple.

REMARK 1.3. Suppose for a moment that n1 = · · · = np = 1, in other words, that
all the Jordan blocks in the k -tuple are of dimension one. Because of Remark 1.2, this
means that all the operators in the k -tuple are diagonal. However, this case has already
been considered by Feldman in [5]. We will therefore assume for the rest of the paper
that nb > 1 for at least one block in each of the matrices of the k -tuple.

Concerning Jordan forms in R2 , the following Theorem was proved in [2]:
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THEOREM 1.4. (Costakis, Hadjiloucas, Manoussos [2]) There exist 2× 2 matri-
ces A j , j = 1,2,3,4 in Jordan form over R such that (A1,A2,A3,A4) is hypercyclic.

The authors in [2] raised the following Question:

QUESTION 1.5. What is the minimum number of 2× 2 matrices in Jordan form
over R so that their tuple is hypercyclic?

In Theorem 1.4, since the dimension is two, all the matrices in Jordan form are
necessarily Jordan blocks, that is each matrix has a single eigenvalue (remember we
exclude the case that one of the matrices is diagonal). It is not hard to see that the
conclusion of Theorem 1.4 is exceptional as in Rn , for n � 3, there is no k -tuple of
matrices, each one being exactly a Jordan block, which is hypercyclic:

PROPOSITION 1.6. Let n � 3 and k ∈ N . For any γ1, . . . ,γk ∈ R consider the
k -tuple of Jordan blocks J = (Jrdn,γ1 ,Jrdn,γ2 , . . . ,Jrdn,γk) . Then J is not hypercyclic.

Thus in dimension n � 3 we have to consider k -tuples T = (T1, . . . ,Tk) where
each one of the matrices Tν , 1 � ν � k , is in Jordan form over R and consists of more
than one Jordan blocks.

For n× n matrices in Jordan form over R we have the following result in the
negative direction:

PROPOSITION 1.7. For n,k ∈ N we consider a k -tuple of n×n matrices in Jor-
dan form over R , T = (T1, . . . ,Tk) , where each Tν consists of p Jordan blocks of
dimensions n1, . . . ,np as in (1.1).
(i) Suppose that nb � 3 for at least one b ∈ {1,2, . . . , p} . Then T is not hypercyclic.
(ii) If k = n then T is not hypercyclic.

REMARK 1.8. Observe that part (ii) of Proposition 1.7 is only interesting when
all the Jordan blocks in each one of the matrices of the n -tuple have dimension nb � 2.
Otherwise, part (i) gives a stronger statement.

The main result of this paper is the following theorem:

THEOREM 1.9. Fix a positive integer n � 2 and let p1 � 1 and p2 � 0 be given
non-negative integers such that 2p1 + p2 = n. There exists a hypercyclic (n+1)-tuple
of n×n matrices in Jordan form over R where each matrix in the tuple consists of p1

Jordan blocks of dimension 2 and p2 Jordan blocks of dimension 1 .

REMARK 1.10. The case n = 2 of the previous theorem was proved by M. Ko-
lountzakis in [11].

Our main Theorem 1.9 together with part (ii) of Proposition 1.7 gives us as a
corollary the answer to Question 1.5. In fact, we answer the corresponding question in
Rn for any n � 2:
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COROLLARY 1.11. The minimum number of n×n matrices in Jordan form over
R which form a hypercyclic tuple is n+1 .

The rest of the paper is organized as follows. In section 3 we present some gen-
eral guidelines and conventions concerning the notations in this paper. In section 4 we
present some calculations which occur frequently in dealing with Jordan blocks. We are
able to turn the hypercyclicity condition in a condition which is linear in (m1, . . . ,mk) .
This will turn out to be much more flexible than the original definition of hypercyclic-
ity. In section 5 we take advantage of this linear reformulation of the definition of
hypercyclicity in order to prove the negative results contained in Propositions 1.6 and
1.7.

Finally, section 6 contains the proof of the main result, Theorem 1.9. The proof
of Theorem 1.9 relies on the linear reformulation of the problem mentioned before. In
particular, we need to construct a matrix L+ such that the set {L+mT : m ∈ Nn+1

0 } is
dense in Rn . The entries of L+ have a special structure, imposed by the fact that we
consider tuples of matrices in Jordan form over R . In Theorem 6.3, we exploit the
multi-dimensional version of Kronecker’s theorem in order to reduce the construction
of the matrix L+ to the construction of a certain set of vectors, the rows of L+ , which
should be linearly independent over Q . The construction of these vectors is done by
induction in the dimension n in conjunction with the solution of a non-linear equation
in Lemma 6.4 which guarantees that the entries of our vectors will have the desired
structure. We will take up all these issues in the final section of this paper.

2. Acknowledgements

We would like to thank the anonymous referee for an expert reading and sugges-
tions that helped us improve the quality of this paper.

3. Notations

A few words about the notation are necessary. In many parts of the paper the nota-
tion becomes cumbersome due to the nature of the problem. However we consistently
use the same notation which we present now. In general we will consider k -tuples
T = (T1, . . . ,Tk) of n× n matrices in Jordan form over R . The ν -th matrix in the
k -tuple consists of p Jordan blocks of dimensions n1, . . . ,np with n1 + · · ·+ np = n .
Each block is in turn defined by means of its dimension and a real eigenvalue. We will
always use the symbol b , where 1 � b � p , to index the blocks. Thus a typical operator
in the k -tuple is of the form

Tν = Jrd
n1,γ

(1)
ν

⊕·· ·⊕ Jrd
np,γ

(p)
ν

= ⊕p
b=1Jrdnb,γ

(b)
ν

.

Hopefully these general guidelines will help the reader throughout the exposition.
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4. Auxiliary calculations

All the results in this note depend heavily on some explicit calculations. There
are two types of calculations involved in the proof. The first concerns operations on
single Jordan blocks, that is, powers of Jordan blocks and multiplication of powers of
Jordan blocks. Such calculations appear for example in the context of Proposition 1.6.
The second type of calculations concerns operations on matrices that consist of several
Jordan blocks each. However, since every matrix in the k -tuple is block diagonal,
all the operations we are considering here go through in each block as in the case of
single Jordan blocks; each block behaves independently than the other blocks in terms
of taking powers and multiplying with other Jordan matrices in the k -tuple, since all
matrices have the same block structure.

4.1. Operations on single Jordan blocks

First we calculate the powers of a single Jordan block:

LEMMA 4.1. For n,m ∈ N and γ ∈ R\ {0} we have

(Jrdn,γ )m = γm

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 p(m)
1 p(m)

2 . . . p(m)
n−1

0 1 p(m)
1

. . .
...

0 0 1
. . . p(m)

2
...

. . .
. . .

. . . p(m)
1

0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The real numbers p(m)
j are defined as

p(m)
j =

(
m
j

)
1
γ j , j = 1, . . . ,n−1,

with the understanding that
(m

j

)
= 0 whenever m < j .

In the next Lemma we calculate the product of powers of Jordan blocks.

LEMMA 4.2. Let n,k ∈ N and m = (m1, . . . ,mk) ∈ Nk
0 . Let γ1, . . . ,γk be the

eigenvalues that define the Jordan blocks and set γ = (γ1, . . . ,γk) . We also set J =
(Jrdn,γ1 , . . . ,Jrdn,γk) . We then have

Jm = γm

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 d(m)
1 d(m)

2 . . . d(m)
n−1

0 1 d(m)
1

. . .
...

0 0 1
. . . d(m)

2
...

. . .
. . .

. . . d(m)
1

0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where now the diagonals of Jm are defined by the numbers d(m)
j :

d(m)
j = ∑

|β |= j

(
m
β

)
1

γβ = ∑
β1+···+βk= j

0�βp� j, p=1,...,k

(
m1

β1

)
· · ·
(

mk

βk

)
1

γβ1
· · · 1

γβk
, j = 1, . . . ,n−1.

The next step is to express the entries d(m)
1 ,d(m)

2 in the first two diagonals in a

simpler form. This will be enough for our purposes here. For d(m)
1 we readily see that

d(m)
1 =

k

∑
ν=1

mν
γν

. (4.1)

For d(m)
2 we have

d(m)
2 =

1
2

k

∑
ν=1

mν(mν −1)
γ2

ν
+ ∑

1�ν<ν ′�k

mνmν ′

γνγν ′
=

1
2

(
(d(m)

1 )2 −
k

∑
ν=1

mν
γ2

ν

)
. (4.2)

4.2. Operations on matrices with several Jordan blocks

We now consider the general case where we have a k -tuple of n× n matrices in
Jordan form over R . As we have pointed out, the structure of each matrix should be
the same for the operators to be commuting, that is, each matrix in the k -tuple consists
of say p Jordan blocks with dimensions n1, . . . ,np , where n1 + · · ·+np = n . To fix the
notation, let T = (T1, . . . ,Tk) . We have that

Tν = Jrd
n1,γ

(1)
ν

⊕·· ·⊕ Jrd
np,γ

(p)
ν

, 1 � ν � k, (4.3)

where γ(1)
ν , . . . ,γ(p)

ν ∈ R for all 1 � ν � k . In other words, each matrix in the k -tuple is
a block diagonal Jordan matrix with p discrete real eigenvalues. For b ∈ {1,2, . . . , p} ,

the block Jrd
nb,γ

(b)
ν

is a nb × nb Jordan block with eigenvalue γ(b)
ν , where the index ν

tells us which term of the k -tuple we are considering. We may have nb = 1 for some
b ’s but we exclude the possibility that nb = 1 for all b ∈ {1,2, . . . , p} , that is, we don’t
allow a k -tuple of diagonal matrices. For m = (m1, . . . ,mk) ∈ Nk

0 , we can write

Tm = Tm1
1 · · ·Tmk

k = Π1 ⊕·· ·⊕Πp, (4.4)

where each Πb is the tuple defined as

Πb
def= Jrdm1

nb,γ
(b)
1

· · · Jrdmk

nb,γ
(b)
k

, b ∈ {1,2, . . . , p}. (4.5)

Observe that each block Πb is described by Lemma 4.2 with n=nb and γ=(γ(b)
1 , . . .,γ(b)

k ) .
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4.3. Matrices with Jordan blocks of dimension at most two

We now turn our attention to k -tuples of n× n matrices in Jordan form over R

where all the Jordan blocks have dimension nb � 2. This is justified because of Propo-
sition 1.7 which says that if even one of the Jordan blocks has dimension nb > 2 then
the k -tuple cannot be hypercyclic. To simplify the notation let us agree that in each
Jordan matrix of the k -tuple we have p1 Jordan blocks of dimension 2 and p2 Jordan
blocks of dimension 1. Assume that in the ν -th term the 2× 2 blocks are defined by

the non-zero eigenvalues γ(1)
ν , . . . ,γ(p1)

ν and the 1× 1 blocks are defined by the non-

zero eigenvalues c(1)
ν , . . . ,c(p2)

ν . We also write γ(b) = (γ(b)
1 , . . . ,γ(b)

k ) for 1 � b � p1

and c(b) = (c(b)
1 , . . . ,c(b)

k ) for 1 � b � p2 . We define the matrix Γ = {γ(b)
ν } ∈ Rp1×k

whose rows are the vectors γ(b) , 1 � b � p1 . Similarly, the matrix C = {c(b)
ν } ∈ Rp2×k

is the matrix whose rows are the vectors c(b) for 1 � b � p2 . Of course we have
2p1 + p2 = n . Finally, the following notation will be useful. For Γ and C as before
and m = (m1, . . . ,mk) ∈ Nk

0 , we consider the vector in Rn :

V (m,Γ,C) def=
(

(γ(1))m,
k

∑
ν=1

mν

γ(1)
ν

, . . . ,(γ(p1))m,
k

∑
ν=1

mν

γ(p1)
ν

,(c(1))m, . . . ,(c(p2))m
)

.

Let T = (T1, . . . ,Tk) be a k -tuple of n× n matrices in Jordan form over R , sat-
isfying the previous assumptions. For m = (m1, . . . ,mk) ∈ Nk

0 , Tm will be given by a
form similar to (4.4):

Tm = Tm1
1 · · ·Tmk

k = P1⊕·· ·⊕Pp1 ⊕P′
1⊕ . . .⊕P′

p2 .

The tuples Pb are defined as:

Pb
def= Jrdm1

2,γ(b)
1

· · · Jrdmk

2,γ(b)
k

, b ∈ {1,2, . . . , p1}, (4.6)

while

P′
b

def= Jrdm1

1,c(b)
1

· · · Jrdmk

1,c(b)
k

= (c(b))m, b ∈ {1,2, . . . , p2}. (4.7)

With these notations and assumptions taken as understood, we use Lemma 4.2
together with the expression (4.1) to get a more handy characterization of hypercyclicity
in the special case we are considering.

LEMMA 4.3. Let T = (T1, . . . ,Tk) be a k -tuple of n×n matrices in Jordan form
over R , defined by means of the matrices Γ and C. We assume that all the Jordan
blocks in T have dimension at most two. Then T is hypercyclic if and only if the set{

V (m,Γ,C) : m = (m1, . . . ,mk) ∈ Nk
0

}
,

is dense in Rn .
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Proof. Let T = (T1, . . . ,Tk) be a k -tuple of n× n matrices over R where each
matrix in the tuple has p1 Jordan blocks of dimension 2 and p2 Jordan blocks of
dimension 1. For any m ∈ Nk

0 and y ∈ Rn a straightforward calculation using Lemma
4.2 yields

(Tmy)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ(1))m
(
y1 + ∑k

ν=1
mν
γ(1)

ν
y2
)

(γ(1))my2
...

(γ(p1))m
(
y2p1−1 + ∑k

ν=1
mν

γ(p1)
ν

y2p1

)
(γ(p1))my2p1

(c(1))my2p1+1
...

(c(p1))my2p1+p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.8)

Assume now that T is a hypercyclic tuple. There exists y = (y1, . . . ,yn)∈ Rn such
that

{Tmy : m ∈ Nk
0} = Rn. (4.9)

By (4.8) and (4.9) we conclude that y j �= 0 for all j ∈ {2,4,6, . . . ,2p1,2p1 + 1,2p1 +
2, . . . ,2p1 + p2} . Now let x ∈ Rn be a vector with all of its entries different than zero.
We define the vector z = (z1, . . . ,zn) ∈ Rn by defining its coordinates:

z2b−1
def= x2by2b−1 + x2b−1x2by2b, if b ∈ {1,2, . . . , p1},

z2b
def= x2by2b, if b ∈ {1,2, . . . , p1},

zp1+b
def= xp1+byp1+b, if b ∈ {1,2, . . . , p2}.

Since the k -tuple T is hypercyclic, there exists a sequence {m(τ)}τ∈N ⊂ Nk
0 such that

Tm(τ)
y → z in Rn as τ → +∞ . By the definition of the vector z and (4.8) we get

lim
τ→+∞

(γ(b))m(τ)
= x2b for all b = 1,2, . . . , p1,

lim
τ→+∞

(c(b))m(τ)
= x2p1+b for all b = 1,2, . . . , p2,

and

lim
τ→+∞

(γ(b))m(τ)
(y2b−1 +

k

∑
ν=1

m(τ)
n

γ(b)
ν

y2b) = x2by2b−1 + x2b−1x2by2b, for all b = 1,2, . . . , p1.

Combining the previous convergence relations we conclude that

lim
τ→+∞

k

∑
ν=1

m(τ)
n

γ(b)
ν

= x2b−1 for all b = 1,2, . . . , p1.
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Observe that in order to conclude the previous results we had to divide by entries of x
or y but this is justified since we have made sure that these entries are non-zero.

We have showed that if T is hypercyclic then for every x ∈ Rn with all of its
entries different than zero there exists a sequence {m(τ)}τ∈N ⊂ Nk

0 such that

V (m(τ),Γ,C) → x as τ → +∞.

Since the set

{x = (x1,x2, . . . ,xn) ∈ Rn : x j �= 0 for all j = 1,2, . . .n}

is dense in Rn , this concludes one direction of the equivalence in the lemma.
The opposite directions is very easy. Choose w ∈ Rn with w1 = w3 = · · · =

w2p1−1 = 0 and w2 = w4 = · · · = w2p2 = w2p2+1 = · · · = wn = 1. If x ∈ Rn has all
of its entries different than zero we chose {m(τ)}τ∈N ⊂ Nk

0 such that

(γ(b))m(τ) → x2b as τ → +∞ for all b = 1,2, . . . , p1,

k

∑
ν=1

m(τ)
n

γ(b)
ν

→ x2b−1/x2b as τ → +∞ for all b = 1,2, . . . , p1,

(c(b))m(τ) → xb as τ → +∞ for all b = 1,2, . . . , p2.

This is always possible by our hypothesis. Using (4.8) it is easy to see that Tm(τ)
w → x

as τ → +∞ . It readily follows that w is a hypercyclic vector for T . �

A slight variant helps us write this in linear form in terms of m ∈ Nk
0 .

COROLLARY 4.4. Let T = (T1, . . . ,Tk) be a k -tuple of n×n matrices in Jordan
form over R where all the Jordan blocks have dimension at most two. We define the
n× k matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log |γ(1)
1 | log |γ(1)

2 | · · · log |γ(1)
k |

1/γ(1)
1 1/γ(1)

2 · · · 1/γ(1)
k

...
... · · · ...

log |γ(p1)
1 | log |γ(p1)

2 | · · · log |γ(p1)
k |

1/γ(p1)
1 1/γ(p1)

2 · · · 1/γ(p1)
k

log |c(1)
1 | log |c(1)

2 | · · · log |c(1)
k |

...
... · · · ...

log |c(p2)
1 | log |c(p2)

2 | · · · log |c(p2)
k |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

If T is hypercyclic then the set {LmT : m ∈ Nk
0} is dense in Rn .

Here mT denotes the transpose of the vector m = (m1, . . . ,mk) .
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Proof. Let us denote by V+(m,Γ,C) the vector

V+(m,Γ,C) def=
(
|(γ(1))m|,

k

∑
ν=1

mν

γ(1)
ν

, . . . , |(γ(p1))m|,
k

∑
ν=1

mν

γ(p1)
ν

, |(c(1))m|, . . . , |(c(p2))m|
)

.

Since T is hypercyclic, Lemma 4.3 implies that the set

{
V (m,Γ,C) : m = (m1, . . . ,mk) ∈ Nk

0

}

is dense in Rn and, thus, that the set{
V+(m,Γ,C) : m = (m1, . . . ,mk) ∈ Nk

0

}

is dense in (R+ ×R)p1 × (R+)p2 . Now let x ∈ Rn and define the vector

y
def= (ex1 ,x2,e

x3 ,x4, . . . ,e
x2p1−1 ,x2p1 ,e

x2p1+1 ,ex2p1+2 . . . ,ex2p1+p2 ).

Since y ∈ (R+ ×R)p1 × (R+)p2 there exists a sequence {m(τ)}τ∈N ⊂ Nk
0 such that

V+(m(τ),Γ,C) → y as τ → +∞.

This convergence is equivalent to

|γ(b)
1 |m(τ)

1 · · · |γ(b)
k |m(τ)

k → ex2b−1 as τ → +∞ for all b = 1,2, . . . , p1,

m(τ)
1

γ(b)
1

+ · · ·+ m(τ)
k

γ(b)
k

→ x2b as τ → +∞ for all b = 1,2, . . . , p1,

|c(b)
1 |m(τ)

1 · · · |c(b)
k |m(τ)

k → ex2p1+b as τ → +∞ for all b = 1,2, . . . , p2.

Taking logarithms, the previous three convergence relations are equivalent to

m(τ)
1 log |γ(b)

1 |+ · · ·+m(τ)
k log |γ(b)

k | → x2b−1 as τ → +∞ for all b = 1,2, . . . , p1,

m(τ)
1

γ(b)
1

+ · · ·+ m(τ)
k

γ(b)
k

→ x2b as τ → +∞ for all b = 1,2, . . . , p1,

(4.11)

m(τ)
1 log |c(b)

1 |+ · · ·+m(τ)
k log |c(b)

k | → x2p1+b as τ → +∞ for all b = 1,2, . . . , p2.

Since x ∈ Rn was arbitrary, gathering the convergence relations (4.11) in matrix
form gives L(m(τ))T → x as τ → +∞ . Since x ∈ Rn was arbitrary this concludes the
proof of the lemma. �
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5. Negative results

In this section we prove Propositions 1.6 and 1.7

Proof of Proposition 1.6. Let n,k∈N and γ = (γ1, . . . ,γk)∈Rk be the eigenvalues
defining a k -tuple of Jordan blocks J = (Jn,γ1 , . . . ,Jn,γk) . Now suppose J is hypercyclic,
that is, there exists a x ∈ Rn such that the set {Jmx : m ∈ Nk

0} is dense in Rn .
Let J3(m) be the 3× 3 submatrix of Jm that arises from Jm by deleting the first

n−3 rows and the first n−3 columns, that is

J3(m) = γm

⎛
⎜⎝1 d(m)

1 d(m)
2

0 1 d(m)
1

0 0 1

⎞
⎟⎠ . (5.1)

Since {Jmx : m ∈ Nk
0} is dense in Rn there exists a y = (y1,y2,y3) ∈ R3 such that the

set {J3(m)y : m ∈ Nk
0} is dense in R3 . In particular the set {γmy3 : m ∈ Nk

0} is dense in
R so we must have y3 �= 0. Now we let w = (y1 + y2 + y3,y2 + y3,y3) and we choose

a sequence m = m(τ) = (m(τ)
1 ,m(τ)

2 ,m(τ)
3 ) such that Jm(τ)

3 y → w as τ → ∞ . We will
suppress τ to simplify notation. Since y3 �= 0 we conclude that γm → 1 as τ → ∞ .

Next we have that γm(y2 + y3d
(m)
1 ) → y2 + y3 as τ → ∞ . We conclude that d(m)

1 → 1

as τ → ∞ . Finally, from the first row of Jm
3 we get that γm(y1 + d(m)

1 y2 + d(m)
2 y3) →

y1 + y2 + y3 as τ → ∞ . Recalling the formula for d(m)
2 in equation (4.2) we can rewrite

this as

γm

(
y1 +d(m)

1 y2 +
1
2

(
(d(m)

1 )2−
k

∑
j=1

mj

γ2
j

)
y3

)
→ y1 + y2 + y3 as τ → ∞. (5.2)

Let us write � = limτ→∞ ∑k
j=1

mj

γ2
j

which obviously exists. From (5.2) we then get that

y1 + y2 +
1
2
y3− 1

2
�y3 = y1 + y2 + y3.

But this means that � = −1 which is clearly impossible since ∑k
j=1

mj

γ2
j

� 0 for all

m ∈ Nk
0 . �

We now give the proof of the more general result for k -tuples of n×n matrices in
Jordan form over R .

Proof of Proposition 1.7. Let us assume that a k -tuple T of matrices in Jordan
form over R is hypercyclic. For m ∈ Nk

0 the matrix Tm has the form given by (4.4)
and (4.5). For (i) let Πb be the block that has dimension n = nb � 3. Let this block be
defined by the real numbers γ(b)

1 , . . . ,γ(b)
k . Fixing this b , we just write γ = (γ1, . . . ,γk) .

Equation (4.5) shows that Πb will be of the form

Πb = Jrdm1
nb,γ1 · · ·Jrdmk

nb,γk
. (5.3)
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Sine T is hypercyclic and Tm is a block diagonal matrix, we conclude that there exists
a y ∈ Rnb such that {Πby : m ∈ Nk

0} is dense in Rnb . Since nb � 3 this contradicts
Proposition 1.6 so we are done.

For part (ii) of the Proposition we consider n -tuples of n× n matrices in Jordan
form, T = (T1, . . . ,Tn) , where each one of the matrices Tν consists of p Jordan blocks
of dimension nb � 2 for all b ∈ {1,2, . . . , p} . We adopt the notations from paragraph
4.3. Using Corollary 4.4 we see that if T is hypercyclic then

{LmT : m = (m1, . . . ,mn) ∈ Nn
0} = Rn.

But this means that the operator L : Rn →Rn has dense range and therefore is onto. We
conclude that L is invertible so we must have Nn

0 = Rn , a contradiction. �

REMARK 5.1. In part (i) of Proposition 1.7 we show that if at least one of the
Jordan blocks in the tuple has dimension nb � 3 then no k -tuple is hypercyclic. How-
ever, the proof given above works equally well to give a stronger statement, namely
that the tuple T is not even somewhere dense: for every x ∈ Rn , the closure of the set
{Tmx : m ∈ Nk

0} does not contain any open balls.

REMARK 5.2. Likewise, the proof of part (ii) of Proposition 1.7 gives the stronger
statement that an n -tuple of n×n matrices in Jordan form over R is never somewhere
dense. Indeed, if the orbit of the n -tuple T is somewhere dense for some x in Rn then
there is a ball B inside the set L(Rn) . Then the set L(Rn) , which is a linear subspace
of Rn , has necessarily dimension n . We conclude that L(Rn) = Rn so that the matrix
L is invertible and then we proceed as in the proof above.

6. Hypercyclic tuples of matrices in Jordan form

In this section we give the proof of Theorem 1.9. For this we need to construct
(n + 1)-tuples of n× n matrices in Jordan form over R which are hypercyclic. For
technical reasons we need to consider the two-dimensional case separately than the n -
dimensional case for n � 3. We first give the proof in Rn for n � 3 which already
contains all the ideas.

6.1. The proof in the case n � 3

We recall that each matrix in the tuple we want to construct will consist of p1

Jordan blocks of dimension 2 and p2 blocks of dimension 1. Thus we necessarily have
2p1 + p2 = n . Since n � 3 in the case we considering and p1, p2 ∈ N0 we conclude
that p1 + p2 � 2. We consider the vectors

γ(1) def=
(
−a(1)

1 , a(1)
2 , a(1)

3 , . . . , a(1)
p1−1, a(1)

p1 , a(1)
p1+1, . . . , a(1)

n , −a(1)
n+1

)
,

γ(2) def=
(
a(2)

1 , −a(2)
2 , a(2)

3 , . . . , a(2)
p1−1, a(2)

p1 , a(2)
p1+1, . . . ,a(2)

n , −a(2)
n+1

)
,

... (6.1)
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γ(p1−1) def=
(
a(p1−1)

1 ,a(p1−1)
2 ,a(p1−1)

3 , . . . ,−a(p1−1)
p1−1 ,a(p1−1)

p1 ,a(p1−1)
p1+1 ,

. . . ,a(p1−1)
n ,−a(p1−1)

n+1

)
, (6.2)

γ(p1) def=
(
a(p1)

1 , a(p1)
2 , a(p1)

3 , . . . , a(p1)
p1−1, −a(p1)

p1 , a(p1)
p1+1, . . . , a(p1)

n , −a(p1)
n+1

)
,

where a(b)
ν > 0 for all 1 � ν � n+1 and 1 � b � p1 . Similarly let us define

c(1) def=
(
−δ (1)

1 , δ (1)
2 , δ (1)

3 , . . . , δ (1)
p2−1, δ (1)

p2 , δ (1)
p2+1, . . . , δ (1)

n+1

)
,

c(2) def=
(

δ (2)
1 , −δ (2)

2 , δ (2)
3 , . . . , δ (2)

p2−1, δ (2)
p2 , δ (2)

p2+1, . . . , δ (2)
n+1

)
,

... (6.3)

c(p2−1) def=
(

δ (p2−1)
1 , δ (p2−1)

2 , δ (p2−1)
3 , . . . , −δ (p2−1)

p2−1 , δ (p2−1)
p2 , δ (p2−1)

p2+1 , . . . , δ (p2−1)
n+1

)
,

c(p2) def=
(

δ (p2)
1 , δ (p2)

2 , δ (p2)
3 , . . . , δ (p2)

p2−1, −δ (p2)
p2 , δ (p2)

p2+1, . . . , δ (p2)
n+1

)
,

where δ (b)
ν > 0 for all 1 � ν � n+1 and 1 � b � p2 .

Now we define the (n+1)-tuple T = (T1, . . . ,Tn+1) by setting

Tν
def= Jrd

2,γ(1)
ν

⊕·· ·⊕ Jrd
2,γ(p1)

ν
⊕ Jrd

1,c
(1)
ν
· · ·⊕ Jrd

1,c
(p2)
ν

, 1 � ν � n+1. (6.4)

Recall that Γ = {γ(b)
ν } and C = {c(b)

ν } . The rest of this section is devoted to defining
the matrices Γ and C appropriately so that the resulting tuple T defined by (6.4) is
hypercyclic. We will henceforth just write T with the understanding that whenever Γ
and C are given matrices, T is defined by (6.4).

According to Lemma 4.3, the (n+1)-tuple T is hypercyclic if and only if we have

that {V(m,Γ,C) : m ∈ Nn+1
0 } = Rn . The following Lemma will help us simplify this

statement:

LEMMA 6.1. Let the matrices Γ and C be defined by (6.1) and (6.3) respectively.
Suppose that the set {V (2m,Γ,C : m ∈ Nn+1

0 } is dense in (R+×R)p1 × (R+)p2 , where

2m
def= (2m1, . . . ,2mn+1) . Then {V (m,Γ,C) : m ∈ Nn+1

0 } is dense in R2p1+p2 = Rn .

Proof. Let x = (x1, . . . ,xn)∈ Rn be given. We need to approximate x with vectors
of the form V (m,Γ,C) for a suitable sequence m = (m1, . . . ,mn+1) ∈ Nn+1

0 . Without
loss of generality we can assume that x j �= 0 for all 1 � j � n . We define the vector
σ = (σ1, . . .σn+1) ∈ Nn+1

0 as

σν
def=

{
1−sgn(xν )

2 , if 1 � ν � n,

0, if ν = n+1.
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We claim that there exists a sequence m = m(τ) such that V (2m(τ) + σ ,Γ,C) → x , as
τ → ∞ . Indeed we have that

V (2m+ σ ,Γ,C) =
(

(γ(1))2m(γ(1))σ ,
n+1

∑
ν=1

2mν

γ(1)
ν

+
n+1

∑
ν=1

σν

γ(1)
ν

,

...

(γ(p1))2m(γ(p1))σ ,
n+1

∑
ν=1

2mν

γ(p1)
ν

+
n+1

∑
ν=1

σν

γ(p1)
ν

,

(c(1))2m(c(1))σ , . . . ,(c(p2))2m(c(p2))σ
)

.

Consider now the vector y ∈ Rn defined as

y
def=
( x1

(γ(1))σ ,x2−
n+1

∑
ν=1

σν

γ(1)
ν

, . . . ,
x2p1−1

(γ(p1))σ ,x2p1 −
n+1

∑
ν=1

σν

γ(p1)
ν

,
x2p1+1

(c(1))σ , . . . ,
xn

(c(p2))σ

)
.

Setting

V1
def=
(
0,

n+1

∑
ν=1

σν

γ(1)
ν

, . . . ,0,
n+1

∑
ν=1

σν

γ(p1)
ν

,0,0, . . . ,0
)

and

V2
def=
(
(γ(1))σ ,1, . . . ,(γ(p1))σ ,1,(c(1))σ , . . . ,(c(p2))σ),

we see that

V (2m+ σ ,Γ,C) = V2 ◦V(2m,Γ,C)+V1 and x = V2 ◦ y+V1. (6.5)

Here we denote by u ◦ v the Hadamard product of u,v ∈ Rn : If u = (u1, . . . ,un) ,
v = (v1, . . . ,vn) , then

u ◦ v = (u1v1,u2v2, . . . ,unvn) ∈ Rn.

For any 1 � j � p1 we have that

y2 j−1 =
x j

(γ( j)
1 )σ1 · · ·(γ( j)

n+1)
σn+1

=
x j

(a( j)
1 )σ1 · · · (a( j)

j−1)
σ j−1(−a( j)

j )σ j (a( j+1)
j+1 )σ j+1 · · ·(−a( j)

n+1)
σn+1

=
(−1)σ j x j

(a( j)
1 )σ1 · · · (a( j)

n+1)
σn+1

=
|x j|

(a( j)
1 )σ1 · · · (a( j)

n+1)
σn+1

> 0.
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Similarly we can see that y j > 0 for all 2p1 + 1 � j � n . This shows that y ∈ (R+ ×
R)p1 × (R+)p2 and thus there is a sequence m(τ) such that V (2m(τ),Γ,C) → y as τ →
∞ . By (6.5) we have that

lim
τ→+∞

V (2m(τ) + σ ,Γ,C) = lim
τ→+∞

V2 ◦V(2m(τ),Γ,C)+V1 = V2 ◦ y+V1 = x. (6.6)

Since x ∈ Rn was arbitrary this concludes the proof of the lemma. �

Lemma 6.1 implies that in order to show that the (n+ 1)-tuple T is hypercyclic
it is enough to show that {V(2m,Γ,C) : m ∈ Nn+1

0 } is dense in (R+ ×R)p1 × (R+)p2 ,
where Γ and C are defined by equations (6.1) and (6.3) respectively. We can reformu-
late this to get a linear condition in m ∈ Nn+1

0 , like in Corollary 4.4. Indeed, observe
that the matrix L now becomes

L+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1 loga(1)

2 loga(1)
3 · · · loga(1)

p1−1 loga(1)
p1 loga(1)

p1+1 · · · loga(1)
n+1

−1/a(1)
1 1/a(1)

2 1/a(1)
3 · · · 1/a(1)

p1−1 1/a(1)
p1 1/a(1)

p1+1 · · · −1/a(1)
n+1

loga(2)
1 loga(2)

2 loga(2)
3 · · · loga(2)

p1−1 loga(2)
p1 loga(2)

p1+1 · · · loga(2)
n+1

1/a(2)
1 −1/a(2)

2 1/a(2)
3 · · · 1/a(2)

p1−1 1/a(2)
p1 1/a(2)

p1+1 · · · −1/a(2)
n+1

...
...

...
. . .

...
...

...
. . .

...

loga(p1)
1 loga(p1)

2 loga(p1)
3 · · · loga(p1)

p1−1 loga(p1)
p1 loga(p1)

p1+1 · · · loga(p1)
n+1

1/a(p1)
1 1/a(p1)

2 1/a(p1)
3 · · · 1/a(p1)

p1−1 −1/a(p1)
p1 1/a(p1)

p1+1 · · · −1/a(p1)
n+1

logδ (1)
1 logδ (1)

2 logδ (1)
3 · · · logδ (1)

p1−1 logδ (1)
p1 logδ (1)

p1+1 · · · logδ (1)
n+1

...
...

...
. . .

...
...

...
. . .

...

logδ (p2)
1 logδ (p2)

2 logδ (p2)
3 · · · logδ (p2)

p1−1 logδ (p2)
p1 logδ (p2)

p1+1 · · · logδ (p2)
n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a(b) and δ (b) have all their entries positive. We then have the desired inverse of
Corollary 4.4:

PROPOSITION 6.2. Suppose that the set {L+mT : m ∈ Nn+1
0 } is dense in Rn .

Then T is hypercyclic.

Proof. Indeed, assuming that the set {L+mT : m ∈ Nn+1
0 } is dense in Rn we im-

mediately conclude that the set {V(2m,Γ,C) : m ∈ Nn+1
0 } is dense in (R+ ×R)p1 ×

(R+)p2 . To see this note that, for any 1 � b � p1 , the set

{
2

n+1

∑
ν=1

mν loga(b)
ν , (m1, . . . ,mn+1) ∈ Nn+1

0

}
,

is dense in R if and only if the set

{
(a(b)

1 )2m1 · · · (a(b)
n+1)

2mn+1 , (m1, . . . ,mn+1) ∈ Nn+1
0

}
,
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is dense in R+ . However this is the same as saying that the set

{
(γ(b)

1 )2m1 · · ·(γ(b)
n+1)

2mn+1 , (m1, . . . ,mn+1) ∈ Nn+1
0

}
,

is dense in R+ since |γ(b)
ν | = a(b)

ν > 0 for all choices of ν and b . We reason simi-

larly for the c(b)
ν ’s for 1 � b � p2 . However, by Lemma 6.1 this implies that the set

{V(m,Γ,C) : m ∈ Nn+1
0 } is dense in Rn . By Lemma 4.3 we then get that T is hyper-

cyclic. �

We will now construct the matrix L+ so that {L+mT : m ∈ Nn+1
0 } = Rn . To that

end it will be helpful to consider the n+1 vectors u1, . . . ,un+1 ∈ Rn which are just the
corresponding columns of the n× (n+1) matrix L+ . That is we have:

u1
def=
(

loga(1)
1 ,− 1

a(1)
1

, loga(2)
1 ,

1

a(2)
1

, loga(3)
1 ,

1

a(3)
1

, . . . , loga(p1)
1 ,

1

a(p1)
1

, logδ (1)
1 ,

. . . , logδ (p1)
1

)
, (6.7)

u2
def=
(

loga(1)
2 ,

1

a(1)
2

, loga(2)
2 ,− 1

a(2)
2

, loga(3)
2 ,

1

a(3)
2

, . . . , loga(p1)
2 ,

1

a(p1)
2

, logδ (1)
2 ,

. . . , logδ (p1)
2

)
, (6.8)

... (6.9)

up1

def=
(

loga(1)
p1 ,

1

a(1)
p1

, loga(2)
p1 ,

1

a(2)
p1

, loga(3)
p1 ,

1

a(3)
p1

, . . . , loga(p1)
p1 ,− 1

a(p1)
p1

, logδ (1)
p1 ,

. . . , logδ (p1)
p1

)
, (6.10)

...

un+1
def=
(

loga(1)
n+1,−

1

a(1)
n+1

, loga(2)
2 ,− 1

a(2)
n+1

, . . ., loga(p1)
n+1 ,−

1

a(p1)
n+1

, logδ (1)
n+1, . . ., logδ (p1)

n+1

)
.

(6.11)

The heart of the proof is the following theorem:

THEOREM 6.3. For a positive integer n � 3 , let p1 � 1 and p2 � 0 be non-

negative integers such that n = 2p1 + p2 . Then there exist real numbers a(b)
ν > 0 ,

1 � b � p1 , 1 � ν � n+1 and δ (b)
ν > 0 , 1 � b � p2 , 1 � ν � n+1 , such that, if we

define the vectors u1,u2, . . . ,un+1 by (6.9), the following conditions are satisfied:

(i) The vectors u1, . . . ,un are linearly independent over R .
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(ii) There exist positive irrational numbers c1, . . . ,cn such that

un+1 = −
n

∑
ν=1

cνuν .

We conclude that

(iii) Any n of the vectors u1, . . . ,un,un+1 are R-linearly independent.

(iv) The vectors u1, . . . ,un,un+1 are Q -linearly independent.

Before giving the proof, let us see how we can use Theorem 6.3 in order to prove
Theorem 1.9.

Proof of Theorem 1.9. Because of Proposition 6.2, the proof of Theorem 1.9 re-
duces to showing that the set {L+mT : m ∈ Nn+1

0 } is dense in Rn+1 . By the definition
of the vectors u1, . . . ,un+1 this is equivalent to showing that the set

{L+mT : m ∈ Nn+1
0 } = {m1u1 + · · ·+mn+1un+1 : (m1, . . . ,mn+1) ∈ Nn+1

0 },
is dense in Rn . That is, we need to show that any x∈ Rn can be approximated by linear
combinations of the vectors u1, . . . ,un+1 with coefficients in N . To that end, we fix a
x ∈ Rn and ε > 0. We write x in the form

x = R1u1 + · · ·Rnun + r1u1 · · ·+ rnun, (6.12)

where R1, . . . ,Rn ∈ Z and r1, . . . ,rn ∈ [0,1) . From Kronecker’s theorem (see for ex-
ample [7]) and (iv) of Theorem 6.3 it follows that the sequence Nun+1 is dense in
Rn/(Zu1 + · · ·+Zun) . So, we can find arbitrarily large � ∈ N such that

�un+1 = R′
1u1 + · · ·+R′

nun + r′1u1 + · · ·+ r′nun, (6.13)

where R′
ν ∈ Z and r′ν ∈ (0,1) for all 1 � ν � n , and

|rν − r′ν | <
ε

∑n
ν=1 ‖uν‖ , for all 1 � ν � n. (6.14)

Now condition (ii) of Theorem 6.3 implies that R′
ν < 0 for all 1 � ν � n . In fact we

can make the coefficients R′
ν as negative as we please by taking larger values of � . Let

us now write

x′ def= �un+1 +(R1−R′
1)u1 + · · ·+(Rn−R′

n)un, (6.15)

where we make sure that the coefficients Rν −R′
ν > 0 for all 1 � ν � n by taking �∈N

as large as necessary. We then have

‖x− x′‖ =
∥∥∥ n

∑
ν=1

(rν − r′ν)uν

∥∥∥ �
n

∑
ν=1

|rν − r′ν | ‖uν‖ < ε. (6.16)

Since x′ is a linear combination of u1, . . . ,un+1 with coefficients in N we are done. �

In order to organize the proof of Theorem 6.3 we need two additional technical
lemmas.
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LEMMA 6.4. Let δ1,δ2 > 0 . For any c > 0 the non-linear equation

xc+1 − δ1x− δ2c = 0,

has a unique positive solution x = x(c) . We have that limc→+∞ x(c) = 1 .

Proof. First observe that the function f (x) = xc+1 − δ1x− δ2c is continuously

differentiable in x ∈ R+ and satisfies f (δ
1
c

1 ) = −δ2c < 0 and f (x) > 0 for x large.

Thus there is at least one xo ∈ R+ , xo > (δ1)
1
c such that f (xo) = 0. Looking at the

derivative of f , f ′(x) = (c+ 1)xc − δ1 we see that f has exactly one critical point at

x1 =
( δ1

c+1

) 1
c < xo . The function f is negative for 0 < x � x1 and strictly increasing

for x > x1 thus the solution xo is unique. We can define then the function x(c) to be
this unique solution.

In order to prove that the function x = x(c) has a limit as c → +∞ we argue as

follows. First observe that for any c > 0 we have that f ((δ2c)
1

c+1 ) = −δ1(δ2c)
1

c+1 < 0.

On the other hand, for any A > δ2 we have that f ((Ac)
1
c ) = (Ac)

1
c (A− δ2

(Ac)
1
c
)c−

δ1(Ac)
1
c → +∞ as c → +∞ . We thus see that for c large enough, we have that

(δ2c)
1

c+1 < x(c) < (Ac)
1
c . Letting c → +∞ we conclude that limc→+∞ x(c) = 1. �

In the following Lemma we give the basic construction which is ‘half-way there’
to get the vectors u1, . . . ,un+1 we need in Theorem 6.3. For this, the following notation
will be useful. For any positive integer n � 2 and positive integers p1 � 1 and p2 � 0
such that n = 2p1 + p2 , we consider the matrix L̃(p1, p2) as follows

L̃(p1, p2)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1

−1

a
(1)
1

loga(2)
1

1

a
(2)
1

· · · loga(p1)
1

1

a
(p1)
1

logδ (1)
1 · · · logδ (p2)

1

loga(1)
2

1

a(1)
2

loga(2)
2

−1

a(2)
2

· · · loga(p1)
2

1

a
(p1)
2

logδ (1)
2 · · · logδ (p2)

2

...
...

...
...

. . .
...

...
...

. . .
...

loga(1)
p1

1

a
(1)
p1

loga(2)
p1

1

a
(2)
p1

· · · loga(p1)
p1

−1

a
(p1)
p1

logδ (1)
p1 · · · logδ (p2)

p1

loga(1)
p1+1

1

a(1)
p1+1

loga(2)
p1+1

1

a(2)
p1+1

· · · loga(p1)
p1+1

1

a
(p1)
p1+1

logδ (1)
p1+1 · · · logδ (p2)

p1+1

...
...

...
...

. . .
...

...
...

. . .
...

loga(1)
n−1

1

a
(1)
n−1

loga(2)
n−1

1

a
(2)
n−1

· · · loga(p1)
n−1

1

a
(p1)
n−1

logδ (1)
n−1 · · · logδ (p2)

n−1

loga(1)
n

1

a
(1)
n

loga(2)
n

1

a
(2)
n

· · · loga(p1)
n

1

a
(p1)
n

logδ (1)
n · · · logδ (p2)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where a(b)
ν > 0 for all 1 � ν � n , 1 � b � p1 , and similarly δ (b)

ν > 0 for 1 � ν � n
and 1 � b � p2 . Observe that the value p2 = 0 is allowed, in which case, there are no
logδ (b)

ν terms. We also define the closely related matrix L̃o(p1, p2) which is the special

case of L̃(p1, p2) if we set a(b)
n = 1 for all 1 � b � p1 and δ (b)

n = 1 for all 1 � b � p2 .
That is we have
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L̃o(p1, p2)
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1

−1

a(1)
1

loga(2)
1

1

a(2)
1

· · · loga(p1)
1

1

a
(p1)
1

logδ (1)
1 · · · logδ (p2)

1

loga(1)
2

1

a(1)
2

loga(2)
2

−1

a(2)
2

· · · loga(p1)
2

1

a
(p1)
2

logδ (1)
2 · · · logδ (p2)

2

...
...

...
...

. . .
...

...
...

. . .
...

loga(1)
p1

1

a
(1)
p1

loga(2)
p1

1

a
(2)
p1

· · · loga(p1)
p1

−1

a
(p1)
p1

logδ (1)
p1 · · · logδ (p2)

p1

loga(1)
p1+1

1

a
(1)
p1+1

loga(2)
p1+1

1

a
(2)
p1+1

· · · loga(p1)
p1+1

1

a
(p1)
p1+1

logδ (1)
p1+1 · · · logδ (p2)

p1+1

...
...

...
...

. . .
...

...
...

. . .
...

loga(1)
n−1

1

a
(1)
n−1

loga(2)
n−1

1

a
(2)
n−1

· · · loga(p1)
n−1

1

a
(p1)
n−1

logδ (1)
n−1 · · · logδ (p2)

n−1

0 1 0 1 · · · 0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With this notation, we have the following Lemma:

LEMMA 6.5. Let n � 2 be a positive integer and p1 � 1 and p2 � 0 be non-

negative integers such that n = 2p1 + p2 . Then there exist a(b)
ν > 0 for 1 � ν � n−

1 , 1 � b � p1 , and δ (b)
ν > 0 for 1 � ν � n− 1 , 1 � b � p2 (if p2 �= 0 ), such that

det(L̃o(p1, p2)) �= 0 .

Proof. We will prove the Lemma by induction on n . For each such n we have
to consider all possible combinations of p1 � 1 and p2 � 0 such that n = 2p1 + p2 ,
and this will be reflected in the inductive hypothesis. The first step of the induction is
obvious. Indeed, for n = 2 we necessarily have that p1 = 1 and p2 = 0. Then we need

to show that there exists a choice of a(1)
1 such that the matrix

L̃o(1,0) =
(

loga(1)
1 −1/a(1)

1
0 1,

)
,

has non-zero determinant. However this is the case for any a(1)
1 �= 1.

Now assume the conclusion of the Lemma is true for n− 1. There are two cases
we need to consider depending on whether p2 = 0 or p2 � 1. First we consider the case
n = 2p1 + p2 where p1, p2 � 1. Since 2p1 +(p2−1) = n−1 and p2−1 � 0, we can
use the inductive hypothesis to get a matrix L̃o(p1, p2 −1) with non-zero determinant.

We need to construct L̃o(p1, p2) . Let a(b)
ν , 1 � ν � n− 2, 1 � b � p1 and δ (b)

ν ,
1 � ν � n− 2, 1 � b � p2 − 1, be defined as the corresponding entries of the matrix

L̃o(p1, p2−1) . We give arbitrary positive values to δ (p2)
ν for all 1 � ν � n−2 as well

as to a(b)
n for all 1 � b � p1 and to δ (b)

n for 1 � b � p2−1. Schematically we have
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L̃o(p1, p2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1

−1

a
(1)
1

· · · loga(p1)
1

1

a
(p1)
1

logδ (1)
1 · · · logδ (p2−1)

1 log∗
loga(1)

2
1

a
(1)
2

· · · loga(p1)
2

1

a
(p1)
2

logδ (1)
2 · · · logδ (p2−1)

2 log∗
...

...
. . .

...
...

...
. . .

...
...

loga(1)
p1

1

a
(1)
p1

· · · loga(p1)
p1

−1

a
(p1)
p1

logδ (1)
p1 · · · logδ (p2−1)

p1 log∗
loga(1)

p1+1
1

a(1)
p1+1

· · · loga(p1)
p1+1

1

a
(p1)
p1+1

logδ (1)
p1+1 · · · logδ (p2−1)

p1+1 log∗
...

...
. . .

...
...

...
. . .

...
...

loga(1)
n−2

1

a(1)
n−2

· · · loga(p1)
n−2

1

a
(p1)
n−2

logδ (1)
n−2 · · · logδ (p2−1)

n−2 log∗
log∗ 1/∗ · · · log∗ 1/∗ log∗ · · · log∗ logδ (p2)

n−1
0 1 · · · 0 1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the wildcards ‘*’ denote arbitrary positive choices. Now all the entries of

L̃o(p1, p2) are defined except for logδ (p2)
n−1 which we will now choose as follows. De-

veloping the determinant of L̃o(p1, p2) with respect to the elements of the (n− 1)-st
row, we readily see that we can express it in the form

det L̃o(p1, p2) = A+ logδ (p2)
n−1 det(L̃o(p1, p2,−1)), (6.17)

where A is a constant that does not depend on δ (p2)
n−1 but depends on all the other en-

tries of the matrix which we have already fixed. Since det(L̃o(p1, p2 − 1)) �= 0 by the

inductive hypothesis, there is always a choice of δ (p2)
n−1 such that the right hand side of

(6.17) is non-zero so we are done in this case.
Turning to the case p2 = 0, that is n = 2p1 , we need to construct the matrix

L̃o(p1,0) with the desired structure and non-zero determinant. Here the inductive hy-
pothesis implies the existence of a matrix L̃o(p1 −1,1) with non zero determinant:

L̃o(p1 −1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1

−1

a(1)
1

· · · loga(p1−1)
1

1

a
(p1−1)
1

logδ (1)
1

loga(1)
2

1

a
(1)
2

· · · loga(p1−1)
2

1

a
(p1−1)
2

logδ (1)
2

...
...

. . .
...

...
...

loga(1)
p1−1

1

a(1)
p1−1

· · · loga(p1−1)
p1−1

−1

a
(p1−1)
p1−1

logδ (1)
p1−1

loga(1)
p1

1

a
(1)
p1

· · · loga(p1−1)
p1

1

a
(p1−1)
p1

logδ (1)
p1

loga(1)
p1+1

1

a
(1)
p1+1

· · · loga(p1−1)
p1+1

1

a
(p1−1)
p1+1

logδ (1)
p1+1

...
...

. . .
...

...
...

loga(1)
n−2

1

a
(1)
n−2

· · · loga(p1−1)
n−2

1

a
(p1−1)
n−2

logδ (1)
n−2

0 1 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We define a(b)
ν as the corresponding entries of L̃o(p1 − 1,1) for 1 � ν � n− 2 and

1 � b � p1 − 1. We also define a(p1)
ν = δ (1)

ν for 1 � ν � n− 2. Finally we give

arbitrary positive values to a(b)
n for all 1 � b � p1 − 1. This defines all entries of

L̃o(p1−1,1) except the two rightmost entries on the (n−1)-st row. These are defined

by the positive number a(p2)
n−1 which we will choose now. The matrix L̃o(p1,0) has the

following structure:

L̃o(p1,0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

loga(1)
1

−1

a(1)
1

· · · loga(p1−1)
1

1

a
(p1−1)
1

logδ (1)
1

1

δ (1)
1

loga(1)
2

1

a(1)
2

· · · loga(p1−1)
2

1

a
(p1−1)
2

logδ (1)
2

1

δ (1)
2

...
...

. . .
...

...
...

...

loga(1)
p1−1

1

a
(1)
p1−1

· · · loga(p1−1)
p1−1

−1

a
(p1−1)
p1−1

logδ (1)
p1−1

1

δ (1)
p1−1

loga(1)
p1

1

a
(1)
p1

· · · loga(p1−1)
p1

1

a
(p1−1)
p1

logδ (1)
p1

−1

δ (1)
p1

loga(1)
p1+1

1

a
(1)
p1+1

· · · loga(p1−1)
p1+1

1

a
(p1−1)
p1+1

logδ (1)
p1+1

1

δ (1)
p1+1

...
...

. . .
...

...
...

...

loga(1)
n−2

1

a
(1)
n−2

· · · loga(p1−1)
n−2

1

a
(p1−1)
n−2

logδ (1)
n−2

1

δ (1)
n−2

log∗ 1/∗ · · · log∗ 1/∗ loga(p1)
n−1 1/a(p1)

n−1
0 1 · · · 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where again the wildcards ‘*’ denote arbitrary but fixed choices of positive real num-
bers. We develop the determinant of L̃o(p1,0) with respect to the elements of the
(n−1)-st row. We easily see that we have

det(L̃o(p1,0)) = A+B loga(p1)
n−1 +1/a(p1)

n−1 det(L̃o(p1−1,1)), (6.18)

where the constants A,B are fixed real numbers that depend on all the entries of L̃o(p1,0)
except a(p1)

n−1 . Again, since det(L̃o(p1 −1,1)) �= 0 by the inductive hypothesis, no mat-

ter what the value of the constants A,B is, there is always a choice of a(p1)
n−1 > 0 that

makes the right hand side of (6.18) non-zero. This completes the proof. �

REMARK 6.6. We showed in Lemma 6.5 that there is a choice of a(b)
ν , 1 � ν �

n−1, 1 � b � p1 , and δ (b)
ν for 1 � ν � n−1, 1 � b � p2 , such that det(L̃o(p1, p2))

is non-zero. However, if we consider det(L̃o(p1, p2)) as a function of the entries

a(b)
ν ,δ (b)

ν , we see this is a real-analytic function in (R+)(p1+p2)(n−1) . We conclude
that the set {det(L̃o(p1, p2)) = 0} is a closed set which has zero (p1 + p2)(n− 1)-
dimensional Lebesgue measure. See for example [12]. This means that for any dimen-
sion n and any choice of p1 � 1 and p2 � 0 with n = 2p1 + p2 , there are ‘generic’

choices of a(b)
ν ,δ (b)

ν such that the matrix L̃o(p1, p2) is invertible.
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Proof of Theorem 6.3. We will prove the Theorem based on the construction of
Lemma 6.5. The conclusions (iii) and (iv) of the Theorem are easy consequences of (i)
and (ii) so we will accept them with no further comment. Let n and p1 � 1, p2 � 0,
be given non-negative integers such that n = 2p1 + p2 . We need to define the vectors
u1,u2, . . . ,un,un+1 ∈Rn of the form (6.9), with u1, . . . ,un linearly independent over R ,
as well as positive irrational constants c1, . . . ,cn such that

un+1 = −
n

∑
ν=1

cνuν . (6.19)

We will choose the vectors u1, . . . ,un to be the rows of an appropriately constructed
matrix L̃(p1, p2) . To that end, we consider the matrix L̃(p1, p2) whose first n−1 rows
are defined as the corresponding n− 1 rows of L̃o(p1, p2) provided by Lemma 6.5.
We first give arbitrary positive irrational values to the constants c1, . . . ,cp1 . Then we
choose the constants cp1+1, . . . ,cn−1 in R+ \Q so that

n−1

∑
ν=p1+1

cν

a(b)
ν

−
p1

∑
ν=1

cν

a(b)
ν

> 0, (6.20)

for all 1 � b � p1 . Observe that this is always possible when p1 + p2 � 2 since there
are at least n−1− (p1 +1)+1 = p1 + p2−1 � 1 ‘free choices’ in the first term of the
above expression. Actually this is the only point where we have to consider n � 3. The
value of cn we leave undetermined for now.

We define the auxiliary variables

1

ã(b)
n+1

def=
n−1

∑
ν=1
ν �=b

cν

a(b)
ν

− cb

a(b)
b

, 1 � b � p1,

and

log
1

â(b)
n+1

def=
n−1

∑
ν=1

cν loga(b)
ν . (6.21)

Similarly, if p2 �= 0 we define

1

δ̃ (b)
n+1

def=
n−1

∑
ν=1

cν

δ (b)
ν

, 1 � b � p2,

and

log
1

δ̂ (b)
n+1

def=
n−1

∑
ν=1

cν logδ (b)
ν , 1 � b � p2.

Observe that by definition â(b)
n+1 > 0 for all 1 � b � p1 and δ̃ (b)

n+1, δ̂
(b)
n+1 > 0 for all

1 � b � p2 . We also have that

1

ã(b)
n+1

=
n−1

∑
ν=1
ν �=b

cν

a(b)
ν

− cb

a(b)
b

�
n−1

∑
ν=p1+1

cν

a(b)
ν

−
p1

∑
ν=1

cν

a(b)
ν

> 0,
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by (6.20).

Now we define un . For cn > 0 and for each 1 � b � p1 , we define a(b)
n = a(b)

n (cn)
to be the unique positive solution of the non-linear equation

(a(b)
n )cn+1− â(b)

n+1

ã(b)
n+1

a(b)
n − â(b)

n+1cn = 0, 1 � b � p1, (6.22)

as a function of cn . Similarly, for each 1 � b � p2 we define δ (b)
n = δ (b)

n (cn) to be the
unique solution of the non-linear equation

(δ (b)
n )cn+1 − δ̂ (b)

1

δ̃ (b)
n+1

δ (b)
n − δ̂ (b)

n+1cn = 0, 1 � b � p2, (6.23)

again as a function of cn . In order to define these solutions, we rely on Lemma 6.4.

REMARK 6.7. A few words are necessary to justify the definitions (6.22) and

(6.23). Observe, for example, that we need to define the numbers cn and a(b)
n so that

condition (6.19) is satisfied. For any 1 � b � p1 , (6.19) reads:

log
1

a(b)
n+1

=
n

∑
ν=1

cν loga(b)
ν =

n−1

∑
ν=1

cν loga(b)
ν + cn loga(b)

n = log
1

â(b)
n+1

+ cn loga(b)
n

(6.24)

= log
(a(b)

n )cn

â(b)
n+1

, (6.25)

and

1

a(b)
n+1

=
n−1

∑
ν=1
ν �=b

cν

a(b)
ν

− cb

a(b)
b

+
cn

a(b)
n

=
1

ã(b)
n+1

+
cn

a(b)
n

. (6.26)

Combining (6.24) and (6.26) we conclude that cn and a(b)
b must satisfy (6.22). On the

other hand, for 1 � b � p2 , equation (6.19) gives

log
1

δ (b)
n+1

=
1

δ̃ (b)
n+1

+
cn

δ (b)
n

(6.27)

Technically speaking, it is enough to take arbitrary values for δ (b)
n and define δ (b)

n+1

exactly by (6.27). However, we prefer to define δ (b)
n+1 again by the more restrictive

non-linear equation (6.23) for consistency.

For each cn > 0, the matrix L̃(p1, p2) is defined in all its entries. We consider
det(L̃(p1, p2)) as a function of cn . Suppose that we have det(L̃(p1, p2))(cn) = 0 for
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all irrational cn > 0. In this case there is a sequence of irrational cn → +∞ for which
we have that limcn→+∞ det(L̃(p1, p2))(cn) = 0. However, according to Lemma 6.4, we
have that

lim
cn→+∞

a(b)
n (cn) = 1, 1 � b � p1,

and

lim
cn→+∞

δ (b)
n (cn) = 1, 1 � b � p2.

But this means that

0 = lim
cn→+∞

det(L̃(p1, p2))(cn) = det(L̃o(p1, p2)),

which is a contradiction since we have chosen L̃o(p1, p2) so that its determinant is non-
zero. We conclude that for large enough irrational and positive cn , the matrix L̃(p1, p2)
has non-zero determinant. This means that its rows, the vectors u1, . . . ,un , are linearly
independent over R .

Finally, we define a(b)
n+1 , 1 � b � p1 , exactly by the desired property (6.19):

1

a(b)
n+1

def=
n

∑
ν=1
ν �=b

cν

a(b)
ν

− cb

a(b)
b

=
n−1

∑
ν=1
ν �=b

cν

a(b)
ν

− cb

a(b)
b

+
cn

a(b)
n

=
1

ã(b)
n+1

+
cn

a(b)
n

> 0. (6.28)

Similarly, we define δ (b)
n+1 , 1 � b � p2 , as

1

δ (b)
n+1

def=
n

∑
ν=1

cν

δ (b)
ν

. (6.29)

It remains to check the validity of (6.19). We have for every 1 � b � p1 , that

log
1

a(b)
n+1

= log

(
1

ã(b)
n+1

+
cn

a(b)
n

)
= log

(
(a(b)

n+1)
cn+1

â(b)
n+1

)
,

where in the last equality we have used the definition of a(b)
n+1 , equation (6.22). Now,

using the definition of â(b)
1 in equation (6.21), we get

loga(b)
n+1 = −cn+1 loga(b)

n+1 + log â(b)
n+1 = −cn+1 loga(b)

n+1−
n+1

∑
ν=2

cν loga(b)
ν

= −
n+1

∑
ν=2

cν loga(b)
ν .

A similar calculation for 1 � b � p2 shows that logδ (b)
1 = −∑n+1

ν=2 cν logδ (b)
ν . This to-

gether with definitions (6.28) and (6.29) shows that un+1 =−∑n
ν=1 cνuν and completes

the proof of the Theorem. �
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6.2. The proof in the case n = 2 .

Here we have that p1 = 1 and p2 = 0. We define the vector

γ(1) def= (a(1)
1 ,a(1)

2 ,−a(1)
3 ), (6.30)

where a(1)
ν > 0 for 1 � ν � 3. We define the triple of matrices J = (J1,J2,J3) by means

of

Jν
def= Jrd

2,γ(1)
ν

=

(
γ(1)

ν 1

0 γ(1)
ν

)
, 1 � ν � 3.

With Γ = {γ(1)
ν } , Lemma 4.3 says that J is hypercyclic if and only if {V (m,Γ) : m ∈ N3}

= R2 . Recall that for m ∈ N3

V (m,Γ) =

⎛
⎝(γ(1))m,

3

∑
ν=1

mj

γ(1)
j

⎞
⎠ .

We have the analogue of Lemma 6.1 whose proof we omit.

LEMMA 6.8. Suppose that the set {V (2m,Γ) : m∈N3} is dense in R+×R . Then
{V(2m+1,Γ) : m ∈ N3} is dense in R−×R . We conclude that the set {V (m,Γ) : m ∈
N3} is dense in R2 .

Consider the matrix L+ ,

L+ =

(
loga(1)

1 loga(1)
2 loga(1)

3

1/a(1)
1 1/a(1)

2 −1/a(1)
3

)
.

Observe that in order to show that the set V (2m,Γ) is dense in R+ ×R , it is enough
to show that {L+mT : m ∈ N3} is dense in R2 . We define the vectors u1,u2,u3 as the
corresponding columns of L+ ,

u1
def=

(
loga(1)

1 ,
1

a(1)
1

)
,

u2
def=

(
loga(1)

2 ,
1

a(1)
2

)
, (6.31)

u3
def=

(
loga(1)

3 ,
−1

a(1)
3

)
.

We have the analogue of Theorem 6.3 which again is the main part of the proof.

THEOREM 6.9. There exist real numbers a(1)
ν > 0 , 1 � ν � 3 such that, if we

define the vectors u1,u2,u3 by (6.31), the following conditions are satisfied:
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(i) The vectors u1,u2 are linearly independent over R .

(ii) There exist positive irrational numbers c1,c2 such that u3 =−(c1u1 +c2u2) .

We conclude that

(iii) Any 2 of the vectors u1,u2,u3 are R-linearly independent.

(iv) The vectors u1,u2,u3 are Q -linearly independent.

Using theorem 6.9, we can conclude the proof of Theorem 1.9 for R2 just like in
the proof of the case n � 3. We will only describe how one proves Theorem 6.3, giving
an argument very close to the one given in the proof of Theorem 6.3.

Proof of Theorem 6.9. Consider the matrix

L̃o(1,0) =
(

loga(1)
1 1/a(1)

1
0 1,

)
,

where a(1)
1 �= 1. Obviously we then have det(L̃o(1,0)) �= 0. We give an arbitrary

positive and irrational value to the constant c1 . Now for every c2 > 0 we define a(1)
2 =

a(1)
2 (c2) as the unique solution of the non-linear equation

(a(1)
2 )c2+1 − c1

(a(1)
1 )c1+1

a(1)
2 − 1

(a(1)
1 )c1

c2 = 0, (6.32)

as a function of c2 . This is possible because of Lemma 6.4. The same Lemma also

gives that lim c2→+∞
c2∈R+\Q

a(1)
2 (c2) = 1. Therefore the matrix

L̃(1,0) =

(
loga(1)

1 1/a(1)
1

loga(1)
2 1/a(1)

2

)
,

satisfies

lim
c2→+∞

c2∈R+\Q

det(L̃(1,0)) = det(L̃o(1,0)) �= 0.

Choosing c2 large enough in R+ \Q we get that the vectors u1,u2 are linearly inde-
pendent over R . Now we define

1

a(1)
3

def=
c1

a(1)
1

+
c2

a(1)
2

.

It remains to check the validity of u3 = −(c2u2 + c3u3) . For this observe that

log
1

a(1)
3

= log

(
c1

a(1)
1

+
c2

a(1)
2

)
= log

(
(a(1)

1 )c1+1(a(1)
2 )c2+1

a(1)
1 a(1)

2

)
= c1 loga(1)

1 + c2 loga(1)
2 ,

where the second equality is due to the non-linear equation (6.32). �
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Av. Rovisco Pais
1049-001 Lisboa

Portugal
e-mail: ioannis.parissis@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


