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A NOTE ON JORDAN DERIVABLE LINEAR MAPS
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(Communicated by N.-C. Wong)

Abstract. Let H be a complex Hilbert space and let & be a linear map which is Jordan derivable
at a given idempotent P € B(H) in the sense that §(A%) = §(A)A +A8(A) holds for all A with
A% =P If P has infinite rank and co-rank, then we prove that the restriction of & to B(ImP) is
an inner derivation and the restriction to B(Ker P) is a sum of inner derivation and multiplication
by a scalar. We give an example that this is not necessarily true when rank and co-rank of P are
finite.

1. Introduction and statement of the result

Let o« = B(H) be an algebra of bounded operators on a complex Hilbert space
H. Recall that a linear map 6 from ./ into itself is called a derivation if §(AB) =
O0(A)B+Ad(B) for all A,B € o/. More generally, d is called a Jordan derivation
if 5(A%) = §(A)A+AS(A) for all A€ /. On B(H) this is equivalent to §(AB +
BA) = 0(A)B4+AS(B)+ 8(B)A+BO(A) for all A,B € o7, which some authors use
as a definition of a Jordan derivation (see, e.g., [2]). More on derivations and Jordan
derivations can be found in, e.g., [1, 2].

Recently, conditions which automatically yield derivability of a map were investi-
gated (see, e.g., [3, 8, 9] and references therein). It is the aim of this paper to consider a
similar problem for linear maps which are Jordan derivable only at some point. Corre-
sponding to the above two equivalent definitions of Jordan derivations, we can say that:
(1) & is Jordan derivable at some point Z € </ if §(A%) = §(A)A+AS(A) holds for
any A € &/ with A2=1Z, or alternatively, we can say that: (2) 0 is Jordan derivable at
some point Z € &7 if §(AB+ BA) = 6(A)B+ Ad(B) + 6(B)A + BO(A) holds for any
A,B € o/ with AB+ BA = Z. Observe that if § satisfies (2) then it also satisfies (1) by
inserting B =A/2. It is easy to see that the two definitions are not equivalent, take for

_1
example Z = (}9). &: @;1 ﬁ;i) = (p42), and A = ( %211 _I%I), B= (13 . So
condition (1) is less restrictive than (2).

By now, the majority of the papers on the subject used definition (2), see, e.g., [4]
and the references therein. However, less is known for the maps satisfying (1). In case
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H is an infinite-dimensional Hilbert space it was proved in [5, Theorem 2.6] that every
linear map &: B(H) — B(H) which is Jordan derivable at identity operator I, in the
sense of definition (1), is an inner derivation, that is, there exists some 7 € B(H) such
that §(X) = [T,X] forall X € B(H). Here [T,X] =TX —XT is a Lie product.

It is our aim to generalize this theorem to idempotents, i.e., operators P with
P? = P, having infinite rank and corank in place of identity. The following is our main
result.

THEOREM 1.1. Let P € B(H) be an idempotent with infinite rank and co-rank.
Then a linear map &: B(H) — B(H) is Jordan derivable at P (that is, §(A?) =
5(A)A+AS(A) whenever A* = P) if and only if there exists an operator T € B(H), a
scalar A € C, and a linear map f: B(H) — B(H) such that

8(A) = [T, A]+A(I— P)A(I—P) + f(PA(I—P))+ f((I— P)AP)
forall Ac B(H).

Before proving Theorem 1.1 let us first show that on finite-dimensional spaces this
might not be true.

EXAMPLE 1.2. Let H be a complex Hilbert space C* with a standard basis of
column vectors {ej,ez,e3}. Then B(H) can be identified with the space M3 of 3 x 3
complex matrices. For an arbitrary vector x € C> we denote by x* the transpose and
conjugation of x. Then e;e’; € M3 is a rank one matrix with 1 at (i, j)-th place, and
with zeros everywhere else. Let §: B(H) — B(H) be a linear map defined by

O(ere]) = —2eze];
O(erey) = —2e3el;
O(e1e3) = Iz — 2ezes;
O(eiet) =0 otherwise.

~

The only square-zero matrices from M3 are of rank at most one. So, if R € M3 is a
square-zero matrix, then it can be written as R = (Y aje;) (X Bje;)*, where Tr(R) =
206,‘[3,‘ =0. Then

S(R)R+RS(R) = —204Tr (R)es (X, Bje;) =0,
and so 0 is Jordan derivable at an idempotent P = 0. However
O(e1e3) = I3 — 2e3e3,

which is not a trace-zero operator. So 6 is not of the form X — [T, X]+AX + f(PA(I —
P))+ f((I— P)AP) no matter what the operator T and the scalar A we choose.
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2. Proofs

Throughout this section H is an infinite dimensional complex Hilbert space and
6: B(H) — B(H) is a linear map Jordan derivable at some point in the sense of defi-
nition (1). Let us first state the result from [6, Theorem 4.2] which we will use in the
sequel.

LEMMA 2.1. Let F(H) C B(H) be the space of all finite-rank operators and let
0,t: F(H)— B(H) be linear mappings such that §(P) = §(P)P+ Pt(P) and t©(P) =
T(P)P + Pt(P) for any idempotent P € F(H). Then there exist S,T € B(H) such that
O0(A) =TA —AS forevery A€ F(H).

The next lemma is a slight generalization of [5, Corollary 2.3].

LEMMA 2.2. If 6: B(H) — B(H) is Jordan derivable at O, then there exist an
operator T € B(H) and a scalar A so that

O0(A)=[T,A]+AA for all A€ B(H).
Sketch of the proof. By the assumption, & satisfies
8(N?) = 8(N)N+NG&(N) forany N € B(H) with N> =0. (1)

Similarly as in Step 1 of the proof of [5, Theorem 2.2], we obtain, for any idempotent
P with infinite range and co-range, that

28(P) = 28(P)P +2P8(P) — PS(I) — S(I)P.

Multiplying by P from the left and then from the right and comparing the two results,
we see that P& (I) = 0(I)P, wherefrom

8(P) = 8(P)P+ PS(P) — PS(I)P. 2)

In the same way as in Steps 2—4 of the proof of [5, Theorem 2.2], we see that (2) holds
for any idempotent P.

Let 7: B(H) — B(H) be a map, defined by 7(X) = 6(X) —6(I)X forall X €
B(H). Then by (2), 7 and § satisfy the conditions in Lemma 2.1. Hence there exist
S,T € B(H) such that

S(A)=TA—AS, AcF(H). 3)

In particular, given any rank-one idempotent P, we have §(P) = TP — PS. And by (2),
we obtain TP—PS = (TP—PSP)+ (PTP—PS)—P5(I)P. Hence P(T—S—6(I))P=
0. Since this is true for every rank-one idempotent P, it follows that (3) holds also for
A =1. Step 7 of the proof of [5, Theorem 2.2] then shows that (3) holds for every
A€B(H).

It remains to show that there exists a scalar A such that 6(A) = AT —TA+ 1A
forall A€ B(H). By (1), 0= (TN —NS)N+N(TN —NS), thatis, N(T —S)N =0
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for all N € B(H) with N> = 0. Taking only rank-one square-zero N, it follows that
T —S = Al for some scalar A, and hence §(A) =TA—AS=TA—AT +AA, completing
the proof. [J

LEMMA 2.3. Let 6: B(H) — B(H) be a linear map Jordan derivable at an idem-
potent P with infinite rank and co-rank. Then there exist an operator T € B(H) and a
scalar A such that

O0(A)=[T,A]+AA(I—P) for any A € B(H) with A = PAP+ (I — P)A(I — P).

Proof. Denote by ImP and KerP the range and the kernel of P, respectively.
According to the decomposition H = ImP + Ker P, we may write P =150, A =

A1 DAz, and
_ ([ nX) dia(X)
500 = (i) 2t )-
Define two linear operators 7j;: B(ImP) — B(ImP) and 1;: B(KerP) — B(KerP)
by
T11(A11) = 011 (A1 ©0) and  72(A22) = 6n(I D An)

for each Aj; € B(ImP) and Ay, € B(KerP). Since & is Jordan derivable at P, a
straightforward computation reveals that 7;; and Ty, are Jordan derivable at I € B(ImP)
and at 0 € B(KerP), respectively. Since ImP and KerP are infinite-dimensional
Hilbert spaces, by a result of Jing [5, Theorem 2.6], there exists X;; € B(ImP), such
that 711 (A1) = [X11,A11], and by Lemma 2.2 there exist X, € B(KerP) and a scalar
A, such that 22 (A2) = [X22,A22] + AAzy. This gives that

8(A)=8((A11 —1)®0)+ (I A)
— (XA 0 811 (I8An) 0 0 &1(A)
N ( 0 [X22~,A22]+7LA22> t ( 0 622((A11—1)630)> + (521(A) 0 )

_ (XA 0 O11 (I9A22) 0 0 6&12(4)
_( 0 [X227A22]+7LA22>+( 0 522((A11—1)690)>+(521(A) 0 ) S

Note that P§(P)P =0. So 8(P) = (°*) for appropriate operators, denoted by .
We proceed to show that the middle term in (4) vanishes. We will use the result by
Pearcy and Topping [7] as follows. Let A=I1@ N, where N € B(KerP) is an arbitrary
square-zero matrix. Then A2 = P, and so §(A)A+A8(A) = §(P) = (). Using A =
I® N in (4) and comparing the (1, 1) entries yields 011 (I & N) = 0 for every square-
zero N € B(KerP). Since kerP is infinite-dimensional, by Pearcy and Topping [7]
every operator is a sum of five square-zero ones, hence 0;1(I @ X) =0 for every X €
B(KerP). Hence (4) simplifies to

_ (XuAn] 0 0 0 0 6p2(A)
6(A11 EBAZZ) - < “0 " [Xzz,A22]+7LA22> + <O 522((141171)@0)) + <521(A) l20 ) ’

so that 5
0 P
8(P) =810 0) = (MP) 12 >).
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Choose any involution V € B(ImP) and any square-zero operator N € B(KerP) to
form A =V @ N with A% = P. Then, comparing the (2,2) position in

S(VEN)(VEN)+(VON)S(V@N)=58(P) = (3210([,) 5120(”) : 5)

we obtain

0 ((V—=I)®O0)N+Nbn((V-1)®0)=0
for every square-zero N. As above, by Pearcy and Topping [7], this implies that
On(V-I)®0)[+16n((V—-I)®0) =0, and so 0, ((V—1)®0) =0 for every invo-

lution V. Since &y, is linear, we get 8 (L _2V @0) =0. Given an arbitrary idempotent

Q, the operator I —2Q is an involution. So 8, (Q ®0) = 522(% &0)=0. By
[7], every operator is a sum of five idempotents, so &2 (B(ImP) ®0) = 0. Therefore
(4) simplifies to

e avm 0 0 d12(4)
6<A11@A22)_< 110 ! [X22~,A22]+7LA22>+<521(A) 120 )

Comparing the (1,2) position in (5), we obtain

0(I®0)=0p(VEN)N+Vo(VEN) (6)

and this equation is valid for any square-zero N and any involution V. With V =1 we
get S;p(I®0) =82(I®&N)N+012(ION) =612(ION)N+ 812(I®0) + 612(0B N).
After postmultiplying with N and simplifying we see that §;,(0® N)N = 0 for every
square-zero N, and consequently (6), with V =1, reads 8;2(I®0) = §1,(I ®0)N +
O12(I® N). This further simplifies to

32(0®BN)=—8,(ID0)N

for every square-zero N, hence by [7] again, this is true for every Ay € B(KerP).
Now, inserting V &0, V2 =1, in (6) we additionally obtain 012(I@0)=Von(Vao),
which after premultiplying with V' simplifies into

S2(Ve0)=Va(Ie0). (7)

This holds for every involution V', hence also for an involution (I —2Q), where Q is
an idempotent. Therefore, by linearity of >, the equation (7) also holds for every
idempotent Q, and so for every X € B(ImP) by [7]. Introducing Z = —8;2(I©0), we
obtain that

S12(A11 ©Ap) = ZA» —AnZ.

Likewise for W = 0,1 (I ©0), one can obtain that
01(A11 ©An) = WA —AnW.

Therefore, for a matrix 7 = (’;{} Xi) we see that

6(An @A) = [T, (An ®An)|+ (8 )ugzz> - U
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LEMMA 2.4, Let H = Hy & Hy and let A= (41142 ) € B(H). If A =10,
then A1 = Ay =0.

Proof. This follows easily by noticing that A commutes with its square A> =
I190. O

Proof of Theorem 1.1. Write P as an operator block matrix P = (/). By Le-
mma 2.3, there exist operator 7 and scalar A such that

8(PAP+ (I—P)A(I-P))
= [T,PAP+ (I — P)A(I— P)] +A(I— P)A(I - P)
= [T,A] — [T,PA(I—P) + (I— P)AP| + A(I— P)A(I—P).

Define alinearmap f: B(H) — B(H) by f(X)=6(X)—[T,X]. Then, §(A) = [T,A]+
A(I—P)A(I — P)+ f(PA(I— P)) + f((I— P)AP).

Inversely, given any operator T and scalar A4, the commutator X — [T, X] and the
map X — A(I — P)X(I — P) are clearly Jordan derivable at P. Also, given any linear
map f: B(H) — B(H), it is clear that the map X — f(PX(I—P))+ f((I—P)XP) is
also Jordan derivable at P. Indeed, if A> = P, then f(PP(I —P))+ f((I — P)PP) =
0. By Lemma 2.4, A = PAP+ (I — P)A(I — P), therefore also f(PA(I —P)) =0 and
f((I—-P)AP)=0. Hence,

X—[T.X]+A(I-P)X(I—P)+f(PX(I—P))+ f((I-P)XP)

is Jordan derivable at P. [
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