A NOTE ON JORDAN DERIVABLE LINEAR MAPS

Gregor Dolinar, Kan He, Bojan Kuzma and Xiaofei Qi

(Communicated by N.-C. Wong)

Abstract

Let H be a complex Hilbert space and let δ be a linear map which is Jordan derivable at a given idempotent $P \in \mathrm{~B}(H)$ in the sense that $\delta\left(A^{2}\right)=\delta(A) A+A \delta(A)$ holds for all A with $A^{2}=P$. If P has infinite rank and co-rank, then we prove that the restriction of δ to $\mathrm{B}(\operatorname{Im} P)$ is an inner derivation and the restriction to $\mathrm{B}(\operatorname{Ker} P)$ is a sum of inner derivation and multiplication by a scalar. We give an example that this is not necessarily true when rank and co-rank of P are finite.

1. Introduction and statement of the result

Let $\mathscr{A}=\mathrm{B}(H)$ be an algebra of bounded operators on a complex Hilbert space H. Recall that a linear map δ from \mathscr{A} into itself is called a derivation if $\delta(A B)=$ $\delta(A) B+A \delta(B)$ for all $A, B \in \mathscr{A}$. More generally, δ is called a Jordan derivation if $\delta\left(A^{2}\right)=\delta(A) A+A \delta(A)$ for all $A \in \mathscr{A}$. On $\mathrm{B}(H)$ this is equivalent to $\delta(A B+$ $B A)=\delta(A) B+A \delta(B)+\delta(B) A+B \delta(A)$ for all $A, B \in \mathscr{A}$, which some authors use as a definition of a Jordan derivation (see, e.g., [2]). More on derivations and Jordan derivations can be found in, e.g., [1, 2].

Recently, conditions which automatically yield derivability of a map were investigated (see, e.g., $[3,8,9]$ and references therein). It is the aim of this paper to consider a similar problem for linear maps which are Jordan derivable only at some point. Corresponding to the above two equivalent definitions of Jordan derivations, we can say that: (1) δ is Jordan derivable at some point $Z \in \mathscr{A}$ if $\delta\left(A^{2}\right)=\delta(A) A+A \delta(A)$ holds for any $A \in \mathscr{A}$ with $A^{2}=Z$, or alternatively, we can say that: (2) δ is Jordan derivable at some point $Z \in \mathscr{A}$ if $\delta(A B+B A)=\delta(A) B+A \delta(B)+\delta(B) A+B \delta(A)$ holds for any $A, B \in \mathscr{A}$ with $A B+B A=Z$. Observe that if δ satisfies (2) then it also satisfies (1) by inserting $B=A / 2$. It is easy to see that the two definitions are not equivalent, take for example $Z=\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right), \delta:\left(\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \mapsto\left(\begin{array}{cc}0 & A_{12} \\ 0 & 0\end{array}\right)$, and $A=\left(\begin{array}{cc}-\frac{1}{2} I & I \\ \frac{1}{3} I & -\frac{1}{2} I\end{array}\right), B=\left(\begin{array}{ll}I & 3 I \\ I & I I\end{array}\right)$. So condition (1) is less restrictive than (2).

By now, the majority of the papers on the subject used definition (2), see, e.g., [4] and the references therein. However, less is known for the maps satisfying (1). In case

[^0]H is an infinite-dimensional Hilbert space it was proved in [5, Theorem 2.6] that every linear map $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ which is Jordan derivable at identity operator I, in the sense of definition (1), is an inner derivation, that is, there exists some $T \in \mathrm{~B}(H)$ such that $\delta(X)=[T, X]$ for all $X \in \mathrm{~B}(H)$. Here $[T, X]=T X-X T$ is a Lie product.

It is our aim to generalize this theorem to idempotents, i.e., operators P with $P^{2}=P$, having infinite rank and corank in place of identity. The following is our main result.

THEOREM 1.1. Let $P \in \mathrm{~B}(H)$ be an idempotent with infinite rank and co-rank. Then a linear map $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ is Jordan derivable at P (that is, $\delta\left(A^{2}\right)=$ $\delta(A) A+A \delta(A)$ whenever $\left.A^{2}=P\right)$ if and only if there exists an operator $T \in \mathrm{~B}(H), a$ scalar $\lambda \in \mathbb{C}$, and a linear map $f: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ such that

$$
\delta(A)=[T, A]+\lambda(I-P) A(I-P)+f(P A(I-P))+f((I-P) A P)
$$

for all $A \in \mathrm{~B}(H)$.
Before proving Theorem 1.1 let us first show that on finite-dimensional spaces this might not be true.

Example 1.2. Let H be a complex Hilbert space \mathbb{C}^{3} with a standard basis of column vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then $\mathrm{B}(H)$ can be identified with the space M_{3} of 3×3 complex matrices. For an arbitrary vector $x \in \mathbb{C}^{3}$ we denote by x^{*} the transpose and conjugation of x. Then $e_{i} e_{j}^{*} \in M_{3}$ is a rank one matrix with 1 at (i, j)-th place, and with zeros everywhere else. Let $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ be a linear map defined by

$$
\left\{\begin{array}{l}
\delta\left(e_{1} e_{1}^{*}\right)=-2 e_{3} e_{1}^{*} \\
\delta\left(e_{1} e_{2}^{*}\right)=-2 e_{3} e_{2}^{*} \\
\delta\left(e_{1} e_{3}^{*}\right)=I_{3}-2 e_{3} e_{3}^{*} \\
\delta\left(e_{i} e_{j}^{*}\right)=0 \quad \text { otherwise. }
\end{array}\right.
$$

The only square-zero matrices from M_{3} are of rank at most one. So, if $R \in M_{3}$ is a square-zero matrix, then it can be written as $R=\left(\sum \alpha_{i} e_{i}\right)\left(\sum \beta_{j} e_{j}\right)^{*}$, where $\operatorname{Tr}(R)=$ $\sum \alpha_{i} \overline{\beta_{i}}=0$. Then

$$
\delta(R) R+R \delta(R)=-2 \alpha_{1} \operatorname{Tr}(R) e_{3}\left(\sum \beta_{j} e_{j}\right)^{*}=0
$$

and so δ is Jordan derivable at an idempotent $P=0$. However

$$
\delta\left(e_{1} e_{3}^{*}\right)=I_{3}-2 e_{3} e_{3}^{*}
$$

which is not a trace-zero operator. So δ is not of the form $X \mapsto[T, X]+\lambda X+f(P A(I-$ $P))+f((I-P) A P)$ no matter what the operator T and the scalar λ we choose.

2. Proofs

Throughout this section H is an infinite dimensional complex Hilbert space and $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ is a linear map Jordan derivable at some point in the sense of definition (1). Let us first state the result from [6, Theorem 4.2] which we will use in the sequel.

LEMMA 2.1. Let $F(H) \subseteq \mathrm{B}(H)$ be the space of all finite-rank operators and let $\delta, \tau: F(H) \rightarrow \mathrm{B}(H)$ be linear mappings such that $\delta(P)=\delta(P) P+P \tau(P)$ and $\tau(P)=$ $\tau(P) P+P \tau(P)$ for any idempotent $P \in F(H)$. Then there exist $S, T \in \mathrm{~B}(H)$ such that $\delta(A)=T A-A S$ for every $A \in F(H)$.

The next lemma is a slight generalization of [5, Corollary 2.3].
Lemma 2.2. If $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ is Jordan derivable at 0 , then there exist an operator $T \in \mathrm{~B}(H)$ and a scalar λ so that

$$
\delta(A)=[T, A]+\lambda A \quad \text { for all } \quad A \in \mathrm{~B}(H)
$$

Sketch of the proof. By the assumption, δ satisfies

$$
\begin{equation*}
\delta\left(N^{2}\right)=\delta(N) N+N \delta(N) \quad \text { for any } N \in \mathrm{~B}(H) \text { with } N^{2}=0 . \tag{1}
\end{equation*}
$$

Similarly as in Step 1 of the proof of [5, Theorem 2.2], we obtain, for any idempotent P with infinite range and co-range, that

$$
2 \delta(P)=2 \delta(P) P+2 P \delta(P)-P \delta(I)-\delta(I) P
$$

Multiplying by P from the left and then from the right and comparing the two results, we see that $P \delta(I)=\delta(I) P$, wherefrom

$$
\begin{equation*}
\delta(P)=\delta(P) P+P \delta(P)-P \delta(I) P \tag{2}
\end{equation*}
$$

In the same way as in Steps 2-4 of the proof of [5, Theorem 2.2], we see that (2) holds for any idempotent P.

Let $\tau: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ be a map, defined by $\tau(X)=\delta(X)-\delta(I) X$ for all $X \in$ $\mathrm{B}(H)$. Then by (2), τ and δ satisfy the conditions in Lemma 2.1. Hence there exist $S, T \in \mathrm{~B}(H)$ such that

$$
\begin{equation*}
\delta(A)=T A-A S, \quad A \in F(H) \tag{3}
\end{equation*}
$$

In particular, given any rank-one idempotent P, we have $\delta(P)=T P-P S$. And by (2), we obtain $T P-P S=(T P-P S P)+(P T P-P S)-P \delta(I) P$. Hence $P(T-S-\delta(I)) P=$ 0 . Since this is true for every rank-one idempotent P, it follows that (3) holds also for $A=I$. Step 7 of the proof of [5, Theorem 2.2] then shows that (3) holds for every $A \in \mathrm{~B}(H)$.

It remains to show that there exists a scalar λ such that $\delta(A)=A T-T A+\lambda A$ for all $A \in \mathrm{~B}(H)$. By (1), $0=(T N-N S) N+N(T N-N S)$, that is, $N(T-S) N=0$
for all $N \in \mathrm{~B}(H)$ with $N^{2}=0$. Taking only rank-one square-zero N, it follows that $T-S=\lambda I$ for some scalar λ, and hence $\delta(A)=T A-A S=T A-A T+\lambda A$, completing the proof.

Lemma 2.3. Let $\delta: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ be a linear map Jordan derivable at an idempotent P with infinite rank and co-rank. Then there exist an operator $T \in \mathrm{~B}(H)$ and a scalar λ such that

$$
\delta(A)=[T, A]+\lambda A(I-P) \text { for any } A \in \mathrm{~B}(H) \text { with } A=P A P+(I-P) A(I-P) .
$$

Proof. Denote by $\operatorname{Im} P$ and $\operatorname{Ker} P$ the range and the kernel of P, respectively. According to the decomposition $H=\operatorname{Im} P+\operatorname{Ker} P$, we may write $P=I \oplus 0, A=$ $A_{11} \oplus A_{22}$, and

$$
\delta(X)=\left(\begin{array}{ll}
\delta_{11}(X) & \delta_{12}(X) \\
\delta_{21}(X) & \delta_{22}(X)
\end{array}\right)
$$

Define two linear operators $\tau_{11}: \mathrm{B}(\operatorname{Im} P) \rightarrow \mathrm{B}(\operatorname{Im} P)$ and $\tau_{22}: \mathrm{B}(\operatorname{Ker} P) \rightarrow \mathrm{B}(\operatorname{Ker} P)$ by

$$
\tau_{11}\left(A_{11}\right)=\delta_{11}\left(A_{11} \oplus 0\right) \quad \text { and } \quad \tau_{22}\left(A_{22}\right)=\delta_{22}\left(I \oplus A_{22}\right)
$$

for each $A_{11} \in \mathrm{~B}(\operatorname{Im} P)$ and $A_{22} \in \mathrm{~B}(\operatorname{Ker} P)$. Since δ is Jordan derivable at P, a straightforward computation reveals that τ_{11} and τ_{22} are Jordan derivable at $I \in \mathrm{~B}(\operatorname{Im} P)$ and at $0 \in \mathrm{~B}(\operatorname{Ker} P)$, respectively. Since $\operatorname{Im} P$ and $\operatorname{Ker} P$ are infinite-dimensional Hilbert spaces, by a result of Jing [5, Theorem 2.6], there exists $X_{11} \in \mathrm{~B}(\operatorname{Im} P)$, such that $\tau_{11}\left(A_{11}\right)=\left[X_{11}, A_{11}\right]$, and by Lemma 2.2 there exist $X_{22} \in \mathrm{~B}(\operatorname{Ker} P)$ and a scalar λ, such that $\tau_{22}\left(A_{22}\right)=\left[X_{22}, A_{22}\right]+\lambda A_{22}$. This gives that

$$
\begin{align*}
& \delta(A)=\delta\left(\left(A_{11}-I\right) \oplus 0\right)+\delta\left(I \oplus A_{22}\right) \\
& =\left(\begin{array}{cc}
{\left[X_{11}, A_{11}-I\right]} & 0 \\
0 & {\left[X_{22}, A_{22}\right]+\lambda A_{22}}
\end{array}\right)+\left(\begin{array}{cc}
\delta_{11}\left(I \oplus A_{22}\right) & 0 \\
0 & \delta_{22}\left(\left(A_{11}-I\right) \oplus 0\right)
\end{array}\right)+\left(\begin{array}{cc}
0 & \delta_{12}(A) \\
\delta_{21}(A) & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
{\left[X_{11}, A_{11}\right]} & 0 \\
0 & {\left[X_{22}, A_{22}\right]+\lambda A_{22}}
\end{array}\right)+\left(\begin{array}{cc}
\delta_{11}\left(I \oplus A_{22}\right) & 0 \\
0 & \delta_{22}\left(\left(A_{11}-I\right) \oplus 0\right)
\end{array}\right)+\left(\begin{array}{cc}
0 & \delta_{12}(A) \\
\delta_{21}(A) & 0
\end{array}\right) . \tag{4}
\end{align*}
$$

Note that $P \delta(P) P=0$. So $\delta(P)=\binom{0 *}{* *}$ for appropriate operators, denoted by $*$. We proceed to show that the middle term in (4) vanishes. We will use the result by Pearcy and Topping [7] as follows. Let $A=I \oplus N$, where $N \in \mathrm{~B}(\operatorname{Ker} P)$ is an arbitrary square-zero matrix. Then $A^{2}=P$, and so $\delta(A) A+A \delta(A)=\delta(P)=\left(\begin{array}{c}0 \\ * \\ *\end{array}\right)$. Using $A=$ $I \oplus N$ in (4) and comparing the $(1,1)$ entries yields $\delta_{11}(I \oplus N)=0$ for every squarezero $N \in \mathrm{~B}(\operatorname{Ker} P)$. Since $\operatorname{ker} P$ is infinite-dimensional, by Pearcy and Topping [7] every operator is a sum of five square-zero ones, hence $\delta_{11}(I \oplus X)=0$ for every $X \in$ $B(\operatorname{Ker} P)$. Hence (4) simplifies to

$$
\delta\left(A_{11} \oplus A_{22}\right)=\left(\begin{array}{cc}
{\left[X_{11}, A_{11}\right]} & 0 \\
0 & {\left[X_{22}, A_{22}\right]+\lambda A_{22}}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & \delta_{22}\left(\left(A_{11}-I\right) \oplus 0\right)
\end{array}\right)+\left(\begin{array}{cc}
0 & \delta_{12}(A) \\
\delta_{21}(A) & 0
\end{array}\right),
$$

so that

$$
\delta(P)=\delta(I \oplus 0)=\left(\begin{array}{cc}
0 & \delta_{12}(P) \\
\delta_{21}(P) & 0
\end{array}\right)
$$

Choose any involution $V \in \mathrm{~B}(\operatorname{Im} P)$ and any square-zero operator $N \in \mathrm{~B}(\operatorname{Ker} P)$ to form $A=V \oplus N$ with $A^{2}=P$. Then, comparing the $(2,2)$ position in

$$
\delta(V \oplus N)(V \oplus N)+(V \oplus N) \delta(V \oplus N)=\delta(P)=\left(\begin{array}{cc}
0 & \delta_{12}(P) \tag{5}\\
\delta_{21}(P) & 0
\end{array}\right)
$$

we obtain

$$
\delta_{22}((V-I) \oplus 0) N+N \delta_{22}((V-I) \oplus 0)=0
$$

for every square-zero N. As above, by Pearcy and Topping [7], this implies that $\delta_{22}((V-I) \oplus 0) I+I \delta_{22}((V-I) \oplus 0)=0$, and so $\delta_{22}((V-I) \oplus 0)=0$ for every involution V. Since δ_{22} is linear, we get $\delta_{22}\left(\frac{I-V}{2} \oplus 0\right)=0$. Given an arbitrary idempotent Q, the operator $I-2 Q$ is an involution. So $\delta_{22}(Q \oplus 0)=\delta_{22}\left(\frac{I-(I-2 Q)}{2} \oplus 0\right)=0$. By [7], every operator is a sum of five idempotents, so $\delta_{22}(\mathrm{~B}(\operatorname{Im} P) \oplus 0)=0$. Therefore (4) simplifies to

$$
\delta\left(A_{11} \oplus A_{22}\right)=\left(\begin{array}{cc}
{\left[X_{11}, A_{11}\right]} & 0 \\
0 & {\left[X_{22}, A_{22}\right]+\lambda A_{22}}
\end{array}\right)+\left(\begin{array}{cc}
0 & \delta_{12}(A) \\
\delta_{21}(A) & 0
\end{array}\right) .
$$

Comparing the $(1,2)$ position in (5), we obtain

$$
\begin{equation*}
\delta_{12}(I \oplus 0)=\delta_{12}(V \oplus N) N+V \delta_{12}(V \oplus N) \tag{6}
\end{equation*}
$$

and this equation is valid for any square-zero N and any involution V. With $V=I$ we get $\delta_{12}(I \oplus 0)=\delta_{12}(I \oplus N) N+\delta_{12}(I \oplus N)=\delta_{12}(I \oplus N) N+\delta_{12}(I \oplus 0)+\delta_{12}(0 \oplus N)$. After postmultiplying with N and simplifying we see that $\delta_{12}(0 \oplus N) N=0$ for every square-zero N, and consequently (6), with $V=I$, reads $\delta_{12}(I \oplus 0)=\delta_{12}(I \oplus 0) N+$ $\delta_{12}(I \oplus N)$. This further simplifies to

$$
\delta_{12}(0 \oplus N)=-\delta_{12}(I \oplus 0) N
$$

for every square-zero N, hence by [7] again, this is true for every $A_{22} \in \mathrm{~B}(\operatorname{Ker} P)$. Now, inserting $V \oplus 0, V^{2}=I$, in (6) we additionally obtain $\delta_{12}(I \oplus 0)=V \delta_{12}(V \oplus 0)$, which after premultiplying with V simplifies into

$$
\begin{equation*}
\delta_{12}(V \oplus 0)=V \delta_{12}(I \oplus 0) . \tag{7}
\end{equation*}
$$

This holds for every involution V, hence also for an involution $(I-2 Q)$, where Q is an idempotent. Therefore, by linearity of δ_{12}, the equation (7) also holds for every idempotent Q, and so for every $X \in \mathrm{~B}(\operatorname{Im} P)$ by [7]. Introducing $Z=-\delta_{12}(I \oplus 0)$, we obtain that

$$
\delta_{12}\left(A_{11} \oplus A_{22}\right)=Z A_{22}-A_{11} Z .
$$

Likewise for $W=\delta_{21}(I \oplus 0)$, one can obtain that

$$
\delta_{21}\left(A_{11} \oplus A_{22}\right)=W A_{11}-A_{22} W
$$

Therefore, for a matrix $T=\left(\begin{array}{cc}X_{11} & Z \\ W & X_{22}\end{array}\right)$ we see that

$$
\delta\left(A_{11} \oplus A_{22}\right)=\left[T,\left(A_{11} \oplus A_{22}\right)\right]+\left(\begin{array}{cc}
0 & 0 \\
0 & \lambda A_{22}
\end{array}\right) .
$$

LEMMA 2.4. Let $H=H_{1} \oplus H_{2}$ and let $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \in \mathrm{B}(H)$. If $A^{2}=I \oplus 0$, then $A_{12}=A_{21}=0$.

Proof. This follows easily by noticing that A commutes with its square $A^{2}=$ $I \oplus 0$.

Proof of Theorem 1.1. Write P as an operator block matrix $P=\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right)$. By Lemma 2.3, there exist operator T and scalar λ such that

$$
\begin{aligned}
& \delta(P A P+(I-P) A(I-P)) \\
& \quad=[T, P A P+(I-P) A(I-P)]+\lambda(I-P) A(I-P) \\
& \quad=[T, A]-[T, P A(I-P)+(I-P) A P]+\lambda(I-P) A(I-P) .
\end{aligned}
$$

Define a linear map $f: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$ by $f(X)=\delta(X)-[T, X]$. Then, $\delta(A)=[T, A]+$ $\lambda(I-P) A(I-P)+f(P A(I-P))+f((I-P) A P)$.

Inversely, given any operator T and scalar λ, the commutator $X \mapsto[T, X]$ and the map $X \mapsto \lambda(I-P) X(I-P)$ are clearly Jordan derivable at P. Also, given any linear map $f: \mathrm{B}(H) \rightarrow \mathrm{B}(H)$, it is clear that the map $X \mapsto f(P X(I-P))+f((I-P) X P)$ is also Jordan derivable at P. Indeed, if $A^{2}=P$, then $f(P P(I-P))+f((I-P) P P)=$ 0. By Lemma 2.4, $A=P A P+(I-P) A(I-P)$, therefore also $f(P A(I-P))=0$ and $f((I-P) A P)=0$. Hence,

$$
X \mapsto[T, X]+\lambda(I-P) X(I-P)+f(P X(I-P))+f((I-P) X P)
$$

is Jordan derivable at P.

Acknowledgement. The authors wish to give their thanks to the referees for helpful comments and suggestions.

REFERENCES

[1] E. Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), 155-161.
[2] I. N. Herstein, Jordan derivation on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[3] J. Hou, X. Qi, Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl. 429 (2008), 1851-1863.
[4] M.-Y. Jiao, J.-C. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl. 432 (2010), 2984-2994.
[5] W. Jing, On Jordan all-derivable points of B(H), Linear Algebra Appl. 430 (2009), 941-946.
[6] W. Jing, S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese Journal of Mathematics 7 (2003), 605-613.
[7] C. Pearcy, D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967) 453-465.
[8] X.-F. QI, J.-C. Hou, Characterizations of derivations of Banach space nest alegbras: All-derrivable points, Linear Algebra Appl. 432 (2010), 3183-3200.
[9] J. ZhU, C. Xiong, All-derivable points in continuous nest algebras, J. Math. Anal. Appl. 340 (2008), 845-853.

Gregor Dolinar
Faculty of Electrical Engineering
University of Ljubljana
Tržaška cesta 25
SI-1000 Ljubljana, Slovenia
e-mail: gregor.dolinar@fe.uni-lj.si
Kan He
Department of Mathematics Taiyuan University of Technology Taiyuan 030024, P. R. China
e-mail: kanhemath@yahoo.com.cn
Bojan Kuzma
University of Primorska
Glagoljaška 8
6000 Koper, Slovenia
and
IMFM
Jadranska 19
1000 Ljubljana, Slovenia
e-mail: bojan.kuzma@famnit.upr.si
Xiaofei Qi
Department of Mathematics
Shanxi University
Taiyuan 030006 P. R. China
e-mail: qixf1980@126.com

[^0]: Mathematics subject classification (2010): 47B47, 47L30.
 Keywords and phrases: Derivations, Jordan derivable linear maps, Hilbert spaces.
 This work was partially supported by the joint Slovenian-Chinese grant BI-CN/09-11-022, National Natural Science Foundation of China (11101250), Tianyuan Funds of China (11126127), Youth Foundation of Shanxi Province (2012021004) and Young Talents Plan for Shanxi University.

