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Abstract. Let H be a complex Hilbert space and let δ be a linear map which is Jordan derivable
at a given idempotent P ∈B(H) in the sense that δ (A2) = δ (A)A+Aδ (A) holds for all A with
A2 = P . If P has infinite rank and co-rank, then we prove that the restriction of δ to B(ImP) is
an inner derivation and the restriction to B(KerP) is a sum of inner derivation and multiplication
by a scalar. We give an example that this is not necessarily true when rank and co-rank of P are
finite.

1. Introduction and statement of the result

Let A = B(H) be an algebra of bounded operators on a complex Hilbert space
H . Recall that a linear map δ from A into itself is called a derivation if δ (AB) =
δ (A)B + Aδ (B) for all A,B ∈ A . More generally, δ is called a Jordan derivation
if δ (A2) = δ (A)A + Aδ (A) for all A ∈ A . On B(H) this is equivalent to δ (AB +
BA) = δ (A)B + Aδ (B) + δ (B)A + Bδ (A) for all A,B ∈ A , which some authors use
as a definition of a Jordan derivation (see, e.g., [2]). More on derivations and Jordan
derivations can be found in, e.g., [1, 2].

Recently, conditions which automatically yield derivability of a map were investi-
gated (see, e.g., [3, 8, 9] and references therein). It is the aim of this paper to consider a
similar problem for linear maps which are Jordan derivable only at some point. Corre-
sponding to the above two equivalent definitions of Jordan derivations, we can say that:
(1) δ is Jordan derivable at some point Z ∈ A if δ (A2) = δ (A)A+Aδ (A) holds for
any A ∈ A with A2 = Z , or alternatively, we can say that: (2) δ is Jordan derivable at
some point Z ∈ A if δ (AB+BA) = δ (A)B+Aδ (B)+ δ (B)A+Bδ (A) holds for any
A,B ∈ A with AB+BA = Z . Observe that if δ satisfies (2) then it also satisfies (1) by
inserting B = A/2. It is easy to see that the two definitions are not equivalent, take for

example Z =
(

I 0
0 0

)
, δ :

(
A11 A12
A21 A22

)
�→ (0 A12

0 0

)
, and A =

(
− 1

2 I I
1
3 I − 1

2 I

)
, B =

(
I 3I
I 2I

)
. So

condition (1) is less restrictive than (2).
By now, the majority of the papers on the subject used definition (2), see, e.g., [4]

and the references therein. However, less is known for the maps satisfying (1). In case
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H is an infinite-dimensional Hilbert space it was proved in [5, Theorem 2.6] that every
linear map δ : B(H) → B(H) which is Jordan derivable at identity operator I , in the
sense of definition (1), is an inner derivation, that is, there exists some T ∈ B(H) such
that δ (X) = [T,X ] for all X ∈ B(H) . Here [T,X ] = TX −XT is a Lie product.

It is our aim to generalize this theorem to idempotents, i.e., operators P with
P2 = P , having infinite rank and corank in place of identity. The following is our main
result.

THEOREM 1.1. Let P ∈ B(H) be an idempotent with infinite rank and co-rank.
Then a linear map δ : B(H) → B(H) is Jordan derivable at P (that is, δ (A2) =
δ (A)A+Aδ (A) whenever A2 = P) if and only if there exists an operator T ∈ B(H) , a
scalar λ ∈ C , and a linear map f : B(H) → B(H) such that

δ (A) = [T,A]+ λ (I−P)A(I−P)+ f (PA(I−P))+ f ((I−P)AP)

for all A ∈ B(H) .

Before proving Theorem 1.1 let us first show that on finite-dimensional spaces this
might not be true.

EXAMPLE 1.2. Let H be a complex Hilbert space C3 with a standard basis of
column vectors {e1,e2,e3} . Then B(H) can be identified with the space M3 of 3×3
complex matrices. For an arbitrary vector x ∈ C3 we denote by x∗ the transpose and
conjugation of x . Then eie∗j ∈ M3 is a rank one matrix with 1 at (i, j)-th place, and
with zeros everywhere else. Let δ : B(H) → B(H) be a linear map defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ (e1e∗1) = −2e3e∗1;

δ (e1e∗2) = −2e3e∗2;

δ (e1e∗3) = I3−2e3e∗3;

δ (eie∗j) = 0 otherwise.

The only square-zero matrices from M3 are of rank at most one. So, if R ∈ M3 is a
square-zero matrix, then it can be written as R = (∑αiei)(∑β je j)∗ , where Tr(R) =
∑αiβi = 0. Then

δ (R)R+Rδ (R) = −2α1Tr(R)e3
(
∑β je j

)∗ = 0,

and so δ is Jordan derivable at an idempotent P = 0. However

δ (e1e
∗
3) = I3−2e3e

∗
3,

which is not a trace-zero operator. So δ is not of the form X �→ [T,X ]+λX + f (PA(I−
P))+ f ((I−P)AP) no matter what the operator T and the scalar λ we choose.
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2. Proofs

Throughout this section H is an infinite dimensional complex Hilbert space and
δ : B(H) → B(H) is a linear map Jordan derivable at some point in the sense of defi-
nition (1). Let us first state the result from [6, Theorem 4.2] which we will use in the
sequel.

LEMMA 2.1. Let F(H) ⊆ B(H) be the space of all finite-rank operators and let
δ ,τ : F(H)→ B(H) be linear mappings such that δ (P) = δ (P)P+Pτ(P) and τ(P) =
τ(P)P+Pτ(P) for any idempotent P ∈ F(H) . Then there exist S,T ∈ B(H) such that
δ (A) = TA−AS for every A ∈ F(H) .

The next lemma is a slight generalization of [5, Corollary 2.3].

LEMMA 2.2. If δ : B(H) → B(H) is Jordan derivable at 0 , then there exist an
operator T ∈ B(H) and a scalar λ so that

δ (A) = [T,A]+ λA for all A ∈ B(H).

Sketch of the proof. By the assumption, δ satisfies

δ (N2) = δ (N)N +Nδ (N) for any N ∈ B(H) with N2 = 0. (1)

Similarly as in Step 1 of the proof of [5, Theorem 2.2], we obtain, for any idempotent
P with infinite range and co-range, that

2δ (P) = 2δ (P)P+2Pδ (P)−Pδ (I)− δ (I)P.

Multiplying by P from the left and then from the right and comparing the two results,
we see that Pδ (I) = δ (I)P , wherefrom

δ (P) = δ (P)P+Pδ (P)−Pδ (I)P. (2)

In the same way as in Steps 2–4 of the proof of [5, Theorem 2.2], we see that (2) holds
for any idempotent P .

Let τ : B(H) → B(H) be a map, defined by τ(X) = δ (X)− δ (I)X for all X ∈
B(H) . Then by (2), τ and δ satisfy the conditions in Lemma 2.1. Hence there exist
S,T ∈ B(H) such that

δ (A) = TA−AS, A ∈ F(H). (3)

In particular, given any rank-one idempotent P , we have δ (P) = TP−PS . And by (2),
we obtain TP−PS = (TP−PSP)+(PTP−PS)−Pδ (I)P. Hence P(T −S−δ (I))P =
0. Since this is true for every rank-one idempotent P , it follows that (3) holds also for
A = I . Step 7 of the proof of [5, Theorem 2.2] then shows that (3) holds for every
A ∈ B(H) .

It remains to show that there exists a scalar λ such that δ (A) = AT − TA + λA
for all A ∈ B(H) . By (1), 0 = (TN −NS)N + N(TN −NS) , that is, N(T − S)N = 0



162 G. DOLINAR, K. HE, B. KUZMA AND X. QI

for all N ∈ B(H) with N2 = 0. Taking only rank-one square-zero N , it follows that
T −S = λ I for some scalar λ , and hence δ (A)= TA−AS= TA−AT +λA , completing
the proof. �

LEMMA 2.3. Let δ : B(H)→B(H) be a linear map Jordan derivable at an idem-
potent P with infinite rank and co-rank. Then there exist an operator T ∈ B(H) and a
scalar λ such that

δ (A) = [T,A]+ λA(I−P) for any A ∈ B(H) with A = PAP+(I−P)A(I−P).

Proof. Denote by ImP and KerP the range and the kernel of P , respectively.
According to the decomposition H = ImP + KerP , we may write P = I ⊕ 0, A =
A11⊕A22 , and

δ (X) =
(

δ11(X) δ12(X)
δ21(X) δ22(X)

)
.

Define two linear operators τ11 : B(ImP) → B(ImP) and τ22 : B(KerP) → B(KerP)
by

τ11(A11) = δ11(A11⊕0) and τ22(A22) = δ22(I⊕A22)

for each A11 ∈ B(ImP) and A22 ∈ B(KerP) . Since δ is Jordan derivable at P , a
straightforward computation reveals that τ11 and τ22 are Jordan derivable at I ∈B(ImP)
and at 0 ∈ B(KerP) , respectively. Since ImP and KerP are infinite-dimensional
Hilbert spaces, by a result of Jing [5, Theorem 2.6], there exists X11 ∈ B(ImP) , such
that τ11(A11) = [X11,A11] , and by Lemma 2.2 there exist X22 ∈ B(KerP) and a scalar
λ , such that τ22(A22) = [X22,A22]+ λA22 . This gives that

δ (A) = δ ((A11− I)⊕0)+ δ (I⊕A22)

=
(

[X11,A11−I] 0
0 [X22,A22]+λA22

)
+

(
δ11(I⊕A22) 0

0 δ22((A11−I)⊕0)

)
+

(
0 δ12(A)

δ21(A) 0

)

=
(

[X11,A11] 0
0 [X22,A22]+λA22

)
+

(
δ11(I⊕A22) 0

0 δ22((A11−I)⊕0)

)
+

(
0 δ12(A)

δ21(A) 0

)
. (4)

Note that Pδ (P)P = 0. So δ (P) = ( 0 ∗∗ ∗) for appropriate operators, denoted by ∗ .
We proceed to show that the middle term in (4) vanishes. We will use the result by
Pearcy and Topping [7] as follows. Let A = I⊕N , where N ∈ B(KerP) is an arbitrary
square-zero matrix. Then A2 = P , and so δ (A)A+Aδ (A) = δ (P) = ( 0 ∗∗ ∗) . Using A =
I ⊕N in (4) and comparing the (1,1) entries yields δ11(I ⊕N) = 0 for every square-
zero N ∈ B(KerP) . Since kerP is infinite-dimensional, by Pearcy and Topping [7]
every operator is a sum of five square-zero ones, hence δ11(I ⊕X) = 0 for every X ∈
B(KerP) . Hence (4) simplifies to

δ (A11⊕A22) =
(

[X11,A11] 0
0 [X22,A22]+λA22

)
+

(
0 0
0 δ22((A11−I)⊕0)

)
+

(
0 δ12(A)

δ21(A) 0

)
,

so that
δ (P) = δ (I⊕0) =

(
0 δ12(P)

δ21(P) 0

)
.
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Choose any involution V ∈ B(ImP) and any square-zero operator N ∈ B(KerP) to
form A = V ⊕N with A2 = P . Then, comparing the (2,2) position in

δ (V ⊕N)(V ⊕N)+ (V ⊕N)δ (V ⊕N) = δ (P) =
(

0 δ12(P)
δ21(P) 0

)
, (5)

we obtain
δ22((V − I)⊕0)N+Nδ22((V − I)⊕0) = 0

for every square-zero N . As above, by Pearcy and Topping [7], this implies that
δ22((V − I)⊕0)I+ Iδ22((V − I)⊕0) = 0, and so δ22((V − I)⊕0) = 0 for every invo-
lution V . Since δ22 is linear, we get δ22( I−V

2 ⊕0) = 0. Given an arbitrary idempotent

Q , the operator I − 2Q is an involution. So δ22(Q⊕ 0) = δ22(
I−(I−2Q)

2 ⊕ 0) = 0. By
[7], every operator is a sum of five idempotents, so δ22(B(ImP)⊕ 0) = 0. Therefore
(4) simplifies to

δ (A11 ⊕A22) =
(

[X11,A11] 0
0 [X22,A22]+λA22

)
+

(
0 δ12(A)

δ21(A) 0

)
.

Comparing the (1,2) position in (5), we obtain

δ12(I⊕0) = δ12(V ⊕N)N +Vδ12(V ⊕N) (6)

and this equation is valid for any square-zero N and any involution V . With V = I we
get δ12(I ⊕ 0) = δ12(I ⊕N)N + δ12(I ⊕N) = δ12(I ⊕N)N + δ12(I ⊕ 0)+ δ12(0⊕N) .
After postmultiplying with N and simplifying we see that δ12(0⊕N)N = 0 for every
square-zero N , and consequently (6), with V = I , reads δ12(I ⊕ 0) = δ12(I ⊕ 0)N +
δ12(I⊕N) . This further simplifies to

δ12(0⊕N) = −δ12(I⊕0)N

for every square-zero N , hence by [7] again, this is true for every A22 ∈ B(KerP) .
Now, inserting V ⊕0, V 2 = I , in (6) we additionally obtain δ12(I⊕0) =Vδ12(V ⊕0) ,
which after premultiplying with V simplifies into

δ12(V ⊕0) = Vδ12(I⊕0). (7)

This holds for every involution V , hence also for an involution (I − 2Q) , where Q is
an idempotent. Therefore, by linearity of δ12 , the equation (7) also holds for every
idempotent Q , and so for every X ∈ B(ImP) by [7]. Introducing Z = −δ12(I⊕0) , we
obtain that

δ12(A11⊕A22) = ZA22−A11Z.

Likewise for W = δ21(I⊕0) , one can obtain that

δ21(A11⊕A22) = WA11−A22W.

Therefore, for a matrix T =
(

X11 Z
W X22

)
we see that

δ (A11⊕A22) = [T,(A11⊕A22)]+
(

0 0
0 λA22

)
. �
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LEMMA 2.4. Let H = H1 ⊕H2 and let A =
(

A11 A12
A21 A22

)
∈ B(H) . If A2 = I ⊕ 0 ,

then A12 = A21 = 0 .

Proof. This follows easily by noticing that A commutes with its square A2 =
I⊕0. �

Proof of Theorem 1.1. Write P as an operator block matrix P =
(

I 0
0 0

)
. By Le-

mma 2.3, there exist operator T and scalar λ such that

δ
(
PAP+(I−P)A(I−P)

)
= [T,PAP+(I−P)A(I−P)]+ λ (I−P)A(I−P)
= [T,A]− [T,PA(I−P)+ (I−P)AP]+ λ (I−P)A(I−P).

Define a linear map f : B(H)→B(H) by f (X) = δ (X)− [T,X ]. Then, δ (A) = [T,A]+
λ (I−P)A(I−P)+ f (PA(I−P))+ f ((I−P)AP) .

Inversely, given any operator T and scalar λ , the commutator X �→ [T,X ] and the
map X �→ λ (I−P)X(I−P) are clearly Jordan derivable at P . Also, given any linear
map f : B(H) → B(H) , it is clear that the map X �→ f (PX(I −P))+ f ((I −P)XP) is
also Jordan derivable at P . Indeed, if A2 = P , then f (PP(I −P))+ f ((I −P)PP) =
0. By Lemma 2.4, A = PAP+(I −P)A(I−P) , therefore also f (PA(I −P)) = 0 and
f ((I−P)AP) = 0. Hence,

X �→ [T,X ]+ λ (I−P)X(I−P)+ f (PX(I−P))+ f ((I−P)XP)

is Jordan derivable at P . �
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