
Operators
and

Matrices

Volume 7, Number 1 (2013), 167–182 doi:10.7153/oam-07-09

CLASS A OPERATORS AND THEIR EXTENSIONS

SUNGEUN JUNG AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper, we study various properties of analytic extensions of class A operators.
In particular, we show that every analytic extension of a class A operator has a scalar exten-
sion. As a corollary, we get that such an operator with rich spectrum has a nontrivial invariant
subspace.

1. Introduction

Let H and K be separable complex Hilbert spaces and let L (H ,K ) denote
the space of all bounded linear operators from H to K . If H = K , we write
L (H ) in place of L (H ,K ) . If T ∈ L (H ) , we write σ(T ) , σap(T ) , and σe(T )
for the spectrum, the approximate point spectrum, and the essential spectrum of T ,
respectively.

An arbitrary operator T ∈ L (H ) has a unique polar decomposition T = U |T | ,
where |T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying ker(U) =

ker(|T |) = ker(T ) and ker(U∗) = ker(T ∗) . Associated with T is a related operator

|T | 1
2U |T | 1

2 , called the Aluthge transform of T , and denoted throughout this paper by
T̂ . For an arbitrary operator T ∈ L (H ) , the sequence {T̂ (n)} of Aluthge iterates of

T is defined by T̂ (0) = T and T̂ (n+1) = ̂̂T (n) for every positive integer n .
An operator T ∈ L (H ) is said to be p-hyponormal if (T ∗T )p � (TT ∗)p . If

p = 1, T is called hyponormal and if p = 1
2 , T is called semi-hyponormal. An opera-

tor T is said to be w-hyponormal if |T̂ | � |T | � |T̂ ∗| . w-Hyponormal operators were
introduced by Aluthge and Wang (see [2] and [3]). An operator T ∈ L (H ) is said
to be class A if |T 2|− |T |2 � 0, and T is said to be F -quasiclass A if F(T )∗(|T 2|−
|T |2)F(T ) � 0 for some function F that is analytic and nonconstant on some neighbor-
hood of σ(T ) . We say that an operator T ∈ L (H ) is p -quasiclass A if there exists
a nonconstant polynomial p such that p(T )∗(|T 2| − |T |2)p(T ) � 0. In particular, if
p(z) = zk for some positive integer k or p(z) = z , then T is said to be a k -quasiclass
A operator or a quasiclass A operator, respectively. The class of these operators has
been studied by many authors (see [10], [13], [14], [23], and [27], etc.). An operator
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T ∈ L (H ) is called normaloid if ‖T‖ = r(T ) where r(T ) := sup{|λ | : λ ∈ σ(T )}
denotes the spectral radius of T . It is well known from [10] that

p-hyponormal ⇒ w-hyponormal ⇒ class A ⇒ normaloid.

We give the following example to indicate that there exists a k -quasiclass A oper-
ators which does not belong to class A .

EXAMPLE 1.1. Let T =

⎛⎝1 0 0
0 0 0
0 1 0

⎞⎠∈ L (C3) . Then |T 2|− |T |2 � 0, and so T is

not a class A operator. However, Tk∗(|T 2|− |T |2)Tk = 0 for every positive integer k ,
which implies that T is a k -quasiclass A operator for every positive integer k .

From the above example, it is natural to ask whether k -quasiclass A operators are
normaloid or not. Next we give a k -quasiclass A operator which is not normaloid.

EXAMPLE 1.2. Let Wα be the unilateral weighted shift with weights α := {αn}n�0

of positive real numbers. Then it is easy to compute that Wα belongs to k -quasiclass A
if and only if

αk � αk+1 � αk+2 � · · · .
Hence, if we take the weights α such that α0 = 2 and αn = 1

2 for all n � 1, then Wα
belongs to k -quasiclass A for all k ∈ N , but it is not normaloid.

We also find an equivalent condition for some operator-valued bilateral weighted
shifts to be k -quasiclass A operators.

EXAMPLE 1.3. Let K = ⊕∞
n=−∞Hn where Hn = H for all integers n . Given

two positive operators A and B in L (H ) , define an operator T ∈ L (K ) by Tx = y
with the following relation; if x = ⊕∞

n=−∞xn ∈K , then y = ⊕∞
n=−∞yn ∈K is given by

yn =

{
Axn−1 if n � 1

Bxn−1 if n > 1.

By straightforward computations, we get that T is a k -quasiclass A operator if and
only if

Ak[(AB2A)
1
2 −A2]Ak � 0.

For instance, we shall provide an example by using the Maple program. Let A =(
3 −2
−2 3

)
and B =

(
2 0
0 2

√
23

)
be operators on H = R2 , and let Hn = H for all

positive integers n . Note that

(AB2A)
1
2 −A2 =

(
0.17472 · · · −3.1798 · · ·
−3.1798 · · · 11.770 · · ·

)
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as computed in [10]. Then

A3[(AB2A)
1
2 −A2]A3 =

(
70778. · · · −71500. · · ·
−71500. · · · 72227. · · ·

)
and its eigenvalues are 143010. · · · and −1.1705 · · ·, and so

A3[(AB2A)
1
2 −A2]A3 � 0.

Therefore if we define T on ⊕∞
n=−∞Hn as in the above, then T is not a 3-quasiclass

A operator.

An operator T ∈L (H ) is said to be analytic if there exists a nonconstant analytic
function F on a neighborhood of σ(T ) such that F(T ) = 0. We say that an operator
T ∈L (H ) is algebraic if there is a nonconstant polynomial p such that p(T ) = 0. In
particular, if Tk = 0 for some positive integer k , then T is called nilpotent. An operator
T ∈ L (H ) is said to be quasinilpotent if σ(T ) = {0} . If an operator T ∈ L (H ) is
analytic, then F(T ) = 0 for some nonconstant analytic function F on a neighborhood
D of σ(T ) . Since F cannot have infinitely many zeros in D , we write F(z) = G(z)p(z)
where G is a function that is analytic and does not vanish on D and p is a nonconstant
polynomial with zeros in D . By Riesz-Dunford calculus, G(T ) is invertible and then
p(T ) = 0, which means that T is algebraic (see [5]). When p has degree k , we say
that T is analytic with order k throughout this paper.

An operator T ∈ L (H ) is called scalar of order m if it possesses a spectral dis-
tribution of order m , i.e., if there is a continuous unital homomorphism of topological
algebras

Φ : Cm
0 (C) → L (H )

such that Φ(z) = T , where as usual z stands for the identical function on C , and
Cm

0 (C) for the space of all continuously differentiable functions of order m which are
compactly supported, 0 � m � ∞ . An operator is subscalar of order m if it is similar
to the restriction of a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar showed in [25] that every hyponormal operator is subscalar
of order 2. In 1987, his theorem was used to show that hyponormal operators with
thick spectra have a nontrivial invariant subspace, which was a result due to S. Brown
(see [4]). In this paper, we study various properties of analytic extensions of class A
operators. In particular, we show that every analytic extension of a class A operator
has a scalar extension. As a corollary, we get that such an operator with rich spectrum
has a nontrivial invariant subspace. In addition, we study some properties of analytic
extensions of class A operators.

2. Preliminaries

An operator T ∈ L (H ) is called left semi-Fredholm if T has closed range and
dim(ker(T )) < ∞ , and T is called right semi-Fredholm if T has closed range and
dim(H /ran(T )) < ∞ . When T is either left semi-Fredholm or right semi-Fredholm, T
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is called semi-Fredholm. In this case, the Fredholm index of T is defined by ind(T ) :=
dim(ker(T ))− dim(H /ran(T )) . Note that ind(T ) is an integer or ±∞ . We say that
T is Fredholm if it is both left and right semi-Fredholm. Especially, an operator T ∈
L (H ) is said to be Weyl if it is Fredholm of index zero. The Weyl spectrum is given
by σw(T ) = {λ ∈ C : T −λ is not Weyl} and we write π00(T ) := {λ ∈ isoσ(T ) : 0 <
dim(ker(T −λ )) < ∞} . We say that Weyl’s theorem holds for T if σ(T ) \σw(T ) =
π00(T ) . A hole in σe(T ) is a nonempty bounded component of C \ σe(T ) , and a
pseudohole in σe(T ) is a nonempty component of σe(T )\σle(T ) or of σe(T )\σre(T ) ,
where σle(T ) and σre(T ) denotes the left essential spectrum and the right essential
spectrum of T , respectively. The spectral picture of T is the structure consisting of
σe(T ) , the collection of holes and pseudoholes in σe(T ) , and it is denoted by SP(T )
(see [24] for more details).

An operator T ∈ L (H ) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f : G → H such
that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For T ∈ L (H ) and x ∈ H ,
the set ρT (x) is defined to consist of elements z0 in C such that there exists an ana-
lytic function f (z) defined in a neighborhood of z0 , with values in H , which verifies
(T − z) f (z) ≡ x , and it is called the local resolvent set of T at x . We denote the com-
plement of ρT (x) by σT (x) , called the local spectrum of T at x , and define the local
spectral subspace of T , HT (F) = {x ∈ H : σT (x) ⊆ F} for each subset F of C . An
operator T ∈ L (H ) is said to have property (β ) if for every open subset G of C and
every sequence fn : G → H of H -valued analytic functions such that (T − z) fn(z)
converges uniformly to 0 in norm on compact subsets of G , then fn(z) converges uni-
formly to 0 in norm on compact subsets of G . An operator T ∈ L (H ) is said to have
Dunford’s property (C) if HT (F) is closed for each closed subset F of C . It is well
known from [18] that

Property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

Let z be the coordinate function in the complex plane C and dμ(z) the planar
Lebesgue measure. Consider a bounded (connected) open subset U of C . We shall
denote by L2(U,H ) the Hilbert space of measurable functions f : U → H , such that

‖ f‖2,U =
(∫

U
‖ f (z)‖2dμ(z)

) 1
2 < ∞.

The space of functions f ∈ L2(U,H ) that are analytic in U is denoted by

A2(U,H ) = L2(U,H )∩O(U,H )

where O(U,H ) denotes the Fr échet space of H -valued analytic functions on U with
respect to uniform topology. A2(U,H ) is called the Bergman space for U . Note that
A2(U,H ) is a Hilbert space.

Now, let us define a special Sobolev type space. For a fixed non-negative integer
m , the vector-valued Sobolev space Wm(U,H ) with respect to ∂ and of order m will

be the space of those functions f ∈ L2(U,H ) whose derivatives ∂ f , · · · ,∂ m
f in the
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sense of distributions still belong to L2(U,H ) . Endowed with the norm

‖ f‖2
Wm =

m

∑
i=0

‖∂
i
f‖2

2,U ,

Wm(U,H ) becomes a Hilbert space contained continuously in L2(U,H ) .
We can easily show that the linear operator M of multiplication by z on Wm(U,H )

is continuous and it has a spectral distribution Φ of order m defined by the following
relation; for ϕ ∈ Cm

0 (C) and f ∈ Wm(U,H ) , Φ(ϕ) f = ϕ f . Hence M is a scalar
operator of order m .

3. Main results

In this section, we will show that every analytic extension of a class A operator
has a scalar extension. For this, we begin with the following lemmas.

LEMMA 3.1. ([25]) For a bounded open disk D in the complex plane C there is
a constant CD such that for any operator T ∈ L (H ) and f ∈Wm(D,H ) (m � 2) we
have

‖(I−P)∂
i
f‖2,D � CD

(‖(T − z)∗∂
i+1

f‖2,D +‖(T − z)∗∂
i+2

f‖2,D
)

for i = 0,1, · · · ,m− 2, where P denotes the orthogonal projection of L2(D,H ) onto
the Bergman space A2(D,H ) .

LEMMA 3.2. ([25]) Let T ∈ L (H ) be a hyponormal operator and let D be a
bounded disk in C . If { fn} is a sequence in Wm(D,H ) (m > 2) such that

lim
n→∞

‖(T − z)∂
i
fn‖2,D = 0

for i = 1,2, · · · ,m , then limn→∞ ‖∂
i
fn‖2,D0 = 0 for i = 1,2, · · · ,m− 2 where D0 is a

disk strictly contained in D .

LEMMA 3.3. Let D be a bounded disk in C and let m be a positive integer with
m > 12. If T ∈ L (H ) is a class A operator and fn is a sequence in Wm(D,H ) such
that

lim
n→∞

‖(T − z)∂
i
fn‖2,D = 0

for i = 1,2, · · · ,m , then it holds that

lim
n→∞

‖(I−P)∂
i
fn‖2,D1 = 0

for i = 0,1,2, · · · ,m− 12, where P denotes the orthogonal projection of L2(D,H )
onto A2(D,H ) and D1 is any disk relatively compact in D . Furthermore, we have

lim
n→∞

‖∂
i
fn‖2,D2 = 0

for i = 1,2, · · · ,m−12, where D2 is any disk relatively compact in D1 .
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Proof. As in [14, Lemma 3.1], we can show that

lim
n→∞

‖(I−P)∂
i
fn‖2,D1 = 0

for i = 0,1,2, · · · ,m− 12, where P denotes the orthogonal projection of L2(D,H )
onto A2(D,H ) and D1 is any disk relatively compact in D . Then it follows that

lim
n→∞

‖(T − z)P∂
i
fn‖2,D1 = 0

for i = 1,2, · · · ,m−12. Since T has property (β ) from [14], we get that

lim
n→∞

‖P∂
i
fn‖2,D2 = 0

for i = 1,2, · · · ,m− 12, where D2 is any disk relatively compact in D1 . Hence we
complete our proof. �

The next lemma is the key step to prove the subscalarity for analytic extensions of
class A operators.

LEMMA 3.4. Let T ∈L (H ⊕K ) be an analytic extension of a class A operator,

i.e., T =
(

T1 T2

0 T3

)
where T1 is a class A operator and T3 is analytic with order k and

let D be a bounded disk in C containing σ(T ) . Define the map V : H ⊕K → H(D)
by

Vh = 1̃⊗h ( ≡ 1⊗h+(T − z)W2k+12(D,H )⊕W 2k+12(D,K ) )

where

H(D) := W 2k+12(D,H )⊕W 2k+12(D,K )/(T − z)W 2k+12(D,H )⊕W 2k+12(D,K )

and 1⊗h denotes the constant function sending any z ∈ D to h . Then V is one-to-one
and has closed range.

Proof. Let fn = f 1
n ⊕ f 2

n ∈ W 2k+12(D,H )⊕W 2k+12(D,K ) and hn = h1
n ⊕ h2

n ∈
H ⊕K be sequences such that

lim
n→∞

‖(T − z) fn +1⊗hn‖W2k+12(D,H )⊕W 2k+12(D,K ) = 0. (1)

Then from (1) we have the following equations:{
limn→∞ ‖(T1− z) f 1

n +T2 f 2
n +1⊗h1

n‖W2k+12 = 0

limn→∞ ‖(T3− z) f 2
n +1⊗h2

n‖W2k+12 = 0.
(2)

By the definition of the norm for the Sobolev space, (2) implies that⎧⎨⎩limn→∞ ‖(T1− z)∂
i
f 1
n +T2∂

i
f 2
n ‖2,D = 0

limn→∞ ‖(T3− z)∂
i
f 2
n ‖2,D = 0

(3)
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for i = 1,2, · · · ,2k + 12. Since T3 is analytic with order k , there exists a nonconstant
analytic function F on a neighborhood of σ(T3) such that F(T3) = 0. As remarked
in section one, write F(z) = G(z)p(z) where G is analytic and does not vanish on a
neighborhood of σ(T3) and p(z) = (z−z1)(z−z2) · · · (z−zk) is a polynomial of degree
k . Set q j(z) = (z− z j+1) · · · (z− zk) for j = 0,1,2, · · · ,k−1 and qk(z) = 1.

Claim. It holds for every j = 0,1,2, · · · ,k that

lim
n→∞

‖q j(T3)∂
i
f 2
n ‖2,Dj = 0

for i = 1,2, · · · ,2k−2 j +12, where σ(T ) � Dk � · · · � D2 � D1 � D .

To prove the claim, we will use the induction on j . Since 0 = F(T3) = G(T3)p(T3)
and G(T3) is invertible, it follows that q0(T3) = p(T3) = 0, and so the claim holds when
j = 0. Suppose that the claim is true for some j = r where 0 � r < k . That is,

lim
n→∞

‖qr(T3)∂
i
f 2
n ‖2,Dr = 0 (4)

for i = 1,2, · · · ,2k−2r+12, where σ(T ) � Dr � · · ·� D1 � D . By the second equation
of (3) and (4), we get that

0 = lim
n→∞

‖qr+1(T3)(T3 − z)∂
i
f 2
n ‖2,Dr

= lim
n→∞

‖qr+1(T3)(T3 − zr+1 + zr+1− z)∂
i
f 2
n ‖2,Dr

= lim
n→∞

‖(zr+1− z)qr+1(T3)∂
i
f 2
n ‖2,Dr

(5)

for i = 1,2, · · · ,2k− 2r + 12. Since zr+1I is hyponormal, by applying Lemma 3.2 we
obtain that

lim
n→∞

‖qr+1(T3)∂
i
f 2
n ‖2,Dr+1 = 0 (6)

for i = 1,2, · · · ,2k−2r+10, where σ(T ) � Dr+1 � Dr . Hence we complete the proof
of our claim.

From the claim with j = k , we have

lim
n→∞

‖∂
i
f 2
n ‖2,Dk = 0 (7)

for i = 1,2, · · · ,12, which implies by Lemma 3.1 that

lim
n→∞

‖(I−P2) f 2
n ‖2,Dk = 0 (8)

where P2 denotes the orthogonal projection of L2(Dk,K ) onto A2(Dk,K ) . By com-
bining (7) with the first equation of (3), we obtain that

lim
n→∞

‖(T1− z)∂
i
f 1
n ‖2,Dk = 0 (9)
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for i = 1,2, · · · ,12. From Lemma 3.3, it follows that

lim
n→∞

‖(I−P1) f 1
n ‖2,Dk,1 = 0. (10)

Set P fn :=
(P1 f 1

n
P2 f 2

n

)
. Combining (8) and (10) with (2), we have

lim
n→∞

‖(T − z)P fn +1⊗hn‖2,Dk,1 = 0.

Let Γ be a curve in Dk,1 surrounding σ(T ) . Then

lim
n→∞

‖P fn(z)+ (T − z)−1(1⊗hn)(z)‖ = 0

uniformly for all z ∈ Γ . Applying Riesz-Dunford functional calculus, we obtain that

lim
n→∞

‖ 1
2π i

∫
Γ
P fn(z) dz+hn‖ = 0.

But by Cauchy’s theorem, 1
2π i

∫
Γ P fn(z) dz = 0. Hence limn→∞ ‖hn‖ = 0, and so V is

one-to-one and has closed range. �
Now we are ready to prove that every analytic extension of a class A operator has

a scalar extension.

THEOREM 3.5. Every analytic extension of a class A operator is subscalar.

Proof. Let T =
(

T1 T2

0 T3

)
be an operator matrix defined on H ⊕K , where T1

is a class A operator and T3 is analytic with order k . Let D be an arbitrary bounded
open disk in C that contains σ(T ) . As in Lemma 3.4, if we define an operator V :

H ⊕K → H(D) by Vh = 1̃⊗h , then V is one-to-one and has closed range. The
class of a vector f or an operator S on H(D) will be denoted by f̃ , respectively S̃ . Let
M be the operator of multiplication by z on W 2k+12(D,H )⊕W 2k+12(D,K ) . Then
M is a scalar operator of order 2k + 12 and has a spectral distribution Φ . Since the
range of T − z is invariant under M , M̃ can be well-defined. Moreover, consider the
spectral distribution Φ :C2k+12

0 (C)→L
(
W 2k+12(D,H )⊕W 2k+12(D,K )

)
defined by

the following relation; for ϕ ∈ C2k+12
0 (C) and f ∈ W 2k+12(D,H )⊕W 2k+12(D,K ) ,

Φ(ϕ) f = ϕ f . Then the spectral distribution Φ of M commutes with T − z , and so M̃
is still a scalar operator of order 2k+12 with Φ̃ as a spectral distribution. Since

VTh = 1̃⊗Th = z̃⊗h = M̃(1̃⊗h) = M̃Vh

for all h ∈ H ⊕K , VT = M̃V . In particular, ran(V ) is invariant under M̃ , where
ran(V ) is the range of V . Since ran(V ) is closed, it is a closed invariant subspace of
the scalar operator M̃ . Since T is similar to the restriction M̃|ran(V ) and M̃ is a scalar
operator of order 2k+12, T is subscalar of order 2k+12. �

As an application of our main theorem, we prove that every F -quasiclass A oper-
ator is subscalar with the following lemma.
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LEMMA 3.6. Let T ∈ L (H ) be F -quasiclass A and let M be an invariant
subspace for T . Then the restriction T |M is a p -quasiclass A operator.

Proof. Since T is an F -quasiclass A operator, F(T )∗(|T 2|− |T |2)F(T ) � 0 for
some function F analytic and nonconstant on a neighborhood of σ(T ) . Set F(z) =
G(z)p(z) where G is a nonvanishing analytic function on a neighborhood of σ(T ) and
p is a nonconstant polynomial. Since M is a T -invariant subspace, we can write T =(

T1 T2

0 T3

)
on the decomposition H = M ⊕M⊥ , where T1 = T |M , T3 = (I−P)T (I−

P)|M⊥ , and P denotes the orthogonal projection of H onto M . Since ((T 2)∗T 2)
1
2 �

0, from [9] we can set

|T 2| = ((T 2)∗T 2)
1
2 =

(
B C
C∗ D

)
,

where B � 0, D � 0, and C = B
1
2 SD

1
2 for some contraction S : M⊥ → M . Then a

simple calculation gives that

(T 2)∗T 2 = |T 2|2 =
(

B C
C∗ D

)2

=
(

B2 +CC∗ BC+CD
C∗B+DC∗ C∗C+D2

)
.

Since

(T 2)∗T 2 =
(

(T 2
1 )∗T 2

1 ∗
∗ ∗

)
,

we get that B2 +CC∗ = (T 2
1 )∗T 2

1 . Hence

|T 2
1 | = ((T 2

1 )∗T 2
1 )

1
2 = (B2 +CC∗)

1
2 � B.

Also, since

|T |2 = T ∗T =
(

T ∗
1 T1 ∗
∗ ∗

)
=

( |T1|2 ∗
∗ ∗

)
,

we have

0 � F(T )∗(|T 2|− |T |2)F(T )

= F(T )∗
(

B−|T1|2 ∗
∗ ∗

)
F(T ) = G(T )∗

(
p(T1)∗(B−|T1|2)p(T1) ∗

∗ ∗
)

G(T )

by Riesz-Dunford’s functional calculus. Since G(T ) is invertible, we obtain from [9]
that p(T1)∗(B−|T1|2)p(T1) � 0, which completes our proof. �

THEOREM 3.7. Every F -quasiclass A operator is subscalar. In particular, every
k -quasiclass A operator is subscalar of order 2k+12.

Proof. Suppose that T ∈ L (H ) satisfies that F(T )∗(|T 2| − |T |2)F(T ) � 0 for
some analytic function F on a neighborhood of σ(T ) . If the range of F(T ) is norm
dense in H , then T is a class A operator. Hence T is subscalar of order 12 by
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Theorem 3.5. So it suffices to assume that the range of F(T ) is not norm dense in
H . Since F(T ) commutes with T , ran(F(T )) is a T -invariant subspace, and so

we can express T as T =
(

T1 T2

0 T3

)
on H = ran(F(T ))⊕ ker(F(T )∗) where T1 =

T |ran(F(T )) , T3 = (I−P)T (I−P)|ker(F(T )∗) , and P denotes the projection of H onto

ran(F(T )) . Note that F(z) = G(z)p(z) where G is a nonvanishing analytic function on
a neighborhood of σ(T ) and p is a nonconstant polynomial. Then G(T ) is invertible
and thus we obtain that ker(F(T )∗) = ker(p(T )∗) . Since p(T3) = (I −P)p(T )(I −
P)|ker(F(T )∗) , it holds for any x ∈ ker(F(T )∗) that

〈p(T3)x,x〉 = 〈p(T )x,x〉 = 〈x, p(T )∗x〉 = 0.

Hence p(T3) = 0 and so T3 is analytic. In addition, since P(|T 2|−|T |2)P � 0, we have

|T 2
1 |− |T1|2 � B−|T1|2 � 0

from the proof of Lemma 3.6 and [9]. This means that T1 is a class A operator. There-
fore if T3 is analytic with order k , then T is subscalar of order 2k + 12 by Theorem
3.5. �

In the next corollary, we obtain a partial solution to the invariant subspace problem
for analytic extensions of class A operators, which is a generalization of S. Brown’s
result mentioned in section one.

COROLLARY 3.8. Let T ∈ L (H ⊕K ) be an analytic extension of a class A
operator. If σ(T ) has nonempty interior in C , then T has a nontrivial invariant sub-
space.

Proof. The proof follows from Theorem 3.5 and [8]. �
For the following corollary, note that an operator T ∈ L (H ) is said to be power

regular if {‖Tnx‖ 1
n }∞

n=0 converges for each x ∈ H and rT (x) denotes the local spec-

tral radius of T at x given by rT (x) := limsupn→∞ ‖Tnx‖ 1
n . Moreover, we recall that

for an operator T ∈ L (H ) , a spectral maximal space of T is defined to be a closed
T -invariant subspace M of H with the property that M contains any closed T -
invariant subspace N of H such that σ(T |N ) ⊂ σ(T |M ) . Furthermore, recall that
an operator X ∈ L (H ,K ) is called a quasiaffinity if it has trivial kernel and dense
range. An operator S ∈ L (H ) is said to be a quasiaffine transform of an operator
T ∈ L (K ) if there is a quasiaffinity X ∈ L (H ,K ) such that XS = TX . Also,
operators S ∈ L (H ) and T ∈ L (K ) are quasisimilar if there are quasiaffinities
X ∈ L (H ,K ) and Y ∈ L (K ,H ) such that XS = TX and SY = YT .

COROLLARY 3.9. If T ∈ L (H ⊕K ) is an analytic extension of a class A op-
erator, then the following statements hold.
(i) T has property (β ) , Dunford’s property (C) , and the single-valued extension prop-
erty.
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(ii) T is power regular.
(iii) rT (x) = limn→∞ ‖Tnx‖ 1

n for all x ∈ H .
(iv) HT (E) is a spectral maximal space of T and σ(T |HT (E)) ⊂ σ(T )∩ E for any
closed subset E in C .
(v) If S is a quasiaffine transform of T such that XS = TX where X is a quasiaffinity,
then S has the single-valued extension property and XHS(E) ⊆ HT (E) for any subset
E in C .

Proof. (i) From section two, it suffices to prove that T has property (β ) . Since
property (β ) is transmitted from an operator to its restrictions to closed invariant sub-
spaces, we are reduced by Theorem 3.5 to the case of a scalar operator. Since every
scalar operator has property (β ) (see [25]), T has property (β ) .

(ii) From Theorem 3.5, T is similar to the restriction of a scalar operator to one
of its invariant subspaces. Since a scalar operator is power regular and the restrictions
of power regular operators to their invariant subspaces are still power regular, T is also
power regular.

(iii) The proof follows from (i) and [18].
(iv) Since T has property (C) from (i), HT (E) is closed for any closed subset E

in C . Hence the proof follows from [6] or [18].
(v) Let f : G → H ⊕K be an analytic function on an open set G in C such

that (S− z) f (z) ≡ 0. Then (T − z)X f (z) = X(S− z) f (z) ≡ 0 on G . Since T has the
single-valued extension property, X f (z)≡ 0 on G . Since X is a quasiaffinity, f (z) ≡ 0
on G . Hence S has the single-valued extension property. To prove the last conclusion,
it suffices to show that σT (Xx) ⊆ σS(x) for any x ∈ H ⊕K ; in fact, if it holds, then
x ∈ HS(E) implies σT (Xx) ⊂ E , which means that Xx ∈ HT (E) . If z0 ∈ ρS(x) , then
we can choose an H ⊕K -valued analytic function f on some neighborhood of z0 for
which (S− z) f (z) ≡ x . Since XS = TX , we have (T − z)X f (z) = X(S− z) f (z) ≡ Xx ,
and so z0 ∈ ρT (Xx) . �

COROLLARY 3.10. Let C and D be operator matrices in L (H ⊕K ) which
are analytic extensions of class A operators. If C and D are quasisimilar, then σ(C) =
σ(D) and σe(C) = σe(D) .

Proof. Since C and D satisfy property (β ) from Corollary 3.9, the proof follows
from [26]. �

COROLLARY 3.11. Let T ∈ L (H ⊕K ) be an analytic extension of a class A
operator. If there exists a nonzero vector x ∈ H ⊕K such that σT (x) � σ(T ) , then
T has a nontrivial hyperinvariant subspace.

Proof. Set M := HT (σT (x)), i.e., M = {y∈H ⊕K : σT (y)⊆ σT (x)}. Since T
has Dunford’s property (C) by Corollary 3.9, M is a T -hyperinvariant subspace from
[6] or [18]. Since x ∈ M , we get M �= {0} . Suppose M = H ⊕K . Since T has
the single-valued extension property by Corollary 3.9, it follows from [18] that

σ(T ) =
⋃
{σT (y) : y ∈ H ⊕K } ⊆ σT (x) � σ(T ),
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which is a contradiction. Hence M is a nontrivial T -hyperinvariant subspace. �

Next we show that every analytic extension T ∈L (H ⊕K ) of a class A operator
is isoloid (i.e., isoσ(T ) ⊆ σp(T ) where isoσ(T ) denotes the set of all isolated points
of σ(T )). If T ∈ L (H ) is analytic, then there exists a nonconstant polynomial p(z)
such that p(T ) = 0. If q(z) is a minimal polynomial satisfying q(T ) = 0, it is obvious
that q(z) is a factor of p(z) .

LEMMA 3.12. Suppose that T ∈ L (H ⊕K ) is an analytic extension of a class

A operator, i.e., T =
(

T1 T2

0 T3

)
is an operator matrix on H ⊕K where T1 is a class

A operator and F(T3) = 0 for a nonconstant analytic function F on a neighborhood
D of σ(T3) . Then the spectrum σ(T ) = σ(T1) ∪ σ(T3) and σ(T3) is a subset of
{z ∈ C : p(z) = 0} where F(z) = G(z)p(z) , G is analytic and does not vanish on D ,
and p is a polynomial.

Proof. Since p(T3) = 0, choose a minimal polynomial q such that q(T3) = 0 and
q(z) is a factor of p(z) as remarked in the above. Then {z ∈ C : q(z) = 0} is nonempty
and is contained in {z ∈ C : p(z) = 0} . First we will show that σ(T3) = σp(T3) =
{z ∈ C : q(z) = 0} . Since q(T3) = 0, we have q(σ(T3)) = σ(q(T3)) = {0} by the
spectral mapping theorem. This means that σ(T3) ⊆ {z ∈ C : q(z) = 0}. Moreover if
we assume that z1, · · · ,zk are all the roots of q(z) = 0, not necessarily distinct, then
(T3 − z1)(T3 − z2) · · · (T3 − zk)x = 0 for all x ∈ K . By the minimality of the degree
of q , we can select a vector x0 ∈ K such that (T3 − z2) · · · (T3 − zk)x0 �= 0, and so
z1 ∈ σp(T3) . Similarly, zi ∈ σp(T3) for all i = 1,2, · · · ,k . Hence σ(T3) = σp(T3) =
{z ∈ C : q(z) = 0} . Since {z ∈ C : q(z) = 0} is a finite set, σ(T1)∩σ(T3) is also
finite, which implies that σ(T1)∩σ(T3) has no interior point. By using [11], we get
σ(T ) = σ(T1)∪σ(T3) , which completes the proof. �

THEOREM 3.13. Every analytic extension of a class A operator is isoloid.

Proof. Suppose that T ∈ L (H ⊕K ) is an analytic extension of a class A oper-
ator. Then we get by Lemma 3.12 that σ(T ) = σ(T1)∪σ(T3) and σ(T3) is a finite set.
Let λ ∈ C be an isolated point of σ(T ) . Then either λ is an isolated point of σ(T1)
or λ ∈ σ(T3) . If λ is an isolated point of σ(T1) , then λ ∈ σp(T1) ⊆ σp(T ) because
every class A operator is isoloid by [13]. Thus we may assume that λ ∈ σp(T3) and
λ �∈ σ(T1) . Since λ ∈ σp(T3) , we get ker(T3 −λ ) �= {0} . In addition it holds for any
x ∈ ker(T3 −λ ) that (T −λ )(−(T1−λ )−1T2x⊕ x) = 0. Hence λ ∈ σp(T ) . �

COROLLARY 3.14. Let T ∈ L (H ⊕K ) be an analytic extension of a class A
operator. If T is quasinilpotent, then it is nilpotent.

Proof. Since σ(T ) = {0} , Lemma 3.12 implies that σ(T1) = {0} and T3 is
nilpotent. Since T1 is a class A operator, it is normaloid by [10]. Hence we get
‖T1‖ = r(T1) = 0. Therefore, T is nilpotent. �
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PROPOSITION 3.15. Suppose that T =
(

T1 T2

0 T3

)
∈ L (H ⊕K ) is an analytic

extension of a class A operator, i.e., T1 is a class A operator and F(T3) = 0 for some
nonconstant analytic function F on a neighborhood D of σ(T3) with the representation
F(z) = G(z)p(z) where G is analytic and does not vanish on D and p(z) = (z−z1)(z−
z2) · · · (z− zk) is a polynomial. Then
(i) HT (E) ⊃ HT1(E)⊕{0} for every subset E of C , and
(ii) if E is a closed subset of C with zi �∈ E for some i = 1,2, · · · ,k and {Tj}3

j=1 are
mutually commuting, then

HT (E) ⊆ {x1⊕ x2 ∈ H ⊕K : pi(T3)x1 ∈ HT1(E) and x2 ∈ ker(pi(T3))}

where pi(z) = (z− z1) · · · (z− zi−1)(z− zi+1) · · · (z− zk) .

Proof. (i) Let E be any subset of C and let x1 ∈HT1(E) be given. Since T has the
single-valued extension property by Corollary 3.9, there exists an H -valued analytic
function f1 on C \E for which (T1 − z) f1(z) ≡ x1 on C \E . Hence (T − z)( f1(z)⊕
0) ≡ x1⊕0 on C\E , and so x1 ⊕0 ∈ HT (E) .

(ii) We may assume that E is any closed subset of C with z1 �∈E , and let x1⊕x2 ∈
HT (E) be given. Since T has the single-valued extension property by Corollary 3.9,
we can choose an H ⊕K -valued analytic function f (z) = f1(z)⊕ f2(z) defined on
C\E such that (T − z) f (z) = x1 ⊕ x2 for all z ∈ C\E . Then we have{

(T1− z) f1(z)+T2 f2(z) = x1

(T3− z) f2(z) = x2
(11)

for all z ∈ C\E . Since p(T3) = (T3− z1)p1(T3) = 0, it follows from (11) that

(z− z1)p1(T3) f2(z)+ p1(T3)x2 ≡ 0 on C\E. (12)

By taking z = z1 in (12), we obtain that p1(T3)x2 = 0, which means x2 ∈ ker(p1(T3)) .
Moreover, (T1−z)p1(T3) f1(z)≡ p1(T3)x1 on C\E from (11), which implies p1(T3)x1 ∈
HT1(E) . �

In the following proposition, we will consider the Putnam’s type inequality cor-
responding to the analytic extension of a class A operator. Note that the Putnam’s
inequality holds for class A operators;

|||T 2|− |T |2|| � 1
π

μ(σ(T ))

where μ denotes the planar Lebesgue measure (see [23]).

PROPOSITION 3.16. Suppose that T =
(

T1 T2

0 T3

)
∈ L (H ⊕K ) is an analytic

extension of a class A operator, i.e., T1 is a class A operator and F(T3) = 0 for some
nonconstant analytic function F on a neighborhood D of σ(T ) with the representation
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F(z) = G(z)p(z) where G is analytic and does not vanish on D and p(z) is a polyno-
mial.
(i) If T is compact, then both p(T ) and F(T ) are expressed as the sum of a normal
operator and a nilpotent operator of order 2.
(ii) The following inequality holds;

||P(|T 2|− |T |2)P|| � 1
π

μ(σ(T ))

where P is the orthogonal projection of H ⊕K onto H ⊕{0} . Moreover, if σ(T )
is a Lebesgue null set, then T1 is normal.

Proof. (i) We have F(T ) =
(

F(T1) S
0 0

)
for some operator S : K → H . Since

T is compact and T1 is the restriction of T to the invariant subspace H ⊕{0} , T1 is
also compact. Thus T1 is normal by [14], and so is F(T1) . Since F(T )−F(T1)⊕0 is a
nilpotent operator of order 2, we complete the proof for F(T ) , and the proof for p(T )
is analogous.

(ii) Since PTP = TP , we get that |T 2
1 | = (P|T 2|2P)

1
2 � P|T 2|P by Hansen’s

inequality (see [10]). Since |T1|2 = (TP)∗(TP) = P|T |2P , we have |T 2
1 | − |T1|2 �

P(|T 2| − |T |2)P . Since σ(T ) = σ(T1)∪σ(T3) and σ(T3) is a finite set by Lemma
3.12, it follows from [23] that

||P(|T 2|− |T |2)P|| � |||T 2
1 |− |T1|2|| � 1

π
μ(σ(T1)) =

1
π

μ(σ(T )).

Moreover, if μ(σ(T )) = 0, then μ(σ(T1)) = 0, and hence T1 is normal from [28]. �

COROLLARY 3.17. Under the same hypotheses as in Proposition 3.16, let σ(T )
be a Lebesgue null set. If T1 has dense range, then T is the direct sum of a normal
operator and an analytic operator.

Proof. Since T1 is normal by Proposition 3.16, it suffices to show that T2 = 0.
Since σ(T ) is a Lebesgue null set, we know that P(|T 2|− |T |2)P = 0 and |T 2

1 |= |T1|2
from Proposition 3.16. From easy computations, we get that

|T 2|2 =
( |T 2

1 |2 ∗
∗ ∗

)
and |T |4 =

( |T1|4 +T ∗
1 T2T ∗

2 T1 ∗
∗ ∗

)
.

Hence |T 2
1 |2 = |T1|4 + T ∗

1 T2T ∗
2 T1 . Since |T 2

1 | = |T1|2 , T ∗
1 T2T ∗

2 T1 = 0. Since T1 has
dense range, T2 = 0. Thus T = T1 ⊕T3 . �

Next we show that the spectral mapping theorem for the Weyl spectrum and Weyl’s
theorem hold for an analytic extension T of a class A operator, more generally for f (T )
where f is any analytic function on some neighborhood of σ(T ) .

THEOREM 3.18. If T ∈ L (H ⊕K ) is an analytic extension of a class A oper-
ator, then
(i) it satisfies Weyl’s theorem, and
(ii) f (σw(T )) = σw( f (T )) for any analytic function f on some neighborhood of σ(T ) .
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Proof. Suppose that T =
(

T1 T2

0 T3

)
∈ L (H ⊕K ) is an analytic extension of a

class A operator, i.e., T1 is a class A operator and F(T3) = 0 for some nonconstant
analytic function F on a neighborhood D of σ(T3) .

(i) Note that every class A operator is isoloid and satisfies Weyl’s theorem by
[5]. Furthermore, since every analytic operator is algebraic as noted in section one
or [5], T3 is isoloid and it satisfies Weyl’s theorem by [22]. Since σw(T1)∩σw(T3)
has no interior points by Lemma 3.12, Weyl’s theorem holds for T1 ⊕T3 from [20]. If
λ0 �∈σle(T3)∩σre(T3) and λ0 ∈σe(T3) , then T3−λ0 is semi-Fredholm and λ0 ∈σ(T3) .
Since T3 is algebraic, λ0 is an isolated point of σ(T3) . By [7], T3−λ0 is Fredholm and
ind(T3 −λ0) = 0, which is a contradiction. Thus we have σe(T3) = σle(T3)∩σre(T3) ,
which induces σe(T3) = σle(T3) = σre(T3) . Therefore SP(T3) has no pseudoholes, and
so we finally get that Weyl’s theorem holds for T by [19].

(ii) If f is analytic on some neighborhood of σ(T ) , then σw( f (T1)) = f (σw(T1))
by [5]. Moreover since T3 is algebraic, we know that σw( f (T3)) = f (σw(T3)) and
σw(T1)∩σw(T3) is finite and so has no interior points. Since σw(T1)∩σw(T3) is finite,
σw( f (T1))∩σw( f (T3)) = f (σw(T1))∩ f (σw(T3)) also has no interior points. Hence,
we obtain from [20] that

σw( f (T )) = σw( f (T1))∪σw( f (T3)) = f (σw(T1))∪ f (σw(T3))
= f (σw(T1)∪σw(T3)) = f (σw(T )).

Thus we complete our proof. �

COROLLARY 3.19. Let T ∈ L (H ⊕K ) be an analytic extension of a class A
operator. Then Weyl’s theorem holds for f (T ) where f is any analytic function on
some neighborhood of σ(T ) .

Proof. If T is an analytic extension of a class A operator, then T is isoloid by
Theorem 3.13. Let f be an analytic function on some neighborhood of σ(T ) . Then it
follows from [21] that

σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )).

Since Weyl’s theorem holds for T and f (σw(T )) = σw( f (T )) by Theorem 3.18,

σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )) = f (σw(T )) = σw( f (T )).

Accordingly, Weyl’s theorem holds for f (T ) . �
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