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WEYL THEORY AND EXPLICIT SOLUTIONS OF

DIRECT AND INVERSE PROBLEMS FOR DIRAC

SYSTEM WITH A RECTANGULAR MATRIX POTENTIAL

B. FRITZSCHE, B. KIRSTEIN, I. YA. ROITBERG AND A. L. SAKHNOVICH

(Communicated by F. Gesztesy)

Abstract. A non-classical Weyl theory is developed for Dirac systems with rectangular matrix
potentials. The notion of the Weyl function is introduced and the corresponding direct problem
is solved. Furthermore, explicit solutions of the direct and inverse problems are obtained for the
case of rational Weyl matrix functions.

1. Introduction

Consider self-adjoint Dirac-type (also called Dirac, ZS or AKNS) system, which
is a classical matrix differential equation:

d
dx

y(x,z) = i(z j + jV (x))y(x,z) (x � 0), (1.1)

j =
[

Im1 0
0 −Im2

]
, V =

[
0 v
v∗ 0

]
, (1.2)

where Imk is the mk×mk identity matrix and v(x) is an m1×m2 matrix function, which
is called the potential of system. Dirac-type systems are very well-known in mathemat-
ics and applications (see, for instance, books [6, 7, 30, 32, 47], recent publications
[3, 4, 5, 9, 10, 17, 18, 48], and numerous references therein). The name ZS-AKNS
is caused by the fact that system (1.1) is an auxiliary linear system for many impor-
tant nonlinear integrable wave equations and as such it was studied, for instance, in
[1, 2, 13, 21, 42, 52]. For the case that m1 �= m2 systems of the form (1.1), (1.2) are,
in particular, auxiliary linear systems for the coupled, multicomponent, and m1 ×m2

matrix nonlinear Schrödinger equations.
The Weyl and spectral theory of self-adjoint Dirac systems, where m1 = m2 , was

dealt with, for instance, in [5, 9, 24, 28, 32, 41, 47] (see also various references therein).
The ”non-classical” Weyl theory for the equally important case m1 �= m2 and related
questions are the subject of this paper.
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In Section 2 we treat the direct problem for the general-type Dirac system, that
is, system (1.1), where the potential v is locally summable. A definition of the non-
expansive generalized Weyl function is given, its existence and uniqueness are proved,
and some basic properties are studied.

In Section 3 we consider Dirac systems with the so called generalized pseudo-
exponential potentials (see Definition 3.1). Direct and inverse problems for such sys-
tems are solved there explicitly. For that purpose we follow the scheme from [16, 24,
39] and apply some classical results from system theory [26] and Riccati equations
[31].

As usual, N stands for the set of natural numbers, R stands for the real axis, C

stands for the complex plain, and C+ for the open upper semi-plane. If a ∈ C , then a
is its complex conjugate. The notation Im is used for image. An m2×m1 matrix α is
said to be non-expansive, if α∗α � Im1 (or, equivalently, if αα∗ � Im2 ).

We put m1 +m2 =: m . The fundamental solution of system (1.1) is denoted by
u(x,z) , and this solution is normalized by the condition

u(0,z) = Im. (1.3)

2. Direct problem

We consider Dirac system (1.1) on the semi-axis x ∈ [0, ∞) and assume that v is
measurable and locally summable, that is, summable on all the finite intervals. In a way,
which is similar, for instance, to the non-classical problem treated in [40] we shall use
Möbius transformations and matrix balls to solve the direct problem for Dirac system.

Introduce a class of nonsingular m×m1 matrix functions P(z) with property- j ,
which are an immediate analog of the classical pairs of parameter matrix functions.
Namely, the matrix functions P(z) are meromorphic in C+ and satisfy (excluding,
possibly, a discrete set of points) the following relations

P(z)∗P(z) > 0, P(z)∗ jP(z) � 0 (z ∈ C+). (2.1)

DEFINITION 2.1. The set N (x,z) of Möbius transformations is the set of values
at x, z of matrix functions

ϕ(x,z,P) =
[
0 Im2

]
u(x,z)−1P(z)

([
Im1 0

]
u(x,z)−1P(z)

)−1
, (2.2)

where P(z) are nonsingular matrix functions with property- j .

PROPOSITION 2.2. Let Dirac system (1.1) on [0, ∞) be given and assume that v
is locally summable. Then the sets N (x,z) are well-defined. There is a unique matrix
function ϕ(z) in C+ such that

ϕ(z) =
⋂
x<∞

N (x,z). (2.3)

This function is analytic and non-expansive.
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Proof. It is immediate from (1.1) that

d
dx

(
u(x,z)∗ ju(x,z)

)
= i(z− z)u(x,z)∗u(x,z) < 0, z ∈ C+. (2.4)

According to (1.3) and (2.4) we have

A(x,z) = {Ai j(x,z)}2
i, j=1 := u(x,z)∗ ju(x,z) � j, z ∈ C+, (2.5)

where A is partitioned into four blocks so that Aii is an mi ×mi matrix function ( i =
1,2). Inequality (2.5) yields

(
u(x,z)∗

)−1
ju(x,z)−1 � j. (2.6)

Thus, we get

det
([

Im1 0
]
u(x,z)−1P(z)

)
�= 0, (2.7)

and so N is well-defined via (2.2). Indeed, if (2.7) does not hold, there is a vector
f ∈ Cm1 such that[

Im1 0
]

ju(x,z)−1P(z) f =
[
Im1 0

]
u(x,z)−1P(z) f = 0, f �= 0. (2.8)

By (2.1) and (2.6) the subspace Im
(
u(x,z)−1P(z)

)
is a maximal j -nonnegative sub-

space. Clearly Im
([

Im1 0
]∗ )

is a maximal j -nonnegative subspace too. Therefore
(2.8) implies u(x,z)−1P(z) f ∈ Im

([
Im1 0

]∗ )
. But then it follows from the second

equality in (2.8) that f = 0, which contradicts the inequality in (2.8).
Next, rewrite (2.2) in the equivalent form[

Im1

ϕ(x,z,P)

]
= u(x,z)−1P(z)

([
Im1 0

]
u(x,z)−1P(z)

)−1
. (2.9)

In view of (2.1), (2.9), and of the definition of A in (2.5), formula

ϕ̂(z) ∈ N (x,z) (2.10)

is equivalent to

[
Im1 ϕ̂(z)∗

]
A(x,z)

[
Im1

ϕ̂(z)

]
� 0. (2.11)

In a standard way, using formula (2.4) and the equivalence of (2.10) and (2.11), we get

N (x1,z) ⊂ N (x2,z) for x1 > x2. (2.12)
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Moreover, (2.11) at x = 0 means that

N (0,z) = {ϕ̂(z) : ϕ̂(z)∗ϕ̂(z) � Im1}. (2.13)

By Montel’s theorem, formulas (2.12) and (2.13) imply the existence of an analytic and
non-expansive matrix function ϕ(z) such that

ϕ(z) ∈
⋂
x<∞

N (x,z). (2.14)

Indeed, because of (2.12) and (2.13) we see that the set of functions ϕ(x,z,P) of the
form (2.2) is uniformly bounded in C+ . So, Montel’s theorem is applicable and there
is an analytic matrix function, which we denote by ϕ∞(z) and which is a uniform limit
of some sequence

ϕ∞(z) = lim
i→∞

ϕ(xi,z,Pi) (i ∈ N, xi ↑, lim
i→∞

xi = ∞) (2.15)

on all the bounded and closed subsets of C+ . Since xi ↑ and equalities (2.9) and (2.12)
hold, it follows that the matrix functions

Pi j(z) := u(xi,z)
[

Im1

ϕ(x j,z,P j)

]
( j � i)

satisfy relations (2.1). Therefore, using (2.15) we derive that (2.1) holds for

Pi,∞(z) := u(xi,z)
[

Im1

ϕ∞(z)

]
,

which implies that we can substitute P = Pi,∞ and x = xi into (2.9) to get

ϕ∞(z) ∈ N (xi,z). (2.16)

Since (2.16) holds for all i ∈ N , we see that (2.14) is true for ϕ(z) = ϕ∞(z) .
Now, let us show that N is a matrix ball. It follows from (2.4) and (2.5) that

d
dx

A � i(z− z)A � i(z− z) j, A(0,z) = j.

Taking into account the relations above, we derive

−A22(x,z) �
(
1+ i(z− z)x

)
Im2 . (2.17)

Note also that (2.5) implies A(x,z)−1 � j for z ∈ C+ (see [36]). Thus, we get

(
A−1)

11 =
(
A11−A12A

−1
22 A21

)−1 � Im1 . (2.18)
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Since −A22 > 0, the square root ϒ =
(−A22

)1/2
is well-defined and we rewrite (2.11)

in the form

A11−A12A
−1
22 A21−

(
ϕ̂∗ϒ−A12ϒ−1)(ϒϕ̂ −ϒ−1A21

)
� 0,

where A12 = A∗
21 . Equivalently, we have

ϕ̂ = ρlωρr −A−1
22 A21, ω∗ω � Im2 , (2.19)

ρl := ϒ−1 =
(−A22

)−1/2
, ρr := (A11−A12A

−1
22 A21

)1/2
. (2.20)

Here ω is an m2 ×m1 matrix function. Since (2.10) is equivalent to (2.19), the sets
N (x,z) (where the values of x and z are fixed) are matrix balls, indeed. According to
(2.17), (2.18), and (2.20) the next formula holds:

ρl(x,z) → 0 (x → ∞), ρr(x,z) � Im1 . (2.21)

Finally, relations (2.14), (2.19), and (2.21) imply (2.3). �

In view of Proposition 2.2 we define the Weyl function of Dirac system similar to
the canonical system case [47].

DEFINITION 2.3. The Weyl-Titchmarsh (or simply Weyl) function of Dirac sys-
tem (1.1) on [0, ∞) , where potential v is locally summable, is the function ϕ given by
(2.3).

From Proposition 2.2 we see that the Weyl-Titchmarsh function always exists.
Clearly, it is unique.

COROLLARY 2.4. Let the conditions of Proposition 2.2 hold. Then the Weyl func-
tion is the unique function, which satisfies the inequality

∫ ∞

0

[
Im1 ϕ(z)∗

]
u(x,z)∗u(x,z)

[
Im1

ϕ(z)

]
dx < ∞. (2.22)

Proof. According to the equalities in (2.4) and (2.5) and to the inequality (2.11)
we derive

∫ r

0

[
Im1 ϕ(z)∗

]
u(x,z)∗u(x,z)

[
Im1

ϕ(z)

]
dx (2.23)

=
i

z− z

[
Im1 ϕ(z)∗

](
A(0,z)−A(r,z)

)[
Im1

ϕ(z)

]

� i
z− z

[
Im1 ϕ(z)∗

]
A(0,z)

[
Im1

ϕ(z)

]
.
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Inequality (2.22) is immediate from (2.23). Moreover, as u∗u � −A , the inequality
(2.17) yields

∫ r

0

[
0 Im2

]
u(x,z)∗u(x,z)

[
0

Im2

]
dx � rIm2 . (2.24)

In view of (2.24), the function satisfying (2.22) is unique. �

REMARK 2.5. From Corollary 2.4, we see that inequality (2.22) can be used as an
equivalent definition of the Weyl function. Definition of the form (2.22) is a more clas-
sical one and deals with solutions of (1.1) which belong to L2(0, ∞) . Compare (2.22)
with definitions of the Weyl-Titchmarsh or M -functions for discrete and continuous
systems in [10, 32, 33, 37, 38, 47, 49, 50] (see also references therein).

Our last proposition in this section is dedicated to a property of the Weyl function,
the analog of which may be used as a definition of generalized Weyl functions in more
complicated non-self-adjoint cases (see, e.g., [17, 38, 40]).

PROPOSITION 2.6. Let Dirac system (1.1) on [0, ∞) be given, and assume that v
is locally summable. Then, the following inequality

sup
x�l,z∈C+

∥∥∥∥e−ixzu(x,z)
[

Im1

ϕ(z)

]∥∥∥∥ < ∞ (2.25)

holds on any finite interval [0, l] for the Weyl function ϕ of this system.

Proof. We fix some l . Now, choose x such that 0 < x � l < ∞ . Because of (2.3),
the Weyl function ϕ admits representations (2.2) (i.e., ϕ(z) = ϕ(x,z,P)). Hence, we
can use (2.1) and (2.9) to get

Ψ(x,z)∗ jΨ(x,z) � 0, Ψ(x,z) := e−ixzu(x,z)
[

Im1

ϕ(z)

]
. (2.26)

On the other hand, equation (1.1) and definition of Ψ in (2.26) imply that

d
dx

(
e−2xMΨ(x,z)∗(Im + j)Ψ(x,z)

)
(2.27)

= e−2xMΨ(x,z)∗
(
i
(
(Im + j) jV −V j(Im + j)

)−2M(Im + j)
)

Ψ(x,z)

= 2e−2xMΨ(x,z)∗
[−2MIm1 iv(x)
−iv(x)∗ 0

]
Ψ(x,z), M := sup

x<l
‖V (x)‖.

Using (2.26) and (2.27) we derive

d
dx

(
e−2xMΨ(x,z)∗(Im + j)Ψ(x,z)

)
(2.28)

� 2e−2xMΨ(x,z)∗
([

0 iv(x)
−iv(x)∗ 0

]
−MIm

)
Ψ(x,z) � 0.
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Finally, inequalities (2.26) and (2.28) lead us to

Ψ(x,z)∗Ψ(x,z) � Ψ(x,z)∗(Im + j)Ψ(x,z) � 2e2xMIm1 , (2.29)

and (2.25) follows. �

3. Direct and inverse problems: explicit solutions

Various versions of Bäcklund-Darboux transformations are actively used to con-
struct explicit solutions of linear and integrable nonlinear equations (see, e.g., [8, 20,
25, 34, 35, 43, 51] and numerous references therein). For the spectral and scattering re-
sults that follow from Bäcklund-Darboux transformations and related commutation and
factorization methods see, for instance, publications [11, 12, 16, 19, 22, 24, 27, 29, 42].
Here we will give explicit solutions of our direct and inverse problems using the GBDT
version of the Bäcklund-Darboux transformation (see [14, 16, 24, 39, 42, 43] and ref-
erences therein).

To obtain explicit solutions, we consider m1 ×m2 potentials v of the form

v(x) = −2iϑ ∗
1 eixα∗

Σ(x)−1eixα ϑ2, (3.1)

where some n ∈ N is fixed and the n×n matrix function Σ is given by the formula

Σ(x) = Σ0 +
∫ x

0
Λ(t)Λ(t)∗dt (Σ0 > 0), Λ(x) =

[
e−ixα ϑ1 eixα ϑ2

]
. (3.2)

Here α , ϑ1 , and ϑ2 are n× n , n×m1 , and n×m2 parameter matrices, and the fol-
lowing matrix identity holds:

αΣ0−Σ0α∗ = i(ϑ1ϑ ∗
1 −ϑ2ϑ ∗

2 ). (3.3)

Clearly, Σ(x) is invertible for x � 0 and the potential v in (3.1) is well-defined.

DEFINITION 3.1. The m1 ×m2 potentials v of the form (3.1), where relations
(3.2) and (3.3) hold, are called the generalized pseudo-exponential potentials. It is said
that v is generated by the parameter matrices α , Σ0 , ϑ1 , and ϑ2 .

According to [39, Theorem 3] (see also [16]), the fundamental solution u of sys-
tem (1.1), where V is given by (1.2), v is a generalized pseudo-exponential potential,
and u is normalized by (1.3), admits representation

u(x,z) = wα (x,z)eixz jwα(0,z)−1. (3.4)

Here we have

wα (x,z) := Im + i jΛ(x)∗Σ(x)−1(zIn −α)−1Λ(x). (3.5)

Note that the case m1 = m2 (i.e., the case of the pseudo-exponential potentials)
was treated in greater detail in [24] (see [24] and references therein for the term pseudo-
exponential, itself, too). Formulas (3.2) and (3.3) yield

αΣ(x)−Σ(x)α∗ = iΛ(x) jΛ(x)∗. (3.6)
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Identity (3.6), in turn, implies that wα(z) is a transfer matrix function in Lev Sakhnovich
form [44–47]. However, wα (x,z) possesses an additional variable x and the way, in
which this matrix function depends on x , is essential.

From [16, formula (2.9)], where W11 and W21 are m1 ×m1 and m2 ×m1 blocks
of

wα (0,z) =: {Wij(z)}2
i, j=1, (3.7)

we see that

W21(z)W11(z)−1 = −iϑ ∗
2 Σ−1

0 (zIn−θ )−1ϑ1, θ := α − iϑ1ϑ ∗
1 Σ−1

0 . (3.8)

We note that [16, formulas (2.6) and (2.7)] imply that W11(z) is always well-defined
and invertible for z �∈ σ(α)∪σ(θ ) , where σ denotes the spectrum.

Relations (3.4), (3.7), and (3.8) are basic to solve the direct problem for Dirac
systems with the generalized pseudo-exponential potentials (3.1).

THEOREM 3.2. Let Dirac system (1.1) on [0, ∞) be given and assume that v is
a generalized pseudo-exponential potential, which is generated by the matrices α , Σ0 ,
ϑ1 , and ϑ2 . Then the Weyl function ϕ of system (1.1) has the form:

ϕ(z) = −iϑ ∗
2 Σ−1

0 (zIn−θ )−1ϑ1, θ = α − iϑ1ϑ ∗
1 Σ−1

0 . (3.9)

Proof. We compare (3.8) and (3.9) to see that

ϕ(z) =W21(z)W11(z)−1. (3.10)

Because of (3.4), (3.7), and (3.10) we have

u(x,z)
[

Im1

ϕ(z)

]
= eixzwα(x,z)

[
Im1

0

]
W11(z)−1. (3.11)

To consider the matrix function Λ∗Σ−1 , which appears in the definition (3.5) of wα ,
we derive from (3.2) that

Σ(x)−1Λ(x)Λ(x)∗Σ(x)−1 = − d
dx

Σ(x)−1. (3.12)

It is immediate also from (3.2) that Σ(x) > 0. Therefore, using (3.12) we get∫ ∞

0
Σ(t)−1Λ(t)Λ(t)∗Σ(t)−1dt � Σ−1

0 . (3.13)

Furthermore, the last equality in (3.2) implies that

sup
ℑz>‖α‖+ε

‖eixzΛ(x)‖ < Mε (ε > 0). (3.14)
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It follows from (3.5), (3.13), and (3.14) that the entries of the right-hand side of (3.11)
are well-defined and uniformly bounded in the L2(0, ∞) norm with respect to x for all
z such that ℑz � max

(‖α‖, ‖θ‖)+ ε and ε > 0. Hence, taking into account (3.11)
we see that (2.22) holds for z from the mentioned above domain. So, according to the
uniqueness statement in Corollary 2.4, ϕ(z) of the form (3.9) coincides with the Weyl
function in that domain. Since the Weyl function is analytic in C+ , the matrix function
ϕ coincides with it in C+ (i.e., ϕ is the Weyl function, indeed). �

For the case that v is a generalized pseudo-exponential potential, where Σ0 > 0,
our Weyl function coincides with the reflection coefficient from [16] (see [16, Theorem
3.3]). Hence, the solution of our inverse problem can be considered as a particular case
of the solution of the inverse problem from [16, Theorem 4.1], where the singular case
Σ0 �> 0 was studied too.

Before we formulate the procedure to solve the inverse problem, some results on
rational matrix functions and notions from system and control theories are required
(see, e.g., [26, 31]). Let ϕ(z) be a strictly proper rational matrix function, that is, such
a rational matrix function that

lim
z→∞

ϕ(z) = 0. (3.15)

Then ϕ admits representations (also called realizations):

ϕ(z) = CN(zIN −AN)−1BN , (3.16)

where CN , AN , and BN are m2×N , N×N , and N×m1 , respectively, matrices. Here
N ∈ N , and m1 (m2 ) denotes the number of columns (rows) of ϕ .

DEFINITION 3.3. The minimal possible value of N in realizations (3.16) is called
the McMillan degree of ϕ , and we denote this value by n . Realizations (3.16), where
N = n , are called the minimal realizations.

From [31, Theorems 21.1.3, 21.2.1] we easily see that for a minimal realization

ϕ(z) = C(zIn −A )−1B (3.17)

of a matrix ϕ , which is non-expansive on R and has no poles in C+ , there is a positive
solution X > 0 of the Riccati equation

XC∗CX + i(XA ∗ −A X)+BB∗ = 0. (3.18)

Furthermore, all the hermitian solutions of (3.18) are positive.

THEOREM 3.4. Let ϕ(z) be a strictly proper rational matrix function, which is
non-expansive on R and has no poles in C+ . Assume that (3.17) is its minimal real-
ization and that X > 0 is a solution of (3.18).

Then ϕ(z) is the Weyl function of the Dirac system, the potential of which is given
by (3.1) and (3.2), where

α = A + iBB∗X−1, Σ0 = X , ϑ1 = B, ϑ2 = −iXC∗. (3.19)
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This solution of the inverse problem is unique in the class of Dirac systems with the
locally bounded potentials.

Proof. From (3.19) we see that

αΣ0−Σ0α∗ = A X −XA ∗ +2iBB∗, i(ϑ1ϑ ∗
1 −ϑ2ϑ ∗

2 ) = iBB∗ − iXC∗CX ,

and so (3.3) is equivalent to (3.18). Since (3.3) holds, we apply Theorem 3.2. Theorem
3.2 states that the Weyl function of the Dirac system, where v is given by (3.1), has the
form (3.9). Next, we substitute (3.19) into (3.9), to derive that the right-hand sides of
(3.17) and the first equality in (3.9) coincide. In other words, the Weyl function of our
system admits representation (3.17).

Finally, the uniqueness of the solution of the inverse problem follows from [15,
Theorem 4.1]. �

We note that the corresponding uniqueness result in [16] was proved only for the
class of systems with the generalized pseudo-exponential potentials.

Because of the second equality in (3.8) and identity (3.3), the matrix θ satisfies
another identity: θΣ0 −Σ0θ ∗ = −i(ϑ1ϑ ∗

1 + ϑ2ϑ ∗
2 ) , that is,

Σ−1
0 θ −θ ∗Σ−1

0 = −iΣ−1
0 (ϑ1ϑ ∗

1 + ϑ2ϑ ∗
2 )Σ−1

0 . (3.20)

If f �= 0 is an eigenvector of θ (i.e., θ f = λ f ), identity (3.20) implies that

(λ −λ) f ∗Σ−1
0 f = −i f ∗Σ−1

0 (ϑ1ϑ ∗
1 + ϑ2ϑ ∗

2 )Σ−1
0 f . (3.21)

Since Σ0 > 0, we derive from (3.21) that

σ(θ ) ⊂ C− ∪R. (3.22)

Real eigenvalues of θ play a special role in the spectral theory of an operator,
which corresponds to the Dirac system with a generalized pseudo-exponential potential
(see, e.g., [23] for the case of square potentials). In our case the operator H cor-
responding to the Dirac system is defined in a way, which is similar to the definition
from [23], but the initial condition is quite different. Namely, we determine H by the
differential expression

Hdey = −i j
d
dx

y−Vy, (3.23)

and by its domain D(H ) , which consists of all locally absolutely continuous Cm -
valued functions y in L2

m(0, ∞) , such that

Hdey ∈ L2
m(0, ∞), y(0) = 0. (3.24)

PROPOSITION 3.5. Let the conditions of Theorem 3.2 hold, let θ be given by the
second relation in (3.8), and let λ be a real eigenvalue of θ :

θ f = λ f , f �= 0, λ ∈ R. (3.25)
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Then, the matrix function

g(x) := jΛ(x)∗Σ(x)−1 f (3.26)

is a bounded state of H and H g = λg.

Proof. First, we show that formulas (3.21) and (3.25) yield

ϑ ∗
1 Σ−1

0 f = 0, ϑ ∗
2 Σ−1

0 f = 0, α f = λ f . (3.27)

Indeed, the first two equalities in (3.27) easily follow from (3.21) for the case that
λ = λ . The equality α f = λ f is immediate from θ f = λ f , definition of θ in (3.8),
and equality ϑ ∗

1 Σ−1
0 f = 0.

Next, we show that(
jΛ∗Σ−1)′ = i j2Λ∗Σ−1α +

(
Λ∗Σ−1Λ− jΛ∗Σ−1Λ j

)
jΛ∗Σ−1. (3.28)

Formula (3.28) follows from a general GBDT formula [43, (3.14)] and also from its
Dirac system subcase [43, (2.13)], but it will be convenient to prove (3.28) directly. We
note that formula (3.2) implies

Λ′ = −iαΛ j, Σ′ = ΛΛ∗, (3.29)

and formula (3.6) can be rewritten as

α∗Σ−1 = Σ−1α − iΣ−1Λ jΛ∗Σ−1. (3.30)

Since j2 = Im , using (3.29) and (3.30) we obtain (3.28).
Now, partitioning Λ into two blocks and using (3.1) and (3.2), we see that

v(x) = −2iΛ1(x)∗Σ(x)−1Λ2(x), Λ =:
[
Λ1 Λ2

]
. (3.31)

In view of (1.2) and (3.31) we have

Λ∗Σ−1Λ− jΛ∗Σ−1Λ j = i jV. (3.32)

Applying both sides of (3.28) to f and taking into account the last equality in (3.27)
and relation (3.32), we derive(

jΛ(x)∗Σ(x)−1 f
)′ = iλ j2Λ(x)∗Σ(x)−1 f + i jV (x) jΛ(x)∗Σ(x)−1 f . (3.33)

Because of (3.23) and (3.26), we can rewrite (3.33) as

Hdeg = λg, (3.34)

and it remains to show that g ∈ D(H ) , that is, that g ∈ L2
m(0, ∞) and (3.24) holds

for y = g . From (3.13) and (3.34) we see that g, Hdeg ∈ L2
m(0, ∞) . Finally, the initial

condition

g(0) =
[
ϑ1 −ϑ2

]∗ Σ−1
0 f = 0 (3.35)

is immediate from (3.2), (3.26), and (3.27). �



194 B. FRITZSCHE, B. KIRSTEIN, I. YA. ROITBERG AND A. L. SAKHNOVICH

Acknowledgement

The work of I. Ya. Roitberg was supported by the German Research Foundation
(DFG) under grant no. KI 760/3-1 and the work of A. L. Sakhnovich was supported by
the Austrian Science Fund (FWF) under grant no. Y330.

RE F ER EN C ES

[1] M. J. ABLOWITZ, D. J. KAUP, A. C. NEWELL, H. SEGUR, The inverse scattering transform –
Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249–315.

[2] M. J. ABLOWITZ, H. SEGUR, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math.
4, Philadelphia, 1981.

[3] D. ALPAY, I. GOHBERG, M. A. KAASHOEK, L. LERER, A. SAKHNOVICH, Krein systems, in: Oper.
Theory Adv. Appl. 191 (2009), Birkhäuser, 19–36.
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Appl. 84, Birkhäuser, Basel-Boston-Berlin, 1996.

[47] L. A. SAKHNOVICH, Spectral theory of canonical differential systems. Method of operator identities,
Oper. Theory Adv. Appl. 107, Birkhäuser, Basel-Boston, 1999.
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