THE NUMERICAL RADII OF WEIGHTED SHIFT MATRICES AND OPERATORS

Mao-Ting Chien and Hue-An Sheu

(Communicated by C.-K. Li)

Abstract

Let A be an operator on a separable Hilbert space. The numerical range of A is defined as $W(A)=\{\langle A x, x\rangle:\|x\|=1\}$. It is known that the numerical range of a weighted shift operator is a circular disk. In this paper, we compute and compare the numerical radii of certain weighted shift matrices and operators.

1. Introduction

Let A be an operator on a separable Hilbert space. The numerical range of A is defined to be the set

$$
W(A)=\{\langle A x, x\rangle:\|x\|=1\} .
$$

The numerical range is always nonempty, bounded and convex. Further, the range is compact for a finite-dimensional matrix. The numerical radius $w(A)$ is the supremum of the modulus of $W(A)$. (For reference on the numerical ranges of matrices and operators, see, for instance, [6].)

We consider a weighted shift operator on the Hilbert space $\ell^{2}(\mathbf{N})$ with bounded weights $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ represented by an infinite matrix of the form

$$
A=A\left(a_{1}, a_{2}, \ldots\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \tag{1.1}\\
a_{1} & 0 & 0 & 0 & \ldots \\
0 & a_{2} & 0 & 0 & \ldots \\
0 & 0 & a_{3} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

In finite-dimensional case, an n-by-n weighted shift matrix with weights $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ is the matrix

$$
A=A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \tag{1.2}\\
a_{1} & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & a_{n-1} & 0
\end{array}\right)
$$

Mathematics subject classification (2010): 15A60, 47A12.
Keywords and phrases: Numerical range; numerical radius; weighted shift operator.
The first author supported in part by Taiwan National Science Council under NSC 99-2115-M-031-004-MY2.

It is known that the numerical range of a weighted shift operator is a circular disk about the origin (cf. [4], [5], [8], [9]), and the numerical range of a weighted shift matrix is a closed circular disc centered at the origin (cf. [2], [3]). In particular, $W(A(1,1, \ldots))$ is an open unit circular disk (cf. [9]), and $W(A(1,1, \ldots, 1))$ of $A(1,1, \ldots, 1) \in M_{n}$ is a circular disk about the origin with radius $\cos (\pi /(n+1))$, (cf. [7]). Further, Berger and Stampfli [1] showed that if $(1+h)>\sqrt{2}$,

$$
w(A(1+h, 1,1, \ldots))=\frac{1}{2}\left(\left((1+h)^{2}-1\right)^{1 / 2}+\left((1+h)^{2}-1\right)^{-1 / 2}\right)
$$

It is easy to see that a weighted shift operator(and matrix) A is unitarily similar to $|A|$ (cf. [4]). Hence we may assume the weights are nonnegative for the study of the numerical range. In section 2, we determine the numerical radii of weighted shift matrices

$$
\begin{equation*}
A_{k}=A_{k}(1, \ldots, 1, r, 1, \ldots, 1) \in M_{n} \tag{1.3}
\end{equation*}
$$

with weights $(1, \ldots, 1, r, 1, \ldots, 1)$, where $a_{j}=1$ for all j expect one weight $a_{k}=r>0$, $1 \leqslant k \leqslant n-1$. Moreover, we compare the numerical radii of weighted shift matrices $A_{k}, k=1,2, \ldots, n$. In section 3, we compute the numerical radius of weighted shift operator $A(1,1+h, 1, \ldots)$ with weights $\left(a_{1}, a_{2}, \ldots\right)$, where $a_{j}=1$ for all j expect the weight $a_{2}=1+h$, and compare the numerical radius with the weighted shift operator $A(1+h, 1,1, \ldots)$.

2. Weighted shift matrices

Firstly, we determine the numerical radii of weighted shift matrices $A_{k}=A_{k}(1, \ldots, 1$, $r, 1, \ldots, 1)$ with weights $(1, \ldots, 1, r, 1, \ldots, 1)$.

THEOREM 2.1. Let $A_{k}=A_{k}(1, \ldots, 1, r, 1, \ldots, 1), 1 \leqslant k \leqslant n-1$, be an $n-b y-n$ weighted shift matrix in (1.3).
(i) If $0<r \leqslant 1$, then $w\left(A_{k}\right)=\cos \theta_{k}$, where $\theta_{k} \in(0,2 \pi)$ is the minimum root of

$$
\begin{equation*}
\sin (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sin (n+1-2 j) \theta=0 \tag{2.1}
\end{equation*}
$$

(ii) If $r \geqslant 2$, then $w\left(A_{k}\right)=\cosh \theta_{k}$, where θ_{k} is the maximum root of

$$
\begin{equation*}
\sinh (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sinh (n+1-2 j) \theta=0 \tag{2.2}
\end{equation*}
$$

Proof. Let $p_{m}(t)$ be the characteristic polynomial of the real part of the shift ma$\operatorname{trix} A(1,1, \ldots, 1) \in M_{m}$. Setting $\psi_{m}(t)=2^{m} p_{m}(t)$, then $\psi_{m}(t)$ is a Chebyshev polynomial of second kind, and thus

$$
\begin{equation*}
\psi_{m}(\cos \theta)=\sin (m+1) \theta / \sin \theta \tag{2.3}
\end{equation*}
$$

Let $q_{k, n}(t)=\operatorname{det}\left(t I-\Re\left(A_{k}\right)\right)$.
Assume $r \leqslant 1$. Then $\rho\left(\Re\left(A_{k}\right)\right) \leqslant\left\|\Re\left(A_{k}\right)\right\|_{m c} \leqslant 1$, where $\|\cdot\|_{m c}$ denotes the matrix norm of maximum column sum. Thus, every eigenvalue of $\Re\left(A_{k}\right)$ can be expressed as $\cos \theta$ for some θ. We claim that, for $1 \leqslant k \leqslant n-1$,

$$
\begin{equation*}
q_{k, n}(\cos \theta)=\frac{\sin (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sin (n+1-2 j) \theta}{2^{n} \sin \theta} \tag{2.4}
\end{equation*}
$$

by proving that (2.4) holds for $k=1,2$, and induction for $k \geqslant 3$.
Suppose $k=1$. Then

$$
q_{1, n}(t)=t p_{n-1}(t)-\frac{r^{2}}{4} p_{n-2}(t)
$$

we have,

$$
\begin{equation*}
2^{n} q_{1, n}(t)=2 t \psi_{n-1}(t)-r^{2} \psi_{n-2}(t) \tag{2.5}
\end{equation*}
$$

Substituting (2.3) into (2.5), we have that

$$
\begin{align*}
2^{n} q_{1, n}(\cos \theta) & =2 \cos \theta \frac{\sin n \theta}{\sin \theta}-r^{2} \frac{\sin (n-1) \theta}{\sin \theta} \\
& =\frac{\sin (n+1) \theta+\left(1-r^{2}\right) \sin (n-1) \theta}{\sin \theta} \tag{2.6}
\end{align*}
$$

Suppose $k=2$. Then $q_{2, n}(t)=t q_{1, n-1}(t)-\frac{1}{4} p_{n-2}(t)$. Using (2.3) and (2.6), we have that

$$
\begin{align*}
q_{2, n}(\cos \theta) & =\cos \theta \frac{1}{2^{n-1}}\left(\frac{\sin n \theta}{\sin \theta}+\left(1-r^{2}\right) \frac{\sin (n-2) \theta}{\sin \theta}\right)-\frac{1}{2^{n-2}} \frac{1}{4} \frac{\sin (n-1) \theta}{\sin \theta} \\
& =\frac{\sin (n+1) \theta+\left(1-r^{2}\right) \sin (n-1) \theta+\left(1-r^{2}\right) \sin (n-3) \theta}{2^{n} \sin \theta} \tag{2.7}
\end{align*}
$$

Suppose $k \geqslant 3$. Then

$$
\begin{equation*}
q_{k, n}(t)=t q_{k-1, n-1}(t)-\frac{1}{4} q_{k-2, n-2}(t) \tag{2.8}
\end{equation*}
$$

For $k=3$, substituting (2.6) and (2.7) into (2.8), we have that

$$
\begin{aligned}
& q_{3, n}(\cos \theta) \\
= & \frac{\cos \theta\left(\sin n \theta+\left(1-r^{2}\right) \sin (n-2) \theta+\left(1-r^{2}\right) \sin (n-4) \theta\right)}{2^{n-1} \sin \theta} \\
& -\frac{1}{4} \frac{\sin (n-1) \theta+\left(1-r^{2}\right) \sin (n-3) \theta}{2^{n-2} \sin \theta} \\
= & \frac{\sin (n+1) \theta+\left(1-r^{2}\right) \sin (n-1) \theta+\left(1-r^{2}\right) \sin (n-3) \theta+\left(1-r^{2}\right) \sin (n-5) \theta}{2^{n} \sin \theta}
\end{aligned}
$$

Thus (2.4) holds. Suppose (2.4) holds for $k \leqslant m-1$. When $k=m$, according to (2.8), we compute that

$$
\begin{aligned}
& q_{m, n}(\cos \theta) \\
= & \cos \theta q_{m-1, n-1}(\cos \theta)-\frac{1}{4} q_{m-2, n-2}(\cos \theta) \\
= & \frac{\cos \theta\left[\sin n \theta+\left(1-r^{2}\right) \sin (n-2) \theta+\cdots+\left(1-r^{2}\right) \sin ((n-2(m-1)) \theta)\right.}{2^{n-1} \sin \theta} \\
& -\frac{1}{4} \frac{\sin (n-1) \theta+\left(1-r^{2}\right) \sin (n-3) \theta+\cdots+\left(1-r^{2}\right) \sin (((n-1)-2(m-2)) \theta)}{2^{n-2} \sin \theta} \\
= & \frac{\sin (n+1) \theta+\left(1-r^{2}\right) \sin (n-1) \theta+\cdots+\left(1-r^{2}\right) \sin ((n+1)-2 m) \theta}{2^{n} \sin \theta} .
\end{aligned}
$$

This proves the induction. Hence $q_{k, n}(\cos \theta)=0$ if and only if (2.1) holds. Therefore, the numerical radius $w\left(A_{k}\right)=\rho\left(\Re\left(A_{k}\right)\right)=\cos \theta_{k}$, where $\theta_{k} \in(0,2 \pi)$ is the minimum root of (2.1). Indeed, we will show later that $\theta_{k} \in(0, \pi / 2)$.

Next, assume $r \geqslant 2$. Then $\rho\left(\Re\left(A_{k}\right)\right)=w\left(A_{k}\right) \geqslant r / 2 \geqslant 1$. Thus some roots of $q_{k, n}(t)$ are greater than or equal to 1 which are expressed as $\cosh \theta$. It can be proved in the same way that for $1 \leqslant k \leqslant n-1$,

$$
q_{k, n}(\cosh \theta)=\frac{\sinh (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sinh (n+1-2 j) \theta}{2^{n} \sinh \theta}
$$

Hence, $q_{k, n}(\cosh \theta)=0$ if and only if (2.2) holds, and $w\left(A_{k}\right)=\cosh \theta_{k}$ where θ_{k} is the maximum root of (2.2).

It is shown in [4] that $W\left(A\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)\right)=W\left(A\left(a_{n-1}, a_{n-2}, \ldots, a_{1}\right)\right)$, it suffices to consider $k \leqslant[n / 2]$ for the numerical range of $A_{k}(1, \ldots, 1, r, 1, \ldots, 1) \in M_{n}$. We compare the numerical radii of the matrices $A_{k}(1, \ldots, 1, r, 1, \ldots, 1) \in M_{n}, k=1,2, \ldots$, [$n / 2$].

THEOREM 2.2. Let $1 \leqslant k \leqslant[n / 2]-1$ and A_{k} be the weighted shift matrices defined in (1.3).
(i) If $0<r<1$ then $w\left(A_{k}\right)>w\left(A_{k+1}\right)$.
(ii) If $r \geqslant 2$ then $w\left(A_{k}\right)<w\left(A_{k+1}\right)$.

Proof. Assume $0<r<1$. Consider the trigonometric polynomial obtained in (i) of Theorem 2.1,

$$
f_{k}(\theta)=\sin (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sin (n+1-2 j) \theta
$$

It is clear that $f_{k}(\theta)>0$ for all $\theta \in(0, \pi /(n+1))$. On the other hand,

$$
f_{k}(\pi /(n-(k-1)))=-\sin (k /(n-(k-1))) \pi+\left(1-r^{2}\right) \sin (k /(n-(k-1))) \pi<0
$$

Since $n-(k-1)>2$, we have $\pi /(n-(k-1))<\pi / 2$. Hence, there exists the smallest $\theta_{k} \in(\pi /(n+1), \pi /(n-(k-1)))$ such that $f_{k}\left(\theta_{k}\right)=0$. Observe that

$$
\begin{align*}
f_{k+1}(\theta) & =\sin (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k+1} \sin (n+1-2 j) \theta \\
& =f_{k}(\theta)+\left(1-r^{2}\right) \sin (n-(2 k+1)) \theta \tag{2.9}
\end{align*}
$$

Since both $f_{k}(\theta)$ and $\left(1-r^{2}\right) \sin (n-(2 k+1)) \theta$ are positive for $\theta \in\left(0, \theta_{k}\right)$, and

$$
f_{k+1}\left(\theta_{k}\right)=0+\left(1-r^{2}\right) \sin (n-(2 k+1)) \theta_{k}>0
$$

it follows that $f_{k+1}(\theta)>0$ for all $\theta \in\left(0, \theta_{k}\right]$. Further, we find that

$$
f_{k+1}(\pi /(n-k))=-\sin ((k+1) /(n-k)) \pi+\left(1-r^{2}\right) \sin ((k+1) /(n-k)) \pi<0 .
$$

Hence, there exists the smallest $\theta_{k+1} \in\left(\theta_{k}, \pi /(n-k)\right)$ such that $f_{k+1}\left(\theta_{k+1}\right)=0$, we obtain that $\cos \theta_{k}>\cos \theta_{k+1}$. This proves part (i).

Assume $r \geqslant 2$. Consider the hyperbolic trigonometric polynomial obtained in (ii) of Theorem 2.1,

$$
g_{k}(\theta)=\sinh (n+1) \theta+\left(1-r^{2}\right) \sum_{j=1}^{k} \sinh (n+1-2 j) \theta
$$

Substituting $\sinh \theta=\left(e^{\theta}-e^{-\theta}\right) / 2$, we have that

$$
\begin{equation*}
2 e^{(n+1) \theta} g_{k}(\theta)=\left(e^{2(n+1) \theta}-\left(r^{2}-1\right) \sum_{j=1}^{k} e^{2(n-j+1) \theta}\right)+\left(\left(r^{2}-1\right) \sum_{j=1}^{k} e^{2 j \theta}-1\right) \tag{2.10}
\end{equation*}
$$

The second term in the right-hand side of (2.10) is always positive. Concerning the first term, we have

$$
e^{2(n+1) \theta}-\left(r^{2}-1\right) \sum_{j=1}^{k} e^{2(n-j+1) \theta}>e^{2(n+1) \theta}-k\left(r^{2}-1\right) e^{2 n \theta}=e^{2 n \theta}\left(e^{2 \theta}-k\left(r^{2}-1\right)\right)
$$

Hence

$$
\begin{equation*}
g_{k}(\theta)>0 \text { for all } \theta \geqslant\left(\ln \left(k\left(r^{2}-1\right)\right)\right) / 2 . \tag{2.11}
\end{equation*}
$$

Substituting $\theta=\left(\ln \left(r^{2}-1\right)\right) / 2$ into (2.10), we obtain that

$$
\begin{aligned}
& 2 e^{(n+1)\left(\ln \left(r^{2}-1\right)\right) / 2} g_{k}\left(\left(\ln \left(r^{2}-1\right)\right) / 2\right) \\
= & -\left(r^{2}-1\right)^{n+2-k} \frac{\left(r^{2}-1\right)^{k-1}-1}{\left(r^{2}-1\right)-1}+\left(r^{2}-1\right)^{2} \frac{\left(r^{2}-1\right)^{k}-1}{\left(r^{2}-1\right)-1}-1<0,
\end{aligned}
$$

and thus $g_{k}\left(\left(\ln \left(r^{2}-1\right)\right) / 2\right)<0$. Then there exists the largest $\theta_{k} \in\left(\left(\ln \left(r^{2}-1\right)\right) / 2\right.$, $\left.\left(\ln \left(k\left(r^{2}-1\right)\right)\right) / 2\right)$ such that $g_{k}\left(\theta_{k}\right)=0$.

Since $g_{k+1}(\theta)=g_{k}(\theta)+\left(1-r^{2}\right) \sinh ((n+1)-2(k+1)) \theta$, it follows that

$$
\begin{equation*}
2 e^{(n+1) \theta} g_{k+1}(\theta)=2 e^{(n+1) \theta} g_{k}(\theta)-\left(r^{2}-1\right)\left(e^{2((n+1)-(k+1)) \theta}-e^{2(k+1) \theta}\right) \tag{2.12}
\end{equation*}
$$

By the hypothesis that $k \leqslant[n / 2]-1$, then $2 k<n-1$, and thus $e^{2((n+1)-(k+1)) \theta}-$ $e^{2(k+1) \theta}>0$. Then, by (2.12), $g_{k+1}\left(\theta_{k}\right)<0$, while by $(2.11), g_{k+1}(\theta)>0$ for all $\theta \geqslant\left(\ln \left((k+1)\left(r^{2}-1\right)\right)\right) / 2$. Hence, there exists the largest $\theta_{k+1} \in\left(\theta_{k},\left(\ln \left((k+1)\left(r^{2}-\right.\right.\right.\right.$ $1))) / 2)$ such that $f_{k+1}\left(\theta_{k+1}\right)=0$. The assertion $w\left(A_{k+1}\right)=\cosh \theta_{k+1}>\cosh \theta_{k}=$ $w\left(A_{k}\right)$ follows.

REMARK. The result of Theorem 2.2 is restricted to the case $0<r<1$ or $r \geqslant 2$ for the matrix $A_{k}=A_{k}(1, \ldots, 1, r, 1, \ldots, 1)$. At present, we have no analogous results if $1<r<2$. However, the following example proposes a conjecture that for $1<r<2$, the inequality $w\left(A_{k}\right)<w\left(A_{k+1}\right)$ holds.

We consider the 4×4 weighted shift matrices $A_{k}=A_{k}(1, \ldots, 1, r, 1, \ldots, 1)$. Direct computation finds that

$$
w\left(A_{1}(r, 1,1)\right)=\left(\frac{\left(1 / 2+r^{2} / 4\right)+\left(\left(1 / 2+r^{2} / 4\right)^{2}-r^{2} / 4\right)^{1 / 2}}{2}\right)^{1 / 2}
$$

and

$$
w\left(A_{2}(1, r, 1)\right)=\left(\frac{\left(1 / 2+r^{2} / 4\right)+\left(\left(1 / 2+r^{2} / 4\right)^{2}-1 / 4\right)^{1 / 2}}{2}\right)^{1 / 2}
$$

It is clear that for $1<r<2, w\left(A_{1}\right)<w\left(A_{2}\right)$.

3. Weighted shift operators

Let $A=A\left(a_{1}, a_{2}, \ldots\right)$ be a weighted shift operator with weights $\left(a_{1}, a_{2}, \ldots\right)$ defined in (1.1). The numerical range $W\left(A\left(a_{1}, a_{2}, \ldots\right)\right)$ is a circular disc about the origin. In particular, when $a_{n}=1$ for all $\mathrm{n}, W(A)$ is an open unit disc. Berger and Stampfli [1] showed that

$$
w(A)=\frac{1}{2}\left(\left((1+h)^{2}-1\right)^{\frac{1}{2}}+\left((1+h)^{2}-1\right)^{-\frac{1}{2}}\right)
$$

if $a_{1}=(1+h)>\sqrt{2}, a_{2}=a_{3}=\cdots=1$. We compute the numerical radius in the case $a_{2}=1+h, a_{1}=a_{3}=a_{4}=\cdots=1$.

THEOREM 3.1. Let $A=A(1,1+h, 1,1, \ldots)$ be a weighted shift operator with weights $(1,1+h, 1,1, \ldots)$, and $1+h>\sqrt{6} / 2$. Then

$$
\begin{aligned}
w(A)= & \frac{1}{2}\left(\left(\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2\right)^{-\frac{1}{2}}\right)
\end{aligned}
$$

Proof. The weighted shift operator A on H^{2} satisfies

$$
A f(z)=z f(z)+h f^{\prime}(0) z^{2}
$$

for $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots \in H^{2}$. Suppose that $\|\mathfrak{R}(A)\|=\alpha>1$ with $\mathfrak{R}(A) f=$ αf. Then

$$
\begin{equation*}
\left(z f(z)+\frac{f(z)-f(0)}{z}\right)+h\left(f^{\prime}(0) z^{2}+\frac{f^{\prime \prime}(0)}{2} z\right)=2 \alpha f(z) \tag{3.1}
\end{equation*}
$$

Compare coordinates-wise of the equation $\mathfrak{R}(A) f=\alpha f$, we have

$$
\begin{equation*}
f^{\prime}(0)=2 \alpha f(0) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(0)+(1+h) f^{\prime \prime}(0) / 2=2 \alpha f^{\prime}(0) \tag{3.3}
\end{equation*}
$$

Substitute $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ of equations (3.2) and (3.3) into (3.1), we have

$$
\begin{equation*}
\left(z^{2}-2 \alpha z+1\right) f(z)=\left(1-2 \alpha h z^{3}-\left(\left(4 \alpha^{2}-1\right) /(1+h)\right) h z^{2}\right) f(0) \tag{3.4}
\end{equation*}
$$

Setting $\alpha=\cosh x$ for $x>0$, the equation (3.4) yields

$$
\begin{equation*}
\left(z-e^{x}\right)\left(z-e^{-z}\right) f(z)=\left(1-\left(e^{x}+e^{-x}\right) h z^{3}-\left(\left(e^{2 x}+e^{-2 x}+1\right) /(1+h)\right) h z^{2}\right) f(0) \tag{3.5}
\end{equation*}
$$

Taking $z=e^{-x}$ in (3.5), we obtain

$$
\begin{equation*}
1-\left(e^{x}+e^{-x}\right) h e^{-3 x}-\left(\left(e^{2 x}+e^{-2 x}+1\right) /(1+h)\right) h e^{-2 x}=0 \tag{3.6}
\end{equation*}
$$

Simplify equation (3.6), we have

$$
\begin{equation*}
e^{4 x}-h(2+h) e^{2 x}-h(2+h)=0 \tag{3.7}
\end{equation*}
$$

If $1+h>\sqrt{6} / 2$, equation (3.7) is solvable by

$$
\begin{equation*}
e^{2 x}=\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2 \tag{3.8}
\end{equation*}
$$

and thus

$$
\begin{aligned}
w(A)=\cosh x= & \frac{1}{2}\left(\left(\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2\right)^{-\frac{1}{2}}\right)
\end{aligned}
$$

In the following, we compare the numerical radii of two weighted shift operators $A(1+h, 1,1, \ldots)$ and $A(1,1+h, 1, \ldots)$.

THEOREM 3.2. Let $A_{1}=A_{1}(1+h, 1,1, \ldots)$ and $A_{2}=A_{2}(1,1+h, 1, \ldots)$ be two weighted shift operators. If $(1+h)>\sqrt{2}$ then $w\left(A_{1}\right)<w\left(A_{2}\right)$.

Proof. It is shown in [1],

$$
w\left(A_{1}\right)=\cosh x_{1}=\left(\left((1+h)^{2}-1\right)^{\frac{1}{2}}+\left((1+h)^{2}-1\right)^{-\frac{1}{2}}\right) / 2
$$

where

$$
\begin{equation*}
e^{2 x_{1}}=(1+h)^{2}-1=h(2+h) . \tag{3.9}
\end{equation*}
$$

By Theorem 3.1, $w\left(A_{2}\right)=\cosh x_{2}$, where

$$
\begin{equation*}
e^{2 x_{2}}=\left(h(2+h)+\sqrt{(h(2+h))^{2}+4 h(2+h)}\right) / 2 . \tag{3.10}
\end{equation*}
$$

Comparing (3.9) with (3.10), we have $x_{1}<x_{2}$, and thus $w\left(A_{1}\right)=\cosh x_{1}<\cosh x_{2}=$ $w\left(A_{2}\right)$.

REFERENCES

[1] C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, American Journal of Mathematics, 89 (1967), 1047-1055.
[2] M. T. Chien and B. S. TAM, Circularity of the numerical range, Linear algebra and Its Applications, 201 (1994), 113-133.
[3] M. T. Chien, On the numerical range of tridiagonal operators, Linear Algebra and Its Applications, 246 (1996), 203-214.
[4] M. T. Chien and H. Nakazato, The q-numerical radius of weighted shift operators with periodic weights, Linear Algebra and Its Applications, 422 (2007), 198-218.
[5] M. T. Chien and H. Nakazato, The numerical radius of a weighted shift operator with geometric weights, Electronic Journal of Linear Algebra, 18 (2009), 58-63.
[6] K. E. Gustafson and D. K. M. Rao, Numerical range, the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[7] M. Marcus and B. N. Shure, The numerical range of certain 0,1-matrices, Linear and Multilinear Algebra, 7 (1979), 111-120.
[8] A. L. Sheilds, Weighted shift operators and analytic function theory, Mathematical Surveys. Vol. 13, American Mathematical Society, Providence, 1974.
[9] Q. F. Stout, The numerical range of a weighted shift, Proceedings of the American Mathematical Society, 88 (1983), 495-502.

