AUTOMORPHISMS OF K(H) WITH RESPECT TO THE STAR PARTIAL ORDER

Gregor Dolinar, Alexander Guterman and Janko Marovt

(Communicated by H. Radjavi)

Abstract. Let H be a separable infinite dimensional complex Hilbert space, and let $K(H)$ be the set of all compact bounded linear operators on H. In the paper we characterize the bijective, additive, continuous maps on $K(H)$ which preserve the star partial order in both directions.

1. Introduction

Let M_{n} be the algebra of all $n \times n$ complex matrices. On M_{n} many different partial orders can be defined. One such order is the rank substractivity order which was introduced by Hartwig [5] in the following way

$$
A \ll B \quad \text { if and only if } \quad \operatorname{rank}(B-A)=\operatorname{rank} B-\operatorname{rank} A
$$

Hartwig observed that there exists another equivalent definition of the rank substractivity order, namely

$$
A \ll B \quad \text { if and only if } \quad A^{-} A=A^{-} B \text { and } A A^{-}=B A^{-}
$$

where A^{-}is a generalized inner inverse of A. The partial order \ll is thus usually called the minus partial order.

Recently Šemrl [11] extended the minus partial order from M_{n} to $B(H)$, the algebra of all bounded linear operators on an infinite dimensional Hilbert space H. Since $A \in B(H)$ has a generalized inner inverse if and only if its image is closed (see for example [8]) and Šemrl did not want to restrict his attention only to closed range operators, he found an appropriate equivalent definition of the minus partial order on M_{n} without using inner inverses, and then extended this definition to $B(H)$. More precisely, he proved that for $A, B \in M_{n}$ we have $A \ll B$ if and only if there exist idempotent matrices $P, Q \in M_{n}$ such that $\operatorname{Im} P=\operatorname{Im} A$, Ker $A=\operatorname{Ker} Q, P A=P B$ and $A Q=B Q$. When extending the concept of the minus partial order from M_{n} to $B(H)$ Šemrl also replaced $\operatorname{Im} A$ in the first of the four equations by its closure, since the image of a bounded idempotent operator is closed.

[^0]Another order on M_{n} is the star order which was introduced by Drazin [2] in the following way

$$
\begin{equation*}
A \underset{*}{\leqslant} B \quad \text { if and only if } \quad A^{*} A=A^{*} B \text { and } A A^{*}=B A^{*}, \tag{1}
\end{equation*}
$$

where $A, B \in M_{n}$ and A^{*} stands for the conjugate transpose of A.
Motivated by Šemrl's extension of the minus partial order from M_{n} to $B(H)$ Dolinar and Marovt extended in [3] the star partial order to $B(H)$ in the following way.

DEfinition 1. Let H be a complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. For $A, B \in B(H)$ we write $A \leqslant B$ if and only if there exist self-adjoint idempotent operators $P, Q \in B(H)$ such that
(i) $\operatorname{Im} P=\overline{\operatorname{Im} A}$,
(ii) $\operatorname{Ker} A=\operatorname{Ker} Q$,
(iii) $P A=P B$,
(iv) $A Q=B Q$.

The order \leqslant is called the star partial order on $B(H)$.
Dolinar and Marovt [3] proved that the order introduced in the above definition is indeed a partial order and then showed that this definition is equivalent to the usual definition of the star order (1) for $B(H)$.

In [11] Šemrl also described the structure of corresponding automorphisms for the minus partial order. Namely, he characterized the bijective maps form $B(H)$ to $B(H)$ which preserve the minus partial order in both directions. It is the aim of this paper to present a similar result in the case of the star partial order. However, in our paper we restricted ourself to bijective maps from $K(H)$ to $K(H)$, where $K(H) \subset B(H)$ is the set of all compact operators, and we additionally assumed that our maps are additive and continuous. We restricted ourself to the set of all compact operators in $B(H)$ since there exists a Hilbert space H and an operator $A \in B(H)$ such that there is no rank one operator $C \in B(H)$ with $C \leqslant A$ (see Example in the next section) and we did not find a proof without the use of rank one operators. The following is our main result.

Theorem 2. Let H be a separable infinite dimensional complex Hilbert space. Assume that $\phi: K(H) \rightarrow K(H)$ is a bijective, additive and continuous map such that for every pair $A, B \in K(H)$ we have

$$
A \underset{*}{\leqslant} B \text { if and only if } \phi(A) \underset{*}{\leqslant} \phi(B) .
$$

Then there exist operators $U, V: H \rightarrow H$ which are both unitary or both antiunitary and a nonzero $\alpha \in \mathbb{C}$ such that $\phi(A)=\alpha U A V$ for every $A \in K(H)$ or $\phi(A)=\alpha U A^{*} V$ for every $A \in K(H)$.

REMARK 3. Example at the end of the paper shows that without additivity assumption the structure of the star order preservers on $K(H)$ can be much more complicated.

2. Proof of the main result

Let us start by presenting some properties of the star partial order on $B(H)$. The following lemma was proved in [3].

Lemma 4. If $A, B \in B(H)$, then the following statements are equivalent.
(i) $A \leqslant B$.
(ii) There exist closed subspaces H_{1}, H_{2} of H such that A, B: $H_{1} \oplus H_{1}^{\perp} \rightarrow H_{2} \oplus H_{2}^{\perp}$ have matrix representations

$$
A=\left[\begin{array}{rr}
A_{1} & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & B_{1}
\end{array}\right]
$$

where $A_{1}: H_{1} \rightarrow H_{2}$ and $B_{1}: H_{1}^{\perp} \rightarrow H_{2}^{\perp}$ are bounded linear operators and A_{1} is injective with $\overline{\operatorname{Im} A}=H_{2}$.
(iii) $\overline{\operatorname{Im} A} \perp \overline{\operatorname{Im}(B-A)}$ and $\overline{\operatorname{Im} A^{*}} \perp \overline{\operatorname{Im}\left(B^{*}-A^{*}\right)}$.

Lemma 5. If $P \in B(H)$ is a self-adjoint idempotent and $A \leqslant P$, then A is a selfadjoint idempotent and $A P=P A=A$.

Proof. Let $P \in B(H)$ be a self-adjoint idempotent and $A \leqslant P$. It is known (see for example [3]) that $A \leqslant P$ implies $A \ll P$ where \ll denotes the minus partial order on $B(H)$. By [11, Lemma 4] it follows that A is an idempotent and that $A P=P A=A$. It remains to show that $A=A^{*}$. It is well known (see for example [1]) that if A is an idempotent on H, then A is a self-adjoint operator if and only if A is a normal operator. Since $A \leqslant P$, we have $A^{*} A=A^{*} P$ and $A A^{*}=P A^{*}$. It follows that $A^{*} P$ and $P A^{*}$ are self-adjoint operators. So, on the one hand we have

$$
A^{*} A=P^{*} A=P A=A
$$

and on the other hand we have

$$
A A^{*}=A P^{*}=A P=A
$$

This yields that A is a normal and hence a self-adjoint idempotent.
Let $x, y \in H$ be nonzero vectors. We denote by $x \otimes y^{*} \in B(H)$ a rank one operator defined by $\left(x \otimes y^{*}\right) z=\langle z, y\rangle x, z \in H$. Note that every rank one operator in $B(H)$ can be written in this form. Let $B_{1}(H)$ be the set of all rank one operators in $B(H)$.

The proof of the next lemma is the same as the proof of Proposition 2.4 in [7].

Lemma 6. Let $x, y \in H$ be nonzero vectors and $A \in B(H)$. The following two statements are equivalent:
(i) $x \otimes y^{*} \leqslant A$.
(ii) $A^{*} x=\langle x, x\rangle y$ and $A y=\langle y, y\rangle x$.

Lemma 7. Let $A \in B(H)$. The following two statements are equivalent:
(i) There exists $C \in B_{1}(H)$ such that $C \leqslant A$.
(ii) The operator $A A^{*}$ has a nonzero eigenvalue.

Proof. Let us first assume that there exists $C \in B_{1}(H)$ such that $C \leqslant A$. Then there exist nonzero $x, y \in H$ such that $x \otimes y^{*}=C$. From Lemma 6 it follows that $A^{*} x=\langle x, x\rangle y$ and $A y=\langle y, y\rangle x$. So

$$
A A^{*} x=\langle x, x\rangle A y=\langle x, x\rangle\langle y, y\rangle x=\|x\|^{2}\|y\|^{2} x
$$

We proved that $\|x\|^{2}\|y\|^{2}$ is a nonzero eigenvalue of $A A^{*}$.
Conversely, suppose that there exists a nonzero eigenvalue λ of $A A^{*}$. So there is a nonzero $x \in H$ such that $A A^{*} x=\lambda x$. Let $y=\frac{A^{*} x}{\langle x, x\rangle}$. Hence $A^{*} x=\langle x, x\rangle y$. Note that $y \neq 0$. In order to show that $x \otimes y^{*} \leqslant A$ we will prove that $A y=\langle y, y\rangle x$. From

$$
\langle y, y\rangle=\left\langle\frac{A^{*} x}{\langle x, x\rangle}, \frac{A^{*} x}{\langle x, x\rangle}\right\rangle=\frac{1}{\langle x, x\rangle^{2}}\left\langle A A^{*} x, x\right\rangle=\frac{1}{\langle x, x\rangle^{2}}\langle\lambda x, x\rangle
$$

we have $\lambda=\langle x, x\rangle\langle y, y\rangle$. We may conclude that

$$
A y=\frac{1}{\langle x, x\rangle} A A^{*} x=\frac{1}{\langle x, x\rangle} \lambda x=\langle y, y\rangle x
$$

We will now give an example of a Hilbert space H and a positive operator $M \in$ $B(H)$ without nonzero eigenvalues. Then $A=M^{\frac{1}{2}}$ is well defined and by Lemma 7 there is no $C \in B_{1}(H)$ with $C \leqslant A$.

Example 8. Let $H=L^{2}[0,1]$. We define the operator $M: H \rightarrow H$ in the following way:

$$
M(\omega)(x)=x \cdot \omega(x)
$$

for every $\omega \in H$ and every $x \in[0,1]$. Note that the spectrum of M lies in $[0,1]$ and that M has no eigenvalues.

Let us now show that this situation is impossible for the space $K(H)$.

Lemma 9. Let $A \in K(H), A \neq 0$. Then there exists an operator $C \in B_{1}(H)$ such that $C \leqslant A$.

Proof. It is known (see for example [1]) that $A \in K(H)$ if and only if $A^{*} \in K(H)$. Also, $A \in K(H)$ if and only if $A^{*} A \in K(H)$. Suppose that for some nonzero $A \in K(H)$ there is no such $C \in B_{1}(H)$ that $C \leqslant A$. It follows from Lemma 7 that positive operator $A A^{*}$ has no nonzero eigenvalues. Since $\left\|A A^{*}\right\|$ is an eigenvalue of $A A^{*}$, it follows that $\left\|A A^{*}\right\|=0$ and therefore $A A^{*}=0$. Also, $\left\|A^{*}\right\|^{2}=\left\|A A^{*}\right\|$, so $A^{*}=0$, hence $A=0$, a contradiction.

From now on let H be an infinite dimensional complex Hilbert space and assume that $\phi: K(H) \rightarrow K(H)$ is a bijective map such that for every pair $A, B \in K(H)$ we have

$$
A \leqslant B \text { if and only if } \phi(A) \leqslant \phi(B)
$$

In order to prove that ϕ preserves rank-one operators we will need the following auxiliary result.

Lemma 10. The operator $B \in K(H)$ is of rank one if and only if $B \neq 0$ and for every $A \in K(H)$ where $A \leqslant B$ it follows that $A=0$ or $A=B$.

Proof. Let $B \in B_{1}(H)$ and suppose $A \leqslant B, A \in K(H)$. Clearly, $0 \leqslant B$ and $B \leqslant B$. By Lemma 4 it follows that A and B have the following matrix representations:

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & B_{1}
\end{array}\right]
$$

Suppose that $A \neq 0$. If $B_{1} \neq 0$, then rank $B \geqslant 2$. So $B_{1}=0$ and hence $A=B$.
Conversely, let $B \neq 0$ and suppose that for every $A \in K(H)$ where $A \leqslant B$ we have $A=0$ or $A=B$. Assume that rank $B \geqslant 2$. Then there exists an operator $C \in B_{1}(H)$ such that $C \leqslant B$. Since $C \neq B$, we obtain a contradiction.

Lemma 11. Let $B \in K(H)$. Then $B \in B_{1}(H)$ if and only if $\phi(B) \in B_{1}(H)$.
Proof. The operator $B=0$ is the only operator with the property that $A \leqslant B$ implies $A=B$. So $\phi(0)=0$. Let $B \in B_{1}(H)$. By Lemma 10 and since ϕ preserves the order \leqslant it follows that for every $\phi(A) \in K(H)$ where $\phi(A) \leqslant \phi(B)$ we have $\phi(A)=0$ or $\phi(A)=\phi(B)$. Again using Lemma 10 we may conclude that $\phi(B) \in B_{1}(H)$.

The converse implication follows from the fact that ϕ^{-1} also preserves the order \leqslant. *

Let us now recall the singular value decomposition for compact operators in $B(H)$, see for example $[6,10]$.

Definition 12. Let $A \in K(H)$. Then there exist orthonormal sequences $\left\{v_{j}\right\}$ and $\left\{u_{j}\right\}$ in H such that

$$
A v_{j}=\sigma_{j} u_{j}, \quad A^{*} u_{j}=\sigma_{j} v_{j}
$$

Here σ_{j} are positive real values which are called singular values of A.
Given an arbitrary $x \in H$ we have

$$
A x=\sum_{j} \sigma_{j}\left\langle x, v_{j}\right\rangle u_{j}
$$

where the series converges in the norm topology on H. Then

$$
A=\sum_{j} \sigma_{j}\left(u_{j} \otimes v_{j}^{*}\right)
$$

is called a singular value decomposition of A.
Note that A is of the finite rank k if and only if its singular value decomposition contains exactly k nonzero summands.

With the next lemma we will characterize the rank two operators in $K(H)$.
Lemma 13. The operator $A \in K(H)$ is of rank two if and only if $A \notin\{0\} \cup B_{1}(H)$ and for $C \in K(H), C \neq A, C \underset{*}{\leqslant} A$ it follows that $C \in\{0\} \cup B_{1}(H)$.

Proof. First let us assume that rank $A=2$ and let $C \leqslant A$ for $C \in K(H), C \neq A$. By Lemma 4, A and C have the following matrix representations:

$$
C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & A_{1}
\end{array}\right]
$$

Suppose that rank $C>1$. Since $C \neq A$, it follows that $A_{1} \neq 0$, hence rank $A>2$, a contradiction.

Conversely, let rank $A \geqslant 2$ and assume that for every $C \in K(H)$, where $C \neq A$ and $C \leqslant A$, it follows that $C \in\{0\} \cup B_{1}(H)$. If rank $A>2$ then there exist orthonormal sets of vectors $\left\{u_{j}\right\}$ and $\left\{v_{j}\right\}$ such that

$$
A=\sum_{j} \sigma_{j}\left(u_{j} \otimes v_{j}^{*}\right)
$$

where $\sigma_{j} \neq 0$ at least for $j=1,2,3$. Now, take for example the operator

$$
C=\sum_{j=1}^{2} \sigma_{j}\left(u_{j} \otimes v_{j}^{*}\right)
$$

We may check that $C^{*} C=C^{*} A$ and $C C^{*}=A C^{*}$. It follows that $C \leqslant A$. Note that $C \neq A$ and rank $C=2$. This is a contradiction hence rank $A=2$.

The following lemma may be proved by induction in the same way as Lemma 13.

Lemma 14. The operator $A \in K(H)$ is of rank n if and only if rank $A \geqslant n$ and for $C \in K(H), C \neq A, C \leqslant A$ it follows that rank $C \leqslant n-1$.

Lemma 15. Let $A \in K(H)$. We have rank $A=n$ if and only if $\operatorname{rank} \phi(A)=n$.
Proof. Let $A \in K(H)$. Then rank $A=1$ if and only if rank $\phi(A)=1$. Suppose that the result holds true for every $A \in K(H)$ with rank $A<n$. Suppose rank $A=n$, $n>1$. First note that then rank $\phi(A) \geqslant n$. Also, by Lemma 14 we may conclude that for every $C \in K(H), C \neq A, C \leqslant A$ it follows that rank $C \leqslant n-1$. Since ϕ is bijective and preserves the order \leqslant in both directions, it follows that for every $\phi(C) \in K(H)$ where $\phi(C) \neq \phi(A)$ and $\phi(C) \leqslant \phi(A)$ we have rank $\phi(C) \leqslant n-1$. By Lemma 14 we conclude that rank $\phi(A)=n$.

The inverse implication follows from the fact that ϕ^{-1} also preserves the order \leqslant.

Lemma 16. Let $A, B \in K(H)$ with rank $A=1$ and rank $B=2$. Suppose $B=$ $\alpha_{1} u_{1} \otimes v_{1}^{*}+\alpha_{2} u_{2} \otimes v_{2}^{*}$ is the singular value decomposition of B with singular values α_{1}, α_{2} and $\alpha_{1} \neq \alpha_{2}$. Then $A \underset{*}{\leqslant}$ if and only if $A=\alpha_{1} u_{1} \otimes v_{1}^{*}$ or $A=\alpha_{2} u_{2} \otimes v_{2}^{*}$.

Proof. If $A=\alpha_{1} u_{1} \otimes v_{1}^{*}$ or $A=\alpha_{2} u_{2} \otimes v_{2}^{*}$, then we have $A^{*} A=A^{*} B$ and $A A^{*}=$ $B A^{*}$ and hence $A \leqslant B$.

Conversely, let $A \leqslant B$. So, $A^{*} A=A^{*} B$ and $A A^{*}=B A^{*}$. Let $A=\gamma z \otimes w^{*}$ be the singular value decomposition of A. Hence $\gamma>0$ and $\|z\|=\|w\|=1$. From

$$
A^{*} A=\left(\gamma w \otimes z^{*}\right)\left(\gamma z \otimes w^{*}\right)=\gamma^{2} w \otimes w^{*}
$$

and

$$
A^{*} B=\left(\gamma w \otimes z^{*}\right)\left(\alpha_{1} u_{1} \otimes v_{1}^{*}+\alpha_{2} u_{2} \otimes v_{2}^{*}\right)=\gamma \alpha_{1}\left\langle u_{1}, z\right\rangle w \otimes v_{1}^{*}+\gamma \alpha_{2}\left\langle u_{2}, z\right\rangle w \otimes v_{2}^{*}
$$

we obtain that

$$
\begin{equation*}
\gamma\langle x, w\rangle w=\alpha_{1}\left\langle u_{1}, z\right\rangle\left\langle x, v_{1}\right\rangle w+\alpha_{2}\left\langle u_{2}, z\right\rangle\left\langle x, v_{2}\right\rangle w \tag{2}
\end{equation*}
$$

for every $x \in H$. Suppose $w=\delta_{1} v_{1}+\delta_{2} v_{2}+\delta_{3} v_{3}$ where $v_{3} \in\left\{v_{1}, v_{2}\right\}^{\perp}$ is a nonzero vector and $\delta_{1}, \delta_{2}, \delta_{3} \in \mathbb{C}$ with $\delta_{3} \neq 0$. For $x=v_{3}$ it follows by the equation (2) that $\gamma \delta_{3}\left\langle v_{3}, v_{3}\right\rangle=0$ and hence $\delta_{3}=0$, a contradiction. We may conclude that there exist $\delta_{1}, \delta_{2} \in \mathbb{C}$ such that

$$
w=\delta_{1} v_{1}+\delta_{2} v_{2}
$$

Let $x=v_{1}$. From the equation (2) we get $\gamma \delta_{1}=\alpha_{1}\left\langle u_{1}, z\right\rangle$ and hence, since γ is nonzero, $\delta_{1}=\frac{\alpha_{1}\left\langle u_{1}, z\right\rangle}{\gamma}$. Let now $x=v_{2}$. Then $\delta_{2}=\frac{\alpha_{2}\left\langle u_{2}, z\right\rangle}{\gamma}$. It follows that

$$
\begin{equation*}
\gamma w=\alpha_{1}\left\langle u_{1}, z\right\rangle v_{1}+\alpha_{2}\left\langle u_{2}, z\right\rangle v_{2} . \tag{3}
\end{equation*}
$$

By using the second equation $A A^{*}=B A^{*}$, we obtain the following equation

$$
\gamma\langle x, z\rangle z=\alpha_{1}\left\langle w, v_{1}\right\rangle\langle x, z\rangle u_{1}+\alpha_{2}\left\langle w, v_{2}\right\rangle\langle x, z\rangle u_{2}
$$

which holds for every $x \in H$. It follows that

$$
\begin{equation*}
\gamma z=\alpha_{1}\left\langle w, v_{1}\right\rangle u_{1}+\alpha_{2}\left\langle w, v_{2}\right\rangle u_{2} . \tag{4}
\end{equation*}
$$

Denote $\beta_{1}=\frac{\alpha_{1}\left\langle w, v_{1}\right\rangle}{\frac{\gamma}{\beta}}$ and $\beta_{2}=\frac{\alpha_{2}\left\langle w, v_{2}\right\rangle}{\gamma}$. So, $z=\beta_{1} u_{1}+\beta_{2} u_{2}$. From the equation (3) we get $\gamma w=\alpha_{1} \overline{\beta_{1}} v_{1}+\alpha_{2} \overline{\beta_{2}} v_{2}$ and hence

$$
\begin{equation*}
w=\frac{\alpha_{1}}{\gamma} \overline{\beta_{1}} v_{1}+\frac{\alpha_{2}}{\gamma} \overline{\beta_{2}} v_{2} . \tag{5}
\end{equation*}
$$

Using the equation (4) we obtain

$$
\gamma z=\frac{\alpha_{1}^{2}}{\gamma} \overline{\beta_{1}} u_{1}+\frac{\alpha_{2}^{2}}{\gamma} \overline{\beta_{2}} u_{2}
$$

Since $z=\beta_{1} u_{1}+\beta_{2} u_{2}$ and vectors u_{1} and u_{2} are orthogonal, we obtain $\gamma \beta_{1}=\frac{\alpha_{1}^{2}}{\gamma} \overline{\beta_{1}}$ and $\gamma \beta_{2}=\frac{\alpha_{2}^{2}}{\gamma} \overline{\beta_{2}}$. The first equation yields that $\beta_{1}=c \overline{\beta_{1}}$ where $c>0$, so $\beta_{1} \in \mathbb{R}$. Similarly, $\beta_{2} \in \mathbb{R}$.

Suppose first that $\beta_{1}=0$. Then $z=\beta_{2} u_{2}$ and by $\|z\|=\left\|u_{2}\right\|=1$ we may conclude that $\beta_{2}=1$ or $\beta_{2}=-1$. It follows that $\alpha_{2}^{2}=\gamma^{2}$ and since $\alpha_{2}, \gamma>0$ we have $\alpha_{2}=\gamma$. Also, from the equation (5) we get $w=\beta_{2} v_{2}$. We may conclude that

$$
A=\gamma z \otimes w^{*}=\alpha_{2} \beta_{2}^{2} u_{2} \otimes v_{2}^{*}=\alpha_{2} u_{2} \otimes v_{2}^{*}
$$

Suppose now that $\beta_{2}=0$. We may similarly conclude that $A=\alpha_{1} u_{1} \otimes v_{1}^{*}$. Finally, suppose $\beta_{1} \neq 0$ and $\beta_{2} \neq 0$. It follows that $\alpha_{1}^{2}=\gamma^{2}=\alpha_{2}^{2}$. Since α_{1} and α_{2} are positive, we have $\alpha_{1}=\alpha_{2}$, a contradiction.

From the proof of Lemma 16 we can conclude also the following.
Corollary 17. Let $A, B \in K(H)$ such that rank $A=1$ and rank $B=2$. Suppose that $A=\gamma z \otimes w^{*}$ and $B=\alpha\left(u_{1} \otimes v_{1}^{*}+u_{2} \otimes v_{2}^{*}\right)$ are the singular value decompositions of A and B. If $A \underset{*}{\leqslant}$, then $\alpha=\gamma$.

Now we can tell more about the map ϕ.

Lemma 18. Let $P \in K(H)$ be a self-adjoint idempotent operator of rank two and let $\phi(P)=\alpha_{1} u_{1} \otimes v_{1}^{*}+\alpha_{2} u_{2} \otimes v_{2}^{*}$ be the singular value decomposition of $\phi(P)$ with singular values α_{1} and α_{2}. Then $\alpha_{1}=\alpha_{2}$. Moreover, if $R \in K(H)$ is another selfadjoint idempotent operator of rank two where $\phi(R)=\beta\left(a_{1} \otimes b_{1}^{*}+a_{2} \otimes b_{2}^{*}\right)$ is the singular value decomposition of $\phi(R)$ with singular value β, then $\beta=\alpha_{1}$.

Proof. Let P be a self-adjoint idempotent of rank two and let $\phi(P)=\alpha_{1} u_{1} \otimes v_{1}^{*}+$ $\alpha_{2} u_{2} \otimes v_{2}^{*}$ be the singular value decomposition of $\phi(P)$ with $\alpha_{1} \neq \alpha_{2}$. For a rank one operator A in $K(H)$ it follows by Lemma 16 that if $A \leqslant \phi(P)$, then $A=\alpha_{1} u_{1} \otimes v_{1}^{*}$ or $A=\alpha_{2} u_{2} \otimes v_{2}^{*}$. Since ϕ preserves the order \leqslant in both directions, there exist only two rank one operators $Q_{i}, i \in\{1,2\}$, such that $Q_{i} \leqslant P$. Here $Q_{i}=\phi^{-1}\left(\alpha_{i} u_{i} \otimes v_{i}^{*}\right)$. This is a contradiction since P is a self-adjoint idempotent of rank 2 and hence for every self-adjoint idempotent Q of rank one with $\operatorname{Im} Q \subset \operatorname{Im} P$ it follows $Q \leqslant P$.

Suppose now $\phi(P)=\alpha\left(u_{1} \otimes v_{1}^{*}+u_{2} \otimes v_{2}^{*}\right)$ is the singular value decomposition of $\phi(P)$ and let R be a self-adjoint idempotent operator of rank two where $\phi(R)=\beta\left(a_{1} \otimes\right.$ $\left.b_{1}^{*}+a_{2} \otimes b_{2}^{*}\right)$ is the singular value decomposition of $\phi(R)$ with singular value β. Then $P=e_{1} \otimes e_{1}^{*}+e_{2} \otimes e_{2}^{*}$ and $R=f_{1} \otimes f_{1}^{*}+f_{2} \otimes f_{2}^{*}$ for some orthonormal sets of vectors $\left\{e_{1}, e_{2}\right\}$ and $\left\{f_{1}, f_{2}\right\}$. It follows that $e_{i} \otimes e_{i}^{*} \leqslant P$ and $f_{i} \otimes f_{i}^{*} \leqslant R, i \in\{1,2\}$. Let $\phi\left(e_{2} \otimes e_{2}^{*}\right)=\gamma s_{1} \otimes s_{2}^{*}$ and $\phi\left(f_{1} \otimes f_{1}^{*}\right)=\delta z_{1} \otimes z_{2}^{*}$ be the singular value decompositions of $\phi\left(e_{2} \otimes e_{2}^{*}\right)$ and $\phi\left(f_{1} \otimes f_{1}^{*}\right)$. By Corollary 17 we have $\alpha=\gamma$ and $\delta=\beta$. There exists an idempotent self-adjoint operator M of rank two such that $\left\{e_{2}, f_{1}\right\} \subset \operatorname{Im} M$. Since ϕ preserves the order \leqslant, we have $\phi\left(e_{2} \otimes e_{2}^{*}\right) \leqslant \phi(M)$ and $\phi\left(f_{1} \otimes f_{1}^{*}\right) \leqslant \phi(M)$. Let $\phi(M)=\theta\left(m_{1} \otimes n_{1}^{*}+m_{2} \otimes n_{2}^{*}\right)$ be the singular value decomposition of $\phi(M)$ with singular value θ. By Corollary 17 it follows that $\alpha=\theta=\beta$.

The next result follows directly from the previous two lemmas.
Corollary 19. Let $P, Q \in K(H), P \neq Q$, be self-adjoint idempotent operators of rank one. If $\phi(P)=\alpha s_{1} \otimes s_{2}^{*}$ and $\phi(Q)=\beta z_{1} \otimes z_{2}^{*}$ are the singular value decompositions of $\phi(P)$ and $\phi(Q)$, then $\alpha=\beta$.

Lemma 20. Let $P \in K(H)$ be a self-adjoint idempotent operator and let $\phi(P)=$ $\alpha_{1} u_{1} \otimes v_{1}^{*}+\alpha_{2} u_{2} \otimes v_{2}^{*}+\ldots+\alpha_{n} u_{n} \otimes v_{n}^{*}$ be the singular value decomposition of $\phi(P)$. Then $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=\alpha$. If $Q \in K(H)$ is another self-adjoint idempotent operator where $\phi(Q)=\beta\left(m_{1} \otimes n_{1}^{*}+m_{2} \otimes n_{2}^{*}+\ldots+m_{k} \otimes n_{k}^{*}\right)$ is the singular value decomposition of $\phi(Q)$, then $\alpha=\beta$.

Proof. Let P be a self-adjoint idempotent operator and let $\phi(P)=\alpha_{1} u_{1} \otimes v_{1}^{*}+$ $\alpha_{2} u_{2} \otimes v_{2}^{*}+\ldots+\alpha_{n} u_{n} \otimes v_{n}^{*}$ be the singular value decomposition. Suppose there exist $i, j \in\{1,2, \ldots, n\}$ such that $\alpha_{i} \neq \alpha_{j}$. Since $\alpha_{i} u_{i} \otimes v_{i}^{*} \underset{*}{\leqslant} \phi(P)$ and $\alpha_{j} u_{j} \otimes v_{j}^{*} \underset{*}{\leqslant} \phi(P)$, we conclude that $\phi^{-1}\left(\alpha_{i} u_{i} \otimes v_{i}^{*}\right) \leqslant P$ and $\phi^{-1}\left(\alpha_{j} u_{j} \otimes v_{j}^{*}\right) \leqslant P$. By Lemma 5 and since ϕ^{-1} also preserves the rank, it follows that $\phi^{-1}\left(\alpha_{i} u_{i} \otimes v_{i}^{*}\right)$ and $\phi^{-1}\left(\alpha_{j} u_{j} \otimes v_{j}^{*}\right)$ are selfadjoint idempotent operators of rank one. By Corollary 19 we may conclude $\alpha_{i}=\alpha_{j}$, a contradiction.

Let $P, Q \in K(H)$ be self-adjoint idempotent operators and let $\phi(P)=\alpha\left(u_{1} \otimes v_{1}^{*}+\right.$ $\left.u_{2} \otimes v_{2}^{*}+\ldots+u_{n} \otimes v_{n}^{*}\right), \phi(Q)=\beta\left(m_{1} \otimes n_{1}^{*}+m_{2} \otimes n_{2}^{*}+\ldots+m_{k} \otimes n_{k}^{*}\right)$ be their singular value decompositions, respectively. The proof that $\alpha=\beta$ is similar to the proof of Lemma 18, where P and Q are both of rank two.

Corollary 21. For every self-adjoint idempotent $P \in K(H)$ we obtain the same scalar α in the singular value decomposition of $\phi(P)$.

Proof of Theorem. By Corollary 21 we can assume that a scalar in the singular value decomposition of $\phi(P)$ is equal to one for every self-adjoint idempotent $P \in$ $K(H)$. In addition, from now on we will assume that $\phi: K(H) \rightarrow K(H)$ also is additive and continuous. Since ϕ is bijective and additive, it follows that ϕ^{-1} is also additive. Hilbert space H is separable, so there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots\right\}$ in H. There also exist $u_{i}, v_{i} \in H,\left\|u_{i}\right\|=\left\|v_{i}\right\|=1, i \in \mathbb{N}$, such that $\phi\left(e_{i} \otimes e_{i}^{*}\right)=u_{i} \otimes v_{i}^{*}$.

Step 1. We will show that u_{i}, u_{j} are orthogonal and that v_{i}, v_{j} are orthogonal for $i \neq j$. Let $A=u_{i} \otimes v_{i}^{*}+u_{j} \otimes v_{j}^{*}$. Since ϕ is additive, it follows that

$$
\phi\left(e_{i} \otimes e_{i}^{*}+e_{j} \otimes e_{j}^{*}\right)=u_{i} \otimes v_{i}^{*}+u_{j} \otimes v_{j}^{*}=A .
$$

Recall that ϕ preserves the rank, hence u_{i} and u_{j} are linearly independent and also v_{i} and v_{j} are linearly independent. By Lemma 20, the singular value decomposition for $\phi\left(e_{i} \otimes e_{i}^{*}+e_{j} \otimes e_{j}^{*}\right)$ is of the form $s_{i} \otimes z_{i}^{*}+s_{j} \otimes z_{j}^{*}$, where s_{i}, s_{j} are orthonormal and z_{i}, z_{j} are orthonormal. So, $\phi\left(e_{i} \otimes e_{i}^{*}+e_{j} \otimes e_{j}^{*}\right)=A$ is a partial isometry. Note that $\operatorname{Ker} A=\left(\operatorname{Im} A^{*}\right)^{\perp}=\left(\operatorname{Lin}\left\{v_{i}, v_{j}\right\}\right)^{\perp}$. A partial isometry is isometric on the orthogonal complement of its kernel so the restriction of $A^{*} A$ to $\operatorname{Lin}\left\{v_{i}, v_{j}\right\}$ is the identity operator. Hence, $A^{*} A v_{i}=v_{i}$ and $A^{*} A v_{j}=v_{j}$. Also, $A^{*}=v_{i} \otimes u_{i}^{*}+v_{j} \otimes u_{j}^{*}$, therefore

$$
A^{*} A v_{i}=v_{i}+\left\langle u_{j}, u_{i}\right\rangle\left\langle v_{i}, v_{j}\right\rangle v_{i}+\left\langle u_{i}, u_{j}\right\rangle v_{j}+\left\langle v_{i}, v_{j}\right\rangle v_{j}
$$

and hence

$$
0=\left\langle u_{j}, u_{i}\right\rangle\left\langle v_{i}, v_{j}\right\rangle v_{i}+\left(\left\langle u_{i}, u_{j}\right\rangle+\left\langle v_{i}, v_{j}\right\rangle\right) v_{j}
$$

Since v_{i} and v_{j} are linearly independent we may conclude that $\left\langle u_{j}, u_{i}\right\rangle\left\langle v_{i}, v_{j}\right\rangle=0$, $\left\langle u_{i}, u_{j}\right\rangle+\left\langle v_{i}, v_{j}\right\rangle=0$, and hence $\left\langle u_{i}, u_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle=0$.

Step 2. We will show that both sequences $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ are orthonormal bases in H. Suppose first that both $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ are not orthonormal bases in H. So, there exist x_{0} and $y_{0},\left\|x_{0}\right\|=\left\|y_{0}\right\|=1$, such that x_{0} is orthogonal to $\left\{u_{i}\right\}$ and y_{0} is orthogonal to $\left\{v_{i}\right\}$. Let $i \in \mathbb{N}$ be arbitrary and let us denote $A=u_{i} \otimes v_{i}^{*}+2 x_{0} \otimes y_{0}^{*}$. Then A is a rank two operator with a singular value decomposition $u_{i} \otimes v_{i}^{*}+2 x_{0} \otimes y_{0}^{*}$. Assume that $B \leqslant A$ is a rank one operator. Lemma 16 yields that either $B=u_{i} \otimes v_{i}^{*}$ or $B=2 x_{0} \otimes y_{0}^{*}$. Also, $\phi^{-1}(A)$ is a rank two operator. Let $\mu_{1} a_{1} \otimes b_{1}^{*}+\mu_{2} a_{2} \otimes b_{2}^{*}$ be a singular value decomposition of $\phi^{-1}(A)$. Since ϕ preserves the order in both directions, there are exactly two rank one operators C such that $C \leqslant \phi^{-1}(A)$. Also, since $\phi^{-1}\left(u_{i} \otimes v_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}$ and ϕ^{-1} is injective, we may assume without loss of generality that $e_{i} \otimes e_{i}^{*}=\mu_{1} a_{1} \otimes b_{1}^{*}$ and $\phi^{-1}\left(2 x_{0} \otimes y_{0}^{*}\right)=\mu_{2} a_{2} \otimes b_{2}^{*}$. We may conclude that a_{2} and b_{2} are orthogonal to e_{i}. This holds for every $i \in \mathbb{N}$, a contradiction.

Suppose now that only one of the sequences, for example $\left\{u_{i}\right\}$, is not a basis in H. So, there exist $x_{0},\left\|x_{0}\right\|=1$, such that x_{0} is orthogonal to $\left\{u_{i}\right\}$. As before, let us
denote $A=u_{i} \otimes v_{i}^{*}+2 x_{0} \otimes v_{j}^{*}$ where $j \in \mathbb{N}$ and $j \neq i$. We obtain a contradiction in a similar way as before.

Step 3. We may assume without loss of generality that $\phi\left(e_{i} \otimes e_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}$. Since sequences $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ are orthonormal bases in H, there exist unitary operators $U, V \in B(H)$ with $U\left(u_{i}\right)=e_{i}$ and $V^{*}\left(v_{i}\right)=e_{i}, i \in \mathbb{N}$. If we define $\psi(A)=U \phi(A) V$, then $\psi\left(e_{i} \otimes e_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}$. So, we may assume that $\phi\left(e_{i} \otimes e_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}$.

Step 4. For any n denote $P_{n}=\sum_{i=1}^{n} e_{i} \otimes e_{i}^{*}$. We will show that $\phi\left(P_{n} K(H) P_{n}\right)=$ $P_{n} K(H) P_{n}$. Let $x \otimes y^{*} \in P_{n} K(H) P_{n}$ be a rank one operator with $\|x\|=\|y\|=1$. Our aim is to show that $\phi\left(x \otimes y^{*}\right) \in P_{n} K(H) P_{n}$. Suppose $j \geqslant n+1$. Then $A=x \otimes y^{*}+2 e_{j} \otimes e_{j}^{*}$ is a rank two operator. Assume that B is a rank one operator and that $B \leqslant A$. Then by Lemma $16, B$ is either $x \otimes y^{*}$ or $2 e_{j} \otimes e_{j}^{*}$. Recall that ϕ is additive. So, ${ }_{\phi}^{\phi}\left(2 e_{j} \otimes e_{j}^{*}\right)=$ $2 \phi\left(e_{j} \otimes e_{j}^{*}\right)=2 e_{j} \otimes e_{j}^{*}$ and hence $\phi(A)=\phi\left(x \otimes y^{*}\right)+2 e_{j} \otimes e_{j}^{*}$. The operator $\phi(A)$ is of rank two. Let $\mu_{1} u_{1} \otimes v_{1}^{*}+\mu_{2} u_{2} \otimes v_{2}^{*}$ be the singular value decomposition of $\phi(A)$. Then $\mu_{i} u_{i} \otimes v_{i}^{*} \leqslant \phi(A), i \in\{1,2\}$. Since ϕ preserves the order, also $2 e_{j} \otimes e_{j}^{*} \leqslant$ $\phi(A), \phi\left(x \otimes y^{*}\right) \leqslant \phi(A)$ and therefore we may assume without loss of generality that $2 e_{j} \otimes e_{j}^{*}=\mu_{1} u_{1} \otimes v_{1}^{*}$. Hence $\phi\left(x \otimes y^{*}\right)=\mu_{2} u_{2} \otimes v_{2}^{*}$. Note that $\left\langle e_{j}, u_{2}\right\rangle=\left\langle e_{j}, v_{2}\right\rangle=0$. This equality holds for every $j \geqslant n+1$, hence $\phi\left(x \otimes y^{*}\right) \in P_{n} K(H) P_{n}$.

It is straightforward to show that for $\alpha x \otimes y^{*} \in P_{n} K(H) P_{n}$, where $\alpha>0, \alpha \neq 1$, and $\|x\|=\|y\|=1$, we have $\phi\left(\alpha x \otimes y^{*}\right) \in P_{n} K(H) P_{n}$. By using the fact that ϕ is additive we may conclude that if $A \in P_{n} K(H) P_{n}$, it follows $\phi(A) \in P_{n} K(H) P_{n}$. We have proved that $\phi\left(P_{n} K(H) P_{n}\right) \subset P_{n} K(H) P_{n}$. Recall that ϕ^{-1} is also additive. Since ϕ preserves the order in both directions, we may conclude that $\phi\left(P_{n} K(H) P_{n}\right)=P_{n} K(H) P_{n}$.

Step 5. We will determine the restrictions of ϕ on finite dimensional spaces $P_{n} K(H) P_{n}$. Let $n_{0} \in \mathbb{N}, n_{0} \geqslant 3$, be fixed. The set $P_{n_{0}} K(H) P_{n_{0}}$ can be identified with $M_{n_{0}}$ according to the basis $\left\{e_{1}, \ldots, e_{n_{0}}\right\}$. Recall that $\phi\left(e_{i} \otimes e_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}, i \in \mathbb{N}$. The restriction of ϕ to $P_{n_{0}} K(H) P_{n_{0}}$ can be considered as a bijective, additive and continuous map $\phi_{n_{0}}: M_{n_{0}} \rightarrow M_{n_{0}}$ which preserves the star order in both directions and sends the identity matrix to itself. To present its form let us first state the following result of Guterman ([4], Theorem 3.1).

An additive map $T: M_{n_{0}} \rightarrow M_{n_{0}}$ preserves the star order in one direction (i.e., $A \leqslant B$ implies $T(A) \leqslant T(B)$ for every $\left.A, B \in M_{n_{0}}\right)$ if and only if either $T \equiv 0$, or there exist unitary matrices ${ }^{*} U_{n_{0}}, V_{n_{0}} \in M_{n_{0}}$ and a nonzero $\alpha \in \mathbb{C}$, such that T has one of the following forms:
(i) $T(A)=\alpha U_{n_{0}} A V_{n_{0}}$ for all $A \in M_{n_{0}}$, or
(ii) $T(A)=\alpha U_{n_{0}} A^{t} V_{n_{0}}$ for all $A \in M_{n_{0}}$, or
(iii) $T(A)=\alpha U_{n_{0}} A^{*} V_{n_{0}}$ for all $A \in M_{n_{0}}$, or
(iv) $T(A)=\alpha U_{n_{0}} \bar{A} V_{n_{0}}$ for all $A \in M_{n_{0}}$,
where A^{t} denotes the transpose of A, and \bar{A} is the matrix obtained from A by taking complex conjugate values of its entries.

Applying this result to $\phi_{n_{0}}$ we will specify the structure of matrices $U_{n_{0}}, V_{n_{0}}$ in this particular case. Since $\phi_{n_{0}}$ is injective and additive and since $\phi_{n_{0}}\left(e_{i} \otimes e_{i}^{*}\right)=e_{i} \otimes e_{i}^{*}$, we have $\alpha U_{n_{0}} e_{i} \otimes e_{i}^{*} V_{n_{0}}=e_{i} \otimes e_{i}^{*}$ for every $i \in\left\{1,2, \ldots, n_{0}\right\}$. It follows that unitary matrices $U_{n_{0}}$ and $V_{n_{o}}$ are diagonal and that $|\alpha|=1$. Since $\alpha U_{n_{0}}$ is a unitary matrix, we may set $\alpha=1$ and change $U_{n_{0}}$ acordingly. Also, $\phi_{n_{0}}(I)=I$ and hence $U_{n_{0}} V_{n_{0}}=I$, i.e., $V_{n_{0}}=U_{n_{0}}^{*}$. We conclude that there exits a diagonal and unitary matrix $U_{n_{0}} \in M_{n_{0}}$ such that $\phi_{n_{0}}(A)=U_{n_{0}} A U_{n_{0}}^{*}$ for every $A \in M_{n_{0}}$, or $\phi_{n_{0}}(A)=U_{n_{0}} A^{t} U_{n_{0}}^{*}$ for every $A \in M_{n_{0}}$, or $\phi_{n_{0}}(A)=U_{n_{0}} A^{*} U_{n_{0}}^{*}$ for every $A \in M_{n_{0}}$, or $\phi_{n_{0}}(A)=U_{n_{0}} \bar{A} U_{n_{0}}^{*}$ for every $A \in M_{n_{0}}$. Let us note that the absolute values of all diagonal elements of matrix $U_{n_{0}}$ are equal to 1 .

Step 6. Let us show that matrices $U_{n_{0}}$ of different sizes are well related. Let $n_{0} \in \mathbb{N}, n_{0} \geqslant 3$, be fixed and suppose that $\phi_{n_{0}}(A)=U_{n_{0}} A U_{n_{0}}^{*}$ for every $A \in M_{n_{0}}$. Since $\left[\begin{array}{rr}A & 0 \\ 0 & 0\end{array}\right] \in M_{n_{0}+1}$ for every $A \in M_{n_{0}}$, we may conclude that $\phi_{n_{0}+1}(B)=U_{n_{0}+1} B U_{n_{0}+1}^{*}$ for every $B \in M_{n_{0}+1}$. So, the restriction of $\phi_{n_{0}+1}$ to $M_{n_{0}}$ equals $\phi_{n_{0}}$. Let $U_{n_{0}}=$ $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n_{0}}\right)$ and $U_{n_{0}+1}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n_{0}}, \lambda_{n_{0}+1}\right)$. Since $\left|\lambda_{1}\right|=\left|\mu_{1}\right|=1$, we may assume without loss of generality that $\lambda_{1}=\mu_{1}=1$. Let

$$
P_{1}=\left[\begin{array}{ccc}
\frac{1}{n_{0}} & \cdots & \frac{1}{n_{0}} \\
\vdots & \ddots & \vdots \\
\frac{1}{n_{0}} & \cdots & \frac{1}{n_{0}}
\end{array}\right] \in M_{n_{0}} \quad \text { and } \quad P_{2}=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & 0
\end{array}\right] \in M_{n_{0}+1}
$$

The upper left $n_{0} \times n_{0}$ block of $U_{n_{0}+1} P_{2} U_{n_{0}+1}^{*}$ equals the matrix $U_{n_{0}} P_{1} U_{n_{0}}^{*}$, so $\lambda_{i}=\mu_{i}$ for every $i \in\left\{1,2, \ldots, n_{0}\right\}$ and therefore $U_{n_{0}+1}=\left[\begin{array}{cc}U_{n_{0}} & 0 \\ 0 & \lambda_{n_{0}+1}\end{array}\right]$.

Step 7. We first consider the case when $\phi_{3}(A)=U_{3} A U_{3}^{*}$. Let us assume that the restriction ϕ_{3} of ϕ to $P_{3} K(H) P_{3}$ is of the following form $\phi_{3}(A)=U_{3} A U_{3}^{*}$ for every $A \in P_{3} K(H) P_{3}$. It follows that $\phi_{n_{0}}(A)=U_{n_{0}} A U_{n_{0}}^{*}$ for every $A \in P_{n_{0}} K(H) P_{n_{0}}$ and every $n_{0} \in \mathbb{N}, n_{0} \geqslant 3$. As before, $U_{n_{0}}$ is a diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n_{0}}\right),\left|\lambda_{i}\right|=1$ for every $i \in\left\{1,2, \ldots, n_{0}\right\}$. We define an operator $U: H \rightarrow H$ in the following way: $U e_{i}=\lambda_{i} e_{i}, i \in \mathbb{N}$. Then U is a unitary operator and $\phi(A)=U A U^{*}$ for every A for which there exists $n \in\{3,4,5, \ldots\}$ such that $A \in P_{n} K(H) P_{n}$. Without loss of generality we may assume that $\phi(A)=A$ for every A for which there exists $n \in\{3,4,5, \ldots\}$ such that $A \in P_{n} K(H) P_{n}$.

Step 8. We will show that $\phi(P)=P$ for every self-adjoint idempotent $P \in K(H)$, when ϕ is as in Step 7. Let $Q=x \otimes x^{*}$ be a rank one self-adjoint idempotent where $x \notin \operatorname{Lin}\left\{e_{j}: 1 \leqslant j \leqslant n\right\}$ for every $n \in \mathbb{N}$. Recall that $\left\{e_{1}, e_{2}, \ldots\right\}$ is an orthonormal basis in H, therefore it easily follows that $\left\|Q-P_{n} Q P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since $P_{n} Q P_{n} \in$ $P_{n} K(H) P_{n}$, we may conclude that $\phi\left(P_{n} Q P_{n}\right)=P_{n} Q P_{n}$ for every $n \in \mathbb{N}$. It follows by the continuity of ϕ that $\phi(Q)=Q$ where $Q=x \otimes x^{*}$ and $\|x\|=1$. So, $\phi(P)=P$ for every rank one self-adjoint idempotent P and by the additivity of ϕ we have $\phi(P)=P$ for every self-adjoint idempotent $P \in K(H)$.

Step 9. We consider also the other three cases, when $\phi_{3}(A)=U_{3} A^{*} U_{3}^{*}, \phi_{3}(A)=$ $U_{3} A^{t} U_{3}^{*}$, or $\phi_{3}(A)=U_{3} \bar{A} U_{3}^{*}$. Assume that the restriction ϕ_{3} of ϕ to $P_{3} K(H) P_{3}$ is of the form $\phi_{3}(A)=U_{3} A^{*} U_{3}^{*}$ for every $A \in P_{3} K(H) P_{3}$, then similarly as in Step 7 there is a unitary operator U such that $\phi(A)=U A^{*} U^{*}$ for every A for which there exists $n \in\{3,4,5, \ldots\}$ such that $A \in P_{n} K(H) P_{n}$, and also that $\phi(P)=P$ for every self-adjoint idempotent $P \in K(H)$. Finally, if we suppose that the restriction ϕ_{3} of ϕ to $P_{3} K(H) P_{3}$ is of the form $\phi_{3}(A)=U_{3} A^{t} U_{3}^{*}$ or of the form $\phi_{3}(A)=U_{3} \bar{A} U_{3}^{*}$, then similarly as in Step 7 there is an antiunitary operator U such that $\phi(A)=U A U^{*}$ for every A from $P_{n} K(H) P_{n}$ for some $n \geqslant 3$, or $\phi(A)=U A^{*} U^{*}$ for every A from $P_{n} K(H) P_{n}$ for some $n \geqslant 3$. As in the first two cases we also obtain that $\phi(P)=P$ for every self-adjoint idempotent $P \in K(H)$.

So, it remains to characterize the map $\phi: K(H) \rightarrow K(H)$ with the properties stated in the Theorem and with an additional property that $\phi(P)=P$ for every self-adjoint idempotent $P \in K(H)$.

Step 10. We will determine map ϕ on finite rank operators from $K(H)$. Let $A_{0} \in$ $K(H)$ be an arbitrary finite rank operator. Then there exists a self-adjoint idempotent $P \in K(H)$ with rank $n \geqslant 3$, such that $A_{0} \in P K(H) P$. In the same way as for P_{n} we can show that $\phi(P K(H) P)=P K(H) P$ and by the result of Guterman ([4], Theorem 3.1) that there exists diagonal unitary matrix U_{P} from M_{n} according to an appropriate basis, such that $\phi_{P}(A)=U_{P} A U_{P}^{*}$ for every $A \in M_{n}$, or $\phi_{P}(A)=U_{P} A^{*} U_{P}^{*}$ for every $A \in M_{n}$, or $\phi_{P}(A)=U_{P} \bar{A} U_{P}^{*}$ for every $A \in M_{n}$, or $\phi_{P}(A)=U_{P} A^{t} U_{P}^{*}$ for every $A \in$ M_{n}. Since $\phi_{P}\left(Q_{1}\right)=Q_{1}$ for self-adjoint idempotent $Q_{1}=\left[\begin{array}{ccc}\frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n}\end{array}\right] \in M_{n}$, it follows that $U_{P}=\alpha I,|\alpha|=1$. So we can assume without loss of generality that $U_{p}=I$. From $\phi_{P}\left(Q_{2}\right)=Q_{2}$ for self-adjoint idempotent $Q_{2}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{i}{2} & 0 \\ \frac{-i}{2} & \frac{1}{2} & 0 \\ 0 & & 0\end{array}\right] \in M_{n}$, it follows that $\phi\left(A_{0}\right)=A_{0}$ or $\phi\left(A_{0}\right)=A_{0}^{*}$. Suppose that for a map ϕ it holds $\phi\left(A_{0}\right)=A_{0} \neq A_{0}^{*}$ and $\phi\left(B_{0}\right)=B_{0}^{*} \neq B_{0}$ for some finite rank operators $A_{0}, B_{0} \in K(H)$. Then $\phi\left(A_{0}+B_{0}\right)=$ $\phi\left(A_{0}\right)+\phi\left(B_{0}\right)=A_{0}+B_{0}^{*}$, a contradiction. So, $\phi(A)=A$ for every finite rank operator $A \in B(H)$, or $\phi(A)=A^{*}$ for every finite rank operator $A \in B(H)$.

Step 11. We will determine map ϕ on the whole $K(H)$. If Q is an arbitrary operator in $K(H)$, then there is a sequence $\left\{Q_{n}\right\}$ of operators of finite rank such that $\left\|Q_{n}-Q\right\| \rightarrow 0$ as $n \rightarrow \infty$. By the continuity of ϕ it follows that $\phi(Q)=Q$ for every $Q \in K(H)$ or $\phi(Q)=Q^{*}$ for every $Q \in K(H)$.

Taking into account assumptions about ϕ in Steps 7 and 9 we obtain that the following implication holds: if $\phi: K(H) \rightarrow K(H)$ is a bijective, additive and continuous map which preserves the star partial order in both directions, then there exist operators $U, V: H \rightarrow H$, which are both unitary or both antiunitary, and $\alpha \in \mathbb{C}$ such that $\phi(A)=\alpha U A V$ for every $A \in K(H)$ or $\phi(A)=\alpha U A^{*} V$ for every $A \in K(H)$. The inverse implication follows immediately from the definition of the star partial order.

3. On non-additive maps

It would be interesting to find the form of the map $\phi: K(H) \rightarrow K(H)$ without the assumptions of additivity and/or continuity. Let us present an example of a bijective non-additive map $\phi: K(H) \rightarrow K(H)$ which has more involved structure than additive ones. We will first recall the following lemma which follows from the singular value decomposition (see [7] and [9]).

LEMMA 22. If $A \in M_{n}$ is nonzero, then there exists a unique decomposition, called Penrose decomposition,

$$
A=\sum_{j=1}^{k} t_{j} V_{j}
$$

where $t_{1}>t_{2}>\ldots>t_{k}>0$ and $V_{1}, V_{2}, \ldots, V_{k}$ are mutually orthogonal nonzero partial isometries.

Similarly, we may define Penrose decomposition for operators from $K(H)$. Let $A=\sum_{j} \sigma_{j}\left(u_{j} \otimes v_{j}^{*}\right)$ be a singular value decomposition of $A \in K(H)$. We reorder this sum, unifying the summands with the same σ_{j}, and obtain: $A=\sum_{\alpha>0} \alpha U_{\alpha}$. Here (by the definition of singular value decomposition) U_{α} is a partial isometry for every α and $U_{\alpha} U_{\beta}^{*}=U_{\alpha}^{*} U_{\beta}=0$ for $\alpha \neq \beta$. (Note that almost all partial isometries U_{α} are zero.)

Proposition 23. Let $A, B \in K(H)$ have Penrose decompositions $A=\sum_{\alpha>0} \alpha U_{\alpha}$ and $B=\sum_{\beta>0} \beta V_{\beta}$. Then $A \underset{*}{\leqslant} B$ if and only iffor every $\alpha>0$ it holds that $U_{\alpha} \leqslant_{*} V_{\alpha}$.

Proof. Let $A, B \in K(H)$ and $A \leqslant B$. So, $A^{*} A=A^{*} B$ and $A A^{*}=B A^{*}$. By using Penrose decomposition of A and multiplying equation $A^{*} A=A^{*} B$ from the left by U_{α} we get

$$
\begin{equation*}
\alpha^{2} U_{\alpha}=\alpha U_{\alpha} U_{\alpha}^{*} B \tag{6}
\end{equation*}
$$

Also, multiplying the operator B from the right by V_{β}^{*} we have $B V_{\beta}^{*}=\beta V_{\beta} V_{\beta}^{*}$. Therefore, $\alpha U_{\alpha} V_{\beta}^{*}=\beta U_{\alpha} U_{\alpha}^{*} V_{\beta} V_{\beta}^{*}$. Using similarly the equation $A A^{*}=B A^{*}$, we get $\alpha U_{\alpha}^{*} V_{\beta}$ $=\beta U_{\alpha}^{*} U_{\alpha} V_{\beta}^{*} V_{\beta}$. It follows that

$$
\alpha^{2} U_{\alpha}^{*} V_{\beta}=\beta U_{\alpha}^{*} \alpha U_{\alpha} V_{\beta}^{*} V_{\beta}=\beta^{2} U_{\alpha}^{*} U_{\alpha} U_{\alpha}^{*} V_{\beta} V_{\beta}^{*} V_{\beta}=\beta^{2} U_{\alpha}^{*} V_{\beta}
$$

If $\alpha \neq \beta$, we may conclude that $U_{\alpha}^{*} V_{\beta}=0$. Similarly, $U_{\alpha} V_{\beta}^{*}=0$.
Multiplying (6) from the left by $U_{\alpha}^{*}, \alpha>0$, we get

$$
U_{\alpha}^{*} \alpha U_{\alpha}=U_{\alpha}^{*} U_{\alpha} U_{\alpha}^{*} B=U_{\alpha}^{*} B=\alpha U_{\alpha}^{*} V_{\alpha}
$$

Since $\alpha \neq 0$, it follows that $U_{\alpha}^{*} U_{\alpha}=U_{\alpha}^{*} V_{\alpha}$. Similarly, $U_{\alpha} U_{\alpha}^{*}=V_{\alpha} U_{\alpha}^{*}$. Therefore, $U_{\alpha} \leqslant V_{\alpha}$.

The reverse implication is trivial.
Now we are in position to present an example of a non-additive, bijective transformation that preserves the star order in both directions (see also Legiša's result in [7]).

Example 24. We define a map $T(f, g): K(H) \rightarrow K(H)$ as follows. Let $f:(0, \infty)$ $\rightarrow(0, \infty)$ be a bijective continuous map on the set of positive real numbers and let $g:(0, \infty) \rightarrow\{\lambda \in \mathbb{C}:|\lambda|=1\}$. For a zero operator let $T(f, g)(0)=0$. If $A=\sum_{\alpha>0} \alpha V_{\alpha}$ is Penrose decomposition of a nonzero operator $A \in K(H)$, let

$$
T(f, g)(A)=\sum_{\alpha>0} f(\alpha) g(\alpha) V_{\alpha}
$$

It easily follows from the previous proposition (see also [7]) that $T(f, g)$ is bijective, non-additive and preserves the star order in both directions.

REFERENCES

[1] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1990.
[2] M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), 139-141.
[3] G. Dolinar, J. Marovt, Star partial order on $B(H)$, Linear Algebra Appl. 434 (2011), 319-326.
[4] A. E. Guterman, Monotone additive matrix transformations, Math. Notes 81 (2007), 609-619.
[5] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), 1-13.
[6] A. Kirsch, An introduction to the mathematical theory of inverse problems, Springer, New York, 1996.
[7] P. LEGIŠA, Automorphisms of M_{n}, partially ordered by the star order, Linear and Multilinear Algebra 54 (2006), 157-188.
[8] M. Z. NASHED (ED.), Generalized inverses and applications, Academic Press, New York-London, 1976.
[9] R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51 (1955), 406-413.
[10] L. Smithies, R. S. VARGA, Singular value decomposition Geršgorin sets, Linear Algebra Appl. 417 (2006), 370-380.
[11] P. Šemrl, Automorphisms of $B(H)$ with respect to minus partial order, J. Math. Anal. Appl. 369 (2010), 205-213.

Janko Marovt EPF - University of Maribor

Razlagova 14
SI-2000 Maribor, Slovenia
e-mail: janko.marovt@uni-mb.si

[^0]: Mathematics subject classification (2010): 06A06, 15A03, 15A04, 15A86.
 Keywords and phrases: Star partial order, minus partial order, preserver.
 Supported in part by a grant from the Ministry of Higher Education, Science and Technology, Slovenia.

